New upstream version 17.11.1
[deb_dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_bus_pci.h>
47 #include <rte_ether.h>
48 #include <rte_ethdev.h>
49 #include <rte_ethdev_pci.h>
50 #include <rte_memory.h>
51 #include <rte_eal.h>
52 #include <rte_atomic.h>
53 #include <rte_malloc.h>
54 #include <rte_dev.h>
55
56 #include "e1000_logs.h"
57 #include "base/e1000_api.h"
58 #include "e1000_ethdev.h"
59 #include "igb_regs.h"
60
61 /*
62  * Default values for port configuration
63  */
64 #define IGB_DEFAULT_RX_FREE_THRESH  32
65
66 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
67 #define IGB_DEFAULT_RX_HTHRESH      8
68 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
69
70 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
71 #define IGB_DEFAULT_TX_HTHRESH      1
72 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
73
74 #define IGB_HKEY_MAX_INDEX 10
75
76 /* Bit shift and mask */
77 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
78 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
79 #define IGB_8_BIT_WIDTH  CHAR_BIT
80 #define IGB_8_BIT_MASK   UINT8_MAX
81
82 /* Additional timesync values. */
83 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
84 #define E1000_ETQF_FILTER_1588       3
85 #define IGB_82576_TSYNC_SHIFT        16
86 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
87 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
88 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
89
90 #define E1000_VTIVAR_MISC                0x01740
91 #define E1000_VTIVAR_MISC_MASK           0xFF
92 #define E1000_VTIVAR_VALID               0x80
93 #define E1000_VTIVAR_MISC_MAILBOX        0
94 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
95
96 /* External VLAN Enable bit mask */
97 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
98
99 /* External VLAN Ether Type bit mask and shift */
100 #define E1000_VET_VET_EXT            0xFFFF0000
101 #define E1000_VET_VET_EXT_SHIFT      16
102
103 static int  eth_igb_configure(struct rte_eth_dev *dev);
104 static int  eth_igb_start(struct rte_eth_dev *dev);
105 static void eth_igb_stop(struct rte_eth_dev *dev);
106 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
107 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
108 static void eth_igb_close(struct rte_eth_dev *dev);
109 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
110 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
111 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
112 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
113 static int  eth_igb_link_update(struct rte_eth_dev *dev,
114                                 int wait_to_complete);
115 static int eth_igb_stats_get(struct rte_eth_dev *dev,
116                                 struct rte_eth_stats *rte_stats);
117 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
118                               struct rte_eth_xstat *xstats, unsigned n);
119 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
120                 const uint64_t *ids,
121                 uint64_t *values, unsigned int n);
122 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
123                                     struct rte_eth_xstat_name *xstats_names,
124                                     unsigned int size);
125 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
126                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
127                 unsigned int limit);
128 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
129 static void eth_igb_xstats_reset(struct rte_eth_dev *dev);
130 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
131                                    char *fw_version, size_t fw_size);
132 static void eth_igb_infos_get(struct rte_eth_dev *dev,
133                               struct rte_eth_dev_info *dev_info);
134 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
135 static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
136                                 struct rte_eth_dev_info *dev_info);
137 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
138                                 struct rte_eth_fc_conf *fc_conf);
139 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
140                                 struct rte_eth_fc_conf *fc_conf);
141 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
142 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
143 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
144 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
145                                     struct rte_intr_handle *handle);
146 static void eth_igb_interrupt_handler(void *param);
147 static int  igb_hardware_init(struct e1000_hw *hw);
148 static void igb_hw_control_acquire(struct e1000_hw *hw);
149 static void igb_hw_control_release(struct e1000_hw *hw);
150 static void igb_init_manageability(struct e1000_hw *hw);
151 static void igb_release_manageability(struct e1000_hw *hw);
152
153 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
154
155 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
156                 uint16_t vlan_id, int on);
157 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
158                                  enum rte_vlan_type vlan_type,
159                                  uint16_t tpid_id);
160 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
161
162 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
163 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
164 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
165 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
166 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
167 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
168
169 static int eth_igb_led_on(struct rte_eth_dev *dev);
170 static int eth_igb_led_off(struct rte_eth_dev *dev);
171
172 static void igb_intr_disable(struct e1000_hw *hw);
173 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
174 static int eth_igb_rar_set(struct rte_eth_dev *dev,
175                            struct ether_addr *mac_addr,
176                            uint32_t index, uint32_t pool);
177 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
178 static void eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
179                 struct ether_addr *addr);
180
181 static void igbvf_intr_disable(struct e1000_hw *hw);
182 static int igbvf_dev_configure(struct rte_eth_dev *dev);
183 static int igbvf_dev_start(struct rte_eth_dev *dev);
184 static void igbvf_dev_stop(struct rte_eth_dev *dev);
185 static void igbvf_dev_close(struct rte_eth_dev *dev);
186 static void igbvf_promiscuous_enable(struct rte_eth_dev *dev);
187 static void igbvf_promiscuous_disable(struct rte_eth_dev *dev);
188 static void igbvf_allmulticast_enable(struct rte_eth_dev *dev);
189 static void igbvf_allmulticast_disable(struct rte_eth_dev *dev);
190 static int eth_igbvf_link_update(struct e1000_hw *hw);
191 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
192                                 struct rte_eth_stats *rte_stats);
193 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
194                                 struct rte_eth_xstat *xstats, unsigned n);
195 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
196                                       struct rte_eth_xstat_name *xstats_names,
197                                       unsigned limit);
198 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
199 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
200                 uint16_t vlan_id, int on);
201 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
202 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
203 static void igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
204                 struct ether_addr *addr);
205 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
206 static int igbvf_get_regs(struct rte_eth_dev *dev,
207                 struct rte_dev_reg_info *regs);
208
209 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
210                                    struct rte_eth_rss_reta_entry64 *reta_conf,
211                                    uint16_t reta_size);
212 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
213                                   struct rte_eth_rss_reta_entry64 *reta_conf,
214                                   uint16_t reta_size);
215
216 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
217                         struct rte_eth_syn_filter *filter);
218 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
219                         enum rte_filter_op filter_op,
220                         void *arg);
221 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
222                         struct rte_eth_ntuple_filter *ntuple_filter);
223 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
224                         struct rte_eth_ntuple_filter *ntuple_filter);
225 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
226                         struct rte_eth_flex_filter *filter);
227 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
228                         enum rte_filter_op filter_op,
