New upstream version 18.08
[deb_dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_log.h>
15 #include <rte_debug.h>
16 #include <rte_pci.h>
17 #include <rte_bus_pci.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_memory.h>
22 #include <rte_eal.h>
23 #include <rte_malloc.h>
24 #include <rte_dev.h>
25
26 #include "e1000_logs.h"
27 #include "base/e1000_api.h"
28 #include "e1000_ethdev.h"
29 #include "igb_regs.h"
30
31 /*
32  * Default values for port configuration
33  */
34 #define IGB_DEFAULT_RX_FREE_THRESH  32
35
36 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
37 #define IGB_DEFAULT_RX_HTHRESH      8
38 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
39
40 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
41 #define IGB_DEFAULT_TX_HTHRESH      1
42 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
43
44 /* Bit shift and mask */
45 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
46 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
47 #define IGB_8_BIT_WIDTH  CHAR_BIT
48 #define IGB_8_BIT_MASK   UINT8_MAX
49
50 /* Additional timesync values. */
51 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
52 #define E1000_ETQF_FILTER_1588       3
53 #define IGB_82576_TSYNC_SHIFT        16
54 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
55 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
56 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
57
58 #define E1000_VTIVAR_MISC                0x01740
59 #define E1000_VTIVAR_MISC_MASK           0xFF
60 #define E1000_VTIVAR_VALID               0x80
61 #define E1000_VTIVAR_MISC_MAILBOX        0
62 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
63
64 /* External VLAN Enable bit mask */
65 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
66
67 /* External VLAN Ether Type bit mask and shift */
68 #define E1000_VET_VET_EXT            0xFFFF0000
69 #define E1000_VET_VET_EXT_SHIFT      16
70
71 static int  eth_igb_configure(struct rte_eth_dev *dev);
72 static int  eth_igb_start(struct rte_eth_dev *dev);
73 static void eth_igb_stop(struct rte_eth_dev *dev);
74 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
75 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
76 static void eth_igb_close(struct rte_eth_dev *dev);
77 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
78 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
79 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
80 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
81 static int  eth_igb_link_update(struct rte_eth_dev *dev,
82                                 int wait_to_complete);
83 static int eth_igb_stats_get(struct rte_eth_dev *dev,
84                                 struct rte_eth_stats *rte_stats);
85 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
86                               struct rte_eth_xstat *xstats, unsigned n);
87 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
88                 const uint64_t *ids,
89                 uint64_t *values, unsigned int n);
90 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
91                                     struct rte_eth_xstat_name *xstats_names,
92                                     unsigned int size);
93 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
94                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
95                 unsigned int limit);
96 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
97 static void eth_igb_xstats_reset(struct rte_eth_dev *dev);
98 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
99                                    char *fw_version, size_t fw_size);
100 static void eth_igb_infos_get(struct rte_eth_dev *dev,
101                               struct rte_eth_dev_info *dev_info);
102 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
103 static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
104                                 struct rte_eth_dev_info *dev_info);
105 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
106                                 struct rte_eth_fc_conf *fc_conf);
107 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
108                                 struct rte_eth_fc_conf *fc_conf);
109 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
110 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
111 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
112 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
113                                     struct rte_intr_handle *handle);
114 static void eth_igb_interrupt_handler(void *param);
115 static int  igb_hardware_init(struct e1000_hw *hw);
116 static void igb_hw_control_acquire(struct e1000_hw *hw);
117 static void igb_hw_control_release(struct e1000_hw *hw);
118 static void igb_init_manageability(struct e1000_hw *hw);
119 static void igb_release_manageability(struct e1000_hw *hw);
120
121 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
122
123 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
124                 uint16_t vlan_id, int on);
125 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
126                                  enum rte_vlan_type vlan_type,
127                                  uint16_t tpid_id);
128 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
129
130 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
131 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
132 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
133 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
134 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
135 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
136
137 static int eth_igb_led_on(struct rte_eth_dev *dev);
138 static int eth_igb_led_off(struct rte_eth_dev *dev);
139
140 static void igb_intr_disable(struct e1000_hw *hw);
141 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
142 static int eth_igb_rar_set(struct rte_eth_dev *dev,
143                            struct ether_addr *mac_addr,
144                            uint32_t index, uint32_t pool);
145 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
146 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
147                 struct ether_addr *addr);
148
149 static void igbvf_intr_disable(struct e1000_hw *hw);
150 static int igbvf_dev_configure(struct rte_eth_dev *dev);
151 static int igbvf_dev_start(struct rte_eth_dev *dev);
152 static void igbvf_dev_stop(struct rte_eth_dev *dev);
153 static void igbvf_dev_close(struct rte_eth_dev *dev);
154 static void igbvf_promiscuous_enable(struct rte_eth_dev *dev);
155 static void igbvf_promiscuous_disable(struct rte_eth_dev *dev);
156 static void igbvf_allmulticast_enable(struct rte_eth_dev *dev);
157 static void igbvf_allmulticast_disable(struct rte_eth_dev *dev);
158 static int eth_igbvf_link_update(struct e1000_hw *hw);
159 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
160                                 struct rte_eth_stats *rte_stats);
161 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
162                                 struct rte_eth_xstat *xstats, unsigned n);
163 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
164                                       struct rte_eth_xstat_name *xstats_names,
165                                       unsigned limit);
166 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
167 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
168                 uint16_t vlan_id, int on);
169 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
170 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
171 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
172                 struct ether_addr *addr);
173 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
174 static int igbvf_get_regs(struct rte_eth_dev *dev,
175                 struct rte_dev_reg_info *regs);
176
177 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
178                                    struct rte_eth_rss_reta_entry64 *reta_conf,
179                                    uint16_t reta_size);
180 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
181                                   struct rte_eth_rss_reta_entry64 *reta_conf,
182                                   uint16_t reta_size);
183
184 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
185                         struct rte_eth_syn_filter *filter);
186 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
187                         enum rte_filter_op filter_op,
188                         void *arg);
189 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
190                         struct rte_eth_ntuple_filter *ntuple_filter);
191 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
192                         struct rte_eth_ntuple_filter *ntuple_filter);
193 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
194                         struct rte_eth_flex_filter *filter);
195 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
196                         enum rte_filter_op filter_op,
197                         void *arg);
198 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
199                         struct rte_eth_ntuple_filter *ntuple_filter);
200 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
201                         struct rte_eth_ntuple_filter *ntuple_filter);
202 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
203                         struct rte_eth_ntuple_filter *filter);
204 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
205                                 enum rte_filter_op filter_op,
206                                 void *arg);
207 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
208                                 enum rte_filter_op filter_op,
209                                 void *arg);
210 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
211                         struct rte_eth_ethertype_filter *filter);
212 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
213                      enum rte_filter_type filter_type,
214                      enum rte_filter_op filter_op,
215                      void *arg);
216 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
217 static int eth_igb_get_regs(struct rte_eth_dev *dev,
218                 struct rte_dev_reg_info *regs);
219 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
220 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
221                 struct rte_dev_eeprom_info *eeprom);
222 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
223                 struct rte_dev_eeprom_info *eeprom);
224 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
225                                    struct rte_eth_dev_module_info *modinfo);
226 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
227                                      struct rte_dev_eeprom_info *info);
228 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
229                                     struct ether_addr *mc_addr_set,
230                                     uint32_t nb_mc_addr);
231 static int igb_timesync_enable(struct rte_eth_dev *dev);
232 static int igb_timesync_disable(struct rte_eth_dev *dev);
233 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
234                                           struct timespec *timestamp,
235                                           uint32_t flags);
236 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
237                                           struct timespec *timestamp);
238 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
239 static int igb_timesync_read_time(struct rte_eth_dev *dev,
240                                   struct timespec *timestamp);
241 static int igb_timesync_write_time(struct rte_eth_dev *dev,
242                                    const struct timespec *timestamp);
243 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
244                                         uint16_t queue_id);
245 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
246                                          uint16_t queue_id);
247 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
248                                        uint8_t queue, uint8_t msix_vector);
249 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
250                                uint8_t index, uint8_t offset);
251 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
252 static void eth_igbvf_interrupt_handler(void *param);
253 static void igbvf_mbx_process(struct rte_eth_dev *dev);
254 static int igb_filter_restore(struct rte_eth_dev *dev);
255
256 /*
257  * Define VF Stats MACRO for Non "cleared on read" register
258  */
259 #define UPDATE_VF_STAT(reg, last, cur)            \
260 {                                                 \
261         u32 latest = E1000_READ_REG(hw, reg);     \
262         cur += (latest - last) & UINT_MAX;        \
263         last = latest;                            \
264 }
265
266 #define IGB_FC_PAUSE_TIME 0x0680
267 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
268 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
269
270 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
271
272 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
273
274 /*
275  * The set of PCI devices this driver supports
276  */
277 static const struct rte_pci_id pci_id_igb_map[] = {
278         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
279         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
280         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
281         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
282         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
285         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
286
287         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
289         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
290
291         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
294         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
295         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
296         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
297
298         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
301         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
302         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
303         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
304         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
305         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
306         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
307         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
308         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
313         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
314         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
315         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
316         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
317         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
318         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
319         { .vendor_id = 0, /* sentinel */ },
320 };
321
322 /*
323  * The set of PCI devices this driver supports (for 82576&I350 VF)
324  */
325 static const struct rte_pci_id pci_id_igbvf_map[] = {
326         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
327         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
328         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
329         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
330         { .vendor_id = 0, /* sentinel */ },
331 };
332
333 static const struct rte_eth_desc_lim rx_desc_lim = {
334         .nb_max = E1000_MAX_RING_DESC,
335         .nb_min = E1000_MIN_RING_DESC,
336         .nb_align = IGB_RXD_ALIGN,
337 };
338
339 static const struct rte_eth_desc_lim tx_desc_lim = {
340         .nb_max = E1000_MAX_RING_DESC,
341         .nb_min = E1000_MIN_RING_DESC,
342         .nb_align = IGB_RXD_ALIGN,
343         .nb_seg_max = IGB_TX_MAX_SEG,
344         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
345 };
346
347 static const struct eth_dev_ops eth_igb_ops = {
348         .dev_configure        = eth_igb_configure,
349         .dev_start            = eth_igb_start,
350         .dev_stop             = eth_igb_stop,
351         .dev_set_link_up      = eth_igb_dev_set_link_up,
352         .dev_set_link_down    = eth_igb_dev_set_link_down,
353         .dev_close            = eth_igb_close,
354         .promiscuous_enable   = eth_igb_promiscuous_enable,
355         .promiscuous_disable  = eth_igb_promiscuous_disable,
356         .allmulticast_enable  = eth_igb_allmulticast_enable,
357         .allmulticast_disable = eth_igb_allmulticast_disable,
358         .link_update          = eth_igb_link_update,
359         .stats_get            = eth_igb_stats_get,
360         .xstats_get           = eth_igb_xstats_get,
361         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
362         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
363         .xstats_get_names     = eth_igb_xstats_get_names,
364         .stats_reset          = eth_igb_stats_reset,
365         .xstats_reset         = eth_igb_xstats_reset,
366         .fw_version_get       = eth_igb_fw_version_get,
367         .dev_infos_get        = eth_igb_infos_get,
368         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
369         .mtu_set              = eth_igb_mtu_set,
370         .vlan_filter_set      = eth_igb_vlan_filter_set,
371         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
372         .vlan_offload_set     = eth_igb_vlan_offload_set,
373         .rx_queue_setup       = eth_igb_rx_queue_setup,
374         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
375         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
376         .rx_queue_release     = eth_igb_rx_queue_release,
377         .rx_queue_count       = eth_igb_rx_queue_count,
378         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
379         .rx_descriptor_status = eth_igb_rx_descriptor_status,
380         .tx_descriptor_status = eth_igb_tx_descriptor_status,
381         .tx_queue_setup       = eth_igb_tx_queue_setup,
382         .tx_queue_release     = eth_igb_tx_queue_release,
383         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
384         .dev_led_on           = eth_igb_led_on,
385         .dev_led_off          = eth_igb_led_off,
386         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
387         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
388         .mac_addr_add         = eth_igb_rar_set,
389         .mac_addr_remove      = eth_igb_rar_clear,
390         .mac_addr_set         = eth_igb_default_mac_addr_set,
391         .reta_update          = eth_igb_rss_reta_update,
392         .reta_query           = eth_igb_rss_reta_query,
393         .rss_hash_update      = eth_igb_rss_hash_update,
394         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
395         .filter_ctrl          = eth_igb_filter_ctrl,
396         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
397         .rxq_info_get         = igb_rxq_info_get,
398         .txq_info_get         = igb_txq_info_get,
399         .timesync_enable      = igb_timesync_enable,
400         .timesync_disable     = igb_timesync_disable,
401         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
402         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
403         .get_reg              = eth_igb_get_regs,
404         .get_eeprom_length    = eth_igb_get_eeprom_length,
405         .get_eeprom           = eth_igb_get_eeprom,
406         .set_eeprom           = eth_igb_set_eeprom,
407         .get_module_info      = eth_igb_get_module_info,
408         .get_module_eeprom    = eth_igb_get_module_eeprom,
409         .timesync_adjust_time = igb_timesync_adjust_time,
410         .timesync_read_time   = igb_timesync_read_time,
411         .timesync_write_time  = igb_timesync_write_time,
412 };
413
414 /*
415  * dev_ops for virtual function, bare necessities for basic vf
416  * operation have been implemented
417  */
418 static const struct eth_dev_ops igbvf_eth_dev_ops = {
419         .dev_configure        = igbvf_dev_configure,
420         .dev_start            = igbvf_dev_start,
421         .dev_stop             = igbvf_dev_stop,
422         .dev_close            = igbvf_dev_close,
423         .promiscuous_enable   = igbvf_promiscuous_enable,
424         .promiscuous_disable  = igbvf_promiscuous_disable,
425         .allmulticast_enable  = igbvf_allmulticast_enable,
426         .allmulticast_disable = igbvf_allmulticast_disable,
427         .link_update          = eth_igb_link_update,
428         .stats_get            = eth_igbvf_stats_get,
429         .xstats_get           = eth_igbvf_xstats_get,
430         .xstats_get_names     = eth_igbvf_xstats_get_names,
431         .stats_reset          = eth_igbvf_stats_reset,
432         .xstats_reset         = eth_igbvf_stats_reset,
433         .vlan_filter_set      = igbvf_vlan_filter_set,
434         .dev_infos_get        = eth_igbvf_infos_get,
435         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
436         .rx_queue_setup       = eth_igb_rx_queue_setup,
437         .rx_queue_release     = eth_igb_rx_queue_release,
438         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
439         .rx_descriptor_status = eth_igb_rx_descriptor_status,
440         .tx_descriptor_status = eth_igb_tx_descriptor_status,
441         .tx_queue_setup       = eth_igb_tx_queue_setup,
442         .tx_queue_release     = eth_igb_tx_queue_release,
443         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
444         .rxq_info_get         = igb_rxq_info_get,
445         .txq_info_get         = igb_txq_info_get,
446         .mac_addr_set         = igbvf_default_mac_addr_set,
447         .get_reg              = igbvf_get_regs,
448 };
449
450 /* store statistics names and its offset in stats structure */
451 struct rte_igb_xstats_name_off {
452         char name[RTE_ETH_XSTATS_NAME_SIZE];
453         unsigned offset;
454 };
455
456 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
457         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
458         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
459         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
460         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
461         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
462         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
463         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
464                 ecol)},
465         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
466         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
467         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
468         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
469         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
470         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
471         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
472         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
473         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
474         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
475         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
476                 fcruc)},
477         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
478         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
479         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
480         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
481         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
482                 prc1023)},
483         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
484                 prc1522)},
485         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
486         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
487         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
488         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
489         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
490         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
491         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
492         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
493         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
494         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
495         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
496         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
497         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
498         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
499         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
500         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
501         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
502         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
503                 ptc1023)},
504         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
505                 ptc1522)},
506         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
507         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
508         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
509         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
510         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
511         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
512         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
513
514         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
515 };
516
517 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
518                 sizeof(rte_igb_stats_strings[0]))
519
520 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
521         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
522         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
523         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
524         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
525         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
526 };
527
528 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
529                 sizeof(rte_igbvf_stats_strings[0]))
530
531
532 static inline void
533 igb_intr_enable(struct rte_eth_dev *dev)
534 {
535         struct e1000_interrupt *intr =
536                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
537         struct e1000_hw *hw =
538                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
539
540         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
541         E1000_WRITE_FLUSH(hw);
542 }
543
544 static void
545 igb_intr_disable(struct e1000_hw *hw)
546 {
547         E1000_WRITE_REG(hw, E1000_IMC, ~0);
548         E1000_WRITE_FLUSH(hw);
549 }
550
551 static inline void
552 igbvf_intr_enable(struct rte_eth_dev *dev)
553 {
554         struct e1000_hw *hw =
555                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
556
557         /* only for mailbox */
558         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
559         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
560         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
561         E1000_WRITE_FLUSH(hw);
562 }
563
564 /* only for mailbox now. If RX/TX needed, should extend this function.  */
565 static void
566 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
567 {
568         uint32_t tmp = 0;
569
570         /* mailbox */
571         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
572         tmp |= E1000_VTIVAR_VALID;
573         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
574 }
575
576 static void
577 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
578 {
579         struct e1000_hw *hw =
580                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
581
582         /* Configure VF other cause ivar */
583         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
584 }
585
586 static inline int32_t
587 igb_pf_reset_hw(struct e1000_hw *hw)
588 {
589         uint32_t ctrl_ext;
590         int32_t status;
591
592         status = e1000_reset_hw(hw);
593
594         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
595         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
596         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
597         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
598         E1000_WRITE_FLUSH(hw);
599
600         return status;
601 }
602
603 static void
604 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
605 {
606         struct e1000_hw *hw =
607                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
608
609
610         hw->vendor_id = pci_dev->id.vendor_id;
611         hw->device_id = pci_dev->id.device_id;
612         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
613         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
614
615         e1000_set_mac_type(hw);
616
617         /* need to check if it is a vf device below */
618 }
619
620 static int
621 igb_reset_swfw_lock(struct e1000_hw *hw)
622 {
623         int ret_val;
624
625         /*
626          * Do mac ops initialization manually here, since we will need
627          * some function pointers set by this call.
628          */
629         ret_val = e1000_init_mac_params(hw);
630         if (ret_val)
631                 return ret_val;
632
633         /*
634          * SMBI lock should not fail in this early stage. If this is the case,
635          * it is due to an improper exit of the application.
636          * So force the release of the faulty lock.
637          */
638         if (e1000_get_hw_semaphore_generic(hw) < 0) {
639                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
640         }
641         e1000_put_hw_semaphore_generic(hw);
642
643         if (hw->mac.ops.acquire_swfw_sync != NULL) {
644                 uint16_t mask;
645
646                 /*
647                  * Phy lock should not fail in this early stage. If this is the case,
648                  * it is due to an improper exit of the application.
649                  * So force the release of the faulty lock.
650                  */
651                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
652                 if (hw->bus.func > E1000_FUNC_1)
653                         mask <<= 2;
654                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
655                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
656                                     hw->bus.func);
657                 }
658                 hw->mac.ops.release_swfw_sync(hw, mask);
659
660                 /*
661                  * This one is more tricky since it is common to all ports; but
662                  * swfw_sync retries last long enough (1s) to be almost sure that if
663                  * lock can not be taken it is due to an improper lock of the
664                  * semaphore.
