New upstream version 17.11.1
[deb_dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_bus_pci.h>
47 #include <rte_ether.h>
48 #include <rte_ethdev.h>
49 #include <rte_ethdev_pci.h>
50 #include <rte_memory.h>
51 #include <rte_eal.h>
52 #include <rte_atomic.h>
53 #include <rte_malloc.h>
54 #include <rte_dev.h>
55
56 #include "e1000_logs.h"
57 #include "base/e1000_api.h"
58 #include "e1000_ethdev.h"
59
60 #define EM_EIAC                 0x000DC
61
62 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
63
64
65 static int eth_em_configure(struct rte_eth_dev *dev);
66 static int eth_em_start(struct rte_eth_dev *dev);
67 static void eth_em_stop(struct rte_eth_dev *dev);
68 static void eth_em_close(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
70 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
72 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
73 static int eth_em_link_update(struct rte_eth_dev *dev,
74                                 int wait_to_complete);
75 static int eth_em_stats_get(struct rte_eth_dev *dev,
76                                 struct rte_eth_stats *rte_stats);
77 static void eth_em_stats_reset(struct rte_eth_dev *dev);
78 static void eth_em_infos_get(struct rte_eth_dev *dev,
79                                 struct rte_eth_dev_info *dev_info);
80 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
81                                 struct rte_eth_fc_conf *fc_conf);
82 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
83                                 struct rte_eth_fc_conf *fc_conf);
84 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
85 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
86 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
87 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
88                                    struct rte_intr_handle *handle);
89 static void eth_em_interrupt_handler(void *param);
90
91 static int em_hw_init(struct e1000_hw *hw);
92 static int em_hardware_init(struct e1000_hw *hw);
93 static void em_hw_control_acquire(struct e1000_hw *hw);
94 static void em_hw_control_release(struct e1000_hw *hw);
95 static void em_init_manageability(struct e1000_hw *hw);
96 static void em_release_manageability(struct e1000_hw *hw);
97
98 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
99
100 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
101                 uint16_t vlan_id, int on);
102 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
103 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
104 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
105 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
106 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
107
108 /*
109 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
110                                         uint16_t vlan_id, int on);
111 */
112
113 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
114 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
115 static void em_lsc_intr_disable(struct e1000_hw *hw);
116 static void em_rxq_intr_enable(struct e1000_hw *hw);
117 static void em_rxq_intr_disable(struct e1000_hw *hw);
118
119 static int eth_em_led_on(struct rte_eth_dev *dev);
120 static int eth_em_led_off(struct rte_eth_dev *dev);
121
122 static int em_get_rx_buffer_size(struct e1000_hw *hw);
123 static int eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
124                           uint32_t index, uint32_t pool);
125 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
126
127 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
128                                    struct ether_addr *mc_addr_set,
129                                    uint32_t nb_mc_addr);
130
131 #define EM_FC_PAUSE_TIME 0x0680
132 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
133 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
134
135 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
136
137 /*
138  * The set of PCI devices this driver supports
139  */
140 static const struct rte_pci_id pci_id_em_map[] = {
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
158         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
159         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
160         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
161         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
162         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
163         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
164         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
165         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
166         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
167         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
168         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
169         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
170         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
171         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
172         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
173         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
174         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
175         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
176         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
177         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
178         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
179         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
180         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
181         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
182         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
183         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
184         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
185         { .vendor_id = 0, /* sentinel */ },
186 };
187
188 static const struct eth_dev_ops eth_em_ops = {
189         .dev_configure        = eth_em_configure,
190         .dev_start            = eth_em_start,
191         .dev_stop             = eth_em_stop,
192         .dev_close            = eth_em_close,
193         .promiscuous_enable   = eth_em_promiscuous_enable,
194         .promiscuous_disable  = eth_em_promiscuous_disable,
195         .allmulticast_enable  = eth_em_allmulticast_enable,
196         .allmulticast_disable = eth_em_allmulticast_disable,
197         .link_update          = eth_em_link_update,
198         .stats_get            = eth_em_stats_get,
199         .stats_reset          = eth_em_stats_reset,
200         .dev_infos_get        = eth_em_infos_get,
201         .mtu_set              = eth_em_mtu_set,
202         .vlan_filter_set      = eth_em_vlan_filter_set,
203         .vlan_offload_set     = eth_em_vlan_offload_set,
204         .rx_queue_setup       = eth_em_rx_queue_setup,
205         .rx_queue_release     = eth_em_rx_queue_release,
206         .rx_queue_count       = eth_em_rx_queue_count,
207         .rx_descriptor_done   = eth_em_rx_descriptor_done,
208         .rx_descriptor_status = eth_em_rx_descriptor_status,
209         .tx_descriptor_status = eth_em_tx_descriptor_status,
210         .tx_queue_setup       = eth_em_tx_queue_setup,
211         .tx_queue_release     = eth_em_tx_queue_release,
212         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
213         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
214         .dev_led_on           = eth_em_led_on,
215         .dev_led_off          = eth_em_led_off,
216         .flow_ctrl_get        = eth_em_flow_ctrl_get,
217         .flow_ctrl_set        = eth_em_flow_ctrl_set,
218         .mac_addr_add         = eth_em_rar_set,
219         .mac_addr_remove      = eth_em_rar_clear,
220         .set_mc_addr_list     = eth_em_set_mc_addr_list,
221         .rxq_info_get         = em_rxq_info_get,
222         .txq_info_get         = em_txq_info_get,
223 };
224
225 /**
226  * Atomically reads the link status information from global
227  * structure rte_eth_dev.
228  *
229  * @param dev
230  *   - Pointer to the structure rte_eth_dev to read from.
231  *   - Pointer to the buffer to be saved with the link status.
232  *
233  * @return
234  *   - On success, zero.
235  *   - On failure, negative value.
236  */
237 static inline int
238 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
239                                 struct rte_eth_link *link)
240 {
241         struct rte_eth_link *dst = link;
242         struct rte_eth_link *src = &(dev->data->dev_link);
243
244         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
245                                         *(uint64_t *)src) == 0)
246                 return -1;
247
248         return 0;
249 }
250
251 /**
252  * Atomically writes the link status information into global
253  * structure rte_eth_dev.
254  *
255  * @param dev
256  *   - Pointer to the structure rte_eth_dev to read from.
257  *   - Pointer to the buffer to be saved with the link status.
258  *
259  * @return
260  *   - On success, zero.
261  *   - On failure, negative value.