229                         void *arg);
230 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
231                         struct rte_eth_ntuple_filter *ntuple_filter);
232 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
233                         struct rte_eth_ntuple_filter *ntuple_filter);
234 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
235                         struct rte_eth_ntuple_filter *filter);
236 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
237                                 enum rte_filter_op filter_op,
238                                 void *arg);
239 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
240                                 enum rte_filter_op filter_op,
241                                 void *arg);
242 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
243                         struct rte_eth_ethertype_filter *filter);
244 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
245                      enum rte_filter_type filter_type,
246                      enum rte_filter_op filter_op,
247                      void *arg);
248 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
249 static int eth_igb_get_regs(struct rte_eth_dev *dev,
250                 struct rte_dev_reg_info *regs);
251 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
252 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
253                 struct rte_dev_eeprom_info *eeprom);
254 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
255                 struct rte_dev_eeprom_info *eeprom);
256 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
257                                     struct ether_addr *mc_addr_set,
258                                     uint32_t nb_mc_addr);
259 static int igb_timesync_enable(struct rte_eth_dev *dev);
260 static int igb_timesync_disable(struct rte_eth_dev *dev);
261 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
262                                           struct timespec *timestamp,
263                                           uint32_t flags);
264 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
265                                           struct timespec *timestamp);
266 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
267 static int igb_timesync_read_time(struct rte_eth_dev *dev,
268                                   struct timespec *timestamp);
269 static int igb_timesync_write_time(struct rte_eth_dev *dev,
270                                    const struct timespec *timestamp);
271 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
272                                         uint16_t queue_id);
273 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
274                                          uint16_t queue_id);
275 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
276                                        uint8_t queue, uint8_t msix_vector);
277 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
278                                uint8_t index, uint8_t offset);
279 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
280 static void eth_igbvf_interrupt_handler(void *param);
281 static void igbvf_mbx_process(struct rte_eth_dev *dev);
282 static int igb_filter_restore(struct rte_eth_dev *dev);
283
284 /*
285  * Define VF Stats MACRO for Non "cleared on read" register
286  */
287 #define UPDATE_VF_STAT(reg, last, cur)            \
288 {                                                 \
289         u32 latest = E1000_READ_REG(hw, reg);     \
290         cur += (latest - last) & UINT_MAX;        \
291         last = latest;                            \
292 }
293
294 #define IGB_FC_PAUSE_TIME 0x0680
295 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
296 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
297
298 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
299
300 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
301
302 /*
303  * The set of PCI devices this driver supports
304  */
305 static const struct rte_pci_id pci_id_igb_map[] = {
306         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
307         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
308         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
313         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
314
315         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
316         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
317         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
318
319         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
320         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
321         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
322         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
323         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
324         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
325
326         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
327         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
328         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
329         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
330         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
331         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
332         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
333         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
334         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
335         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
336         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
337         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
338         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
339         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
340         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
341         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
342         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
343         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
344         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
345         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
346         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
347         { .vendor_id = 0, /* sentinel */ },
348 };
349
350 /*
351  * The set of PCI devices this driver supports (for 82576&I350 VF)
352  */
353 static const struct rte_pci_id pci_id_igbvf_map[] = {
354         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
355         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
356         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
357         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
358         { .vendor_id = 0, /* sentinel */ },
359 };
360
361 static const struct rte_eth_desc_lim rx_desc_lim = {
362         .nb_max = E1000_MAX_RING_DESC,
363         .nb_min = E1000_MIN_RING_DESC,
364         .nb_align = IGB_RXD_ALIGN,
365 };
366
367 static const struct rte_eth_desc_lim tx_desc_lim = {
368         .nb_max = E1000_MAX_RING_DESC,
369         .nb_min = E1000_MIN_RING_DESC,
370         .nb_align = IGB_RXD_ALIGN,
371         .nb_seg_max = IGB_TX_MAX_SEG,
372         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
373 };
374
375 static const struct eth_dev_ops eth_igb_ops = {
376         .dev_configure        = eth_igb_configure,
377         .dev_start            = eth_igb_start,
378         .dev_stop             = eth_igb_stop,
379         .dev_set_link_up      = eth_igb_dev_set_link_up,
380         .dev_set_link_down    = eth_igb_dev_set_link_down,
381         .dev_close            = eth_igb_close,
382         .promiscuous_enable   = eth_igb_promiscuous_enable,
383         .promiscuous_disable  = eth_igb_promiscuous_disable,
384         .allmulticast_enable  = eth_igb_allmulticast_enable,
385         .allmulticast_disable = eth_igb_allmulticast_disable,
386         .link_update          = eth_igb_link_update,
387         .stats_get            = eth_igb_stats_get,
388         .xstats_get           = eth_igb_xstats_get,
389         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
390         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
391         .xstats_get_names     = eth_igb_xstats_get_names,
392         .stats_reset          = eth_igb_stats_reset,
393         .xstats_reset         = eth_igb_xstats_reset,
394         .fw_version_get       = eth_igb_fw_version_get,
395         .dev_infos_get        = eth_igb_infos_get,
396         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
397         .mtu_set              = eth_igb_mtu_set,
398         .vlan_filter_set      = eth_igb_vlan_filter_set,
399         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
400         .vlan_offload_set     = eth_igb_vlan_offload_set,
401         .rx_queue_setup       = eth_igb_rx_queue_setup,
402         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
403         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
404         .rx_queue_release     = eth_igb_rx_queue_release,