665                  */
666                 mask = E1000_SWFW_EEP_SM;
667                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
668                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
669                 }
670                 hw->mac.ops.release_swfw_sync(hw, mask);
671         }
672
673         return E1000_SUCCESS;
674 }
675
676 /* Remove all ntuple filters of the device */
677 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
678 {
679         struct e1000_filter_info *filter_info =
680                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
681         struct e1000_5tuple_filter *p_5tuple;
682         struct e1000_2tuple_filter *p_2tuple;
683
684         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
685                 TAILQ_REMOVE(&filter_info->fivetuple_list,
686                         p_5tuple, entries);
687                         rte_free(p_5tuple);
688         }
689         filter_info->fivetuple_mask = 0;
690         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
691                 TAILQ_REMOVE(&filter_info->twotuple_list,
692                         p_2tuple, entries);
693                         rte_free(p_2tuple);
694         }
695         filter_info->twotuple_mask = 0;
696
697         return 0;
698 }
699
700 /* Remove all flex filters of the device */
701 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
702 {
703         struct e1000_filter_info *filter_info =
704                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
705         struct e1000_flex_filter *p_flex;
706
707         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
708                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
709                 rte_free(p_flex);
710         }
711         filter_info->flex_mask = 0;
712
713         return 0;
714 }
715
716 static int
717 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
718 {
719         int error = 0;
720         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
721         struct e1000_hw *hw =
722                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
723         struct e1000_vfta * shadow_vfta =
724                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
725         struct e1000_filter_info *filter_info =
726                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
727         struct e1000_adapter *adapter =
728                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
729
730         uint32_t ctrl_ext;
731
732         eth_dev->dev_ops = &eth_igb_ops;
733         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
734         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
735         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
736
737         /* for secondary processes, we don't initialise any further as primary
738          * has already done this work. Only check we don't need a different
739          * RX function */
740         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
741                 if (eth_dev->data->scattered_rx)
742                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
743                 return 0;
744         }
745
746         rte_eth_copy_pci_info(eth_dev, pci_dev);
747
748         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
749
750         igb_identify_hardware(eth_dev, pci_dev);
751         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
752                 error = -EIO;
753                 goto err_late;
754         }
755
756         e1000_get_bus_info(hw);
757
758         /* Reset any pending lock */
759         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
760                 error = -EIO;
761                 goto err_late;
762         }
763
764         /* Finish initialization */
765         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
766                 error = -EIO;
767                 goto err_late;
768         }
769
770         hw->mac.autoneg = 1;
771         hw->phy.autoneg_wait_to_complete = 0;
772         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
773
774         /* Copper options */
775         if (hw->phy.media_type == e1000_media_type_copper) {
776                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
777                 hw->phy.disable_polarity_correction = 0;
778                 hw->phy.ms_type = e1000_ms_hw_default;
779         }
780
781         /*
782          * Start from a known state, this is important in reading the nvm
783          * and mac from that.
784          */
785         igb_pf_reset_hw(hw);
786
787         /* Make sure we have a good EEPROM before we read from it */
788         if (e1000_validate_nvm_checksum(hw) < 0) {
789                 /*
790                  * Some PCI-E parts fail the first check due to
791                  * the link being in sleep state, call it again,
792                  * if it fails a second time its a real issue.
793                  */
794                 if (e1000_validate_nvm_checksum(hw) < 0) {
795                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
796                         error = -EIO;
797                         goto err_late;
798                 }
799         }
800
801         /* Read the permanent MAC address out of the EEPROM */
802         if (e1000_read_mac_addr(hw) != 0) {
803                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
804                 error = -EIO;
805                 goto err_late;
806         }
807
808         /* Allocate memory for storing MAC addresses */
809         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
810                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
811         if (eth_dev->data->mac_addrs == NULL) {
812                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
813                                                 "store MAC addresses",
814                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
815                 error = -ENOMEM;
816                 goto err_late;
817         }
818
819         /* Copy the permanent MAC address */
820         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
821
822         /* initialize the vfta */
823         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
824
825         /* Now initialize the hardware */
826         if (igb_hardware_init(hw) != 0) {
827                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
828                 rte_free(eth_dev->data->mac_addrs);
829                 eth_dev->data->mac_addrs = NULL;
830                 error = -ENODEV;
831                 goto err_late;
832         }
833         hw->mac.get_link_status = 1;
834         adapter->stopped = 0;
835
836         /* Indicate SOL/IDER usage */
837         if (e1000_check_reset_block(hw) < 0) {
838                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
839                                         "SOL/IDER session");
840         }
841
842         /* initialize PF if max_vfs not zero */
843         igb_pf_host_init(eth_dev);
844
845         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
846         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
847         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
848         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
849         E1000_WRITE_FLUSH(hw);
850
851         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
852                      eth_dev->data->port_id, pci_dev->id.vendor_id,
853                      pci_dev->id.device_id);
854
855         rte_intr_callback_register(&pci_dev->intr_handle,
856                                    eth_igb_interrupt_handler,
857                                    (void *)eth_dev);
858
859         /* enable uio/vfio intr/eventfd mapping */
860         rte_intr_enable(&pci_dev->intr_handle);
861
862         /* enable support intr */
863         igb_intr_enable(eth_dev);
864
865         /* initialize filter info */
866         memset(filter_info, 0,
867                sizeof(struct e1000_filter_info));
868
869         TAILQ_INIT(&filter_info->flex_list);
870         TAILQ_INIT(&filter_info->twotuple_list);
871         TAILQ_INIT(&filter_info->fivetuple_list);
872
873         TAILQ_INIT(&igb_filter_ntuple_list);
874         TAILQ_INIT(&igb_filter_ethertype_list);
875         TAILQ_INIT(&igb_filter_syn_list);
876         TAILQ_INIT(&igb_filter_flex_list);
877         TAILQ_INIT(&igb_filter_rss_list);
878         TAILQ_INIT(&igb_flow_list);
879
880         return 0;
881
882 err_late:
883         igb_hw_control_release(hw);
884
885         return error;
886 }
887
888 static int
889 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
890 {
891         struct rte_pci_device *pci_dev;
892         struct rte_intr_handle *intr_handle;
893         struct e1000_hw *hw;
894         struct e1000_adapter *adapter =
895                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
896         struct e1000_filter_info *filter_info =
897                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
898
899         PMD_INIT_FUNC_TRACE();
900
901         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
902                 return -EPERM;
903
904         hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
905         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
906         intr_handle = &pci_dev->intr_handle;
907
908         if (adapter->stopped == 0)
909                 eth_igb_close(eth_dev);
910
911         eth_dev->dev_ops = NULL;
912         eth_dev->rx_pkt_burst = NULL;
913         eth_dev->tx_pkt_burst = NULL;
914
915         /* Reset any pending lock */
916         igb_reset_swfw_lock(hw);
917
918         rte_free(eth_dev->data->mac_addrs);
919         eth_dev->data->mac_addrs = NULL;
920
921         /* uninitialize PF if max_vfs not zero */
922         igb_pf_host_uninit(eth_dev);
923
924         /* disable uio intr before callback unregister */
925         rte_intr_disable(intr_handle);
926         rte_intr_callback_unregister(intr_handle,
927                                      eth_igb_interrupt_handler, eth_dev);
928
929         /* clear the SYN filter info */
930         filter_info->syn_info = 0;
931
932         /* clear the ethertype filters info */
933         filter_info->ethertype_mask = 0;
934         memset(filter_info->ethertype_filters, 0,
935                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
936
937         /* clear the rss filter info */
938         memset(&filter_info->rss_info, 0,
939                 sizeof(struct igb_rte_flow_rss_conf));
940
941         /* remove all ntuple filters of the device */
942         igb_ntuple_filter_uninit(eth_dev);
943
944         /* remove all flex filters of the device */
945         igb_flex_filter_uninit(eth_dev);
946
947         /* clear all the filters list */
948         igb_filterlist_flush(eth_dev);
949
950         return 0;
951 }
952
953 /*
954  * Virtual Function device init
955  */
956 static int
957 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
958 {
959         struct rte_pci_device *pci_dev;
960         struct rte_intr_handle *intr_handle;
961         struct e1000_adapter *adapter =
962                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
963         struct e1000_hw *hw =
964                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
965         int diag;
966         struct ether_addr *perm_addr = (struct ether_addr *)hw->mac.perm_addr;
967
968         PMD_INIT_FUNC_TRACE();
969
970         eth_dev->dev_ops = &igbvf_eth_dev_ops;
971         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
972         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
973         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
974
975         /* for secondary processes, we don't initialise any further as primary
976          * has already done this work. Only check we don't need a different
977          * RX function */
978         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
979                 if (eth_dev->data->scattered_rx)
980                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
981                 return 0;
982         }
983
984         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
985         rte_eth_copy_pci_info(eth_dev, pci_dev);
986
987         hw->device_id = pci_dev->id.device_id;
988         hw->vendor_id = pci_dev->id.vendor_id;
989         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
990         adapter->stopped = 0;
991
992         /* Initialize the shared code (base driver) */
993         diag = e1000_setup_init_funcs(hw, TRUE);
994         if (diag != 0) {
995                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
996                         diag);
997                 return -EIO;
998         }
999
1000         /* init_mailbox_params */
1001         hw->mbx.ops.init_params(hw);
1002
1003         /* Disable the interrupts for VF */
1004         igbvf_intr_disable(hw);
1005
1006         diag = hw->mac.ops.reset_hw(hw);
1007
1008         /* Allocate memory for storing MAC addresses */
1009         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
1010                 hw->mac.rar_entry_count, 0);
1011         if (eth_dev->data->mac_addrs == NULL) {
1012                 PMD_INIT_LOG(ERR,
1013                         "Failed to allocate %d bytes needed to store MAC "
1014                         "addresses",
1015                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
1016                 return -ENOMEM;
1017         }
1018
1019         /* Generate a random MAC address, if none was assigned by PF. */
1020         if (is_zero_ether_addr(perm_addr)) {
1021                 eth_random_addr(perm_addr->addr_bytes);
1022                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
1023                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
1024                              "%02x:%02x:%02x:%02x:%02x:%02x",
1025                              perm_addr->addr_bytes[0],
1026                              perm_addr->addr_bytes[1],
1027                              perm_addr->addr_bytes[2],
1028                              perm_addr->addr_bytes[3],
1029                              perm_addr->addr_bytes[4],
1030                              perm_addr->addr_bytes[5]);
1031         }
1032
1033         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
1034         if (diag) {
1035                 rte_free(eth_dev->data->mac_addrs);
1036                 eth_dev->data->mac_addrs = NULL;
1037                 return diag;
1038         }
1039         /* Copy the permanent MAC address */
1040         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
1041                         &eth_dev->data->mac_addrs[0]);
1042
1043         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1044                      "mac.type=%s",
1045                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1046                      pci_dev->id.device_id, "igb_mac_82576_vf");
1047
1048         intr_handle = &pci_dev->intr_handle;
1049         rte_intr_callback_register(intr_handle,
1050                                    eth_igbvf_interrupt_handler, eth_dev);
1051
1052         return 0;
1053 }
1054
1055 static int
1056 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1057 {
1058         struct e1000_adapter *adapter =
1059                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
1060         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1061
1062         PMD_INIT_FUNC_TRACE();
1063
1064         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1065                 return -EPERM;
1066
1067         if (adapter->stopped == 0)
1068                 igbvf_dev_close(eth_dev);
1069
1070         eth_dev->dev_ops = NULL;
1071         eth_dev->rx_pkt_burst = NULL;
1072         eth_dev->tx_pkt_burst = NULL;
1073
1074         rte_free(eth_dev->data->mac_addrs);
1075         eth_dev->data->mac_addrs = NULL;
1076
1077         /* disable uio intr before callback unregister */
1078         rte_intr_disable(&pci_dev->intr_handle);
1079         rte_intr_callback_unregister(&pci_dev->intr_handle,
1080                                      eth_igbvf_interrupt_handler,
1081                                      (void *)eth_dev);
1082
1083         return 0;
1084 }
1085
1086 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1087         struct rte_pci_device *pci_dev)
1088 {
1089         return rte_eth_dev_pci_generic_probe(pci_dev,
1090                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1091 }
1092
1093 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1094 {
1095         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1096 }
1097
1098 static struct rte_pci_driver rte_igb_pmd = {
1099         .id_table = pci_id_igb_map,
1100         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1101                      RTE_PCI_DRV_IOVA_AS_VA,
1102         .probe = eth_igb_pci_probe,
1103         .remove = eth_igb_pci_remove,
1104 };
1105
1106
1107 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1108         struct rte_pci_device *pci_dev)
1109 {
1110         return rte_eth_dev_pci_generic_probe(pci_dev,
1111                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1112 }
1113
1114 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1115 {
1116         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1117 }
1118
1119 /*
1120  * virtual function driver struct
1121  */
1122 static struct rte_pci_driver rte_igbvf_pmd = {
1123         .id_table = pci_id_igbvf_map,
1124         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_IOVA_AS_VA,
1125         .probe = eth_igbvf_pci_probe,
1126         .remove = eth_igbvf_pci_remove,
1127 };
1128
1129 static void
1130 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1131 {
1132         struct e1000_hw *hw =
1133                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1134         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1135         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1136         rctl |= E1000_RCTL_VFE;
1137         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1138 }
1139
1140 static int
1141 igb_check_mq_mode(struct rte_eth_dev *dev)
1142 {
1143         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1144         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1145         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1146         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1147
1148         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1149             tx_mq_mode == ETH_MQ_TX_DCB ||
1150             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1151                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1152                 return -EINVAL;
1153         }
1154         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1155                 /* Check multi-queue mode.
1156                  * To no break software we accept ETH_MQ_RX_NONE as this might
1157                  * be used to turn off VLAN filter.
1158                  */
1159
1160                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1161                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1162                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1163                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1164                 } else {
1165                         /* Only support one queue on VFs.
1166                          * RSS together with SRIOV is not supported.
1167                          */
1168                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1169                                         " wrong mq_mode rx %d.",
1170                                         rx_mq_mode);
1171                         return -EINVAL;
1172                 }
1173                 /* TX mode is not used here, so mode might be ignored.*/
1174                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1175                         /* SRIOV only works in VMDq enable mode */
1176                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1177                                         " TX mode %d is not supported. "
1178                                         " Driver will behave as %d mode.",
1179                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1180                 }
1181
1182                 /* check valid queue number */
1183                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1184                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1185                                         " only support one queue on VFs.");
1186                         return -EINVAL;
1187                 }
1188         } else {
1189                 /* To no break software that set invalid mode, only display
1190                  * warning if invalid mode is used.
1191                  */
1192                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1193                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1194                     rx_mq_mode != ETH_MQ_RX_RSS) {
1195                         /* RSS together with VMDq not supported*/
1196                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1197                                      rx_mq_mode);
1198                         return -EINVAL;
1199                 }
1200
1201                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1202                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1203                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1204                                         " Due to txmode is meaningless in this"
1205                                         " driver, just ignore.",
1206                                         tx_mq_mode);
1207                 }
1208         }
1209         return 0;
1210 }
1211
1212 static int
1213 eth_igb_configure(struct rte_eth_dev *dev)
1214 {
1215         struct e1000_interrupt *intr =
1216                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1217         int ret;
1218
1219         PMD_INIT_FUNC_TRACE();
1220
1221         /* multipe queue mode checking */
1222         ret  = igb_check_mq_mode(dev);
1223         if (ret != 0) {
1224                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1225                             ret);
1226                 return ret;
1227         }
1228
1229         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1230         PMD_INIT_FUNC_TRACE();
1231
1232         return 0;
1233 }
1234
1235 static void
1236 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1237                      bool enable)
1238 {
1239         struct e1000_hw *hw =
1240                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1241         uint32_t tctl, rctl;
1242
1243         tctl = E1000_READ_REG(hw, E1000_TCTL);
1244         rctl = E1000_READ_REG(hw, E1000_RCTL);
1245
1246         if (enable) {
1247                 /* enable Tx/Rx */
1248                 tctl |= E1000_TCTL_EN;
1249                 rctl |= E1000_RCTL_EN;
1250         } else {
1251                 /* disable Tx/Rx */
1252                 tctl &= ~E1000_TCTL_EN;
1253                 rctl &= ~E1000_RCTL_EN;
1254         }
1255         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1256         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1257         E1000_WRITE_FLUSH(hw);
1258 }
1259
1260 static int
1261 eth_igb_start(struct rte_eth_dev *dev)
1262 {
1263         struct e1000_hw *hw =
1264                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1265         struct e1000_adapter *adapter =
1266                 E1000_DEV_PRIVATE(dev->data->dev_private);
1267         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1268         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1269         int ret, mask;
1270         uint32_t intr_vector = 0;
1271         uint32_t ctrl_ext;
1272         uint32_t *speeds;
1273         int num_speeds;
1274         bool autoneg;
1275
1276         PMD_INIT_FUNC_TRACE();
1277
1278         /* disable uio/vfio intr/eventfd mapping */
1279         rte_intr_disable(intr_handle);
1280
1281         /* Power up the phy. Needed to make the link go Up */
1282         eth_igb_dev_set_link_up(dev);
1283
1284         /*
1285          * Packet Buffer Allocation (PBA)
1286          * Writing PBA sets the receive portion of the buffer
1287          * the remainder is used for the transmit buffer.