262  */
263 static inline int
264 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
265                                 struct rte_eth_link *link)
266 {
267         struct rte_eth_link *dst = &(dev->data->dev_link);
268         struct rte_eth_link *src = link;
269
270         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
271                                         *(uint64_t *)src) == 0)
272                 return -1;
273
274         return 0;
275 }
276
277 /**
278  *  eth_em_dev_is_ich8 - Check for ICH8 device
279  *  @hw: pointer to the HW structure
280  *
281  *  return TRUE for ICH8, otherwise FALSE
282  **/
283 static bool
284 eth_em_dev_is_ich8(struct e1000_hw *hw)
285 {
286         DEBUGFUNC("eth_em_dev_is_ich8");
287
288         switch (hw->device_id) {
289         case E1000_DEV_ID_PCH_LPT_I217_LM:
290         case E1000_DEV_ID_PCH_LPT_I217_V:
291         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
292         case E1000_DEV_ID_PCH_LPTLP_I218_V:
293         case E1000_DEV_ID_PCH_I218_V2:
294         case E1000_DEV_ID_PCH_I218_LM2:
295         case E1000_DEV_ID_PCH_I218_V3:
296         case E1000_DEV_ID_PCH_I218_LM3:
297         case E1000_DEV_ID_PCH_SPT_I219_LM:
298         case E1000_DEV_ID_PCH_SPT_I219_V:
299         case E1000_DEV_ID_PCH_SPT_I219_LM2:
300         case E1000_DEV_ID_PCH_SPT_I219_V2:
301         case E1000_DEV_ID_PCH_LBG_I219_LM3:
302         case E1000_DEV_ID_PCH_SPT_I219_LM4:
303         case E1000_DEV_ID_PCH_SPT_I219_V4:
304         case E1000_DEV_ID_PCH_SPT_I219_LM5:
305         case E1000_DEV_ID_PCH_SPT_I219_V5:
306         case E1000_DEV_ID_PCH_CNP_I219_LM6:
307         case E1000_DEV_ID_PCH_CNP_I219_V6:
308         case E1000_DEV_ID_PCH_CNP_I219_LM7:
309         case E1000_DEV_ID_PCH_CNP_I219_V7:
310                 return 1;
311         default:
312                 return 0;
313         }
314 }
315
316 static int
317 eth_em_dev_init(struct rte_eth_dev *eth_dev)
318 {
319         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
320         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
321         struct e1000_adapter *adapter =
322                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
323         struct e1000_hw *hw =
324                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
325         struct e1000_vfta * shadow_vfta =
326                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
327
328         eth_dev->dev_ops = &eth_em_ops;
329         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
330         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
331         eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
332
333         /* for secondary processes, we don't initialise any further as primary
334          * has already done this work. Only check we don't need a different
335          * RX function */
336         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
337                 if (eth_dev->data->scattered_rx)
338                         eth_dev->rx_pkt_burst =
339                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
340                 return 0;
341         }
342
343         rte_eth_copy_pci_info(eth_dev, pci_dev);
344
345         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
346         hw->device_id = pci_dev->id.device_id;
347         adapter->stopped = 0;
348
349         /* For ICH8 support we'll need to map the flash memory BAR */
350         if (eth_em_dev_is_ich8(hw))
351                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
352
353         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
354                         em_hw_init(hw) != 0) {
355                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
356                         "failed to init HW",
357                         eth_dev->data->port_id, pci_dev->id.vendor_id,
358                         pci_dev->id.device_id);
359                 return -ENODEV;
360         }
361
362         /* Allocate memory for storing MAC addresses */
363         eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
364                         hw->mac.rar_entry_count, 0);
365         if (eth_dev->data->mac_addrs == NULL) {
366                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
367                         "store MAC addresses",
368                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
369                 return -ENOMEM;
370         }
371
372         /* Copy the permanent MAC address */
373         ether_addr_copy((struct ether_addr *) hw->mac.addr,
374                 eth_dev->data->mac_addrs);
375
376         /* initialize the vfta */
377         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
378
379         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
380                      eth_dev->data->port_id, pci_dev->id.vendor_id,
381                      pci_dev->id.device_id);
382
383         rte_intr_callback_register(intr_handle,
384                                    eth_em_interrupt_handler, eth_dev);
385
386         return 0;
387 }
388
389 static int
390 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
391 {
392         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
393         struct e1000_adapter *adapter =
394                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
395         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
396
397         PMD_INIT_FUNC_TRACE();
398
399         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
400                 return -EPERM;
401
402         if (adapter->stopped == 0)
403                 eth_em_close(eth_dev);
404
405         eth_dev->dev_ops = NULL;
406         eth_dev->rx_pkt_burst = NULL;
407         eth_dev->tx_pkt_burst = NULL;
408
409         rte_free(eth_dev->data->mac_addrs);
410         eth_dev->data->mac_addrs = NULL;
411
412         /* disable uio intr before callback unregister */
413         rte_intr_disable(intr_handle);
414         rte_intr_callback_unregister(intr_handle,
415                                      eth_em_interrupt_handler, eth_dev);
416
417         return 0;
418 }
419
420 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
421         struct rte_pci_device *pci_dev)
422 {
423         return rte_eth_dev_pci_generic_probe(pci_dev,
424                 sizeof(struct e1000_adapter), eth_em_dev_init);
425 }
426
427 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
428 {
429         return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
430 }
431
432 static struct rte_pci_driver rte_em_pmd = {
433         .id_table = pci_id_em_map,
434         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
435                      RTE_PCI_DRV_IOVA_AS_VA,
436         .probe = eth_em_pci_probe,
437         .remove = eth_em_pci_remove,
438 };
439
440 static int
441 em_hw_init(struct e1000_hw *hw)
442 {
443         int diag;
444
445         diag = hw->mac.ops.init_params(hw);
446         if (diag != 0) {
447                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
448                 return diag;
449         }
450         diag = hw->nvm.ops.init_params(hw);
451         if (diag != 0) {
452                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
453                 return diag;
454         }
455         diag = hw->phy.ops.init_params(hw);
456         if (diag != 0) {
457                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
458                 return diag;
459         }
460         (void) e1000_get_bus_info(hw);
461
462         hw->mac.autoneg = 1;
463         hw->phy.autoneg_wait_to_complete = 0;
464         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
465
466         e1000_init_script_state_82541(hw, TRUE);
467         e1000_set_tbi_compatibility_82543(hw, TRUE);
468
469         /* Copper options */
470         if (hw->phy.media_type == e1000_media_type_copper) {
471                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
472                 hw->phy.disable_polarity_correction = 0;
473                 hw->phy.ms_type = e1000_ms_hw_default;
474         }
475
476         /*
477          * Start from a known state, this is important in reading the nvm
478          * and mac from that.