405         .rx_queue_count       = eth_igb_rx_queue_count,
406         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
407         .rx_descriptor_status = eth_igb_rx_descriptor_status,
408         .tx_descriptor_status = eth_igb_tx_descriptor_status,
409         .tx_queue_setup       = eth_igb_tx_queue_setup,
410         .tx_queue_release     = eth_igb_tx_queue_release,
411         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
412         .dev_led_on           = eth_igb_led_on,
413         .dev_led_off          = eth_igb_led_off,
414         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
415         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
416         .mac_addr_add         = eth_igb_rar_set,
417         .mac_addr_remove      = eth_igb_rar_clear,
418         .mac_addr_set         = eth_igb_default_mac_addr_set,
419         .reta_update          = eth_igb_rss_reta_update,
420         .reta_query           = eth_igb_rss_reta_query,
421         .rss_hash_update      = eth_igb_rss_hash_update,
422         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
423         .filter_ctrl          = eth_igb_filter_ctrl,
424         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
425         .rxq_info_get         = igb_rxq_info_get,
426         .txq_info_get         = igb_txq_info_get,
427         .timesync_enable      = igb_timesync_enable,
428         .timesync_disable     = igb_timesync_disable,
429         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
430         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
431         .get_reg              = eth_igb_get_regs,
432         .get_eeprom_length    = eth_igb_get_eeprom_length,
433         .get_eeprom           = eth_igb_get_eeprom,
434         .set_eeprom           = eth_igb_set_eeprom,
435         .timesync_adjust_time = igb_timesync_adjust_time,
436         .timesync_read_time   = igb_timesync_read_time,
437         .timesync_write_time  = igb_timesync_write_time,
438 };
439
440 /*
441  * dev_ops for virtual function, bare necessities for basic vf
442  * operation have been implemented
443  */
444 static const struct eth_dev_ops igbvf_eth_dev_ops = {
445         .dev_configure        = igbvf_dev_configure,
446         .dev_start            = igbvf_dev_start,
447         .dev_stop             = igbvf_dev_stop,
448         .dev_close            = igbvf_dev_close,
449         .promiscuous_enable   = igbvf_promiscuous_enable,
450         .promiscuous_disable  = igbvf_promiscuous_disable,
451         .allmulticast_enable  = igbvf_allmulticast_enable,
452         .allmulticast_disable = igbvf_allmulticast_disable,
453         .link_update          = eth_igb_link_update,
454         .stats_get            = eth_igbvf_stats_get,
455         .xstats_get           = eth_igbvf_xstats_get,
456         .xstats_get_names     = eth_igbvf_xstats_get_names,
457         .stats_reset          = eth_igbvf_stats_reset,
458         .xstats_reset         = eth_igbvf_stats_reset,
459         .vlan_filter_set      = igbvf_vlan_filter_set,
460         .dev_infos_get        = eth_igbvf_infos_get,
461         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
462         .rx_queue_setup       = eth_igb_rx_queue_setup,
463         .rx_queue_release     = eth_igb_rx_queue_release,
464         .tx_queue_setup       = eth_igb_tx_queue_setup,
465         .tx_queue_release     = eth_igb_tx_queue_release,
466         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
467         .rxq_info_get         = igb_rxq_info_get,
468         .txq_info_get         = igb_txq_info_get,
469         .mac_addr_set         = igbvf_default_mac_addr_set,
470         .get_reg              = igbvf_get_regs,
471 };
472
473 /* store statistics names and its offset in stats structure */
474 struct rte_igb_xstats_name_off {
475         char name[RTE_ETH_XSTATS_NAME_SIZE];
476         unsigned offset;
477 };
478
479 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
480         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
481         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
482         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
483         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
484         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
485         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
486         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
487                 ecol)},
488         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
489         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
490         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
491         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
492         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
493         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
494         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
495         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
496         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
497         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
498         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
499                 fcruc)},
500         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
501         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
502         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
503         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
504         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
505                 prc1023)},
506         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
507                 prc1522)},
508         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
509         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
510         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
511         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
512         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
513         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
514         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
515         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
516         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
517         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
518         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
519         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
520         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
521         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
522         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
523         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
524         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
525         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
526                 ptc1023)},
527         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
528                 ptc1522)},
529         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
530         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
531         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
532         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
533         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
534         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
535         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
536
537         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
538 };
539
540 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
541                 sizeof(rte_igb_stats_strings[0]))
542
543 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
544         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
545         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
546         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
547         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
548         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
549 };
550
551 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
552                 sizeof(rte_igbvf_stats_strings[0]))
553
554 /**
555  * Atomically reads the link status information from global
556  * structure rte_eth_dev.
557  *
558  * @param dev
559  *   - Pointer to the structure rte_eth_dev to read from.
560  *   - Pointer to the buffer to be saved with the link status.
561  *
562  * @return
563  *   - On success, zero.
564  *   - On failure, negative value.
565  */
566 static inline int
567 rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
568                                 struct rte_eth_link *link)
569 {
570         struct rte_eth_link *dst = link;
571         struct rte_eth_link *src = &(dev->data->dev_link);
572
573         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
574                                         *(uint64_t *)src) == 0)
575                 return -1;
576
577         return 0;
578 }
579
580 /**
581  * Atomically writes the link status information into global
582  * structure rte_eth_dev.