1288          */
1289         if (hw->mac.type == e1000_82575) {
1290                 uint32_t pba;
1291
1292                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1293                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1294         }
1295
1296         /* Put the address into the Receive Address Array */
1297         e1000_rar_set(hw, hw->mac.addr, 0);
1298
1299         /* Initialize the hardware */
1300         if (igb_hardware_init(hw)) {
1301                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1302                 return -EIO;
1303         }
1304         adapter->stopped = 0;
1305
1306         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1307
1308         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1309         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1310         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1311         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1312         E1000_WRITE_FLUSH(hw);
1313
1314         /* configure PF module if SRIOV enabled */
1315         igb_pf_host_configure(dev);
1316
1317         /* check and configure queue intr-vector mapping */
1318         if ((rte_intr_cap_multiple(intr_handle) ||
1319              !RTE_ETH_DEV_SRIOV(dev).active) &&
1320             dev->data->dev_conf.intr_conf.rxq != 0) {
1321                 intr_vector = dev->data->nb_rx_queues;
1322                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1323                         return -1;
1324         }
1325
1326         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1327                 intr_handle->intr_vec =
1328                         rte_zmalloc("intr_vec",
1329                                     dev->data->nb_rx_queues * sizeof(int), 0);
1330                 if (intr_handle->intr_vec == NULL) {
1331                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1332                                      " intr_vec", dev->data->nb_rx_queues);
1333                         return -ENOMEM;
1334                 }
1335         }
1336
1337         /* confiugre msix for rx interrupt */
1338         eth_igb_configure_msix_intr(dev);
1339
1340         /* Configure for OS presence */
1341         igb_init_manageability(hw);
1342
1343         eth_igb_tx_init(dev);
1344
1345         /* This can fail when allocating mbufs for descriptor rings */
1346         ret = eth_igb_rx_init(dev);
1347         if (ret) {
1348                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1349                 igb_dev_clear_queues(dev);
1350                 return ret;
1351         }
1352
1353         e1000_clear_hw_cntrs_base_generic(hw);
1354
1355         /*
1356          * VLAN Offload Settings
1357          */
1358         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1359                         ETH_VLAN_EXTEND_MASK;
1360         ret = eth_igb_vlan_offload_set(dev, mask);
1361         if (ret) {
1362                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1363                 igb_dev_clear_queues(dev);
1364                 return ret;
1365         }
1366
1367         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1368                 /* Enable VLAN filter since VMDq always use VLAN filter */
1369                 igb_vmdq_vlan_hw_filter_enable(dev);
1370         }
1371
1372         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1373                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1374                 (hw->mac.type == e1000_i211)) {
1375                 /* Configure EITR with the maximum possible value (0xFFFF) */
1376                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1377         }
1378
1379         /* Setup link speed and duplex */
1380         speeds = &dev->data->dev_conf.link_speeds;
1381         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1382                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1383                 hw->mac.autoneg = 1;
1384         } else {
1385                 num_speeds = 0;
1386                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1387
1388                 /* Reset */
1389                 hw->phy.autoneg_advertised = 0;
1390
1391                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1392                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1393                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1394                         num_speeds = -1;
1395                         goto error_invalid_config;
1396                 }
1397                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1398                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1399                         num_speeds++;
1400                 }
1401                 if (*speeds & ETH_LINK_SPEED_10M) {
1402                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1403                         num_speeds++;
1404                 }
1405                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1406                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1407                         num_speeds++;
1408                 }
1409                 if (*speeds & ETH_LINK_SPEED_100M) {
1410                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1411                         num_speeds++;
1412                 }
1413                 if (*speeds & ETH_LINK_SPEED_1G) {
1414                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1415                         num_speeds++;
1416                 }
1417                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1418                         goto error_invalid_config;
1419
1420                 /* Set/reset the mac.autoneg based on the link speed,
1421                  * fixed or not
1422                  */
1423                 if (!autoneg) {
1424                         hw->mac.autoneg = 0;
1425                         hw->mac.forced_speed_duplex =
1426                                         hw->phy.autoneg_advertised;
1427                 } else {
1428                         hw->mac.autoneg = 1;
1429                 }
1430         }
1431
1432         e1000_setup_link(hw);
1433
1434         if (rte_intr_allow_others(intr_handle)) {
1435                 /* check if lsc interrupt is enabled */
1436                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1437                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1438                 else
1439                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1440         } else {
1441                 rte_intr_callback_unregister(intr_handle,
1442                                              eth_igb_interrupt_handler,
1443                                              (void *)dev);
1444                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1445                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1446                                      " no intr multiplex");
1447         }
1448
1449         /* check if rxq interrupt is enabled */
1450         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1451             rte_intr_dp_is_en(intr_handle))
1452                 eth_igb_rxq_interrupt_setup(dev);
1453
1454         /* enable uio/vfio intr/eventfd mapping */
1455         rte_intr_enable(intr_handle);
1456
1457         /* resume enabled intr since hw reset */
1458         igb_intr_enable(dev);
1459
1460         /* restore all types filter */
1461         igb_filter_restore(dev);
1462
1463         eth_igb_rxtx_control(dev, true);
1464         eth_igb_link_update(dev, 0);
1465
1466         PMD_INIT_LOG(DEBUG, "<<");
1467
1468         return 0;
1469
1470 error_invalid_config:
1471         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1472                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1473         igb_dev_clear_queues(dev);
1474         return -EINVAL;
1475 }
1476
1477 /*********************************************************************
1478  *
1479  *  This routine disables all traffic on the adapter by issuing a
1480  *  global reset on the MAC.
1481  *
1482  **********************************************************************/
1483 static void
1484 eth_igb_stop(struct rte_eth_dev *dev)
1485 {
1486         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1487         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1488         struct rte_eth_link link;
1489         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1490
1491         eth_igb_rxtx_control(dev, false);
1492
1493         igb_intr_disable(hw);
1494
1495         /* disable intr eventfd mapping */
1496         rte_intr_disable(intr_handle);
1497
1498         igb_pf_reset_hw(hw);
1499         E1000_WRITE_REG(hw, E1000_WUC, 0);
1500
1501         /* Set bit for Go Link disconnect */
1502         if (hw->mac.type >= e1000_82580) {
1503                 uint32_t phpm_reg;
1504
1505                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1506                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1507                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1508         }
1509
1510         /* Power down the phy. Needed to make the link go Down */
1511         eth_igb_dev_set_link_down(dev);
1512
1513         igb_dev_clear_queues(dev);
1514
1515         /* clear the recorded link status */
1516         memset(&link, 0, sizeof(link));
1517         rte_eth_linkstatus_set(dev, &link);
1518
1519         if (!rte_intr_allow_others(intr_handle))
1520                 /* resume to the default handler */
1521                 rte_intr_callback_register(intr_handle,
1522                                            eth_igb_interrupt_handler,
1523                                            (void *)dev);
1524
1525         /* Clean datapath event and queue/vec mapping */
1526         rte_intr_efd_disable(intr_handle);
1527         if (intr_handle->intr_vec != NULL) {
1528                 rte_free(intr_handle->intr_vec);
1529                 intr_handle->intr_vec = NULL;
1530         }
1531 }
1532
1533 static int
1534 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1535 {
1536         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1537
1538         if (hw->phy.media_type == e1000_media_type_copper)
1539                 e1000_power_up_phy(hw);
1540         else
1541                 e1000_power_up_fiber_serdes_link(hw);
1542
1543         return 0;
1544 }
1545
1546 static int
1547 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1548 {
1549         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1550
1551         if (hw->phy.media_type == e1000_media_type_copper)
1552                 e1000_power_down_phy(hw);
1553         else
1554                 e1000_shutdown_fiber_serdes_link(hw);
1555
1556         return 0;
1557 }
1558
1559 static void
1560 eth_igb_close(struct rte_eth_dev *dev)
1561 {
1562         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1563         struct e1000_adapter *adapter =
1564                 E1000_DEV_PRIVATE(dev->data->dev_private);
1565         struct rte_eth_link link;
1566         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1567         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1568
1569         eth_igb_stop(dev);
1570         adapter->stopped = 1;
1571
1572         e1000_phy_hw_reset(hw);
1573         igb_release_manageability(hw);
1574         igb_hw_control_release(hw);
1575
1576         /* Clear bit for Go Link disconnect */
1577         if (hw->mac.type >= e1000_82580) {
1578                 uint32_t phpm_reg;
1579
1580                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1581                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1582                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1583         }
1584
1585         igb_dev_free_queues(dev);
1586
1587         if (intr_handle->intr_vec) {
1588                 rte_free(intr_handle->intr_vec);
1589                 intr_handle->intr_vec = NULL;
1590         }
1591
1592         memset(&link, 0, sizeof(link));
1593         rte_eth_linkstatus_set(dev, &link);
1594 }
1595
1596 static int
1597 igb_get_rx_buffer_size(struct e1000_hw *hw)
1598 {
1599         uint32_t rx_buf_size;
1600         if (hw->mac.type == e1000_82576) {
1601                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1602         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1603                 /* PBS needs to be translated according to a lookup table */
1604                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1605                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1606                 rx_buf_size = (rx_buf_size << 10);
1607         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1608                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1609         } else {
1610                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1611         }
1612
1613         return rx_buf_size;
1614 }
1615
1616 /*********************************************************************
1617  *
1618  *  Initialize the hardware
1619  *
1620  **********************************************************************/
1621 static int
1622 igb_hardware_init(struct e1000_hw *hw)
1623 {
1624         uint32_t rx_buf_size;
1625         int diag;
1626
1627         /* Let the firmware know the OS is in control */
1628         igb_hw_control_acquire(hw);
1629
1630         /*
1631          * These parameters control the automatic generation (Tx) and
1632          * response (Rx) to Ethernet PAUSE frames.
1633          * - High water mark should allow for at least two standard size (1518)
1634          *   frames to be received after sending an XOFF.
1635          * - Low water mark works best when it is very near the high water mark.
1636          *   This allows the receiver to restart by sending XON when it has
1637          *   drained a bit. Here we use an arbitrary value of 1500 which will
1638          *   restart after one full frame is pulled from the buffer. There
1639          *   could be several smaller frames in the buffer and if so they will
1640          *   not trigger the XON until their total number reduces the buffer
1641          *   by 1500.
1642          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1643          */
1644         rx_buf_size = igb_get_rx_buffer_size(hw);
1645
1646         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
1647         hw->fc.low_water = hw->fc.high_water - 1500;
1648         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1649         hw->fc.send_xon = 1;
1650
1651         /* Set Flow control, use the tunable location if sane */
1652         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1653                 hw->fc.requested_mode = igb_fc_setting;
1654         else
1655                 hw->fc.requested_mode = e1000_fc_none;
1656
1657         /* Issue a global reset */
1658         igb_pf_reset_hw(hw);
1659         E1000_WRITE_REG(hw, E1000_WUC, 0);
1660
1661         diag = e1000_init_hw(hw);
1662         if (diag < 0)
1663                 return diag;
1664
1665         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1666         e1000_get_phy_info(hw);
1667         e1000_check_for_link(hw);
1668
1669         return 0;
1670 }
1671
1672 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1673 static void
1674 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1675 {
1676         int pause_frames;
1677
1678         uint64_t old_gprc  = stats->gprc;
1679         uint64_t old_gptc  = stats->gptc;
1680         uint64_t old_tpr   = stats->tpr;
1681         uint64_t old_tpt   = stats->tpt;
1682         uint64_t old_rpthc = stats->rpthc;
1683         uint64_t old_hgptc = stats->hgptc;
1684
1685         if(hw->phy.media_type == e1000_media_type_copper ||
1686             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1687                 stats->symerrs +=
1688                     E1000_READ_REG(hw,E1000_SYMERRS);
1689                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1690         }
1691
1692         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1693         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1694         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1695         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1696
1697         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1698         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1699         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1700         stats->dc += E1000_READ_REG(hw, E1000_DC);
1701         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1702         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1703         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1704         /*
1705         ** For watchdog management we need to know if we have been
1706         ** paused during the last interval, so capture that here.
1707         */
1708         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1709         stats->xoffrxc += pause_frames;
1710         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1711         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1712         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1713         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1714         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1715         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1716         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1717         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1718         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1719         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1720         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1721         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1722
1723         /* For the 64-bit byte counters the low dword must be read first. */
1724         /* Both registers clear on the read of the high dword */
1725
1726         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1727         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1728         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1729         stats->gorc -= (stats->gprc - old_gprc) * ETHER_CRC_LEN;
1730         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1731         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1732         stats->gotc -= (stats->gptc - old_gptc) * ETHER_CRC_LEN;
1733
1734         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1735         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1736         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1737         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1738         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1739
1740         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1741         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1742
1743         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1744         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1745         stats->tor -= (stats->tpr - old_tpr) * ETHER_CRC_LEN;
1746         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1747         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1748         stats->tot -= (stats->tpt - old_tpt) * ETHER_CRC_LEN;
1749
1750         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1751         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1752         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1753         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1754         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1755         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1756         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1757         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1758
1759         /* Interrupt Counts */
1760
1761         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1762         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1763         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1764         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1765         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1766         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1767         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1768         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1769         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1770
1771         /* Host to Card Statistics */
1772
1773         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1774         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1775         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1776         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1777         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1778         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1779         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1780         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1781         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1782         stats->hgorc -= (stats->rpthc - old_rpthc) * ETHER_CRC_LEN;
1783         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1784         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1785         stats->hgotc -= (stats->hgptc - old_hgptc) * ETHER_CRC_LEN;
1786         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1787         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1788         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1789
1790         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1791         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1792         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1793         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1794         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1795         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1796 }
1797
1798 static int
1799 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1800 {
1801         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1802         struct e1000_hw_stats *stats =
1803                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1804
1805         igb_read_stats_registers(hw, stats);
1806
1807         if (rte_stats == NULL)
1808                 return -EINVAL;
1809
1810         /* Rx Errors */
1811         rte_stats->imissed = stats->mpc;
1812         rte_stats->ierrors = stats->crcerrs +
1813                              stats->rlec + stats->ruc + stats->roc +
1814                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1815
1816         /* Tx Errors */
1817         rte_stats->oerrors = stats->ecol + stats->latecol;
1818
1819         rte_stats->ipackets = stats->gprc;
1820         rte_stats->opackets = stats->gptc;
1821         rte_stats->ibytes   = stats->gorc;
1822         rte_stats->obytes   = stats->gotc;
1823         return 0;
1824 }
1825
1826 static void
1827 eth_igb_stats_reset(struct rte_eth_dev *dev)
1828 {
1829         struct e1000_hw_stats *hw_stats =
1830                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1831
1832         /* HW registers are cleared on read */
1833         eth_igb_stats_get(dev, NULL);
1834
1835         /* Reset software totals */
1836         memset(hw_stats, 0, sizeof(*hw_stats));
1837 }
1838
1839 static void
1840 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1841 {
1842         struct e1000_hw_stats *stats =
1843                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1844
1845         /* HW registers are cleared on read */
1846         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1847
1848         /* Reset software totals */
1849         memset(stats, 0, sizeof(*stats));
1850 }
1851
1852 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1853         struct rte_eth_xstat_name *xstats_names,
1854         __rte_unused unsigned int size)
1855 {
1856         unsigned i;
1857
1858         if (xstats_names == NULL)
1859                 return IGB_NB_XSTATS;
1860
1861         /* Note: limit checked in rte_eth_xstats_names() */
1862
1863         for (i = 0; i < IGB_NB_XSTATS; i++) {
1864                 snprintf(xstats_names[i].name, sizeof(xstats_names[i].name),
1865                          "%s", rte_igb_stats_strings[i].name);
1866         }
1867
1868         return IGB_NB_XSTATS;
1869 }
1870
1871 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1872                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1873                 unsigned int limit)
1874 {
1875         unsigned int i;
1876
1877         if (!ids) {
1878                 if (xstats_names == NULL)
1879                         return IGB_NB_XSTATS;
1880
1881                 for (i = 0; i < IGB_NB_XSTATS; i++)
1882                         snprintf(xstats_names[i].name,
1883                                         sizeof(xstats_names[i].name),
1884                                         "%s", rte_igb_stats_strings[i].name);
1885
1886                 return IGB_NB_XSTATS;
1887
1888         } else {
1889                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1890
1891                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1892                                 IGB_NB_XSTATS);
1893
1894                 for (i = 0; i < limit; i++) {
1895                         if (ids[i] >= IGB_NB_XSTATS) {
1896                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1897                                 return -1;
1898                         }
1899                         strcpy(xstats_names[i].name,
1900                                         xstats_names_copy[ids[i]].name);
1901                 }
1902                 return limit;
1903         }
1904 }
1905
1906 static int
1907 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1908                    unsigned n)
1909 {
1910         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1911         struct e1000_hw_stats *hw_stats =
1912                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1913         unsigned i;
1914
1915         if (n < IGB_NB_XSTATS)
1916                 return IGB_NB_XSTATS;
1917
1918         igb_read_stats_registers(hw, hw_stats);
1919
1920         /* If this is a reset xstats is NULL, and we have cleared the
1921          * registers by reading them.
1922          */
1923         if (!xstats)
1924                 return 0;
1925
1926         /* Extended stats */
1927         for (i = 0; i < IGB_NB_XSTATS; i++) {
1928                 xstats[i].id = i;
1929                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1930                         rte_igb_stats_strings[i].offset);
1931         }
1932
1933         return IGB_NB_XSTATS;
1934 }
1935
1936 static int
1937 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1938                 uint64_t *values, unsigned int n)
1939 {
1940         unsigned int i;
1941
1942         if (!ids) {
1943                 struct e1000_hw *hw =
1944                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1945                 struct e1000_hw_stats *hw_stats =
1946                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1947
1948                 if (n < IGB_NB_XSTATS)
1949                         return IGB_NB_XSTATS;
1950
1951                 igb_read_stats_registers(hw, hw_stats);
1952
1953                 /* If this is a reset xstats is NULL, and we have cleared the
1954                  * registers by reading them.