479          */
480         e1000_reset_hw(hw);
481
482         /* Make sure we have a good EEPROM before we read from it */
483         if (e1000_validate_nvm_checksum(hw) < 0) {
484                 /*
485                  * Some PCI-E parts fail the first check due to
486                  * the link being in sleep state, call it again,
487                  * if it fails a second time its a real issue.
488                  */
489                 diag = e1000_validate_nvm_checksum(hw);
490                 if (diag < 0) {
491                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
492                         goto error;
493                 }
494         }
495
496         /* Read the permanent MAC address out of the EEPROM */
497         diag = e1000_read_mac_addr(hw);
498         if (diag != 0) {
499                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
500                 goto error;
501         }
502
503         /* Now initialize the hardware */
504         diag = em_hardware_init(hw);
505         if (diag != 0) {
506                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
507                 goto error;
508         }
509
510         hw->mac.get_link_status = 1;
511
512         /* Indicate SOL/IDER usage */
513         diag = e1000_check_reset_block(hw);
514         if (diag < 0) {
515                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
516                         "SOL/IDER session");
517         }
518         return 0;
519
520 error:
521         em_hw_control_release(hw);
522         return diag;
523 }
524
525 static int
526 eth_em_configure(struct rte_eth_dev *dev)
527 {
528         struct e1000_interrupt *intr =
529                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
530
531         PMD_INIT_FUNC_TRACE();
532         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
533         PMD_INIT_FUNC_TRACE();
534
535         return 0;
536 }
537
538 static void
539 em_set_pba(struct e1000_hw *hw)
540 {
541         uint32_t pba;
542
543         /*
544          * Packet Buffer Allocation (PBA)
545          * Writing PBA sets the receive portion of the buffer
546          * the remainder is used for the transmit buffer.
547          * Devices before the 82547 had a Packet Buffer of 64K.
548          * After the 82547 the buffer was reduced to 40K.
549          */
550         switch (hw->mac.type) {
551                 case e1000_82547:
552                 case e1000_82547_rev_2:
553                 /* 82547: Total Packet Buffer is 40K */
554                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
555                         break;
556                 case e1000_82571:
557                 case e1000_82572:
558                 case e1000_80003es2lan:
559                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
560                         break;
561                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
562                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
563                         break;
564                 case e1000_82574:
565                 case e1000_82583:
566                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
567                         break;
568                 case e1000_ich8lan:
569                         pba = E1000_PBA_8K;
570                         break;
571                 case e1000_ich9lan:
572                 case e1000_ich10lan:
573                         pba = E1000_PBA_10K;
574                         break;
575                 case e1000_pchlan:
576                 case e1000_pch2lan:
577                 case e1000_pch_lpt:
578                 case e1000_pch_spt:
579                 case e1000_pch_cnp:
580                         pba = E1000_PBA_26K;
581                         break;
582                 default:
583                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
584         }
585
586         E1000_WRITE_REG(hw, E1000_PBA, pba);
587 }
588
589 static int
590 eth_em_start(struct rte_eth_dev *dev)
591 {
592         struct e1000_adapter *adapter =
593                 E1000_DEV_PRIVATE(dev->data->dev_private);
594         struct e1000_hw *hw =
595                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
596         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
597         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
598         int ret, mask;
599         uint32_t intr_vector = 0;
600         uint32_t *speeds;
601         int num_speeds;
602         bool autoneg;
603
604         PMD_INIT_FUNC_TRACE();
605
606         eth_em_stop(dev);
607
608         e1000_power_up_phy(hw);
609
610         /* Set default PBA value */
611         em_set_pba(hw);
612
613         /* Put the address into the Receive Address Array */
614         e1000_rar_set(hw, hw->mac.addr, 0);
615
616         /*
617          * With the 82571 adapter, RAR[0] may be overwritten
618          * when the other port is reset, we make a duplicate
619          * in RAR[14] for that eventuality, this assures
620          * the interface continues to function.
621          */
622         if (hw->mac.type == e1000_82571) {
623                 e1000_set_laa_state_82571(hw, TRUE);
624                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
625         }
626
627         /* Initialize the hardware */
628         if (em_hardware_init(hw)) {
629                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
630                 return -EIO;
631         }
632
633         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
634
635         /* Configure for OS presence */
636         em_init_manageability(hw);
637
638         if (dev->data->dev_conf.intr_conf.rxq != 0) {
639                 intr_vector = dev->data->nb_rx_queues;
640                 if (rte_intr_efd_enable(intr_handle, intr_vector))
641                         return -1;
642         }
643
644         if (rte_intr_dp_is_en(intr_handle)) {
645                 intr_handle->intr_vec =
646                         rte_zmalloc("intr_vec",
647                                         dev->data->nb_rx_queues * sizeof(int), 0);
648                 if (intr_handle->intr_vec == NULL) {
649                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
650                                                 " intr_vec", dev->data->nb_rx_queues);
651                         return -ENOMEM;
652                 }
653
654                 /* enable rx interrupt */
655                 em_rxq_intr_enable(hw);
656         }
657
658         eth_em_tx_init(dev);
659
660         ret = eth_em_rx_init(dev);
661         if (ret) {
662                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
663                 em_dev_clear_queues(dev);
664                 return ret;
665         }
666
667         e1000_clear_hw_cntrs_base_generic(hw);
668
669         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
670                         ETH_VLAN_EXTEND_MASK;
671         ret = eth_em_vlan_offload_set(dev, mask);
672         if (ret) {
673                 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
674                 em_dev_clear_queues(dev);
675                 return ret;
676         }
677
678         /* Set Interrupt Throttling Rate to maximum allowed value. */
679         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
680
681         /* Setup link speed and duplex */
682         speeds = &dev->data->dev_conf.link_speeds;
683         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
684                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
685                 hw->mac.autoneg = 1;
686         } else {
687                 num_speeds = 0;
688                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
689
690                 /* Reset */
691                 hw->phy.autoneg_advertised = 0;
692
693                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
694                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
695                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
696                         num_speeds = -1;
697                         goto error_invalid_config;
698                 }
699                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
700                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
701                         num_speeds++;
702                 }
703                 if (*speeds & ETH_LINK_SPEED_10M) {
704                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
705                         num_speeds++;
706                 }
707                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
708                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
709                         num_speeds++;
710                 }
711                 if (*speeds & ETH_LINK_SPEED_100M) {
712                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
713                         num_speeds++;
714                 }
715                 if (*speeds & ETH_LINK_SPEED_1G) {