583  *
584  * @param dev
585  *   - Pointer to the structure rte_eth_dev to read from.
586  *   - Pointer to the buffer to be saved with the link status.
587  *
588  * @return
589  *   - On success, zero.
590  *   - On failure, negative value.
591  */
592 static inline int
593 rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
594                                 struct rte_eth_link *link)
595 {
596         struct rte_eth_link *dst = &(dev->data->dev_link);
597         struct rte_eth_link *src = link;
598
599         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
600                                         *(uint64_t *)src) == 0)
601                 return -1;
602
603         return 0;
604 }
605
606 static inline void
607 igb_intr_enable(struct rte_eth_dev *dev)
608 {
609         struct e1000_interrupt *intr =
610                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
611         struct e1000_hw *hw =
612                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
613
614         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
615         E1000_WRITE_FLUSH(hw);
616 }
617
618 static void
619 igb_intr_disable(struct e1000_hw *hw)
620 {
621         E1000_WRITE_REG(hw, E1000_IMC, ~0);
622         E1000_WRITE_FLUSH(hw);
623 }
624
625 static inline void
626 igbvf_intr_enable(struct rte_eth_dev *dev)
627 {
628         struct e1000_hw *hw =
629                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
630
631         /* only for mailbox */
632         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
633         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
634         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
635         E1000_WRITE_FLUSH(hw);
636 }
637
638 /* only for mailbox now. If RX/TX needed, should extend this function.  */
639 static void
640 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
641 {
642         uint32_t tmp = 0;
643
644         /* mailbox */
645         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
646         tmp |= E1000_VTIVAR_VALID;
647         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
648 }
649
650 static void
651 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
652 {
653         struct e1000_hw *hw =
654                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
655
656         /* Configure VF other cause ivar */
657         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
658 }
659
660 static inline int32_t
661 igb_pf_reset_hw(struct e1000_hw *hw)
662 {
663         uint32_t ctrl_ext;
664         int32_t status;
665
666         status = e1000_reset_hw(hw);
667
668         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
669         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
670         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
671         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
672         E1000_WRITE_FLUSH(hw);
673
674         return status;
675 }
676
677 static void
678 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
679 {
680         struct e1000_hw *hw =
681                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
682
683
684         hw->vendor_id = pci_dev->id.vendor_id;
685         hw->device_id = pci_dev->id.device_id;
686         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
687         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
688
689         e1000_set_mac_type(hw);
690
691         /* need to check if it is a vf device below */
692 }
693
694 static int
695 igb_reset_swfw_lock(struct e1000_hw *hw)
696 {
697         int ret_val;
698
699         /*
700          * Do mac ops initialization manually here, since we will need
701          * some function pointers set by this call.
702          */
703         ret_val = e1000_init_mac_params(hw);
704         if (ret_val)
705                 return ret_val;
706
707         /*
708          * SMBI lock should not fail in this early stage. If this is the case,
709          * it is due to an improper exit of the application.
710          * So force the release of the faulty lock.
711          */
712         if (e1000_get_hw_semaphore_generic(hw) < 0) {
713                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
714         }
715         e1000_put_hw_semaphore_generic(hw);
716
717         if (hw->mac.ops.acquire_swfw_sync != NULL) {
718                 uint16_t mask;
719
720                 /*
721                  * Phy lock should not fail in this early stage. If this is the case,
722                  * it is due to an improper exit of the application.
723                  * So force the release of the faulty lock.
724                  */
725                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
726                 if (hw->bus.func > E1000_FUNC_1)
727                         mask <<= 2;
728                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
729                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
730                                     hw->bus.func);
731                 }
732                 hw->mac.ops.release_swfw_sync(hw, mask);
733
734                 /*
735                  * This one is more tricky since it is common to all ports; but
736                  * swfw_sync retries last long enough (1s) to be almost sure that if
737                  * lock can not be taken it is due to an improper lock of the
738                  * semaphore.
739                  */
740                 mask = E1000_SWFW_EEP_SM;
741                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
742                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
743                 }
744                 hw->mac.ops.release_swfw_sync(hw, mask);
745         }
746
747         return E1000_SUCCESS;
748 }
749
750 /* Remove all ntuple filters of the device */
751 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
752 {
753         struct e1000_filter_info *filter_info =
754                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
755         struct e1000_5tuple_filter *p_5tuple;
756         struct e1000_2tuple_filter *p_2tuple;
757
758         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
759                 TAILQ_REMOVE(&filter_info->fivetuple_list,
760                         p_5tuple, entries);
761                         rte_free(p_5tuple);
762         }
763         filter_info->fivetuple_mask = 0;
764         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
765                 TAILQ_REMOVE(&filter_info->twotuple_list,
766                         p_2tuple, entries);
767                         rte_free(p_2tuple);
768         }
769         filter_info->twotuple_mask = 0;
770
771         return 0;
772 }
773
774 /* Remove all flex filters of the device */
775 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
776 {
777         struct e1000_filter_info *filter_info =
778                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
779         struct e1000_flex_filter *p_flex;
780
781         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
782                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
783                 rte_free(p_flex);
784         }
785         filter_info->flex_mask = 0;
786
787         return 0;
788 }
789
790 static int
791 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
792 {
793         int error = 0;
794         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
795         struct e1000_hw *hw =
796                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
797         struct e1000_vfta * shadow_vfta =
798                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
799         struct e1000_filter_info *filter_info =
800                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
801         struct e1000_adapter *adapter =
802                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
803
804         uint32_t ctrl_ext;
805
806         eth_dev->dev_ops = &eth_igb_ops;
807         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
808         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
809         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
810
811         /* for secondary processes, we don't initialise any further as primary
812          * has already done this work. Only check we don't need a different
813          * RX function */
814         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
815                 if (eth_dev->data->scattered_rx)
816                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
817                 return 0;
818         }
819
820         rte_eth_copy_pci_info(eth_dev, pci_dev);
821
822         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
823
824         igb_identify_hardware(eth_dev, pci_dev);
825         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
826                 error = -EIO;
827                 goto err_late;
828         }
829
830         e1000_get_bus_info(hw);
831
832         /* Reset any pending lock */
833         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
834                 error = -EIO;
835                 goto err_late;
836         }
837
838         /* Finish initialization */
839         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
840                 error = -EIO;
841                 goto err_late;
842         }
843
844         hw->mac.autoneg = 1;
845         hw->phy.autoneg_wait_to_complete = 0;
846         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
847
848         /* Copper options */
849         if (hw->phy.media_type == e1000_media_type_copper) {
850                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
851                 hw->phy.disable_polarity_correction = 0;
852                 hw->phy.ms_type = e1000_ms_hw_default;
853         }
854
855         /*
856          * Start from a known state, this is important in reading the nvm
857          * and mac from that.