1955                  */
1956                 if (!values)
1957                         return 0;
1958
1959                 /* Extended stats */
1960                 for (i = 0; i < IGB_NB_XSTATS; i++)
1961                         values[i] = *(uint64_t *)(((char *)hw_stats) +
1962                                         rte_igb_stats_strings[i].offset);
1963
1964                 return IGB_NB_XSTATS;
1965
1966         } else {
1967                 uint64_t values_copy[IGB_NB_XSTATS];
1968
1969                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
1970                                 IGB_NB_XSTATS);
1971
1972                 for (i = 0; i < n; i++) {
1973                         if (ids[i] >= IGB_NB_XSTATS) {
1974                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1975                                 return -1;
1976                         }
1977                         values[i] = values_copy[ids[i]];
1978                 }
1979                 return n;
1980         }
1981 }
1982
1983 static void
1984 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
1985 {
1986         /* Good Rx packets, include VF loopback */
1987         UPDATE_VF_STAT(E1000_VFGPRC,
1988             hw_stats->last_gprc, hw_stats->gprc);
1989
1990         /* Good Rx octets, include VF loopback */
1991         UPDATE_VF_STAT(E1000_VFGORC,
1992             hw_stats->last_gorc, hw_stats->gorc);
1993
1994         /* Good Tx packets, include VF loopback */
1995         UPDATE_VF_STAT(E1000_VFGPTC,
1996             hw_stats->last_gptc, hw_stats->gptc);
1997
1998         /* Good Tx octets, include VF loopback */
1999         UPDATE_VF_STAT(E1000_VFGOTC,
2000             hw_stats->last_gotc, hw_stats->gotc);
2001
2002         /* Rx Multicst packets */
2003         UPDATE_VF_STAT(E1000_VFMPRC,
2004             hw_stats->last_mprc, hw_stats->mprc);
2005
2006         /* Good Rx loopback packets */
2007         UPDATE_VF_STAT(E1000_VFGPRLBC,
2008             hw_stats->last_gprlbc, hw_stats->gprlbc);
2009
2010         /* Good Rx loopback octets */
2011         UPDATE_VF_STAT(E1000_VFGORLBC,
2012             hw_stats->last_gorlbc, hw_stats->gorlbc);
2013
2014         /* Good Tx loopback packets */
2015         UPDATE_VF_STAT(E1000_VFGPTLBC,
2016             hw_stats->last_gptlbc, hw_stats->gptlbc);
2017
2018         /* Good Tx loopback octets */
2019         UPDATE_VF_STAT(E1000_VFGOTLBC,
2020             hw_stats->last_gotlbc, hw_stats->gotlbc);
2021 }
2022
2023 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2024                                      struct rte_eth_xstat_name *xstats_names,
2025                                      __rte_unused unsigned limit)
2026 {
2027         unsigned i;
2028
2029         if (xstats_names != NULL)
2030                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2031                         snprintf(xstats_names[i].name,
2032                                 sizeof(xstats_names[i].name), "%s",
2033                                 rte_igbvf_stats_strings[i].name);
2034                 }
2035         return IGBVF_NB_XSTATS;
2036 }
2037
2038 static int
2039 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2040                      unsigned n)
2041 {
2042         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2043         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2044                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2045         unsigned i;
2046
2047         if (n < IGBVF_NB_XSTATS)
2048                 return IGBVF_NB_XSTATS;
2049
2050         igbvf_read_stats_registers(hw, hw_stats);
2051
2052         if (!xstats)
2053                 return 0;
2054
2055         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2056                 xstats[i].id = i;
2057                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2058                         rte_igbvf_stats_strings[i].offset);
2059         }
2060
2061         return IGBVF_NB_XSTATS;
2062 }
2063
2064 static int
2065 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2066 {
2067         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2068         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2069                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2070
2071         igbvf_read_stats_registers(hw, hw_stats);
2072
2073         if (rte_stats == NULL)
2074                 return -EINVAL;
2075
2076         rte_stats->ipackets = hw_stats->gprc;
2077         rte_stats->ibytes = hw_stats->gorc;
2078         rte_stats->opackets = hw_stats->gptc;
2079         rte_stats->obytes = hw_stats->gotc;
2080         return 0;
2081 }
2082
2083 static void
2084 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2085 {
2086         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2087                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2088
2089         /* Sync HW register to the last stats */
2090         eth_igbvf_stats_get(dev, NULL);
2091
2092         /* reset HW current stats*/
2093         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2094                offsetof(struct e1000_vf_stats, gprc));
2095 }
2096
2097 static int
2098 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2099                        size_t fw_size)
2100 {
2101         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2102         struct e1000_fw_version fw;
2103         int ret;
2104
2105         e1000_get_fw_version(hw, &fw);
2106
2107         switch (hw->mac.type) {
2108         case e1000_i210:
2109         case e1000_i211:
2110                 if (!(e1000_get_flash_presence_i210(hw))) {
2111                         ret = snprintf(fw_version, fw_size,
2112                                  "%2d.%2d-%d",
2113                                  fw.invm_major, fw.invm_minor,
2114                                  fw.invm_img_type);
2115                         break;
2116                 }
2117                 /* fall through */
2118         default:
2119                 /* if option rom is valid, display its version too */
2120                 if (fw.or_valid) {
2121                         ret = snprintf(fw_version, fw_size,
2122                                  "%d.%d, 0x%08x, %d.%d.%d",
2123                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2124                                  fw.or_major, fw.or_build, fw.or_patch);
2125                 /* no option rom */
2126                 } else {
2127                         if (fw.etrack_id != 0X0000) {
2128                                 ret = snprintf(fw_version, fw_size,
2129                                          "%d.%d, 0x%08x",
2130                                          fw.eep_major, fw.eep_minor,
2131                                          fw.etrack_id);
2132                         } else {
2133                                 ret = snprintf(fw_version, fw_size,
2134                                          "%d.%d.%d",
2135                                          fw.eep_major, fw.eep_minor,
2136                                          fw.eep_build);
2137                         }
2138                 }
2139                 break;
2140         }
2141
2142         ret += 1; /* add the size of '\0' */
2143         if (fw_size < (u32)ret)
2144                 return ret;
2145         else
2146                 return 0;
2147 }
2148
2149 static void
2150 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2151 {
2152         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2153
2154         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2155         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2156         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2157         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2158         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2159                                     dev_info->rx_queue_offload_capa;
2160         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2161         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2162                                     dev_info->tx_queue_offload_capa;
2163
2164         switch (hw->mac.type) {
2165         case e1000_82575:
2166                 dev_info->max_rx_queues = 4;
2167                 dev_info->max_tx_queues = 4;
2168                 dev_info->max_vmdq_pools = 0;
2169                 break;
2170
2171         case e1000_82576:
2172                 dev_info->max_rx_queues = 16;
2173                 dev_info->max_tx_queues = 16;
2174                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2175                 dev_info->vmdq_queue_num = 16;
2176                 break;
2177
2178         case e1000_82580:
2179                 dev_info->max_rx_queues = 8;
2180                 dev_info->max_tx_queues = 8;
2181                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2182                 dev_info->vmdq_queue_num = 8;
2183                 break;
2184
2185         case e1000_i350:
2186                 dev_info->max_rx_queues = 8;
2187                 dev_info->max_tx_queues = 8;
2188                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2189                 dev_info->vmdq_queue_num = 8;
2190                 break;
2191
2192         case e1000_i354:
2193                 dev_info->max_rx_queues = 8;
2194                 dev_info->max_tx_queues = 8;
2195                 break;
2196
2197         case e1000_i210:
2198                 dev_info->max_rx_queues = 4;
2199                 dev_info->max_tx_queues = 4;
2200                 dev_info->max_vmdq_pools = 0;
2201                 break;
2202
2203         case e1000_i211:
2204                 dev_info->max_rx_queues = 2;
2205                 dev_info->max_tx_queues = 2;
2206                 dev_info->max_vmdq_pools = 0;
2207                 break;
2208
2209         default:
2210                 /* Should not happen */
2211                 break;
2212         }
2213         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2214         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2215         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2216
2217         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2218                 .rx_thresh = {
2219                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2220                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2221                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2222                 },
2223                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2224                 .rx_drop_en = 0,
2225                 .offloads = 0,
2226         };
2227
2228         dev_info->default_txconf = (struct rte_eth_txconf) {
2229                 .tx_thresh = {
2230                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2231                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2232                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2233                 },
2234                 .offloads = 0,
2235         };
2236
2237         dev_info->rx_desc_lim = rx_desc_lim;
2238         dev_info->tx_desc_lim = tx_desc_lim;
2239
2240         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2241                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2242                         ETH_LINK_SPEED_1G;
2243 }
2244
2245 static const uint32_t *
2246 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2247 {
2248         static const uint32_t ptypes[] = {
2249                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2250                 RTE_PTYPE_L2_ETHER,
2251                 RTE_PTYPE_L3_IPV4,
2252                 RTE_PTYPE_L3_IPV4_EXT,
2253                 RTE_PTYPE_L3_IPV6,
2254                 RTE_PTYPE_L3_IPV6_EXT,
2255                 RTE_PTYPE_L4_TCP,
2256                 RTE_PTYPE_L4_UDP,
2257                 RTE_PTYPE_L4_SCTP,
2258                 RTE_PTYPE_TUNNEL_IP,
2259                 RTE_PTYPE_INNER_L3_IPV6,
2260                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2261                 RTE_PTYPE_INNER_L4_TCP,
2262                 RTE_PTYPE_INNER_L4_UDP,
2263                 RTE_PTYPE_UNKNOWN
2264         };
2265
2266         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2267             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2268                 return ptypes;
2269         return NULL;
2270 }
2271
2272 static void
2273 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2274 {
2275         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2276
2277         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2278         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2279         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2280         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2281                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2282                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2283                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2284                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2285                                 DEV_TX_OFFLOAD_TCP_TSO;
2286         switch (hw->mac.type) {
2287         case e1000_vfadapt:
2288                 dev_info->max_rx_queues = 2;
2289                 dev_info->max_tx_queues = 2;
2290                 break;
2291         case e1000_vfadapt_i350:
2292                 dev_info->max_rx_queues = 1;
2293                 dev_info->max_tx_queues = 1;
2294                 break;
2295         default:
2296                 /* Should not happen */
2297                 break;
2298         }
2299
2300         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2301         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2302                                     dev_info->rx_queue_offload_capa;
2303         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2304         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2305                                     dev_info->tx_queue_offload_capa;
2306
2307         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2308                 .rx_thresh = {
2309                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2310                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2311                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2312                 },
2313                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2314                 .rx_drop_en = 0,
2315                 .offloads = 0,
2316         };
2317
2318         dev_info->default_txconf = (struct rte_eth_txconf) {
2319                 .tx_thresh = {
2320                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2321                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2322                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2323                 },
2324                 .offloads = 0,
2325         };
2326
2327         dev_info->rx_desc_lim = rx_desc_lim;
2328         dev_info->tx_desc_lim = tx_desc_lim;
2329 }
2330
2331 /* return 0 means link status changed, -1 means not changed */
2332 static int
2333 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2334 {
2335         struct e1000_hw *hw =
2336                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2337         struct rte_eth_link link;
2338         int link_check, count;
2339
2340         link_check = 0;
2341         hw->mac.get_link_status = 1;
2342
2343         /* possible wait-to-complete in up to 9 seconds */
2344         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2345                 /* Read the real link status */
2346                 switch (hw->phy.media_type) {
2347                 case e1000_media_type_copper:
2348                         /* Do the work to read phy */
2349                         e1000_check_for_link(hw);
2350                         link_check = !hw->mac.get_link_status;
2351                         break;
2352
2353                 case e1000_media_type_fiber:
2354                         e1000_check_for_link(hw);
2355                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2356                                       E1000_STATUS_LU);
2357                         break;
2358
2359                 case e1000_media_type_internal_serdes:
2360                         e1000_check_for_link(hw);
2361                         link_check = hw->mac.serdes_has_link;
2362                         break;
2363
2364                 /* VF device is type_unknown */
2365                 case e1000_media_type_unknown:
2366                         eth_igbvf_link_update(hw);
2367                         link_check = !hw->mac.get_link_status;
2368                         break;
2369
2370                 default:
2371                         break;
2372                 }
2373                 if (link_check || wait_to_complete == 0)
2374                         break;
2375                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2376         }
2377         memset(&link, 0, sizeof(link));
2378
2379         /* Now we check if a transition has happened */
2380         if (link_check) {
2381                 uint16_t duplex, speed;
2382                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2383                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2384                                 ETH_LINK_FULL_DUPLEX :
2385                                 ETH_LINK_HALF_DUPLEX;
2386                 link.link_speed = speed;
2387                 link.link_status = ETH_LINK_UP;
2388                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2389                                 ETH_LINK_SPEED_FIXED);
2390         } else if (!link_check) {
2391                 link.link_speed = 0;
2392                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2393                 link.link_status = ETH_LINK_DOWN;
2394                 link.link_autoneg = ETH_LINK_FIXED;
2395         }
2396
2397         return rte_eth_linkstatus_set(dev, &link);
2398 }
2399
2400 /*
2401  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2402  * For ASF and Pass Through versions of f/w this means
2403  * that the driver is loaded.
2404  */
2405 static void
2406 igb_hw_control_acquire(struct e1000_hw *hw)
2407 {
2408         uint32_t ctrl_ext;
2409
2410         /* Let firmware know the driver has taken over */
2411         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2412         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2413 }
2414
2415 /*
2416  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2417  * For ASF and Pass Through versions of f/w this means that the
2418  * driver is no longer loaded.
2419  */
2420 static void
2421 igb_hw_control_release(struct e1000_hw *hw)
2422 {
2423         uint32_t ctrl_ext;
2424
2425         /* Let firmware taken over control of h/w */
2426         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2427         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2428                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2429 }
2430
2431 /*
2432  * Bit of a misnomer, what this really means is
2433  * to enable OS management of the system... aka
2434  * to disable special hardware management features.
2435  */
2436 static void
2437 igb_init_manageability(struct e1000_hw *hw)
2438 {
2439         if (e1000_enable_mng_pass_thru(hw)) {
2440                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2441                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2442
2443                 /* disable hardware interception of ARP */
2444                 manc &= ~(E1000_MANC_ARP_EN);
2445
2446                 /* enable receiving management packets to the host */
2447                 manc |= E1000_MANC_EN_MNG2HOST;
2448                 manc2h |= 1 << 5;  /* Mng Port 623 */
2449                 manc2h |= 1 << 6;  /* Mng Port 664 */
2450                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2451                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2452         }
2453 }
2454
2455 static void
2456 igb_release_manageability(struct e1000_hw *hw)
2457 {
2458         if (e1000_enable_mng_pass_thru(hw)) {
2459                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2460
2461                 manc |= E1000_MANC_ARP_EN;
2462                 manc &= ~E1000_MANC_EN_MNG2HOST;
2463
2464                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2465         }
2466 }
2467
2468 static void
2469 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2470 {
2471         struct e1000_hw *hw =
2472                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2473         uint32_t rctl;
2474
2475         rctl = E1000_READ_REG(hw, E1000_RCTL);
2476         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2477         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2478 }
2479
2480 static void
2481 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2482 {
2483         struct e1000_hw *hw =
2484                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2485         uint32_t rctl;
2486
2487         rctl = E1000_READ_REG(hw, E1000_RCTL);
2488         rctl &= (~E1000_RCTL_UPE);
2489         if (dev->data->all_multicast == 1)
2490                 rctl |= E1000_RCTL_MPE;
2491         else
2492                 rctl &= (~E1000_RCTL_MPE);
2493         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2494 }
2495
2496 static void
2497 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2498 {
2499         struct e1000_hw *hw =
2500                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2501         uint32_t rctl;
2502
2503         rctl = E1000_READ_REG(hw, E1000_RCTL);
2504         rctl |= E1000_RCTL_MPE;
2505         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2506 }
2507
2508 static void
2509 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2510 {
2511         struct e1000_hw *hw =
2512                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2513         uint32_t rctl;
2514
2515         if (dev->data->promiscuous == 1)
2516                 return; /* must remain in all_multicast mode */
2517         rctl = E1000_READ_REG(hw, E1000_RCTL);
2518         rctl &= (~E1000_RCTL_MPE);
2519         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2520 }
2521
2522 static int
2523 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2524 {
2525         struct e1000_hw *hw =
2526                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2527         struct e1000_vfta * shadow_vfta =
2528                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2529         uint32_t vfta;
2530         uint32_t vid_idx;
2531         uint32_t vid_bit;
2532
2533         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2534                               E1000_VFTA_ENTRY_MASK);
2535         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2536         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2537         if (on)
2538                 vfta |= vid_bit;
2539         else
2540                 vfta &= ~vid_bit;
2541         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2542
2543         /* update local VFTA copy */
2544         shadow_vfta->vfta[vid_idx] = vfta;
2545
2546         return 0;
2547 }
2548
2549 static int
2550 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2551                       enum rte_vlan_type vlan_type,
2552                       uint16_t tpid)
2553 {
2554         struct e1000_hw *hw =
2555                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2556         uint32_t reg, qinq;
2557
2558         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2559         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2560
2561         /* only outer TPID of double VLAN can be configured*/
2562         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2563                 reg = E1000_READ_REG(hw, E1000_VET);
2564                 reg = (reg & (~E1000_VET_VET_EXT)) |
2565                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2566                 E1000_WRITE_REG(hw, E1000_VET, reg);
2567
2568                 return 0;
2569         }
2570
2571         /* all other TPID values are read-only*/
2572         PMD_DRV_LOG(ERR, "Not supported");
2573
2574         return -ENOTSUP;
2575 }
2576
2577 static void
2578 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2579 {
2580         struct e1000_hw *hw =
2581                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2582         uint32_t reg;
2583
2584         /* Filter Table Disable */
2585         reg = E1000_READ_REG(hw, E1000_RCTL);
2586         reg &= ~E1000_RCTL_CFIEN;
2587         reg &= ~E1000_RCTL_VFE;
2588         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2589 }
2590
2591 static void
2592 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2593 {
2594         struct e1000_hw *hw =
2595                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2596         struct e1000_vfta * shadow_vfta =
2597                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2598         uint32_t reg;
2599         int i;
2600
2601         /* Filter Table Enable, CFI not used for packet acceptance */
2602         reg = E1000_READ_REG(hw, E1000_RCTL);
2603         reg &= ~E1000_RCTL_CFIEN;
2604         reg |= E1000_RCTL_VFE;
2605         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2606
2607         /* restore VFTA table */
2608         for (i = 0; i < IGB_VFTA_SIZE; i++)
2609                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2610 }
2611
2612 static void
2613 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2614 {
2615         struct e1000_hw *hw =
2616                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2617         uint32_t reg;
2618
2619         /* VLAN Mode Disable */
2620         reg = E1000_READ_REG(hw, E1000_CTRL);
2621         reg &= ~E1000_CTRL_VME;
2622         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2623 }
2624
2625 static void
2626 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2627 {
2628         struct e1000_hw *hw =
2629                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2630         uint32_t reg;
2631
2632         /* VLAN Mode Enable */
2633         reg = E1000_READ_REG(hw, E1000_CTRL);
2634         reg |= E1000_CTRL_VME;
2635         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2636 }
2637
2638 static void
2639 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2640 {
2641         struct e1000_hw *hw =
2642                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2643         uint32_t reg;
2644
2645         /* CTRL_EXT: Extended VLAN */
2646         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2647         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2648         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2649
2650         /* Update maximum packet length */
2651         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2652                 E1000_WRITE_REG(hw, E1000_RLPML,
2653                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2654                                                 VLAN_TAG_SIZE);
2655 }
2656
2657 static void
2658 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2659 {
2660         struct e1000_hw *hw =
2661                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2662         uint32_t reg;
2663
2664         /* CTRL_EXT: Extended VLAN */
2665         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2666         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2667         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2668
2669         /* Update maximum packet length */
2670         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2671                 E1000_WRITE_REG(hw, E1000_RLPML,
2672                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2673                                                 2 * VLAN_TAG_SIZE);
2674 }
2675
2676 static int
2677 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2678 {
2679         struct rte_eth_rxmode *rxmode;
2680
2681         rxmode = &dev->data->dev_conf.rxmode;
2682         if(mask & ETH_VLAN_STRIP_MASK){
2683                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2684                         igb_vlan_hw_strip_enable(dev);
2685                 else
2686                         igb_vlan_hw_strip_disable(dev);
2687         }
2688
2689         if(mask & ETH_VLAN_FILTER_MASK){
2690                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2691                         igb_vlan_hw_filter_enable(dev);
2692                 else
2693                         igb_vlan_hw_filter_disable(dev);
2694         }
2695
2696         if(mask & ETH_VLAN_EXTEND_MASK){
2697                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2698                         igb_vlan_hw_extend_enable(dev);
2699                 else
2700                         igb_vlan_hw_extend_disable(dev);
2701         }
2702
2703         return 0;
2704 }
2705
2706
2707 /**
2708  * It enables the interrupt mask and then enable the interrupt.
2709  *
2710  * @param dev
2711  *  Pointer to struct rte_eth_dev.
2712  * @param on
2713  *  Enable or Disable
2714  *
2715  * @return
2716  *  - On success, zero.
2717  *  - On failure, a negative value.
2718  */
2719 static int
2720 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2721 {
2722         struct e1000_interrupt *intr =
2723                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2724
2725         if (on)
2726                 intr->mask |= E1000_ICR_LSC;
2727         else
2728                 intr->mask &= ~E1000_ICR_LSC;
2729
2730         return 0;
2731 }
2732
2733 /* It clears the interrupt causes and enables the interrupt.
2734  * It will be called once only during nic initialized.
2735  *
2736  * @param dev
2737  *  Pointer to struct rte_eth_dev.
2738  *
2739  * @return
2740  *  - On success, zero.
2741  *  - On failure, a negative value.
2742  */
2743 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2744 {
2745         uint32_t mask, regval;
2746         struct e1000_hw *hw =
2747                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2748         struct rte_eth_dev_info dev_info;
2749
2750         memset(&dev_info, 0, sizeof(dev_info));
2751         eth_igb_infos_get(dev, &dev_info);
2752
2753         mask = 0xFFFFFFFF >> (32 - dev_info.max_rx_queues);
2754         regval = E1000_READ_REG(hw, E1000_EIMS);
2755         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2756
2757         return 0;
2758 }
2759
2760 /*
2761  * It reads ICR and gets interrupt causes, check it and set a bit flag
2762  * to update link status.
2763  *
2764  * @param dev
2765  *  Pointer to struct rte_eth_dev.
2766  *
2767  * @return
2768  *  - On success, zero.
2769  *  - On failure, a negative value.
2770  */
2771 static int
2772 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2773 {
2774         uint32_t icr;
2775         struct e1000_hw *hw =
2776                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2777         struct e1000_interrupt *intr =
2778                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2779
2780         igb_intr_disable(hw);
2781
2782         /* read-on-clear nic registers here */
2783         icr = E1000_READ_REG(hw, E1000_ICR);
2784
2785         intr->flags = 0;
2786         if (icr & E1000_ICR_LSC) {
2787                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2788         }
2789
2790         if (icr & E1000_ICR_VMMB)
2791                 intr->flags |= E1000_FLAG_MAILBOX;
2792
2793         return 0;
2794 }
2795
2796 /*
2797  * It executes link_update after knowing an interrupt is prsent.
2798  *
2799  * @param dev
2800  *  Pointer to struct rte_eth_dev.