716                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
717                         num_speeds++;
718                 }
719                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
720                         goto error_invalid_config;
721
722                 /* Set/reset the mac.autoneg based on the link speed,
723                  * fixed or not
724                  */
725                 if (!autoneg) {
726                         hw->mac.autoneg = 0;
727                         hw->mac.forced_speed_duplex =
728                                         hw->phy.autoneg_advertised;
729                 } else {
730                         hw->mac.autoneg = 1;
731                 }
732         }
733
734         e1000_setup_link(hw);
735
736         if (rte_intr_allow_others(intr_handle)) {
737                 /* check if lsc interrupt is enabled */
738                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
739                         ret = eth_em_interrupt_setup(dev);
740                         if (ret) {
741                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
742                                 em_dev_clear_queues(dev);
743                                 return ret;
744                         }
745                 }
746         } else {
747                 rte_intr_callback_unregister(intr_handle,
748                                                 eth_em_interrupt_handler,
749                                                 (void *)dev);
750                 if (dev->data->dev_conf.intr_conf.lsc != 0)
751                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
752                                      " no intr multiplexn");
753         }
754         /* check if rxq interrupt is enabled */
755         if (dev->data->dev_conf.intr_conf.rxq != 0)
756                 eth_em_rxq_interrupt_setup(dev);
757
758         rte_intr_enable(intr_handle);
759
760         adapter->stopped = 0;
761
762         PMD_INIT_LOG(DEBUG, "<<");
763
764         return 0;
765
766 error_invalid_config:
767         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
768                      dev->data->dev_conf.link_speeds, dev->data->port_id);
769         em_dev_clear_queues(dev);
770         return -EINVAL;
771 }
772
773 /*********************************************************************
774  *
775  *  This routine disables all traffic on the adapter by issuing a
776  *  global reset on the MAC.
777  *
778  **********************************************************************/
779 static void
780 eth_em_stop(struct rte_eth_dev *dev)
781 {
782         struct rte_eth_link link;
783         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
784         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
785         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
786
787         em_rxq_intr_disable(hw);
788         em_lsc_intr_disable(hw);
789
790         e1000_reset_hw(hw);
791         if (hw->mac.type >= e1000_82544)
792                 E1000_WRITE_REG(hw, E1000_WUC, 0);
793
794         /* Power down the phy. Needed to make the link go down */
795         e1000_power_down_phy(hw);
796
797         em_dev_clear_queues(dev);
798
799         /* clear the recorded link status */
800         memset(&link, 0, sizeof(link));
801         rte_em_dev_atomic_write_link_status(dev, &link);
802
803         if (!rte_intr_allow_others(intr_handle))
804                 /* resume to the default handler */
805                 rte_intr_callback_register(intr_handle,
806                                            eth_em_interrupt_handler,
807                                            (void *)dev);
808
809         /* Clean datapath event and queue/vec mapping */
810         rte_intr_efd_disable(intr_handle);
811         if (intr_handle->intr_vec != NULL) {
812                 rte_free(intr_handle->intr_vec);
813                 intr_handle->intr_vec = NULL;
814         }
815 }
816
817 static void
818 eth_em_close(struct rte_eth_dev *dev)
819 {
820         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
821         struct e1000_adapter *adapter =
822                 E1000_DEV_PRIVATE(dev->data->dev_private);
823
824         eth_em_stop(dev);
825         adapter->stopped = 1;
826         em_dev_free_queues(dev);
827         e1000_phy_hw_reset(hw);
828         em_release_manageability(hw);
829         em_hw_control_release(hw);
830 }
831
832 static int
833 em_get_rx_buffer_size(struct e1000_hw *hw)
834 {
835         uint32_t rx_buf_size;
836
837         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
838         return rx_buf_size;
839 }
840
841 /*********************************************************************
842  *
843  *  Initialize the hardware
844  *
845  **********************************************************************/
846 static int
847 em_hardware_init(struct e1000_hw *hw)
848 {
849         uint32_t rx_buf_size;
850         int diag;
851
852         /* Issue a global reset */
853         e1000_reset_hw(hw);
854
855         /* Let the firmware know the OS is in control */
856         em_hw_control_acquire(hw);
857
858         /*
859          * These parameters control the automatic generation (Tx) and
860          * response (Rx) to Ethernet PAUSE frames.
861          * - High water mark should allow for at least two standard size (1518)
862          *   frames to be received after sending an XOFF.
863          * - Low water mark works best when it is very near the high water mark.
864          *   This allows the receiver to restart by sending XON when it has
865          *   drained a bit. Here we use an arbitrary value of 1500 which will
866          *   restart after one full frame is pulled from the buffer. There
867          *   could be several smaller frames in the buffer and if so they will
868          *   not trigger the XON until their total number reduces the buffer
869          *   by 1500.
870          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
871          */
872         rx_buf_size = em_get_rx_buffer_size(hw);
873
874         hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
875         hw->fc.low_water = hw->fc.high_water - 1500;
876
877         if (hw->mac.type == e1000_80003es2lan)
878                 hw->fc.pause_time = UINT16_MAX;
879         else
880                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
881
882         hw->fc.send_xon = 1;
883
884         /* Set Flow control, use the tunable location if sane */
885         if (em_fc_setting <= e1000_fc_full)
886                 hw->fc.requested_mode = em_fc_setting;
887         else
888                 hw->fc.requested_mode = e1000_fc_none;
889
890         /* Workaround: no TX flow ctrl for PCH */
891         if (hw->mac.type == e1000_pchlan)
892                 hw->fc.requested_mode = e1000_fc_rx_pause;
893
894         /* Override - settings for PCH2LAN, ya its magic :) */
895         if (hw->mac.type == e1000_pch2lan) {
896                 hw->fc.high_water = 0x5C20;
897                 hw->fc.low_water = 0x5048;
898                 hw->fc.pause_time = 0x0650;
899                 hw->fc.refresh_time = 0x0400;
900         } else if (hw->mac.type == e1000_pch_lpt ||
901                    hw->mac.type == e1000_pch_spt ||
902                    hw->mac.type == e1000_pch_cnp) {
903                 hw->fc.requested_mode = e1000_fc_full;
904         }
905
906         diag = e1000_init_hw(hw);
907         if (diag < 0)
908                 return diag;
909         e1000_check_for_link(hw);
910         return 0;
911 }
912
913 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
914 static int
915 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
916 {
917         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
918         struct e1000_hw_stats *stats =
919                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
920         int pause_frames;
921
922         if(hw->phy.media_type == e1000_media_type_copper ||
923                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
924                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
925                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
926         }
927
928         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
929         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
930         stats->scc += E1000_READ_REG(hw, E1000_SCC);
931         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
932
933         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
934         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
935         stats->colc += E1000_READ_REG(hw, E1000_COLC);
936         stats->dc += E1000_READ_REG(hw, E1000_DC);
937         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
938         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
939         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
940
941         /*
942          * For watchdog management we need to know if we have been
943          * paused during the last interval, so capture that here.