858          */
859         igb_pf_reset_hw(hw);
860
861         /* Make sure we have a good EEPROM before we read from it */
862         if (e1000_validate_nvm_checksum(hw) < 0) {
863                 /*
864                  * Some PCI-E parts fail the first check due to
865                  * the link being in sleep state, call it again,
866                  * if it fails a second time its a real issue.
867                  */
868                 if (e1000_validate_nvm_checksum(hw) < 0) {
869                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
870                         error = -EIO;
871                         goto err_late;
872                 }
873         }
874
875         /* Read the permanent MAC address out of the EEPROM */
876         if (e1000_read_mac_addr(hw) != 0) {
877                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
878                 error = -EIO;
879                 goto err_late;
880         }
881
882         /* Allocate memory for storing MAC addresses */
883         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
884                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
885         if (eth_dev->data->mac_addrs == NULL) {
886                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
887                                                 "store MAC addresses",
888                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
889                 error = -ENOMEM;
890                 goto err_late;
891         }
892
893         /* Copy the permanent MAC address */
894         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
895
896         /* initialize the vfta */
897         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
898
899         /* Now initialize the hardware */
900         if (igb_hardware_init(hw) != 0) {
901                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
902                 rte_free(eth_dev->data->mac_addrs);
903                 eth_dev->data->mac_addrs = NULL;
904                 error = -ENODEV;
905                 goto err_late;
906         }
907         hw->mac.get_link_status = 1;
908         adapter->stopped = 0;
909
910         /* Indicate SOL/IDER usage */
911         if (e1000_check_reset_block(hw) < 0) {
912                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
913                                         "SOL/IDER session");
914         }
915
916         /* initialize PF if max_vfs not zero */
917         igb_pf_host_init(eth_dev);
918
919         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
920         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
921         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
922         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
923         E1000_WRITE_FLUSH(hw);
924
925         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
926                      eth_dev->data->port_id, pci_dev->id.vendor_id,
927                      pci_dev->id.device_id);
928
929         rte_intr_callback_register(&pci_dev->intr_handle,
930                                    eth_igb_interrupt_handler,
931                                    (void *)eth_dev);
932
933         /* enable uio/vfio intr/eventfd mapping */
934         rte_intr_enable(&pci_dev->intr_handle);
935
936         /* enable support intr */
937         igb_intr_enable(eth_dev);
938
939         /* initialize filter info */
940         memset(filter_info, 0,
941                sizeof(struct e1000_filter_info));
942
943         TAILQ_INIT(&filter_info->flex_list);
944         TAILQ_INIT(&filter_info->twotuple_list);
945         TAILQ_INIT(&filter_info->fivetuple_list);
946
947         TAILQ_INIT(&igb_filter_ntuple_list);
948         TAILQ_INIT(&igb_filter_ethertype_list);
949         TAILQ_INIT(&igb_filter_syn_list);
950         TAILQ_INIT(&igb_filter_flex_list);
951         TAILQ_INIT(&igb_flow_list);
952
953         return 0;
954
955 err_late:
956         igb_hw_control_release(hw);
957
958         return error;
959 }
960
961 static int
962 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
963 {
964         struct rte_pci_device *pci_dev;
965         struct rte_intr_handle *intr_handle;
966         struct e1000_hw *hw;
967         struct e1000_adapter *adapter =
968                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
969         struct e1000_filter_info *filter_info =
970                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
971
972         PMD_INIT_FUNC_TRACE();
973
974         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
975                 return -EPERM;
976
977         hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
978         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
979         intr_handle = &pci_dev->intr_handle;
980
981         if (adapter->stopped == 0)
982                 eth_igb_close(eth_dev);
983
984         eth_dev->dev_ops = NULL;
985         eth_dev->rx_pkt_burst = NULL;
986         eth_dev->tx_pkt_burst = NULL;
987
988         /* Reset any pending lock */
989         igb_reset_swfw_lock(hw);
990
991         rte_free(eth_dev->data->mac_addrs);
992         eth_dev->data->mac_addrs = NULL;
993
994         /* uninitialize PF if max_vfs not zero */
995         igb_pf_host_uninit(eth_dev);
996
997         /* disable uio intr before callback unregister */
998         rte_intr_disable(intr_handle);
999         rte_intr_callback_unregister(intr_handle,
1000                                      eth_igb_interrupt_handler, eth_dev);
1001
1002         /* clear the SYN filter info */
1003         filter_info->syn_info = 0;
1004
1005         /* clear the ethertype filters info */
1006         filter_info->ethertype_mask = 0;
1007         memset(filter_info->ethertype_filters, 0,
1008                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
1009
1010         /* remove all ntuple filters of the device */
1011         igb_ntuple_filter_uninit(eth_dev);
1012
1013         /* remove all flex filters of the device */
1014         igb_flex_filter_uninit(eth_dev);
1015
1016         /* clear all the filters list */
1017         igb_filterlist_flush(eth_dev);
1018
1019         return 0;
1020 }
1021
1022 /*
1023  * Virtual Function device init
1024  */
1025 static int
1026 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
1027 {
1028         struct rte_pci_device *pci_dev;
1029         struct rte_intr_handle *intr_handle;
1030         struct e1000_adapter *adapter =
1031                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
1032         struct e1000_hw *hw =
1033                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1034         int diag;
1035         struct ether_addr *perm_addr = (struct ether_addr *)hw->mac.perm_addr;
1036
1037         PMD_INIT_FUNC_TRACE();
1038
1039         eth_dev->dev_ops = &igbvf_eth_dev_ops;
1040         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
1041         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
1042         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
1043
1044         /* for secondary processes, we don't initialise any further as primary