2801  *
2802  * @return
2803  *  - On success, zero.
2804  *  - On failure, a negative value.
2805  */
2806 static int
2807 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2808                          struct rte_intr_handle *intr_handle)
2809 {
2810         struct e1000_hw *hw =
2811                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2812         struct e1000_interrupt *intr =
2813                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2814         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2815         struct rte_eth_link link;
2816         int ret;
2817
2818         if (intr->flags & E1000_FLAG_MAILBOX) {
2819                 igb_pf_mbx_process(dev);
2820                 intr->flags &= ~E1000_FLAG_MAILBOX;
2821         }
2822
2823         igb_intr_enable(dev);
2824         rte_intr_enable(intr_handle);
2825
2826         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2827                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2828
2829                 /* set get_link_status to check register later */
2830                 hw->mac.get_link_status = 1;
2831                 ret = eth_igb_link_update(dev, 0);
2832
2833                 /* check if link has changed */
2834                 if (ret < 0)
2835                         return 0;
2836
2837                 rte_eth_linkstatus_get(dev, &link);
2838                 if (link.link_status) {
2839                         PMD_INIT_LOG(INFO,
2840                                      " Port %d: Link Up - speed %u Mbps - %s",
2841                                      dev->data->port_id,
2842                                      (unsigned)link.link_speed,
2843                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2844                                      "full-duplex" : "half-duplex");
2845                 } else {
2846                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2847                                      dev->data->port_id);
2848                 }
2849
2850                 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
2851                              pci_dev->addr.domain,
2852                              pci_dev->addr.bus,
2853                              pci_dev->addr.devid,
2854                              pci_dev->addr.function);
2855                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
2856                                               NULL);
2857         }
2858
2859         return 0;
2860 }
2861
2862 /**
2863  * Interrupt handler which shall be registered at first.
2864  *
2865  * @param handle
2866  *  Pointer to interrupt handle.
2867  * @param param
2868  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2869  *
2870  * @return
2871  *  void
2872  */
2873 static void
2874 eth_igb_interrupt_handler(void *param)
2875 {
2876         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2877
2878         eth_igb_interrupt_get_status(dev);
2879         eth_igb_interrupt_action(dev, dev->intr_handle);
2880 }
2881
2882 static int
2883 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2884 {
2885         uint32_t eicr;
2886         struct e1000_hw *hw =
2887                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2888         struct e1000_interrupt *intr =
2889                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2890
2891         igbvf_intr_disable(hw);
2892
2893         /* read-on-clear nic registers here */
2894         eicr = E1000_READ_REG(hw, E1000_EICR);
2895         intr->flags = 0;
2896
2897         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2898                 intr->flags |= E1000_FLAG_MAILBOX;
2899
2900         return 0;
2901 }
2902
2903 void igbvf_mbx_process(struct rte_eth_dev *dev)
2904 {
2905         struct e1000_hw *hw =
2906                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2907         struct e1000_mbx_info *mbx = &hw->mbx;
2908         u32 in_msg = 0;
2909
2910         /* peek the message first */
2911         in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2912
2913         /* PF reset VF event */
2914         if (in_msg == E1000_PF_CONTROL_MSG) {
2915                 /* dummy mbx read to ack pf */
2916                 if (mbx->ops.read(hw, &in_msg, 1, 0))
2917                         return;
2918                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2919                                               NULL);
2920         }
2921 }
2922
2923 static int
2924 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2925 {
2926         struct e1000_interrupt *intr =
2927                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2928
2929         if (intr->flags & E1000_FLAG_MAILBOX) {
2930                 igbvf_mbx_process(dev);
2931                 intr->flags &= ~E1000_FLAG_MAILBOX;
2932         }
2933
2934         igbvf_intr_enable(dev);
2935         rte_intr_enable(intr_handle);
2936
2937         return 0;
2938 }
2939
2940 static void
2941 eth_igbvf_interrupt_handler(void *param)
2942 {
2943         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2944
2945         eth_igbvf_interrupt_get_status(dev);
2946         eth_igbvf_interrupt_action(dev, dev->intr_handle);
2947 }
2948
2949 static int
2950 eth_igb_led_on(struct rte_eth_dev *dev)
2951 {
2952         struct e1000_hw *hw;
2953
2954         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2955         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2956 }
2957
2958 static int
2959 eth_igb_led_off(struct rte_eth_dev *dev)
2960 {
2961         struct e1000_hw *hw;
2962
2963         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2964         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2965 }
2966
2967 static int
2968 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
2969 {
2970         struct e1000_hw *hw;
2971         uint32_t ctrl;
2972         int tx_pause;
2973         int rx_pause;
2974
2975         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2976         fc_conf->pause_time = hw->fc.pause_time;
2977         fc_conf->high_water = hw->fc.high_water;
2978         fc_conf->low_water = hw->fc.low_water;
2979         fc_conf->send_xon = hw->fc.send_xon;
2980         fc_conf->autoneg = hw->mac.autoneg;
2981
2982         /*
2983          * Return rx_pause and tx_pause status according to actual setting of
2984          * the TFCE and RFCE bits in the CTRL register.
2985          */
2986         ctrl = E1000_READ_REG(hw, E1000_CTRL);
2987         if (ctrl & E1000_CTRL_TFCE)
2988                 tx_pause = 1;
2989         else
2990                 tx_pause = 0;
2991
2992         if (ctrl & E1000_CTRL_RFCE)
2993                 rx_pause = 1;
2994         else
2995                 rx_pause = 0;
2996
2997         if (rx_pause && tx_pause)
2998                 fc_conf->mode = RTE_FC_FULL;
2999         else if (rx_pause)
3000                 fc_conf->mode = RTE_FC_RX_PAUSE;
3001         else if (tx_pause)
3002                 fc_conf->mode = RTE_FC_TX_PAUSE;
3003         else
3004                 fc_conf->mode = RTE_FC_NONE;
3005
3006         return 0;
3007 }
3008
3009 static int
3010 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3011 {
3012         struct e1000_hw *hw;
3013         int err;
3014         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3015                 e1000_fc_none,
3016                 e1000_fc_rx_pause,
3017                 e1000_fc_tx_pause,
3018                 e1000_fc_full
3019         };
3020         uint32_t rx_buf_size;
3021         uint32_t max_high_water;
3022         uint32_t rctl;
3023
3024         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3025         if (fc_conf->autoneg != hw->mac.autoneg)
3026                 return -ENOTSUP;
3027         rx_buf_size = igb_get_rx_buffer_size(hw);
3028         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3029
3030         /* At least reserve one Ethernet frame for watermark */
3031         max_high_water = rx_buf_size - ETHER_MAX_LEN;
3032         if ((fc_conf->high_water > max_high_water) ||
3033             (fc_conf->high_water < fc_conf->low_water)) {
3034                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3035                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3036                 return -EINVAL;
3037         }
3038
3039         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3040         hw->fc.pause_time     = fc_conf->pause_time;
3041         hw->fc.high_water     = fc_conf->high_water;
3042         hw->fc.low_water      = fc_conf->low_water;
3043         hw->fc.send_xon       = fc_conf->send_xon;
3044
3045         err = e1000_setup_link_generic(hw);
3046         if (err == E1000_SUCCESS) {
3047
3048                 /* check if we want to forward MAC frames - driver doesn't have native
3049                  * capability to do that, so we'll write the registers ourselves */
3050
3051                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3052
3053                 /* set or clear MFLCN.PMCF bit depending on configuration */
3054                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3055                         rctl |= E1000_RCTL_PMCF;
3056                 else
3057                         rctl &= ~E1000_RCTL_PMCF;
3058
3059                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3060                 E1000_WRITE_FLUSH(hw);
3061
3062                 return 0;
3063         }
3064
3065         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3066         return -EIO;
3067 }
3068
3069 #define E1000_RAH_POOLSEL_SHIFT      (18)
3070 static int
3071 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
3072                 uint32_t index, uint32_t pool)
3073 {
3074         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3075         uint32_t rah;
3076
3077         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3078         rah = E1000_READ_REG(hw, E1000_RAH(index));
3079         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3080         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3081         return 0;
3082 }
3083
3084 static void
3085 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3086 {
3087         uint8_t addr[ETHER_ADDR_LEN];
3088         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3089
3090         memset(addr, 0, sizeof(addr));
3091
3092         e1000_rar_set(hw, addr, index);
3093 }
3094
3095 static int
3096 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3097                                 struct ether_addr *addr)
3098 {
3099         eth_igb_rar_clear(dev, 0);
3100         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3101
3102         return 0;
3103 }
3104 /*
3105  * Virtual Function operations
3106  */
3107 static void
3108 igbvf_intr_disable(struct e1000_hw *hw)
3109 {
3110         PMD_INIT_FUNC_TRACE();
3111
3112         /* Clear interrupt mask to stop from interrupts being generated */
3113         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3114
3115         E1000_WRITE_FLUSH(hw);
3116 }
3117
3118 static void
3119 igbvf_stop_adapter(struct rte_eth_dev *dev)
3120 {
3121         u32 reg_val;
3122         u16 i;
3123         struct rte_eth_dev_info dev_info;
3124         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3125
3126         memset(&dev_info, 0, sizeof(dev_info));
3127         eth_igbvf_infos_get(dev, &dev_info);
3128
3129         /* Clear interrupt mask to stop from interrupts being generated */
3130         igbvf_intr_disable(hw);
3131
3132         /* Clear any pending interrupts, flush previous writes */
3133         E1000_READ_REG(hw, E1000_EICR);
3134
3135         /* Disable the transmit unit.  Each queue must be disabled. */
3136         for (i = 0; i < dev_info.max_tx_queues; i++)
3137                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3138
3139         /* Disable the receive unit by stopping each queue */
3140         for (i = 0; i < dev_info.max_rx_queues; i++) {
3141                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3142                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3143                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3144                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3145                         ;
3146         }
3147
3148         /* flush all queues disables */
3149         E1000_WRITE_FLUSH(hw);
3150         msec_delay(2);
3151 }
3152
3153 static int eth_igbvf_link_update(struct e1000_hw *hw)
3154 {
3155         struct e1000_mbx_info *mbx = &hw->mbx;
3156         struct e1000_mac_info *mac = &hw->mac;
3157         int ret_val = E1000_SUCCESS;
3158
3159         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3160
3161         /*
3162          * We only want to run this if there has been a rst asserted.
3163          * in this case that could mean a link change, device reset,
3164          * or a virtual function reset
3165          */
3166
3167         /* If we were hit with a reset or timeout drop the link */
3168         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3169                 mac->get_link_status = TRUE;
3170
3171         if (!mac->get_link_status)
3172                 goto out;
3173
3174         /* if link status is down no point in checking to see if pf is up */
3175         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3176                 goto out;
3177
3178         /* if we passed all the tests above then the link is up and we no
3179          * longer need to check for link */
3180         mac->get_link_status = FALSE;
3181
3182 out:
3183         return ret_val;
3184 }
3185
3186
3187 static int
3188 igbvf_dev_configure(struct rte_eth_dev *dev)
3189 {
3190         struct rte_eth_conf* conf = &dev->data->dev_conf;
3191
3192         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3193                      dev->data->port_id);
3194
3195         /*
3196          * VF has no ability to enable/disable HW CRC
3197          * Keep the persistent behavior the same as Host PF
3198          */
3199 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3200         if (rte_eth_dev_must_keep_crc(conf->rxmode.offloads)) {
3201                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3202                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_CRC_STRIP;
3203         }
3204 #else
3205         if (!rte_eth_dev_must_keep_crc(conf->rxmode.offloads)) {
3206                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3207                 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_CRC_STRIP;
3208         }
3209 #endif
3210
3211         return 0;
3212 }
3213
3214 static int
3215 igbvf_dev_start(struct rte_eth_dev *dev)
3216 {
3217         struct e1000_hw *hw =
3218                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3219         struct e1000_adapter *adapter =
3220                 E1000_DEV_PRIVATE(dev->data->dev_private);
3221         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3222         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3223         int ret;
3224         uint32_t intr_vector = 0;
3225
3226         PMD_INIT_FUNC_TRACE();
3227
3228         hw->mac.ops.reset_hw(hw);
3229         adapter->stopped = 0;
3230
3231         /* Set all vfta */
3232         igbvf_set_vfta_all(dev,1);
3233
3234         eth_igbvf_tx_init(dev);
3235
3236         /* This can fail when allocating mbufs for descriptor rings */
3237         ret = eth_igbvf_rx_init(dev);
3238         if (ret) {
3239                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3240                 igb_dev_clear_queues(dev);
3241                 return ret;
3242         }
3243
3244         /* check and configure queue intr-vector mapping */
3245         if (rte_intr_cap_multiple(intr_handle) &&
3246             dev->data->dev_conf.intr_conf.rxq) {
3247                 intr_vector = dev->data->nb_rx_queues;
3248                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3249                 if (ret)
3250                         return ret;
3251         }
3252
3253         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3254                 intr_handle->intr_vec =
3255                         rte_zmalloc("intr_vec",
3256                                     dev->data->nb_rx_queues * sizeof(int), 0);
3257                 if (!intr_handle->intr_vec) {
3258                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3259                                      " intr_vec", dev->data->nb_rx_queues);
3260                         return -ENOMEM;
3261                 }
3262         }
3263
3264         eth_igbvf_configure_msix_intr(dev);
3265
3266         /* enable uio/vfio intr/eventfd mapping */
3267         rte_intr_enable(intr_handle);
3268
3269         /* resume enabled intr since hw reset */
3270         igbvf_intr_enable(dev);
3271
3272         return 0;
3273 }
3274
3275 static void
3276 igbvf_dev_stop(struct rte_eth_dev *dev)
3277 {
3278         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3279         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3280
3281         PMD_INIT_FUNC_TRACE();
3282
3283         igbvf_stop_adapter(dev);
3284
3285         /*
3286           * Clear what we set, but we still keep shadow_vfta to
3287           * restore after device starts
3288           */
3289         igbvf_set_vfta_all(dev,0);
3290
3291         igb_dev_clear_queues(dev);
3292
3293         /* disable intr eventfd mapping */
3294         rte_intr_disable(intr_handle);
3295
3296         /* Clean datapath event and queue/vec mapping */
3297         rte_intr_efd_disable(intr_handle);
3298         if (intr_handle->intr_vec) {
3299                 rte_free(intr_handle->intr_vec);
3300                 intr_handle->intr_vec = NULL;
3301         }
3302 }
3303
3304 static void
3305 igbvf_dev_close(struct rte_eth_dev *dev)
3306 {
3307         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3308         struct e1000_adapter *adapter =
3309                 E1000_DEV_PRIVATE(dev->data->dev_private);
3310         struct ether_addr addr;
3311
3312         PMD_INIT_FUNC_TRACE();
3313
3314         e1000_reset_hw(hw);
3315
3316         igbvf_dev_stop(dev);
3317         adapter->stopped = 1;
3318         igb_dev_free_queues(dev);
3319
3320         /**
3321          * reprogram the RAR with a zero mac address,
3322          * to ensure that the VF traffic goes to the PF
3323          * after stop, close and detach of the VF.