944          */
945         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
946         stats->xoffrxc += pause_frames;
947         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
948         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
949         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
950         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
951         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
952         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
953         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
954         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
955         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
956         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
957         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
958         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
959
960         /*
961          * For the 64-bit byte counters the low dword must be read first.
962          * Both registers clear on the read of the high dword.
963          */
964
965         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
966         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
967         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
968         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
969
970         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
971         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
972         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
973         stats->roc += E1000_READ_REG(hw, E1000_ROC);
974         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
975
976         stats->tor += E1000_READ_REG(hw, E1000_TORH);
977         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
978
979         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
980         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
981         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
982         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
983         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
984         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
985         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
986         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
987         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
988         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
989
990         /* Interrupt Counts */
991
992         if (hw->mac.type >= e1000_82571) {
993                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
994                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
995                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
996                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
997                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
998                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
999                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1000                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1001                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1002         }
1003
1004         if (hw->mac.type >= e1000_82543) {
1005                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1006                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1007                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1008                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1009                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1010                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1011         }
1012
1013         if (rte_stats == NULL)
1014                 return -EINVAL;
1015
1016         /* Rx Errors */
1017         rte_stats->imissed = stats->mpc;
1018         rte_stats->ierrors = stats->crcerrs +
1019                              stats->rlec + stats->ruc + stats->roc +
1020                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1021
1022         /* Tx Errors */
1023         rte_stats->oerrors = stats->ecol + stats->latecol;
1024
1025         rte_stats->ipackets = stats->gprc;
1026         rte_stats->opackets = stats->gptc;
1027         rte_stats->ibytes   = stats->gorc;
1028         rte_stats->obytes   = stats->gotc;
1029         return 0;
1030 }
1031
1032 static void
1033 eth_em_stats_reset(struct rte_eth_dev *dev)
1034 {
1035         struct e1000_hw_stats *hw_stats =
1036                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1037
1038         /* HW registers are cleared on read */
1039         eth_em_stats_get(dev, NULL);
1040
1041         /* Reset software totals */
1042         memset(hw_stats, 0, sizeof(*hw_stats));
1043 }
1044
1045 static int
1046 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1047 {
1048         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1049         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1050         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1051
1052         em_rxq_intr_enable(hw);
1053         rte_intr_enable(intr_handle);
1054
1055         return 0;
1056 }
1057
1058 static int
1059 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1060 {
1061         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1062
1063         em_rxq_intr_disable(hw);
1064
1065         return 0;
1066 }
1067
1068 static uint32_t
1069 em_get_max_pktlen(const struct e1000_hw *hw)
1070 {
1071         switch (hw->mac.type) {
1072         case e1000_82571:
1073         case e1000_82572:
1074         case e1000_ich9lan:
1075         case e1000_ich10lan:
1076         case e1000_pch2lan:
1077         case e1000_pch_lpt:
1078         case e1000_pch_spt:
1079         case e1000_pch_cnp:
1080         case e1000_82574:
1081         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1082         case e1000_82583:
1083                 return 0x2412;
1084         case e1000_pchlan:
1085                 return 0x1000;
1086         /* Adapters that do not support jumbo frames */
1087         case e1000_ich8lan:
1088                 return ETHER_MAX_LEN;
1089         default:
1090                 return MAX_JUMBO_FRAME_SIZE;
1091         }
1092 }
1093
1094 static void
1095 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1096 {
1097         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1098
1099         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1100         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1101         dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
1102         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1103         dev_info->rx_offload_capa =
1104                 DEV_RX_OFFLOAD_VLAN_STRIP |
1105                 DEV_RX_OFFLOAD_IPV4_CKSUM |
1106                 DEV_RX_OFFLOAD_UDP_CKSUM  |
1107                 DEV_RX_OFFLOAD_TCP_CKSUM;
1108         dev_info->tx_offload_capa =
1109                 DEV_TX_OFFLOAD_VLAN_INSERT |
1110                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
1111                 DEV_TX_OFFLOAD_UDP_CKSUM   |
1112                 DEV_TX_OFFLOAD_TCP_CKSUM;
1113
1114         /*
1115          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1116          * Unfortunatelly, all these nics have just one TX context.
1117          * So we have few choises for TX:
1118          * - Use just one TX queue.
1119          * - Allow cksum offload only for one TX queue.
1120          * - Don't allow TX cksum offload at all.
1121          * For now, option #1 was chosen.
1122          * To use second RX queue we have to use extended RX descriptor
1123          * (Multiple Receive Queues are mutually exclusive with UDP
1124          * fragmentation and are not supported when a legacy receive
1125          * descriptor format is used).
1126          * Which means separate RX routinies - as legacy nics (82540, 82545)
1127          * don't support extended RXD.
1128          * To avoid it we support just one RX queue for now (no RSS).