1045          * has already done this work. Only check we don't need a different
1046          * RX function */
1047         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
1048                 if (eth_dev->data->scattered_rx)
1049                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
1050                 return 0;
1051         }
1052
1053         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1054         rte_eth_copy_pci_info(eth_dev, pci_dev);
1055
1056         hw->device_id = pci_dev->id.device_id;
1057         hw->vendor_id = pci_dev->id.vendor_id;
1058         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1059         adapter->stopped = 0;
1060
1061         /* Initialize the shared code (base driver) */
1062         diag = e1000_setup_init_funcs(hw, TRUE);
1063         if (diag != 0) {
1064                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
1065                         diag);
1066                 return -EIO;
1067         }
1068
1069         /* init_mailbox_params */
1070         hw->mbx.ops.init_params(hw);
1071
1072         /* Disable the interrupts for VF */
1073         igbvf_intr_disable(hw);
1074
1075         diag = hw->mac.ops.reset_hw(hw);
1076
1077         /* Allocate memory for storing MAC addresses */
1078         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
1079                 hw->mac.rar_entry_count, 0);
1080         if (eth_dev->data->mac_addrs == NULL) {
1081                 PMD_INIT_LOG(ERR,
1082                         "Failed to allocate %d bytes needed to store MAC "
1083                         "addresses",
1084                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
1085                 return -ENOMEM;
1086         }
1087
1088         /* Generate a random MAC address, if none was assigned by PF. */
1089         if (is_zero_ether_addr(perm_addr)) {
1090                 eth_random_addr(perm_addr->addr_bytes);
1091                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
1092                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
1093                              "%02x:%02x:%02x:%02x:%02x:%02x",
1094                              perm_addr->addr_bytes[0],
1095                              perm_addr->addr_bytes[1],
1096                              perm_addr->addr_bytes[2],
1097                              perm_addr->addr_bytes[3],
1098                              perm_addr->addr_bytes[4],
1099                              perm_addr->addr_bytes[5]);
1100         }
1101
1102         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
1103         if (diag) {
1104                 rte_free(eth_dev->data->mac_addrs);
1105                 eth_dev->data->mac_addrs = NULL;
1106                 return diag;
1107         }
1108         /* Copy the permanent MAC address */
1109         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
1110                         &eth_dev->data->mac_addrs[0]);
1111
1112         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1113                      "mac.type=%s",
1114                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1115                      pci_dev->id.device_id, "igb_mac_82576_vf");
1116
1117         intr_handle = &pci_dev->intr_handle;
1118         rte_intr_callback_register(intr_handle,
1119                                    eth_igbvf_interrupt_handler, eth_dev);
1120
1121         return 0;
1122 }
1123
1124 static int
1125 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1126 {
1127         struct e1000_adapter *adapter =
1128                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
1129         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1130
1131         PMD_INIT_FUNC_TRACE();
1132
1133         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1134                 return -EPERM;
1135
1136         if (adapter->stopped == 0)
1137                 igbvf_dev_close(eth_dev);
1138
1139         eth_dev->dev_ops = NULL;
1140         eth_dev->rx_pkt_burst = NULL;
1141         eth_dev->tx_pkt_burst = NULL;
1142
1143         rte_free(eth_dev->data->mac_addrs);
1144         eth_dev->data->mac_addrs = NULL;
1145
1146         /* disable uio intr before callback unregister */
1147         rte_intr_disable(&pci_dev->intr_handle);
1148         rte_intr_callback_unregister(&pci_dev->intr_handle,
1149                                      eth_igbvf_interrupt_handler,
1150                                      (void *)eth_dev);
1151
1152         return 0;
1153 }
1154
1155 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1156         struct rte_pci_device *pci_dev)
1157 {
1158         return rte_eth_dev_pci_generic_probe(pci_dev,
1159                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1160 }
1161
1162 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1163 {
1164         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1165 }
1166
1167 static struct rte_pci_driver rte_igb_pmd = {
1168         .id_table = pci_id_igb_map,
1169         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1170                      RTE_PCI_DRV_IOVA_AS_VA,
1171         .probe = eth_igb_pci_probe,
1172         .remove = eth_igb_pci_remove,
1173 };
1174
1175
1176 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1177         struct rte_pci_device *pci_dev)
1178 {
1179         return rte_eth_dev_pci_generic_probe(pci_dev,
1180                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1181 }
1182
1183 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1184 {
1185         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1186 }
1187
1188 /*
1189  * virtual function driver struct
1190  */
1191 static struct rte_pci_driver rte_igbvf_pmd = {
1192         .id_table = pci_id_igbvf_map,
1193         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_IOVA_AS_VA,
1194         .probe = eth_igbvf_pci_probe,
1195         .remove = eth_igbvf_pci_remove,
1196 };
1197
1198 static void
1199 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1200 {
1201         struct e1000_hw *hw =
1202                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1203         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1204         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1205         rctl |= E1000_RCTL_VFE;
1206         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1207 }
1208
1209 static int
1210 igb_check_mq_mode(struct rte_eth_dev *dev)
1211 {
1212         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1213         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1214         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1215         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1216
1217         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1218             tx_mq_mode == ETH_MQ_TX_DCB ||
1219             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1220                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1221                 return -EINVAL;
1222         }
1223         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1224                 /* Check multi-queue mode.