3324          **/
3325
3326         memset(&addr, 0, sizeof(addr));
3327         igbvf_default_mac_addr_set(dev, &addr);
3328 }
3329
3330 static void
3331 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3332 {
3333         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3334
3335         /* Set both unicast and multicast promisc */
3336         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3337 }
3338
3339 static void
3340 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3341 {
3342         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3343
3344         /* If in allmulticast mode leave multicast promisc */
3345         if (dev->data->all_multicast == 1)
3346                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3347         else
3348                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3349 }
3350
3351 static void
3352 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3353 {
3354         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3355
3356         /* In promiscuous mode multicast promisc already set */
3357         if (dev->data->promiscuous == 0)
3358                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3359 }
3360
3361 static void
3362 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3363 {
3364         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3365
3366         /* In promiscuous mode leave multicast promisc enabled */
3367         if (dev->data->promiscuous == 0)
3368                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3369 }
3370
3371 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3372 {
3373         struct e1000_mbx_info *mbx = &hw->mbx;
3374         uint32_t msgbuf[2];
3375         s32 err;
3376
3377         /* After set vlan, vlan strip will also be enabled in igb driver*/
3378         msgbuf[0] = E1000_VF_SET_VLAN;
3379         msgbuf[1] = vid;
3380         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3381         if (on)
3382                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3383
3384         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3385         if (err)
3386                 goto mbx_err;
3387
3388         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3389         if (err)
3390                 goto mbx_err;
3391
3392         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3393         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3394                 err = -EINVAL;
3395
3396 mbx_err:
3397         return err;
3398 }
3399
3400 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3401 {
3402         struct e1000_hw *hw =
3403                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3404         struct e1000_vfta * shadow_vfta =
3405                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3406         int i = 0, j = 0, vfta = 0, mask = 1;
3407
3408         for (i = 0; i < IGB_VFTA_SIZE; i++){
3409                 vfta = shadow_vfta->vfta[i];
3410                 if(vfta){
3411                         mask = 1;
3412                         for (j = 0; j < 32; j++){
3413                                 if(vfta & mask)
3414                                         igbvf_set_vfta(hw,
3415                                                 (uint16_t)((i<<5)+j), on);
3416                                 mask<<=1;
3417                         }
3418                 }
3419         }
3420
3421 }
3422
3423 static int
3424 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3425 {
3426         struct e1000_hw *hw =
3427                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3428         struct e1000_vfta * shadow_vfta =
3429                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3430         uint32_t vid_idx = 0;
3431         uint32_t vid_bit = 0;
3432         int ret = 0;
3433
3434         PMD_INIT_FUNC_TRACE();
3435
3436         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3437         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3438         if(ret){
3439                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3440                 return ret;
3441         }
3442         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3443         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3444
3445         /*Save what we set and retore it after device reset*/
3446         if (on)
3447                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3448         else
3449                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3450
3451         return 0;
3452 }
3453
3454 static int
3455 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr)
3456 {
3457         struct e1000_hw *hw =
3458                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3459
3460         /* index is not used by rar_set() */
3461         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3462         return 0;
3463 }
3464
3465
3466 static int
3467 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3468                         struct rte_eth_rss_reta_entry64 *reta_conf,
3469                         uint16_t reta_size)
3470 {
3471         uint8_t i, j, mask;
3472         uint32_t reta, r;
3473         uint16_t idx, shift;
3474         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3475
3476         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3477                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3478                         "(%d) doesn't match the number hardware can supported "
3479                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3480                 return -EINVAL;
3481         }
3482
3483         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3484                 idx = i / RTE_RETA_GROUP_SIZE;
3485                 shift = i % RTE_RETA_GROUP_SIZE;
3486                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3487                                                 IGB_4_BIT_MASK);
3488                 if (!mask)
3489                         continue;
3490                 if (mask == IGB_4_BIT_MASK)
3491                         r = 0;
3492                 else
3493                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3494                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3495                         if (mask & (0x1 << j))
3496                                 reta |= reta_conf[idx].reta[shift + j] <<
3497                                                         (CHAR_BIT * j);
3498                         else
3499                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3500                 }
3501                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3502         }
3503
3504         return 0;
3505 }
3506
3507 static int
3508 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3509                        struct rte_eth_rss_reta_entry64 *reta_conf,
3510                        uint16_t reta_size)
3511 {
3512         uint8_t i, j, mask;
3513         uint32_t reta;
3514         uint16_t idx, shift;
3515         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3516
3517         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3518                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3519                         "(%d) doesn't match the number hardware can supported "
3520                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3521                 return -EINVAL;
3522         }
3523
3524         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3525                 idx = i / RTE_RETA_GROUP_SIZE;
3526                 shift = i % RTE_RETA_GROUP_SIZE;
3527                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3528                                                 IGB_4_BIT_MASK);
3529                 if (!mask)
3530                         continue;
3531                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3532                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3533                         if (mask & (0x1 << j))
3534                                 reta_conf[idx].reta[shift + j] =
3535                                         ((reta >> (CHAR_BIT * j)) &
3536                                                 IGB_8_BIT_MASK);
3537                 }
3538         }
3539
3540         return 0;
3541 }
3542
3543 int
3544 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3545                         struct rte_eth_syn_filter *filter,
3546                         bool add)
3547 {
3548         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3549         struct e1000_filter_info *filter_info =
3550                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3551         uint32_t synqf, rfctl;
3552
3553         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3554                 return -EINVAL;
3555
3556         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3557
3558         if (add) {
3559                 if (synqf & E1000_SYN_FILTER_ENABLE)
3560                         return -EINVAL;
3561
3562                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3563                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3564
3565                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3566                 if (filter->hig_pri)
3567                         rfctl |= E1000_RFCTL_SYNQFP;
3568                 else
3569                         rfctl &= ~E1000_RFCTL_SYNQFP;
3570
3571                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3572         } else {
3573                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3574                         return -ENOENT;
3575                 synqf = 0;
3576         }
3577
3578         filter_info->syn_info = synqf;
3579         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3580         E1000_WRITE_FLUSH(hw);
3581         return 0;
3582 }
3583
3584 static int
3585 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
3586                         struct rte_eth_syn_filter *filter)
3587 {
3588         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3589         uint32_t synqf, rfctl;
3590
3591         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3592         if (synqf & E1000_SYN_FILTER_ENABLE) {
3593                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3594                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
3595                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
3596                                 E1000_SYN_FILTER_QUEUE_SHIFT);
3597                 return 0;
3598         }
3599
3600         return -ENOENT;
3601 }
3602
3603 static int
3604 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
3605                         enum rte_filter_op filter_op,
3606                         void *arg)
3607 {
3608         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3609         int ret;
3610
3611         MAC_TYPE_FILTER_SUP(hw->mac.type);
3612
3613         if (filter_op == RTE_ETH_FILTER_NOP)
3614                 return 0;
3615
3616         if (arg == NULL) {
3617                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3618                             filter_op);
3619                 return -EINVAL;
3620         }
3621
3622         switch (filter_op) {
3623         case RTE_ETH_FILTER_ADD:
3624                 ret = eth_igb_syn_filter_set(dev,
3625                                 (struct rte_eth_syn_filter *)arg,
3626                                 TRUE);
3627                 break;
3628         case RTE_ETH_FILTER_DELETE:
3629                 ret = eth_igb_syn_filter_set(dev,
3630                                 (struct rte_eth_syn_filter *)arg,
3631                                 FALSE);
3632                 break;
3633         case RTE_ETH_FILTER_GET:
3634                 ret = eth_igb_syn_filter_get(dev,
3635                                 (struct rte_eth_syn_filter *)arg);
3636                 break;
3637         default:
3638                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3639                 ret = -EINVAL;
3640                 break;
3641         }
3642
3643         return ret;
3644 }
3645
3646 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3647 static inline int
3648 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3649                         struct e1000_2tuple_filter_info *filter_info)
3650 {
3651         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3652                 return -EINVAL;
3653         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3654                 return -EINVAL;  /* filter index is out of range. */
3655         if (filter->tcp_flags > TCP_FLAG_ALL)
3656                 return -EINVAL;  /* flags is invalid. */
3657
3658         switch (filter->dst_port_mask) {
3659         case UINT16_MAX:
3660                 filter_info->dst_port_mask = 0;
3661                 filter_info->dst_port = filter->dst_port;
3662                 break;
3663         case 0:
3664                 filter_info->dst_port_mask = 1;
3665                 break;
3666         default:
3667                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3668                 return -EINVAL;
3669         }
3670
3671         switch (filter->proto_mask) {
3672         case UINT8_MAX:
3673                 filter_info->proto_mask = 0;
3674                 filter_info->proto = filter->proto;
3675                 break;
3676         case 0:
3677                 filter_info->proto_mask = 1;
3678                 break;
3679         default:
3680                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3681                 return -EINVAL;
3682         }
3683
3684         filter_info->priority = (uint8_t)filter->priority;
3685         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3686                 filter_info->tcp_flags = filter->tcp_flags;
3687         else
3688                 filter_info->tcp_flags = 0;
3689
3690         return 0;
3691 }
3692
3693 static inline struct e1000_2tuple_filter *
3694 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3695                         struct e1000_2tuple_filter_info *key)
3696 {
3697         struct e1000_2tuple_filter *it;
3698
3699         TAILQ_FOREACH(it, filter_list, entries) {
3700                 if (memcmp(key, &it->filter_info,
3701                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3702                         return it;
3703                 }
3704         }
3705         return NULL;
3706 }
3707
3708 /* inject a igb 2tuple filter to HW */
3709 static inline void
3710 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3711                            struct e1000_2tuple_filter *filter)
3712 {
3713         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3714         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3715         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3716         int i;
3717
3718         i = filter->index;
3719         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3720         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3721                 imir |= E1000_IMIR_PORT_BP;
3722         else
3723                 imir &= ~E1000_IMIR_PORT_BP;
3724
3725         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3726
3727         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3728         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3729         ttqf |= (uint32_t)(filter->filter_info.proto &
3730                                                 E1000_TTQF_PROTOCOL_MASK);
3731         if (filter->filter_info.proto_mask == 0)
3732                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3733
3734         /* tcp flags bits setting. */
3735         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
3736                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
3737                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3738                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
3739                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3740                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
3741                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3742                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
3743                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3744                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
3745                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3746                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
3747                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3748         } else {
3749                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3750         }
3751         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3752         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3753         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3754 }
3755
3756 /*
3757  * igb_add_2tuple_filter - add a 2tuple filter
3758  *
3759  * @param
3760  * dev: Pointer to struct rte_eth_dev.
3761  * ntuple_filter: ponter to the filter that will be added.
3762  *
3763  * @return
3764  *    - On success, zero.
3765  *    - On failure, a negative value.
3766  */
3767 static int
3768 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3769                         struct rte_eth_ntuple_filter *ntuple_filter)
3770 {
3771         struct e1000_filter_info *filter_info =
3772                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3773         struct e1000_2tuple_filter *filter;
3774         int i, ret;
3775
3776         filter = rte_zmalloc("e1000_2tuple_filter",
3777                         sizeof(struct e1000_2tuple_filter), 0);
3778         if (filter == NULL)
3779                 return -ENOMEM;
3780
3781         ret = ntuple_filter_to_2tuple(ntuple_filter,
3782                                       &filter->filter_info);
3783         if (ret < 0) {
3784                 rte_free(filter);
3785                 return ret;
3786         }
3787         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3788                                          &filter->filter_info) != NULL) {
3789                 PMD_DRV_LOG(ERR, "filter exists.");
3790                 rte_free(filter);
3791                 return -EEXIST;
3792         }
3793         filter->queue = ntuple_filter->queue;
3794
3795         /*
3796          * look for an unused 2tuple filter index,
3797          * and insert the filter to list.
3798          */
3799         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3800                 if (!(filter_info->twotuple_mask & (1 << i))) {
3801                         filter_info->twotuple_mask |= 1 << i;
3802                         filter->index = i;
3803                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3804                                           filter,
3805                                           entries);
3806                         break;
3807                 }
3808         }
3809         if (i >= E1000_MAX_TTQF_FILTERS) {
3810                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3811                 rte_free(filter);
3812                 return -ENOSYS;
3813         }
3814
3815         igb_inject_2uple_filter(dev, filter);
3816         return 0;
3817 }
3818
3819 int
3820 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3821                         struct e1000_2tuple_filter *filter)
3822 {
3823         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3824         struct e1000_filter_info *filter_info =
3825                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3826
3827         filter_info->twotuple_mask &= ~(1 << filter->index);
3828         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3829         rte_free(filter);
3830
3831         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3832         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3833         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3834         return 0;
3835 }
3836
3837 /*
3838  * igb_remove_2tuple_filter - remove a 2tuple filter
3839  *
3840  * @param
3841  * dev: Pointer to struct rte_eth_dev.
3842  * ntuple_filter: ponter to the filter that will be removed.
3843  *
3844  * @return
3845  *    - On success, zero.
3846  *    - On failure, a negative value.
3847  */
3848 static int
3849 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3850                         struct rte_eth_ntuple_filter *ntuple_filter)
3851 {
3852         struct e1000_filter_info *filter_info =
3853                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3854         struct e1000_2tuple_filter_info filter_2tuple;
3855         struct e1000_2tuple_filter *filter;
3856         int ret;
3857
3858         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3859         ret = ntuple_filter_to_2tuple(ntuple_filter,
3860                                       &filter_2tuple);
3861         if (ret < 0)
3862                 return ret;
3863
3864         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3865                                          &filter_2tuple);
3866         if (filter == NULL) {
3867                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3868                 return -ENOENT;
3869         }
3870
3871         igb_delete_2tuple_filter(dev, filter);
3872
3873         return 0;
3874 }
3875
3876 /* inject a igb flex filter to HW */
3877 static inline void
3878 igb_inject_flex_filter(struct rte_eth_dev *dev,
3879                            struct e1000_flex_filter *filter)
3880 {
3881         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3882         uint32_t wufc, queueing;
3883         uint32_t reg_off;
3884         uint8_t i, j = 0;
3885
3886         wufc = E1000_READ_REG(hw, E1000_WUFC);
3887         if (filter->index < E1000_MAX_FHFT)
3888                 reg_off = E1000_FHFT(filter->index);
3889         else
3890                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3891
3892         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3893                         (E1000_WUFC_FLX0 << filter->index));
3894         queueing = filter->filter_info.len |
3895                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3896                 (filter->filter_info.priority <<
3897                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3898         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3899                         queueing);
3900
3901         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3902                 E1000_WRITE_REG(hw, reg_off,
3903                                 filter->filter_info.dwords[j]);
3904                 reg_off += sizeof(uint32_t);
3905                 E1000_WRITE_REG(hw, reg_off,
3906                                 filter->filter_info.dwords[++j]);
3907                 reg_off += sizeof(uint32_t);
3908                 E1000_WRITE_REG(hw, reg_off,
3909                         (uint32_t)filter->filter_info.mask[i]);
3910                 reg_off += sizeof(uint32_t) * 2;
3911                 ++j;
3912         }
3913 }
3914
3915 static inline struct e1000_flex_filter *
3916 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3917                         struct e1000_flex_filter_info *key)
3918 {
3919         struct e1000_flex_filter *it;
3920
3921         TAILQ_FOREACH(it, filter_list, entries) {
3922                 if (memcmp(key, &it->filter_info,
3923                         sizeof(struct e1000_flex_filter_info)) == 0)
3924                         return it;
3925         }
3926
3927         return NULL;
3928 }
3929
3930 /* remove a flex byte filter
3931  * @param
3932  * dev: Pointer to struct rte_eth_dev.
3933  * filter: the pointer of the filter will be removed.
3934  */
3935 void
3936 igb_remove_flex_filter(struct rte_eth_dev *dev,
3937                         struct e1000_flex_filter *filter)
3938 {
3939         struct e1000_filter_info *filter_info =
3940                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3941         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3942         uint32_t wufc, i;
3943         uint32_t reg_off;
3944
3945         wufc = E1000_READ_REG(hw, E1000_WUFC);
3946         if (filter->index < E1000_MAX_FHFT)
3947                 reg_off = E1000_FHFT(filter->index);
3948         else
3949                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3950
3951         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
3952                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
3953
3954         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
3955                 (~(E1000_WUFC_FLX0 << filter->index)));
3956
3957         filter_info->flex_mask &= ~(1 << filter->index);
3958         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
3959         rte_free(filter);
3960 }
3961
3962 int
3963 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
3964                         struct rte_eth_flex_filter *filter,
3965                         bool add)
3966 {
3967         struct e1000_filter_info *filter_info =
3968                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3969         struct e1000_flex_filter *flex_filter, *it;
3970         uint32_t mask;
3971         uint8_t shift, i;
3972
3973         flex_filter = rte_zmalloc("e1000_flex_filter",
3974                         sizeof(struct e1000_flex_filter), 0);
3975         if (flex_filter == NULL)
3976                 return -ENOMEM;
3977
3978         flex_filter->filter_info.len = filter->len;
3979         flex_filter->filter_info.priority = filter->priority;
3980         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
3981         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
3982                 mask = 0;
3983                 /* reverse bits in flex filter's mask*/
3984                 for (shift = 0; shift < CHAR_BIT; shift++) {
3985                         if (filter->mask[i] & (0x01 << shift))
3986                                 mask |= (0x80 >> shift);
3987                 }
3988                 flex_filter->filter_info.mask[i] = mask;
3989         }
3990
3991         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
3992                                 &flex_filter->filter_info);
3993         if (it == NULL && !add) {
3994                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3995                 rte_free(flex_filter);
3996                 return -ENOENT;
3997         }
3998         if (it != NULL && add) {
3999                 PMD_DRV_LOG(ERR, "filter exists.");
4000                 rte_free(flex_filter);
4001                 return -EEXIST;
4002         }
4003
4004         if (add) {
4005                 flex_filter->queue = filter->queue;
4006                 /*
4007                  * look for an unused flex filter index
4008                  * and insert the filter into the list.
4009                  */
4010                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4011                         if (!(filter_info->flex_mask & (1 << i))) {
4012                                 filter_info->flex_mask |= 1 << i;
4013                                 flex_filter->index = i;
4014                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4015                                         flex_filter,
4016                                         entries);
4017                                 break;
4018                         }
4019                 }
4020                 if (i >= E1000_MAX_FLEX_FILTERS) {
4021                         PMD_DRV_LOG(ERR, "flex filters are full.");
4022                         rte_free(flex_filter);
4023                         return -ENOSYS;
4024                 }
4025
4026                 igb_inject_flex_filter(dev, flex_filter);
4027
4028         } else {
4029                 igb_remove_flex_filter(dev, it);
4030                 rte_free(flex_filter);
4031         }
4032
4033         return 0;
4034 }
4035
4036 static int
4037 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
4038                         struct rte_eth_flex_filter *filter)
4039 {
4040         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4041         struct e1000_filter_info *filter_info =
4042                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4043         struct e1000_flex_filter flex_filter, *it;
4044         uint32_t wufc, queueing, wufc_en = 0;
4045
4046         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
4047         flex_filter.filter_info.len = filter->len;
4048         flex_filter.filter_info.priority = filter->priority;
4049         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
4050         memcpy(flex_filter.filter_info.mask, filter->mask,
4051                         RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT);
4052
4053         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4054                                 &flex_filter.filter_info);
4055         if (it == NULL) {
4056                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4057                 return -ENOENT;
4058         }
4059
4060         wufc = E1000_READ_REG(hw, E1000_WUFC);
4061         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
4062
4063         if ((wufc & wufc_en) == wufc_en) {
4064                 uint32_t reg_off = 0;
4065                 if (it->index < E1000_MAX_FHFT)
4066                         reg_off = E1000_FHFT(it->index);
4067                 else
4068                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
4069
4070                 queueing = E1000_READ_REG(hw,
4071                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
4072                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
4073                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
4074                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
4075                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
4076                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
4077                 return 0;
4078         }
4079         return -ENOENT;
4080 }
4081
4082 static int
4083 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
4084                         enum rte_filter_op filter_op,
4085                         void *arg)
4086 {
4087         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4088         struct rte_eth_flex_filter *filter;
4089         int ret = 0;
4090
4091         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
4092
4093         if (filter_op == RTE_ETH_FILTER_NOP)
4094                 return ret;
4095
4096         if (arg == NULL) {
4097                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
4098                             filter_op);
4099                 return -EINVAL;
4100         }
4101
4102         filter = (struct rte_eth_flex_filter *)arg;
4103         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
4104             || filter->len % sizeof(uint64_t) != 0) {
4105                 PMD_DRV_LOG(ERR, "filter's length is out of range");
4106                 return -EINVAL;
4107         }
4108         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
4109                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
4110                 return -EINVAL;
4111         }
4112
4113         switch (filter_op) {
4114         case RTE_ETH_FILTER_ADD:
4115                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
4116                 break;
4117         case RTE_ETH_FILTER_DELETE:
4118                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
4119                 break;
4120         case RTE_ETH_FILTER_GET:
4121                 ret = eth_igb_get_flex_filter(dev, filter);
4122                 break;
4123         default:
4124                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
4125                 ret = -EINVAL;
4126                 break;
4127         }
4128
4129         return ret;
4130 }
4131
4132 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4133 static inline int
4134 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4135                         struct e1000_5tuple_filter_info *filter_info)
4136 {
4137         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4138                 return -EINVAL;
4139         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4140                 return -EINVAL;  /* filter index is out of range. */
4141         if (filter->tcp_flags > TCP_FLAG_ALL)
4142                 return -EINVAL;  /* flags is invalid. */
4143
4144         switch (filter->dst_ip_mask) {
4145         case UINT32_MAX:
4146                 filter_info->dst_ip_mask = 0;
4147                 filter_info->dst_ip = filter->dst_ip;
4148                 break;
4149         case 0:
4150                 filter_info->dst_ip_mask = 1;
4151                 break;
4152         default:
4153                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4154                 return -EINVAL;
4155         }
4156
4157         switch (filter->src_ip_mask) {
4158         case UINT32_MAX:
4159                 filter_info->src_ip_mask = 0;
4160                 filter_info->src_ip = filter->src_ip;
4161                 break;
4162         case 0:
4163                 filter_info->src_ip_mask = 1;
4164                 break;
4165         default:
4166                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4167                 return -EINVAL;
4168         }
4169
4170         switch (filter->dst_port_mask) {
4171         case UINT16_MAX:
4172                 filter_info->dst_port_mask = 0;
4173                 filter_info->dst_port = filter->dst_port;
4174                 break;
4175         case 0:
4176                 filter_info->dst_port_mask = 1;
4177                 break;
4178         default:
4179                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4180                 return -EINVAL;
4181         }
4182
4183         switch (filter->src_port_mask) {
4184         case UINT16_MAX:
4185                 filter_info->src_port_mask = 0;
4186                 filter_info->src_port = filter->src_port;
4187                 break;
4188         case 0:
4189                 filter_info->src_port_mask = 1;
4190                 break;
4191         default:
4192                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4193                 return -EINVAL;
4194         }
4195
4196         switch (filter->proto_mask) {
4197         case UINT8_MAX:
4198                 filter_info->proto_mask = 0;
4199                 filter_info->proto = filter->proto;
4200                 break;
4201         case 0:
4202                 filter_info->proto_mask = 1;
4203                 break;
4204         default:
4205                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4206                 return -EINVAL;
4207         }
4208
4209         filter_info->priority = (uint8_t)filter->priority;
4210         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4211                 filter_info->tcp_flags = filter->tcp_flags;
4212         else
4213                 filter_info->tcp_flags = 0;
4214
4215         return 0;
4216 }
4217
4218 static inline struct e1000_5tuple_filter *
4219 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4220                         struct e1000_5tuple_filter_info *key)
4221 {
4222         struct e1000_5tuple_filter *it;
4223
4224         TAILQ_FOREACH(it, filter_list, entries) {
4225                 if (memcmp(key, &it->filter_info,
4226                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4227                         return it;
4228                 }
4229         }
4230         return NULL;
4231 }
4232
4233 /* inject a igb 5-tuple filter to HW */
4234 static inline void
4235 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4236                            struct e1000_5tuple_filter *filter)
4237 {
4238         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4239         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4240         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4241         uint8_t i;
4242
4243         i = filter->index;
4244         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4245         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4246                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4247         if (filter->filter_info.dst_ip_mask == 0)
4248                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4249         if (filter->filter_info.src_port_mask == 0)
4250                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4251         if (filter->filter_info.proto_mask == 0)
4252                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4253         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4254                 E1000_FTQF_QUEUE_MASK;
4255         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4256         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4257         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4258         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4259
4260         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4261         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4262
4263         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4264         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4265                 imir |= E1000_IMIR_PORT_BP;
4266         else
4267                 imir &= ~E1000_IMIR_PORT_BP;
4268         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4269
4270         /* tcp flags bits setting. */
4271         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
4272                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
4273                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4274                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
4275                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4276                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
4277                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4278                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
4279                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4280                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
4281                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4282                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
4283                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4284         } else {
4285                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4286         }
4287         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4288         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4289 }
4290
4291 /*
4292  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4293  *
4294  * @param
4295  * dev: Pointer to struct rte_eth_dev.