1129          */
1130
1131         dev_info->max_rx_queues = 1;
1132         dev_info->max_tx_queues = 1;
1133
1134         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1135                 .nb_max = E1000_MAX_RING_DESC,
1136                 .nb_min = E1000_MIN_RING_DESC,
1137                 .nb_align = EM_RXD_ALIGN,
1138         };
1139
1140         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1141                 .nb_max = E1000_MAX_RING_DESC,
1142                 .nb_min = E1000_MIN_RING_DESC,
1143                 .nb_align = EM_TXD_ALIGN,
1144                 .nb_seg_max = EM_TX_MAX_SEG,
1145                 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1146         };
1147
1148         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1149                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1150                         ETH_LINK_SPEED_1G;
1151 }
1152
1153 /* return 0 means link status changed, -1 means not changed */
1154 static int
1155 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1156 {
1157         struct e1000_hw *hw =
1158                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1159         struct rte_eth_link link, old;
1160         int link_check, count;
1161
1162         link_check = 0;
1163         hw->mac.get_link_status = 1;
1164
1165         /* possible wait-to-complete in up to 9 seconds */
1166         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1167                 /* Read the real link status */
1168                 switch (hw->phy.media_type) {
1169                 case e1000_media_type_copper:
1170                         /* Do the work to read phy */
1171                         e1000_check_for_link(hw);
1172                         link_check = !hw->mac.get_link_status;
1173                         break;
1174
1175                 case e1000_media_type_fiber:
1176                         e1000_check_for_link(hw);
1177                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1178                                         E1000_STATUS_LU);
1179                         break;
1180
1181                 case e1000_media_type_internal_serdes:
1182                         e1000_check_for_link(hw);
1183                         link_check = hw->mac.serdes_has_link;
1184                         break;
1185
1186                 default:
1187                         break;
1188                 }
1189                 if (link_check || wait_to_complete == 0)
1190                         break;
1191                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1192         }
1193         memset(&link, 0, sizeof(link));
1194         rte_em_dev_atomic_read_link_status(dev, &link);
1195         old = link;
1196
1197         /* Now we check if a transition has happened */
1198         if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1199                 uint16_t duplex, speed;
1200                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1201                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1202                                 ETH_LINK_FULL_DUPLEX :
1203                                 ETH_LINK_HALF_DUPLEX;
1204                 link.link_speed = speed;
1205                 link.link_status = ETH_LINK_UP;
1206                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1207                                 ETH_LINK_SPEED_FIXED);
1208         } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1209                 link.link_speed = 0;
1210                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1211                 link.link_status = ETH_LINK_DOWN;
1212                 link.link_autoneg = ETH_LINK_FIXED;
1213         }
1214         rte_em_dev_atomic_write_link_status(dev, &link);
1215
1216         /* not changed */
1217         if (old.link_status == link.link_status)
1218                 return -1;
1219
1220         /* changed */
1221         return 0;
1222 }
1223
1224 /*
1225  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1226  * For ASF and Pass Through versions of f/w this means
1227  * that the driver is loaded. For AMT version type f/w
1228  * this means that the network i/f is open.
1229  */
1230 static void
1231 em_hw_control_acquire(struct e1000_hw *hw)
1232 {
1233         uint32_t ctrl_ext, swsm;
1234
1235         /* Let firmware know the driver has taken over */
1236         if (hw->mac.type == e1000_82573) {
1237                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1238                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1239
1240         } else {
1241                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1242                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1243                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1244         }
1245 }
1246
1247 /*
1248  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1249  * For ASF and Pass Through versions of f/w this means that the
1250  * driver is no longer loaded. For AMT versions of the
1251  * f/w this means that the network i/f is closed.
1252  */
1253 static void
1254 em_hw_control_release(struct e1000_hw *hw)
1255 {
1256         uint32_t ctrl_ext, swsm;
1257
1258         /* Let firmware taken over control of h/w */
1259         if (hw->mac.type == e1000_82573) {
1260                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1261                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1262         } else {
1263                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1264                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1265                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1266         }
1267 }
1268
1269 /*
1270  * Bit of a misnomer, what this really means is
1271  * to enable OS management of the system... aka
1272  * to disable special hardware management features.
1273  */
1274 static void
1275 em_init_manageability(struct e1000_hw *hw)
1276 {
1277         if (e1000_enable_mng_pass_thru(hw)) {
1278                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1279                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1280
1281                 /* disable hardware interception of ARP */
1282                 manc &= ~(E1000_MANC_ARP_EN);
1283
1284                 /* enable receiving management packets to the host */
1285                 manc |= E1000_MANC_EN_MNG2HOST;
1286                 manc2h |= 1 << 5;  /* Mng Port 623 */
1287                 manc2h |= 1 << 6;  /* Mng Port 664 */
1288                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1289                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1290         }
1291 }
1292
1293 /*
1294  * Give control back to hardware management
1295  * controller if there is one.
1296  */
1297 static void
1298 em_release_manageability(struct e1000_hw *hw)
1299 {
1300         uint32_t manc;
1301
1302         if (e1000_enable_mng_pass_thru(hw)) {
1303                 manc = E1000_READ_REG(hw, E1000_MANC);
1304
1305                 /* re-enable hardware interception of ARP */
1306                 manc |= E1000_MANC_ARP_EN;
1307                 manc &= ~E1000_MANC_EN_MNG2HOST;
1308
1309                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1310         }
1311 }
1312
1313 static void
1314 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1315 {
1316         struct e1000_hw *hw =
1317                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1318         uint32_t rctl;
1319
1320         rctl = E1000_READ_REG(hw, E1000_RCTL);
1321         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1322         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1323 }
1324
1325 static void
1326 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1327 {
1328         struct e1000_hw *hw =
1329                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1330         uint32_t rctl;
1331
1332         rctl = E1000_READ_REG(hw, E1000_RCTL);
1333         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1334         if (dev->data->all_multicast == 1)
1335                 rctl |= E1000_RCTL_MPE;
1336         else
1337                 rctl &= (~E1000_RCTL_MPE);
1338         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1339 }
1340
1341 static void
1342 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1343 {
1344         struct e1000_hw *hw =
1345                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1346         uint32_t rctl;
1347
1348         rctl = E1000_READ_REG(hw, E1000_RCTL);
1349         rctl |= E1000_RCTL_MPE;
1350         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1351 }
1352
1353 static void
1354 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1355 {
1356         struct e1000_hw *hw =
1357                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1358         uint32_t rctl;
1359
1360         if (dev->data->promiscuous == 1)
1361                 return; /* must remain in all_multicast mode */
1362         rctl = E1000_READ_REG(hw, E1000_RCTL);
1363         rctl &= (~E1000_RCTL_MPE);
1364         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1365 }
1366
1367 static int
1368 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1369 {
1370         struct e1000_hw *hw =
1371                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1372         struct e1000_vfta * shadow_vfta =