1225                  * To no break software we accept ETH_MQ_RX_NONE as this might
1226                  * be used to turn off VLAN filter.
1227                  */
1228
1229                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1230                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1231                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1232                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1233                 } else {
1234                         /* Only support one queue on VFs.
1235                          * RSS together with SRIOV is not supported.
1236                          */
1237                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1238                                         " wrong mq_mode rx %d.",
1239                                         rx_mq_mode);
1240                         return -EINVAL;
1241                 }
1242                 /* TX mode is not used here, so mode might be ignored.*/
1243                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1244                         /* SRIOV only works in VMDq enable mode */
1245                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1246                                         " TX mode %d is not supported. "
1247                                         " Driver will behave as %d mode.",
1248                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1249                 }
1250
1251                 /* check valid queue number */
1252                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1253                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1254                                         " only support one queue on VFs.");
1255                         return -EINVAL;
1256                 }
1257         } else {
1258                 /* To no break software that set invalid mode, only display
1259                  * warning if invalid mode is used.
1260                  */
1261                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1262                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1263                     rx_mq_mode != ETH_MQ_RX_RSS) {
1264                         /* RSS together with VMDq not supported*/
1265                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1266                                      rx_mq_mode);
1267                         return -EINVAL;
1268                 }
1269
1270                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1271                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1272                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1273                                         " Due to txmode is meaningless in this"
1274                                         " driver, just ignore.",
1275                                         tx_mq_mode);
1276                 }
1277         }
1278         return 0;
1279 }
1280
1281 static int
1282 eth_igb_configure(struct rte_eth_dev *dev)
1283 {
1284         struct e1000_interrupt *intr =
1285                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1286         int ret;
1287
1288         PMD_INIT_FUNC_TRACE();
1289
1290         /* multipe queue mode checking */
1291         ret  = igb_check_mq_mode(dev);
1292         if (ret != 0) {
1293                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1294                             ret);
1295                 return ret;
1296         }
1297
1298         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1299         PMD_INIT_FUNC_TRACE();
1300
1301         return 0;
1302 }
1303
1304 static int
1305 eth_igb_start(struct rte_eth_dev *dev)
1306 {
1307         struct e1000_hw *hw =
1308                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1309         struct e1000_adapter *adapter =
1310                 E1000_DEV_PRIVATE(dev->data->dev_private);
1311         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1312         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1313         int ret, mask;
1314         uint32_t intr_vector = 0;
1315         uint32_t ctrl_ext;
1316         uint32_t *speeds;
1317         int num_speeds;
1318         bool autoneg;
1319
1320         PMD_INIT_FUNC_TRACE();
1321
1322         /* disable uio/vfio intr/eventfd mapping */
1323         rte_intr_disable(intr_handle);
1324
1325         /* Power up the phy. Needed to make the link go Up */
1326         eth_igb_dev_set_link_up(dev);
1327
1328         /*
1329          * Packet Buffer Allocation (PBA)
1330          * Writing PBA sets the receive portion of the buffer
1331          * the remainder is used for the transmit buffer.
1332          */
1333         if (hw->mac.type == e1000_82575) {
1334                 uint32_t pba;
1335
1336                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1337                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1338         }
1339
1340         /* Put the address into the Receive Address Array */
1341         e1000_rar_set(hw, hw->mac.addr, 0);
1342
1343         /* Initialize the hardware */
1344         if (igb_hardware_init(hw)) {
1345                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1346                 return -EIO;
1347         }
1348         adapter->stopped = 0;
1349
1350         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1351
1352         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1353         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1354         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1355         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1356         E1000_WRITE_FLUSH(hw);
1357
1358         /* configure PF module if SRIOV enabled */
1359         igb_pf_host_configure(dev);
1360
1361         /* check and configure queue intr-vector mapping */
1362         if ((rte_intr_cap_multiple(intr_handle) ||
1363              !RTE_ETH_DEV_SRIOV(dev).active) &&
1364             dev->data->dev_conf.intr_conf.rxq != 0) {
1365                 intr_vector = dev->data->nb_rx_queues;
1366                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1367                         return -1;
1368         }
1369
1370         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1371                 intr_handle->intr_vec =
1372                         rte_zmalloc("intr_vec",
1373                                     dev->data->nb_rx_queues * sizeof(int), 0);
1374                 if (intr_handle->intr_vec == NULL) {
1375                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1376                                      " intr_vec", dev->data->nb_rx_queues);
1377                         return -ENOMEM;
1378                 }
1379         }
1380
1381         /* confiugre msix for rx interrupt */
1382         eth_igb_configure_msix_intr(dev);
1383
1384         /* Configure for OS presence */
1385         igb_init_manageability(hw);
1386
1387         eth_igb_tx_init(dev);
1388
1389         /* This can fail when allocating mbufs for descriptor rings */
1390         ret = eth_igb_rx_init(dev);
1391         if (ret) {
1392                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1393                 igb_dev_clear_queues(dev);
1394                 return ret;
1395         }
1396
1397         e1000_clear_hw_cntrs_base_generic(hw);
1398
1399         /*
1400          * VLAN Offload Settings
1401          */
1402         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1403                         ETH_VLAN_EXTEND_MASK;
1404         ret = eth_igb_vlan_offload_set(dev, mask);
1405         if (ret) {