4296  * ntuple_filter: ponter to the filter that will be added.
4297  *
4298  * @return
4299  *    - On success, zero.
4300  *    - On failure, a negative value.
4301  */
4302 static int
4303 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4304                         struct rte_eth_ntuple_filter *ntuple_filter)
4305 {
4306         struct e1000_filter_info *filter_info =
4307                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4308         struct e1000_5tuple_filter *filter;
4309         uint8_t i;
4310         int ret;
4311
4312         filter = rte_zmalloc("e1000_5tuple_filter",
4313                         sizeof(struct e1000_5tuple_filter), 0);
4314         if (filter == NULL)
4315                 return -ENOMEM;
4316
4317         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4318                                             &filter->filter_info);
4319         if (ret < 0) {
4320                 rte_free(filter);
4321                 return ret;
4322         }
4323
4324         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4325                                          &filter->filter_info) != NULL) {
4326                 PMD_DRV_LOG(ERR, "filter exists.");
4327                 rte_free(filter);
4328                 return -EEXIST;
4329         }
4330         filter->queue = ntuple_filter->queue;
4331
4332         /*
4333          * look for an unused 5tuple filter index,
4334          * and insert the filter to list.
4335          */
4336         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4337                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4338                         filter_info->fivetuple_mask |= 1 << i;
4339                         filter->index = i;
4340                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4341                                           filter,
4342                                           entries);
4343                         break;
4344                 }
4345         }
4346         if (i >= E1000_MAX_FTQF_FILTERS) {
4347                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4348                 rte_free(filter);
4349                 return -ENOSYS;
4350         }
4351
4352         igb_inject_5tuple_filter_82576(dev, filter);
4353         return 0;
4354 }
4355
4356 int
4357 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4358                                 struct e1000_5tuple_filter *filter)
4359 {
4360         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4361         struct e1000_filter_info *filter_info =
4362                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4363
4364         filter_info->fivetuple_mask &= ~(1 << filter->index);
4365         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4366         rte_free(filter);
4367
4368         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4369                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4370         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4371         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4372         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4373         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4374         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4375         return 0;
4376 }
4377
4378 /*
4379  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4380  *
4381  * @param
4382  * dev: Pointer to struct rte_eth_dev.
4383  * ntuple_filter: ponter to the filter that will be removed.
4384  *
4385  * @return
4386  *    - On success, zero.
4387  *    - On failure, a negative value.
4388  */
4389 static int
4390 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4391                                 struct rte_eth_ntuple_filter *ntuple_filter)
4392 {
4393         struct e1000_filter_info *filter_info =
4394                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4395         struct e1000_5tuple_filter_info filter_5tuple;
4396         struct e1000_5tuple_filter *filter;
4397         int ret;
4398
4399         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4400         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4401                                             &filter_5tuple);
4402         if (ret < 0)
4403                 return ret;
4404
4405         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4406                                          &filter_5tuple);
4407         if (filter == NULL) {
4408                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4409                 return -ENOENT;
4410         }
4411
4412         igb_delete_5tuple_filter_82576(dev, filter);
4413
4414         return 0;
4415 }
4416
4417 static int
4418 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4419 {
4420         uint32_t rctl;
4421         struct e1000_hw *hw;
4422         struct rte_eth_dev_info dev_info;
4423         uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
4424                                      VLAN_TAG_SIZE);
4425
4426         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4427
4428 #ifdef RTE_LIBRTE_82571_SUPPORT
4429         /* XXX: not bigger than max_rx_pktlen */
4430         if (hw->mac.type == e1000_82571)
4431                 return -ENOTSUP;
4432 #endif
4433         eth_igb_infos_get(dev, &dev_info);
4434
4435         /* check that mtu is within the allowed range */
4436         if ((mtu < ETHER_MIN_MTU) ||
4437             (frame_size > dev_info.max_rx_pktlen))
4438                 return -EINVAL;
4439
4440         /* refuse mtu that requires the support of scattered packets when this
4441          * feature has not been enabled before. */
4442         if (!dev->data->scattered_rx &&
4443             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
4444                 return -EINVAL;
4445
4446         rctl = E1000_READ_REG(hw, E1000_RCTL);
4447
4448         /* switch to jumbo mode if needed */
4449         if (frame_size > ETHER_MAX_LEN) {
4450                 dev->data->dev_conf.rxmode.offloads |=
4451                         DEV_RX_OFFLOAD_JUMBO_FRAME;
4452                 rctl |= E1000_RCTL_LPE;
4453         } else {
4454                 dev->data->dev_conf.rxmode.offloads &=
4455                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
4456                 rctl &= ~E1000_RCTL_LPE;
4457         }
4458         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4459
4460         /* update max frame size */
4461         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4462
4463         E1000_WRITE_REG(hw, E1000_RLPML,
4464                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4465
4466         return 0;
4467 }
4468
4469 /*
4470  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4471  *
4472  * @param
4473  * dev: Pointer to struct rte_eth_dev.
4474  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4475  * add: if true, add filter, if false, remove filter
4476  *
4477  * @return
4478  *    - On success, zero.
4479  *    - On failure, a negative value.
4480  */
4481 int
4482 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4483                         struct rte_eth_ntuple_filter *ntuple_filter,
4484                         bool add)
4485 {
4486         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4487         int ret;
4488
4489         switch (ntuple_filter->flags) {
4490         case RTE_5TUPLE_FLAGS:
4491         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4492                 if (hw->mac.type != e1000_82576)
4493                         return -ENOTSUP;
4494                 if (add)
4495                         ret = igb_add_5tuple_filter_82576(dev,
4496                                                           ntuple_filter);
4497                 else
4498                         ret = igb_remove_5tuple_filter_82576(dev,
4499                                                              ntuple_filter);
4500                 break;
4501         case RTE_2TUPLE_FLAGS:
4502         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4503                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4504                         hw->mac.type != e1000_i210 &&
4505                         hw->mac.type != e1000_i211)
4506                         return -ENOTSUP;
4507                 if (add)
4508                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4509                 else
4510                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4511                 break;
4512         default:
4513                 ret = -EINVAL;
4514                 break;
4515         }
4516
4517         return ret;
4518 }
4519
4520 /*
4521  * igb_get_ntuple_filter - get a ntuple filter
4522  *
4523  * @param
4524  * dev: Pointer to struct rte_eth_dev.
4525  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4526  *
4527  * @return
4528  *    - On success, zero.
4529  *    - On failure, a negative value.
4530  */
4531 static int
4532 igb_get_ntuple_filter(struct rte_eth_dev *dev,
4533                         struct rte_eth_ntuple_filter *ntuple_filter)
4534 {
4535         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4536         struct e1000_filter_info *filter_info =
4537                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4538         struct e1000_5tuple_filter_info filter_5tuple;
4539         struct e1000_2tuple_filter_info filter_2tuple;
4540         struct e1000_5tuple_filter *p_5tuple_filter;
4541         struct e1000_2tuple_filter *p_2tuple_filter;
4542         int ret;
4543
4544         switch (ntuple_filter->flags) {
4545         case RTE_5TUPLE_FLAGS:
4546         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4547                 if (hw->mac.type != e1000_82576)
4548                         return -ENOTSUP;
4549                 memset(&filter_5tuple,
4550                         0,
4551                         sizeof(struct e1000_5tuple_filter_info));
4552                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4553                                                     &filter_5tuple);
4554                 if (ret < 0)
4555                         return ret;
4556                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
4557                                         &filter_info->fivetuple_list,
4558                                         &filter_5tuple);
4559                 if (p_5tuple_filter == NULL) {
4560                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4561                         return -ENOENT;
4562                 }
4563                 ntuple_filter->queue = p_5tuple_filter->queue;
4564                 break;
4565         case RTE_2TUPLE_FLAGS:
4566         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4567                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
4568                         return -ENOTSUP;
4569                 memset(&filter_2tuple,
4570                         0,
4571                         sizeof(struct e1000_2tuple_filter_info));
4572                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
4573                 if (ret < 0)
4574                         return ret;
4575                 p_2tuple_filter = igb_2tuple_filter_lookup(
4576                                         &filter_info->twotuple_list,
4577                                         &filter_2tuple);
4578                 if (p_2tuple_filter == NULL) {
4579                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4580                         return -ENOENT;
4581                 }
4582                 ntuple_filter->queue = p_2tuple_filter->queue;
4583                 break;
4584         default:
4585                 ret = -EINVAL;
4586                 break;
4587         }
4588
4589         return 0;
4590 }
4591
4592 /*
4593  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
4594  * @dev: pointer to rte_eth_dev structure
4595  * @filter_op:operation will be taken.
4596  * @arg: a pointer to specific structure corresponding to the filter_op
4597  */
4598 static int
4599 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
4600                                 enum rte_filter_op filter_op,
4601                                 void *arg)
4602 {
4603         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4604         int ret;
4605
4606         MAC_TYPE_FILTER_SUP(hw->mac.type);
4607
4608         if (filter_op == RTE_ETH_FILTER_NOP)
4609                 return 0;
4610
4611         if (arg == NULL) {
4612                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4613                             filter_op);
4614                 return -EINVAL;
4615         }
4616
4617         switch (filter_op) {
4618         case RTE_ETH_FILTER_ADD:
4619                 ret = igb_add_del_ntuple_filter(dev,
4620                         (struct rte_eth_ntuple_filter *)arg,
4621                         TRUE);
4622                 break;
4623         case RTE_ETH_FILTER_DELETE:
4624                 ret = igb_add_del_ntuple_filter(dev,
4625                         (struct rte_eth_ntuple_filter *)arg,
4626                         FALSE);
4627                 break;
4628         case RTE_ETH_FILTER_GET:
4629                 ret = igb_get_ntuple_filter(dev,
4630                         (struct rte_eth_ntuple_filter *)arg);
4631                 break;
4632         default:
4633                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4634                 ret = -EINVAL;
4635                 break;
4636         }
4637         return ret;
4638 }
4639
4640 static inline int
4641 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4642                         uint16_t ethertype)
4643 {
4644         int i;
4645
4646         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4647                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4648                     (filter_info->ethertype_mask & (1 << i)))
4649                         return i;
4650         }
4651         return -1;
4652 }
4653
4654 static inline int
4655 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4656                         uint16_t ethertype, uint32_t etqf)
4657 {
4658         int i;
4659
4660         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4661                 if (!(filter_info->ethertype_mask & (1 << i))) {
4662                         filter_info->ethertype_mask |= 1 << i;
4663                         filter_info->ethertype_filters[i].ethertype = ethertype;
4664                         filter_info->ethertype_filters[i].etqf = etqf;
4665                         return i;
4666                 }
4667         }
4668         return -1;
4669 }
4670
4671 int
4672 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4673                         uint8_t idx)
4674 {
4675         if (idx >= E1000_MAX_ETQF_FILTERS)
4676                 return -1;
4677         filter_info->ethertype_mask &= ~(1 << idx);
4678         filter_info->ethertype_filters[idx].ethertype = 0;
4679         filter_info->ethertype_filters[idx].etqf = 0;
4680         return idx;
4681 }
4682
4683
4684 int
4685 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4686                         struct rte_eth_ethertype_filter *filter,
4687                         bool add)
4688 {
4689         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4690         struct e1000_filter_info *filter_info =
4691                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4692         uint32_t etqf = 0;
4693         int ret;
4694
4695         if (filter->ether_type == ETHER_TYPE_IPv4 ||
4696                 filter->ether_type == ETHER_TYPE_IPv6) {
4697                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4698                         " ethertype filter.", filter->ether_type);
4699                 return -EINVAL;
4700         }
4701
4702         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4703                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4704                 return -EINVAL;
4705         }
4706         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4707                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4708                 return -EINVAL;
4709         }
4710
4711         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4712         if (ret >= 0 && add) {
4713                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4714                             filter->ether_type);
4715                 return -EEXIST;
4716         }
4717         if (ret < 0 && !add) {
4718                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4719                             filter->ether_type);
4720                 return -ENOENT;
4721         }
4722
4723         if (add) {
4724                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4725                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4726                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4727                 ret = igb_ethertype_filter_insert(filter_info,
4728                                 filter->ether_type, etqf);
4729                 if (ret < 0) {
4730                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4731                         return -ENOSYS;
4732                 }
4733         } else {
4734                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4735                 if (ret < 0)
4736                         return -ENOSYS;
4737         }
4738         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4739         E1000_WRITE_FLUSH(hw);
4740
4741         return 0;
4742 }
4743
4744 static int
4745 igb_get_ethertype_filter(struct rte_eth_dev *dev,
4746                         struct rte_eth_ethertype_filter *filter)
4747 {
4748         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4749         struct e1000_filter_info *filter_info =
4750                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4751         uint32_t etqf;
4752         int ret;
4753
4754         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4755         if (ret < 0) {
4756                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4757                             filter->ether_type);
4758                 return -ENOENT;
4759         }
4760
4761         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
4762         if (etqf & E1000_ETQF_FILTER_ENABLE) {
4763                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
4764                 filter->flags = 0;
4765                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
4766                                 E1000_ETQF_QUEUE_SHIFT;
4767                 return 0;
4768         }
4769
4770         return -ENOENT;
4771 }
4772
4773 /*
4774  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
4775  * @dev: pointer to rte_eth_dev structure
4776  * @filter_op:operation will be taken.
4777  * @arg: a pointer to specific structure corresponding to the filter_op
4778  */
4779 static int
4780 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
4781                                 enum rte_filter_op filter_op,
4782                                 void *arg)
4783 {
4784         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4785         int ret;
4786
4787         MAC_TYPE_FILTER_SUP(hw->mac.type);
4788
4789         if (filter_op == RTE_ETH_FILTER_NOP)
4790                 return 0;
4791
4792         if (arg == NULL) {
4793                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4794                             filter_op);
4795                 return -EINVAL;
4796         }
4797
4798         switch (filter_op) {
4799         case RTE_ETH_FILTER_ADD:
4800                 ret = igb_add_del_ethertype_filter(dev,
4801                         (struct rte_eth_ethertype_filter *)arg,
4802                         TRUE);
4803                 break;
4804         case RTE_ETH_FILTER_DELETE:
4805                 ret = igb_add_del_ethertype_filter(dev,
4806                         (struct rte_eth_ethertype_filter *)arg,
4807                         FALSE);
4808                 break;
4809         case RTE_ETH_FILTER_GET:
4810                 ret = igb_get_ethertype_filter(dev,
4811                         (struct rte_eth_ethertype_filter *)arg);
4812                 break;
4813         default:
4814                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4815                 ret = -EINVAL;
4816                 break;
4817         }
4818         return ret;
4819 }
4820
4821 static int
4822 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
4823                      enum rte_filter_type filter_type,
4824                      enum rte_filter_op filter_op,
4825                      void *arg)
4826 {
4827         int ret = 0;
4828
4829         switch (filter_type) {
4830         case RTE_ETH_FILTER_NTUPLE:
4831                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
4832                 break;
4833         case RTE_ETH_FILTER_ETHERTYPE:
4834                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
4835                 break;
4836         case RTE_ETH_FILTER_SYN:
4837                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
4838                 break;
4839         case RTE_ETH_FILTER_FLEXIBLE:
4840                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
4841                 break;
4842         case RTE_ETH_FILTER_GENERIC:
4843                 if (filter_op != RTE_ETH_FILTER_GET)
4844                         return -EINVAL;
4845                 *(const void **)arg = &igb_flow_ops;
4846                 break;
4847         default:
4848                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4849                                                         filter_type);
4850                 break;
4851         }
4852
4853         return ret;
4854 }
4855
4856 static int
4857 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4858                          struct ether_addr *mc_addr_set,
4859                          uint32_t nb_mc_addr)
4860 {
4861         struct e1000_hw *hw;
4862
4863         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4864         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4865         return 0;
4866 }
4867
4868 static uint64_t
4869 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4870 {
4871         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4872         uint64_t systime_cycles;
4873
4874         switch (hw->mac.type) {
4875         case e1000_i210:
4876         case e1000_i211:
4877                 /*
4878                  * Need to read System Time Residue Register to be able
4879                  * to read the other two registers.
4880                  */
4881                 E1000_READ_REG(hw, E1000_SYSTIMR);
4882                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4883                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4884                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4885                                 * NSEC_PER_SEC;
4886                 break;
4887         case e1000_82580:
4888         case e1000_i350:
4889         case e1000_i354:
4890                 /*
4891                  * Need to read System Time Residue Register to be able
4892                  * to read the other two registers.
4893                  */
4894                 E1000_READ_REG(hw, E1000_SYSTIMR);
4895                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4896                 /* Only the 8 LSB are valid. */
4897                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4898                                 & 0xff) << 32;
4899                 break;
4900         default:
4901                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4902                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4903                                 << 32;
4904                 break;
4905         }
4906
4907         return systime_cycles;
4908 }
4909
4910 static uint64_t
4911 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4912 {
4913         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4914         uint64_t rx_tstamp_cycles;
4915
4916         switch (hw->mac.type) {
4917         case e1000_i210:
4918         case e1000_i211:
4919                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4920                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4921                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4922                                 * NSEC_PER_SEC;
4923                 break;
4924         case e1000_82580:
4925         case e1000_i350:
4926         case e1000_i354:
4927                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4928                 /* Only the 8 LSB are valid. */
4929                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4930                                 & 0xff) << 32;
4931                 break;
4932         default:
4933                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4934                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4935                                 << 32;
4936                 break;
4937         }
4938
4939         return rx_tstamp_cycles;
4940 }
4941
4942 static uint64_t
4943 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4944 {
4945         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4946         uint64_t tx_tstamp_cycles;
4947
4948         switch (hw->mac.type) {
4949         case e1000_i210:
4950         case e1000_i211:
4951                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4952                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4953                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4954                                 * NSEC_PER_SEC;
4955                 break;
4956         case e1000_82580:
4957         case e1000_i350:
4958         case e1000_i354:
4959                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4960                 /* Only the 8 LSB are valid. */
4961                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
4962                                 & 0xff) << 32;
4963                 break;
4964         default:
4965                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4966                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4967                                 << 32;
4968                 break;
4969         }
4970
4971         return tx_tstamp_cycles;
4972 }
4973
4974 static void
4975 igb_start_timecounters(struct rte_eth_dev *dev)
4976 {
4977         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4978         struct e1000_adapter *adapter =
4979                 (struct e1000_adapter *)dev->data->dev_private;
4980         uint32_t incval = 1;
4981         uint32_t shift = 0;
4982         uint64_t mask = E1000_CYCLECOUNTER_MASK;
4983
4984         switch (hw->mac.type) {
4985         case e1000_82580:
4986         case e1000_i350:
4987         case e1000_i354:
4988                 /* 32 LSB bits + 8 MSB bits = 40 bits */
4989                 mask = (1ULL << 40) - 1;
4990                 /* fall-through */
4991         case e1000_i210:
4992         case e1000_i211:
4993                 /*
4994                  * Start incrementing the register
4995                  * used to timestamp PTP packets.