1373                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1374         uint32_t vfta;
1375         uint32_t vid_idx;
1376         uint32_t vid_bit;
1377
1378         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1379                               E1000_VFTA_ENTRY_MASK);
1380         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1381         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1382         if (on)
1383                 vfta |= vid_bit;
1384         else
1385                 vfta &= ~vid_bit;
1386         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1387
1388         /* update local VFTA copy */
1389         shadow_vfta->vfta[vid_idx] = vfta;
1390
1391         return 0;
1392 }
1393
1394 static void
1395 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1396 {
1397         struct e1000_hw *hw =
1398                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1399         uint32_t reg;
1400
1401         /* Filter Table Disable */
1402         reg = E1000_READ_REG(hw, E1000_RCTL);
1403         reg &= ~E1000_RCTL_CFIEN;
1404         reg &= ~E1000_RCTL_VFE;
1405         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1406 }
1407
1408 static void
1409 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1410 {
1411         struct e1000_hw *hw =
1412                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1413         struct e1000_vfta * shadow_vfta =
1414                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1415         uint32_t reg;
1416         int i;
1417
1418         /* Filter Table Enable, CFI not used for packet acceptance */
1419         reg = E1000_READ_REG(hw, E1000_RCTL);
1420         reg &= ~E1000_RCTL_CFIEN;
1421         reg |= E1000_RCTL_VFE;
1422         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1423
1424         /* restore vfta from local copy */
1425         for (i = 0; i < IGB_VFTA_SIZE; i++)
1426                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1427 }
1428
1429 static void
1430 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1431 {
1432         struct e1000_hw *hw =
1433                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1434         uint32_t reg;
1435
1436         /* VLAN Mode Disable */
1437         reg = E1000_READ_REG(hw, E1000_CTRL);
1438         reg &= ~E1000_CTRL_VME;
1439         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1440
1441 }
1442
1443 static void
1444 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1445 {
1446         struct e1000_hw *hw =
1447                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1448         uint32_t reg;
1449
1450         /* VLAN Mode Enable */
1451         reg = E1000_READ_REG(hw, E1000_CTRL);
1452         reg |= E1000_CTRL_VME;
1453         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1454 }
1455
1456 static int
1457 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1458 {
1459         if(mask & ETH_VLAN_STRIP_MASK){
1460                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1461                         em_vlan_hw_strip_enable(dev);
1462                 else
1463                         em_vlan_hw_strip_disable(dev);
1464         }
1465
1466         if(mask & ETH_VLAN_FILTER_MASK){
1467                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1468                         em_vlan_hw_filter_enable(dev);
1469                 else
1470                         em_vlan_hw_filter_disable(dev);
1471         }
1472
1473         return 0;
1474 }
1475
1476 /*
1477  * It enables the interrupt mask and then enable the interrupt.
1478  *
1479  * @param dev
1480  *  Pointer to struct rte_eth_dev.
1481  *
1482  * @return
1483  *  - On success, zero.
1484  *  - On failure, a negative value.
1485  */
1486 static int
1487 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1488 {
1489         uint32_t regval;
1490         struct e1000_hw *hw =
1491                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1492
1493         /* clear interrupt */
1494         E1000_READ_REG(hw, E1000_ICR);
1495         regval = E1000_READ_REG(hw, E1000_IMS);
1496         E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1497         return 0;
1498 }
1499
1500 /*
1501  * It clears the interrupt causes and enables the interrupt.
1502  * It will be called once only during nic initialized.
1503  *
1504  * @param dev
1505  *  Pointer to struct rte_eth_dev.
1506  *
1507  * @return
1508  *  - On success, zero.
1509  *  - On failure, a negative value.
1510  */
1511 static int
1512 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1513 {
1514         struct e1000_hw *hw =
1515         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1516
1517         E1000_READ_REG(hw, E1000_ICR);
1518         em_rxq_intr_enable(hw);
1519         return 0;
1520 }
1521
1522 /*
1523  * It enable receive packet interrupt.
1524  * @param hw
1525  * Pointer to struct e1000_hw
1526  *
1527  * @return
1528  */
1529 static void
1530 em_rxq_intr_enable(struct e1000_hw *hw)
1531 {
1532         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1533         E1000_WRITE_FLUSH(hw);
1534 }
1535
1536 /*
1537  * It disabled lsc interrupt.
1538  * @param hw
1539  * Pointer to struct e1000_hw
1540  *
1541  * @return
1542  */
1543 static void
1544 em_lsc_intr_disable(struct e1000_hw *hw)
1545 {
1546         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1547         E1000_WRITE_FLUSH(hw);
1548 }
1549
1550 /*
1551  * It disabled receive packet interrupt.
1552  * @param hw
1553  * Pointer to struct e1000_hw
1554  *
1555  * @return
1556  */
1557 static void
1558 em_rxq_intr_disable(struct e1000_hw *hw)
1559 {
1560         E1000_READ_REG(hw, E1000_ICR);
1561         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1562         E1000_WRITE_FLUSH(hw);
1563 }
1564
1565 /*
1566  * It reads ICR and gets interrupt causes, check it and set a bit flag
1567  * to update link status.
1568  *
1569  * @param dev
1570  *  Pointer to struct rte_eth_dev.
1571  *
1572  * @return
1573  *  - On success, zero.
1574  *  - On failure, a negative value.
1575  */
1576 static int
1577 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1578 {
1579         uint32_t icr;
1580         struct e1000_hw *hw =
1581                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1582         struct e1000_interrupt *intr =
1583                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1584
1585         /* read-on-clear nic registers here */
1586         icr = E1000_READ_REG(hw, E1000_ICR);
1587         if (icr & E1000_ICR_LSC) {
1588                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1589         }
1590
1591         return 0;
1592 }
1593
1594 /*
1595  * It executes link_update after knowing an interrupt is prsent.
1596  *
1597  * @param dev
1598  *  Pointer to struct rte_eth_dev.
1599  *
1600  * @return
1601  *  - On success, zero.
1602  *  - On failure, a negative value.
1603  */
1604 static int
1605 eth_em_interrupt_action(struct rte_eth_dev *dev,
1606                         struct rte_intr_handle *intr_handle)
1607 {
1608         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1609         struct e1000_hw *hw =
1610                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1611         struct e1000_interrupt *intr =
1612                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1613         uint32_t tctl, rctl;
1614         struct rte_eth_link link;
1615         int ret;
1616
1617         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1618                 return -1;
1619
1620         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1621         rte_intr_enable(intr_handle);
1622
1623         /* set get_link_status to check register later */
1624         hw->mac.get_link_status = 1;
1625         ret = eth_em_link_update(dev, 0);
1626
1627         /* check if link has changed */
1628         if (ret < 0)
1629                 return 0;
1630
1631         memset(&link, 0, sizeof(link));
1632         rte_em_dev_atomic_read_link_status(dev, &link);
1633         if (link.link_status) {
1634                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1635                              dev->data->port_id, link.link_speed,
1636                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1637                              "full-duplex" : "half-duplex");
1638         } else {
1639                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1640         }
1641         PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1642                      pci_dev->addr.domain, pci_dev->addr.bus,
1643                      pci_dev->addr.devid, pci_dev->addr.function);
1644
1645         tctl = E1000_READ_REG(hw, E1000_TCTL);
1646         rctl = E1000_READ_REG(hw, E1000_RCTL);
1647         if (link.link_status) {
1648                 /* enable Tx/Rx */
1649                 tctl |= E1000_TCTL_EN;
1650                 rctl |= E1000_RCTL_EN;
1651         } else {
1652                 /* disable Tx/Rx */
1653                 tctl &= ~E1000_TCTL_EN;
1654                 rctl &= ~E1000_RCTL_EN;
1655         }
1656         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1657         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1658         E1000_WRITE_FLUSH(hw);
1659
1660         return 0;
1661 }
1662
1663 /**
1664  * Interrupt handler which shall be registered at first.
1665  *
1666  * @param handle
1667  *  Pointer to interrupt handle.
1668  * @param param
1669  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1670  *
1671  * @return
1672  *  void
1673  */
1674 static void
1675 eth_em_interrupt_handler(void *param)
1676 {
1677         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1678
1679         eth_em_interrupt_get_status(dev);
1680         eth_em_interrupt_action(dev, dev->intr_handle);
1681         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL, NULL);
1682 }
1683
1684 static int
1685 eth_em_led_on(struct rte_eth_dev *dev)
1686 {
1687         struct e1000_hw *hw;
1688
1689         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1690         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1691 }
1692
1693 static int
1694 eth_em_led_off(struct rte_eth_dev *dev)
1695 {
1696         struct e1000_hw *hw;
1697
1698         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1699         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1700 }
1701
1702 static int
1703 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1704 {
1705         struct e1000_hw *hw;
1706         uint32_t ctrl;
1707         int tx_pause;
1708         int rx_pause;
1709
1710         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1711         fc_conf->pause_time = hw->fc.pause_time;
1712         fc_conf->high_water = hw->fc.high_water;
1713         fc_conf->low_water = hw->fc.low_water;
1714         fc_conf->send_xon = hw->fc.send_xon;
1715         fc_conf->autoneg = hw->mac.autoneg;
1716
1717         /*
1718          * Return rx_pause and tx_pause status according to actual setting of
1719          * the TFCE and RFCE bits in the CTRL register.
1720          */
1721         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1722         if (ctrl & E1000_CTRL_TFCE)
1723                 tx_pause = 1;
1724         else
1725                 tx_pause = 0;
1726
1727         if (ctrl & E1000_CTRL_RFCE)
1728                 rx_pause = 1;
1729         else
1730                 rx_pause = 0;
1731
1732         if (rx_pause && tx_pause)
1733                 fc_conf->mode = RTE_FC_FULL;
1734         else if (rx_pause)
1735                 fc_conf->mode = RTE_FC_RX_PAUSE;
1736         else if (tx_pause)
1737                 fc_conf->mode = RTE_FC_TX_PAUSE;
1738         else
1739                 fc_conf->mode = RTE_FC_NONE;
1740
1741         return 0;
1742 }
1743
1744 static int
1745 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1746 {
1747         struct e1000_hw *hw;
1748         int err;
1749         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1750                 e1000_fc_none,
1751                 e1000_fc_rx_pause,
1752                 e1000_fc_tx_pause,
1753                 e1000_fc_full
1754         };
1755         uint32_t rx_buf_size;
1756         uint32_t max_high_water;
1757         uint32_t rctl;
1758
1759         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1760         if (fc_conf->autoneg != hw->mac.autoneg)
1761                 return -ENOTSUP;
1762         rx_buf_size = em_get_rx_buffer_size(hw);
1763         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1764
1765         /* At least reserve one Ethernet frame for watermark */
1766         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1767         if ((fc_conf->high_water > max_high_water) ||
1768             (fc_conf->high_water < fc_conf->low_water)) {
1769                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1770                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1771                 return -EINVAL;
1772         }
1773
1774         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1775         hw->fc.pause_time     = fc_conf->pause_time;
1776         hw->fc.high_water     = fc_conf->high_water;
1777         hw->fc.low_water      = fc_conf->low_water;
1778         hw->fc.send_xon       = fc_conf->send_xon;
1779
1780         err = e1000_setup_link_generic(hw);
1781         if (err == E1000_SUCCESS) {
1782
1783                 /* check if we want to forward MAC frames - driver doesn't have native
1784                  * capability to do that, so we'll write the registers ourselves */
1785
1786                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1787
1788                 /* set or clear MFLCN.PMCF bit depending on configuration */
1789                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1790                         rctl |= E1000_RCTL_PMCF;
1791                 else
1792                         rctl &= ~E1000_RCTL_PMCF;
1793
1794                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1795                 E1000_WRITE_FLUSH(hw);
1796
1797                 return 0;
1798         }
1799
1800         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1801         return -EIO;
1802 }
1803
1804 static int
1805 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1806                 uint32_t index, __rte_unused uint32_t pool)
1807 {
1808         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1809
1810         return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1811 }
1812
1813 static void
1814 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1815 {
1816         uint8_t addr[ETHER_ADDR_LEN];
1817         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1818
1819         memset(addr, 0, sizeof(addr));
1820
1821         e1000_rar_set(hw, addr, index);
1822 }
1823
1824 static int
1825 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1826 {
1827         struct rte_eth_dev_info dev_info;
1828         struct e1000_hw *hw;
1829         uint32_t frame_size;
1830         uint32_t rctl;
1831
1832         eth_em_infos_get(dev, &dev_info);
1833         frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1834
1835         /* check that mtu is within the allowed range */
1836         if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1837                 return -EINVAL;
1838
1839         /* refuse mtu that requires the support of scattered packets when this
1840          * feature has not been enabled before. */
1841         if (!dev->data->scattered_rx &&
1842             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1843                 return -EINVAL;
1844
1845         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1846         rctl = E1000_READ_REG(hw, E1000_RCTL);
1847
1848         /* switch to jumbo mode if needed */
1849         if (frame_size > ETHER_MAX_LEN) {
1850                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
1851                 rctl |= E1000_RCTL_LPE;
1852         } else {
1853                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
1854                 rctl &= ~E1000_RCTL_LPE;
1855         }
1856         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1857
1858         /* update max frame size */
1859         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1860         return 0;
1861 }
1862
1863 static int
1864 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1865                         struct ether_addr *mc_addr_set,
1866                         uint32_t nb_mc_addr)
1867 {
1868         struct e1000_hw *hw;
1869
1870         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1871         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1872         return 0;
1873 }
1874
1875 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1876 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1877 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");