4996                  */
4997                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
4998                 break;
4999         case e1000_82576:
5000                 incval = E1000_INCVALUE_82576;
5001                 shift = IGB_82576_TSYNC_SHIFT;
5002                 E1000_WRITE_REG(hw, E1000_TIMINCA,
5003                                 E1000_INCPERIOD_82576 | incval);
5004                 break;
5005         default:
5006                 /* Not supported */
5007                 return;
5008         }
5009
5010         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
5011         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5012         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5013
5014         adapter->systime_tc.cc_mask = mask;
5015         adapter->systime_tc.cc_shift = shift;
5016         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
5017
5018         adapter->rx_tstamp_tc.cc_mask = mask;
5019         adapter->rx_tstamp_tc.cc_shift = shift;
5020         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5021
5022         adapter->tx_tstamp_tc.cc_mask = mask;
5023         adapter->tx_tstamp_tc.cc_shift = shift;
5024         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5025 }
5026
5027 static int
5028 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
5029 {
5030         struct e1000_adapter *adapter =
5031                         (struct e1000_adapter *)dev->data->dev_private;
5032
5033         adapter->systime_tc.nsec += delta;
5034         adapter->rx_tstamp_tc.nsec += delta;
5035         adapter->tx_tstamp_tc.nsec += delta;
5036
5037         return 0;
5038 }
5039
5040 static int
5041 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
5042 {
5043         uint64_t ns;
5044         struct e1000_adapter *adapter =
5045                         (struct e1000_adapter *)dev->data->dev_private;
5046
5047         ns = rte_timespec_to_ns(ts);
5048
5049         /* Set the timecounters to a new value. */
5050         adapter->systime_tc.nsec = ns;
5051         adapter->rx_tstamp_tc.nsec = ns;
5052         adapter->tx_tstamp_tc.nsec = ns;
5053
5054         return 0;
5055 }
5056
5057 static int
5058 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
5059 {
5060         uint64_t ns, systime_cycles;
5061         struct e1000_adapter *adapter =
5062                         (struct e1000_adapter *)dev->data->dev_private;
5063
5064         systime_cycles = igb_read_systime_cyclecounter(dev);
5065         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
5066         *ts = rte_ns_to_timespec(ns);
5067
5068         return 0;
5069 }
5070
5071 static int
5072 igb_timesync_enable(struct rte_eth_dev *dev)
5073 {
5074         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5075         uint32_t tsync_ctl;
5076         uint32_t tsauxc;
5077
5078         /* Stop the timesync system time. */
5079         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
5080         /* Reset the timesync system time value. */
5081         switch (hw->mac.type) {
5082         case e1000_82580:
5083         case e1000_i350:
5084         case e1000_i354:
5085         case e1000_i210:
5086         case e1000_i211:
5087                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
5088                 /* fall-through */
5089         case e1000_82576:
5090                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
5091                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
5092                 break;
5093         default:
5094                 /* Not supported. */
5095                 return -ENOTSUP;
5096         }
5097
5098         /* Enable system time for it isn't on by default. */
5099         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
5100         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
5101         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
5102
5103         igb_start_timecounters(dev);
5104
5105         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5106         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
5107                         (ETHER_TYPE_1588 |
5108                          E1000_ETQF_FILTER_ENABLE |
5109                          E1000_ETQF_1588));
5110
5111         /* Enable timestamping of received PTP packets. */
5112         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5113         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
5114         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5115
5116         /* Enable Timestamping of transmitted PTP packets. */
5117         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5118         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
5119         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5120
5121         return 0;
5122 }
5123
5124 static int
5125 igb_timesync_disable(struct rte_eth_dev *dev)
5126 {
5127         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5128         uint32_t tsync_ctl;
5129
5130         /* Disable timestamping of transmitted PTP packets. */
5131         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5132         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
5133         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5134
5135         /* Disable timestamping of received PTP packets. */
5136         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5137         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
5138         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5139
5140         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5141         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
5142
5143         /* Stop incrementating the System Time registers. */
5144         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
5145
5146         return 0;
5147 }
5148
5149 static int
5150 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
5151                                struct timespec *timestamp,
5152                                uint32_t flags __rte_unused)
5153 {
5154         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5155         struct e1000_adapter *adapter =
5156                         (struct e1000_adapter *)dev->data->dev_private;
5157         uint32_t tsync_rxctl;
5158         uint64_t rx_tstamp_cycles;
5159         uint64_t ns;
5160
5161         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5162         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
5163                 return -EINVAL;
5164
5165         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
5166         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
5167         *timestamp = rte_ns_to_timespec(ns);
5168
5169         return  0;
5170 }
5171
5172 static int
5173 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
5174                                struct timespec *timestamp)
5175 {
5176         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5177         struct e1000_adapter *adapter =
5178                         (struct e1000_adapter *)dev->data->dev_private;
5179         uint32_t tsync_txctl;
5180         uint64_t tx_tstamp_cycles;
5181         uint64_t ns;
5182
5183         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5184         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
5185                 return -EINVAL;
5186
5187         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
5188         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
5189         *timestamp = rte_ns_to_timespec(ns);
5190
5191         return  0;
5192 }
5193
5194 static int
5195 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5196 {
5197         int count = 0;
5198         int g_ind = 0;
5199         const struct reg_info *reg_group;
5200
5201         while ((reg_group = igb_regs[g_ind++]))
5202                 count += igb_reg_group_count(reg_group);
5203
5204         return count;
5205 }
5206
5207 static int
5208 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5209 {
5210         int count = 0;
5211         int g_ind = 0;
5212         const struct reg_info *reg_group;
5213
5214         while ((reg_group = igbvf_regs[g_ind++]))
5215                 count += igb_reg_group_count(reg_group);
5216
5217         return count;
5218 }
5219
5220 static int
5221 eth_igb_get_regs(struct rte_eth_dev *dev,
5222         struct rte_dev_reg_info *regs)
5223 {
5224         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5225         uint32_t *data = regs->data;
5226         int g_ind = 0;
5227         int count = 0;
5228         const struct reg_info *reg_group;
5229
5230         if (data == NULL) {
5231                 regs->length = eth_igb_get_reg_length(dev);
5232                 regs->width = sizeof(uint32_t);
5233                 return 0;
5234         }
5235
5236         /* Support only full register dump */
5237         if ((regs->length == 0) ||
5238             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
5239                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5240                         hw->device_id;
5241                 while ((reg_group = igb_regs[g_ind++]))
5242                         count += igb_read_regs_group(dev, &data[count],
5243                                                         reg_group);
5244                 return 0;
5245         }
5246
5247         return -ENOTSUP;
5248 }
5249
5250 static int
5251 igbvf_get_regs(struct rte_eth_dev *dev,
5252         struct rte_dev_reg_info *regs)
5253 {
5254         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5255         uint32_t *data = regs->data;
5256         int g_ind = 0;
5257         int count = 0;
5258         const struct reg_info *reg_group;
5259
5260         if (data == NULL) {
5261                 regs->length = igbvf_get_reg_length(dev);
5262                 regs->width = sizeof(uint32_t);
5263                 return 0;
5264         }
5265
5266         /* Support only full register dump */
5267         if ((regs->length == 0) ||
5268             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
5269                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5270                         hw->device_id;
5271                 while ((reg_group = igbvf_regs[g_ind++]))
5272                         count += igb_read_regs_group(dev, &data[count],
5273                                                         reg_group);
5274                 return 0;
5275         }
5276
5277         return -ENOTSUP;
5278 }
5279
5280 static int
5281 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5282 {
5283         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5284
5285         /* Return unit is byte count */
5286         return hw->nvm.word_size * 2;
5287 }
5288
5289 static int
5290 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5291         struct rte_dev_eeprom_info *in_eeprom)
5292 {
5293         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5294         struct e1000_nvm_info *nvm = &hw->nvm;
5295         uint16_t *data = in_eeprom->data;
5296         int first, length;
5297
5298         first = in_eeprom->offset >> 1;
5299         length = in_eeprom->length >> 1;
5300         if ((first >= hw->nvm.word_size) ||
5301             ((first + length) >= hw->nvm.word_size))
5302                 return -EINVAL;
5303
5304         in_eeprom->magic = hw->vendor_id |
5305                 ((uint32_t)hw->device_id << 16);
5306
5307         if ((nvm->ops.read) == NULL)
5308                 return -ENOTSUP;
5309
5310         return nvm->ops.read(hw, first, length, data);
5311 }
5312
5313 static int
5314 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5315         struct rte_dev_eeprom_info *in_eeprom)
5316 {
5317         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5318         struct e1000_nvm_info *nvm = &hw->nvm;
5319         uint16_t *data = in_eeprom->data;
5320         int first, length;
5321
5322         first = in_eeprom->offset >> 1;
5323         length = in_eeprom->length >> 1;
5324         if ((first >= hw->nvm.word_size) ||
5325             ((first + length) >= hw->nvm.word_size))
5326                 return -EINVAL;
5327
5328         in_eeprom->magic = (uint32_t)hw->vendor_id |
5329                 ((uint32_t)hw->device_id << 16);
5330
5331         if ((nvm->ops.write) == NULL)
5332                 return -ENOTSUP;
5333         return nvm->ops.write(hw,  first, length, data);
5334 }
5335
5336 static int
5337 eth_igb_get_module_info(struct rte_eth_dev *dev,
5338                         struct rte_eth_dev_module_info *modinfo)
5339 {
5340         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5341
5342         uint32_t status = 0;
5343         uint16_t sff8472_rev, addr_mode;
5344         bool page_swap = false;
5345
5346         if (hw->phy.media_type == e1000_media_type_copper ||
5347             hw->phy.media_type == e1000_media_type_unknown)
5348                 return -EOPNOTSUPP;
5349
5350         /* Check whether we support SFF-8472 or not */
5351         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5352         if (status)
5353                 return -EIO;
5354
5355         /* addressing mode is not supported */
5356         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5357         if (status)
5358                 return -EIO;
5359
5360         /* addressing mode is not supported */
5361         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5362                 PMD_DRV_LOG(ERR,
5363                             "Address change required to access page 0xA2, "
5364                             "but not supported. Please report the module "
5365                             "type to the driver maintainers.\n");
5366                 page_swap = true;
5367         }
5368
5369         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5370                 /* We have an SFP, but it does not support SFF-8472 */
5371                 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5372                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5373         } else {
5374                 /* We have an SFP which supports a revision of SFF-8472 */
5375                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5376                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5377         }
5378
5379         return 0;
5380 }
5381
5382 static int
5383 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5384                           struct rte_dev_eeprom_info *info)
5385 {
5386         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5387
5388         uint32_t status = 0;
5389         uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5390         u16 first_word, last_word;
5391         int i = 0;
5392
5393         if (info->length == 0)
5394                 return -EINVAL;
5395
5396         first_word = info->offset >> 1;
5397         last_word = (info->offset + info->length - 1) >> 1;
5398
5399         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5400         for (i = 0; i < last_word - first_word + 1; i++) {
5401                 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5402                                                 &dataword[i]);
5403                 if (status) {
5404                         /* Error occurred while reading module */
5405                         return -EIO;
5406                 }
5407
5408                 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5409         }
5410
5411         memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5412
5413         return 0;
5414 }
5415
5416 static int
5417 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5418 {
5419         struct e1000_hw *hw =
5420                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5421         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5422         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5423         uint32_t vec = E1000_MISC_VEC_ID;
5424
5425         if (rte_intr_allow_others(intr_handle))
5426                 vec = E1000_RX_VEC_START;
5427
5428         uint32_t mask = 1 << (queue_id + vec);
5429
5430         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5431         E1000_WRITE_FLUSH(hw);
5432
5433         return 0;
5434 }
5435
5436 static int
5437 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5438 {
5439         struct e1000_hw *hw =
5440                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5441         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5442         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5443         uint32_t vec = E1000_MISC_VEC_ID;
5444
5445         if (rte_intr_allow_others(intr_handle))
5446                 vec = E1000_RX_VEC_START;
5447
5448         uint32_t mask = 1 << (queue_id + vec);
5449         uint32_t regval;
5450
5451         regval = E1000_READ_REG(hw, E1000_EIMS);
5452         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5453         E1000_WRITE_FLUSH(hw);
5454
5455         rte_intr_enable(intr_handle);
5456
5457         return 0;
5458 }
5459
5460 static void
5461 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5462                    uint8_t index, uint8_t offset)
5463 {
5464         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5465
5466         /* clear bits */
5467         val &= ~((uint32_t)0xFF << offset);
5468
5469         /* write vector and valid bit */
5470         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5471
5472         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5473 }
5474
5475 static void
5476 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5477                            uint8_t queue, uint8_t msix_vector)
5478 {
5479         uint32_t tmp = 0;
5480
5481         if (hw->mac.type == e1000_82575) {
5482                 if (direction == 0)
5483                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5484                 else if (direction == 1)
5485                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5486                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5487         } else if (hw->mac.type == e1000_82576) {
5488                 if ((direction == 0) || (direction == 1))
5489                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5490                                            ((queue & 0x8) << 1) +
5491                                            8 * direction);
5492         } else if ((hw->mac.type == e1000_82580) ||
5493                         (hw->mac.type == e1000_i350) ||
5494                         (hw->mac.type == e1000_i354) ||
5495                         (hw->mac.type == e1000_i210) ||
5496                         (hw->mac.type == e1000_i211)) {
5497                 if ((direction == 0) || (direction == 1))
5498                         eth_igb_write_ivar(hw, msix_vector,
5499                                            queue >> 1,
5500                                            ((queue & 0x1) << 4) +
5501                                            8 * direction);
5502         }
5503 }
5504
5505 /* Sets up the hardware to generate MSI-X interrupts properly
5506  * @hw
5507  *  board private structure
5508  */
5509 static void
5510 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5511 {
5512         int queue_id;
5513         uint32_t tmpval, regval, intr_mask;
5514         struct e1000_hw *hw =
5515                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5516         uint32_t vec = E1000_MISC_VEC_ID;
5517         uint32_t base = E1000_MISC_VEC_ID;
5518         uint32_t misc_shift = 0;
5519         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5520         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5521
5522         /* won't configure msix register if no mapping is done
5523          * between intr vector and event fd
5524          */
5525         if (!rte_intr_dp_is_en(intr_handle))
5526                 return;
5527
5528         if (rte_intr_allow_others(intr_handle)) {
5529                 vec = base = E1000_RX_VEC_START;
5530                 misc_shift = 1;
5531         }
5532
5533         /* set interrupt vector for other causes */
5534         if (hw->mac.type == e1000_82575) {
5535                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5536                 /* enable MSI-X PBA support */
5537                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5538
5539                 /* Auto-Mask interrupts upon ICR read */
5540                 tmpval |= E1000_CTRL_EXT_EIAME;
5541                 tmpval |= E1000_CTRL_EXT_IRCA;
5542
5543                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5544
5545                 /* enable msix_other interrupt */
5546                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5547                 regval = E1000_READ_REG(hw, E1000_EIAC);
5548                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5549                 regval = E1000_READ_REG(hw, E1000_EIAM);
5550                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5551         } else if ((hw->mac.type == e1000_82576) ||
5552                         (hw->mac.type == e1000_82580) ||
5553                         (hw->mac.type == e1000_i350) ||
5554                         (hw->mac.type == e1000_i354) ||
5555                         (hw->mac.type == e1000_i210) ||
5556                         (hw->mac.type == e1000_i211)) {
5557                 /* turn on MSI-X capability first */
5558                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5559                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5560                                         E1000_GPIE_NSICR);
5561                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5562                         misc_shift;
5563                 regval = E1000_READ_REG(hw, E1000_EIAC);
5564                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5565
5566                 /* enable msix_other interrupt */
5567                 regval = E1000_READ_REG(hw, E1000_EIMS);
5568                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5569                 tmpval = (dev->data->nb_rx_queues | E1000_IVAR_VALID) << 8;
5570                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5571         }
5572
5573         /* use EIAM to auto-mask when MSI-X interrupt
5574          * is asserted, this saves a register write for every interrupt
5575          */
5576         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5577                 misc_shift;
5578         regval = E1000_READ_REG(hw, E1000_EIAM);
5579         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5580
5581         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5582                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5583                 intr_handle->intr_vec[queue_id] = vec;
5584                 if (vec < base + intr_handle->nb_efd - 1)
5585                         vec++;
5586         }
5587
5588         E1000_WRITE_FLUSH(hw);
5589 }
5590
5591 /* restore n-tuple filter */
5592 static inline void
5593 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5594 {
5595         struct e1000_filter_info *filter_info =
5596                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5597         struct e1000_5tuple_filter *p_5tuple;
5598         struct e1000_2tuple_filter *p_2tuple;
5599
5600         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5601                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5602         }
5603
5604         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5605                 igb_inject_2uple_filter(dev, p_2tuple);
5606         }
5607 }
5608
5609 /* restore SYN filter */
5610 static inline void
5611 igb_syn_filter_restore(struct rte_eth_dev *dev)
5612 {
5613         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5614         struct e1000_filter_info *filter_info =
5615                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5616         uint32_t synqf;
5617
5618         synqf = filter_info->syn_info;
5619
5620         if (synqf & E1000_SYN_FILTER_ENABLE) {
5621                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5622                 E1000_WRITE_FLUSH(hw);
5623         }
5624 }
5625
5626 /* restore ethernet type filter */
5627 static inline void
5628 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5629 {
5630         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5631         struct e1000_filter_info *filter_info =
5632                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5633         int i;
5634
5635         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5636                 if (filter_info->ethertype_mask & (1 << i)) {
5637                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5638                                 filter_info->ethertype_filters[i].etqf);
5639                         E1000_WRITE_FLUSH(hw);
5640                 }
5641         }
5642 }
5643
5644 /* restore flex byte filter */
5645 static inline void
5646 igb_flex_filter_restore(struct rte_eth_dev *dev)
5647 {
5648         struct e1000_filter_info *filter_info =
5649                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5650         struct e1000_flex_filter *flex_filter;
5651
5652         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5653                 igb_inject_flex_filter(dev, flex_filter);
5654         }
5655 }
5656
5657 /* restore rss filter */
5658 static inline void
5659 igb_rss_filter_restore(struct rte_eth_dev *dev)
5660 {
5661         struct e1000_filter_info *filter_info =
5662                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5663
5664         if (filter_info->rss_info.conf.queue_num)
5665                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5666 }
5667
5668 /* restore all types filter */
5669 static int
5670 igb_filter_restore(struct rte_eth_dev *dev)
5671 {
5672         igb_ntuple_filter_restore(dev);
5673         igb_ethertype_filter_restore(dev);
5674         igb_syn_filter_restore(dev);
5675         igb_flex_filter_restore(dev);
5676         igb_rss_filter_restore(dev);
5677
5678         return 0;
5679 }
5680
5681 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5682 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5683 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5684 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5685 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5686 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");
5687
5688 /* see e1000_logs.c */
5689 RTE_INIT(e1000_init_log)
5690 {
5691         e1000_igb_init_log();
5692 }