1406                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1407                 igb_dev_clear_queues(dev);
1408                 return ret;
1409         }
1410
1411         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1412                 /* Enable VLAN filter since VMDq always use VLAN filter */
1413                 igb_vmdq_vlan_hw_filter_enable(dev);
1414         }
1415
1416         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1417                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1418                 (hw->mac.type == e1000_i211)) {
1419                 /* Configure EITR with the maximum possible value (0xFFFF) */
1420                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1421         }
1422
1423         /* Setup link speed and duplex */
1424         speeds = &dev->data->dev_conf.link_speeds;
1425         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1426                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1427                 hw->mac.autoneg = 1;
1428         } else {
1429                 num_speeds = 0;
1430                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1431
1432                 /* Reset */
1433                 hw->phy.autoneg_advertised = 0;
1434
1435                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1436                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1437                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1438                         num_speeds = -1;
1439                         goto error_invalid_config;
1440                 }
1441                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1442                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1443                         num_speeds++;
1444                 }
1445                 if (*speeds & ETH_LINK_SPEED_10M) {
1446                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1447                         num_speeds++;
1448                 }
1449                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1450                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1451                         num_speeds++;
1452                 }
1453                 if (*speeds & ETH_LINK_SPEED_100M) {
1454                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1455                         num_speeds++;
1456                 }
1457                 if (*speeds & ETH_LINK_SPEED_1G) {
1458                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1459                         num_speeds++;
1460                 }
1461                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1462                         goto error_invalid_config;
1463
1464                 /* Set/reset the mac.autoneg based on the link speed,
1465                  * fixed or not
1466                  */
1467                 if (!autoneg) {
1468                         hw->mac.autoneg = 0;
1469                         hw->mac.forced_speed_duplex =
1470                                         hw->phy.autoneg_advertised;
1471                 } else {
1472                         hw->mac.autoneg = 1;
1473                 }
1474         }
1475
1476         e1000_setup_link(hw);
1477
1478         if (rte_intr_allow_others(intr_handle)) {
1479                 /* check if lsc interrupt is enabled */
1480                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1481                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1482                 else
1483                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1484         } else {
1485                 rte_intr_callback_unregister(intr_handle,
1486                                              eth_igb_interrupt_handler,
1487                                              (void *)dev);
1488                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1489                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1490                                      " no intr multiplex");
1491         }
1492
1493         /* check if rxq interrupt is enabled */
1494         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1495             rte_intr_dp_is_en(intr_handle))
1496                 eth_igb_rxq_interrupt_setup(dev);
1497
1498         /* enable uio/vfio intr/eventfd mapping */
1499         rte_intr_enable(intr_handle);
1500
1501         /* resume enabled intr since hw reset */
1502         igb_intr_enable(dev);
1503
1504         /* restore all types filter */
1505         igb_filter_restore(dev);
1506
1507         PMD_INIT_LOG(DEBUG, "<<");
1508
1509         return 0;
1510
1511 error_invalid_config:
1512         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1513                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1514         igb_dev_clear_queues(dev);
1515         return -EINVAL;
1516 }
1517
1518 /*********************************************************************
1519  *
1520  *  This routine disables all traffic on the adapter by issuing a
1521  *  global reset on the MAC.
1522  *
1523  **********************************************************************/
1524 static void
1525 eth_igb_stop(struct rte_eth_dev *dev)
1526 {
1527         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1528         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1529         struct rte_eth_link link;
1530         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1531
1532         igb_intr_disable(hw);
1533
1534         /* disable intr eventfd mapping */
1535         rte_intr_disable(intr_handle);
1536
1537         igb_pf_reset_hw(hw);
1538         E1000_WRITE_REG(hw, E1000_WUC, 0);
1539
1540         /* Set bit for Go Link disconnect */
1541         if (hw->mac.type >= e1000_82580) {
1542                 uint32_t phpm_reg;
1543
1544                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1545                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1546                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1547         }
1548
1549         /* Power down the phy. Needed to make the link go Down */
1550         eth_igb_dev_set_link_down(dev);
1551
1552         igb_dev_clear_queues(dev);
1553
1554         /* clear the recorded link status */
1555         memset(&link, 0, sizeof(link));
1556         rte_igb_dev_atomic_write_link_status(dev, &link);
1557
1558         if (!rte_intr_allow_others(intr_handle))
1559                 /* resume to the default handler */
1560                 rte_intr_callback_register(intr_handle,
1561                                            eth_igb_interrupt_handler,
1562                                            (void *)dev);
1563
1564         /* Clean datapath event and queue/vec mapping */
1565         rte_intr_efd_disable(intr_handle);
1566         if (intr_handle->intr_vec != NULL) {
1567                 rte_free(intr_handle->intr_vec);
1568                 intr_handle->intr_vec = NULL;
1569         }
1570 }
1571
1572 static int
1573 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1574 {
1575         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1576
1577         if (hw->phy.media_type == e1000_media_type_copper)
1578                 e1000_power_up_phy(hw);
1579         else
1580                 e1000_power_up_fiber_serdes_link(hw);
1581
1582         return 0;
1583 }
1584
1585 static int
1586 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1587 {
1588         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1589
1590         if (hw->phy.media_type == e1000_media_type_copper)
1591                 e1000_power_down_phy(hw);
1592         else
1593                 e1000_shutdown_fiber_serdes_link(hw);
1594
1595         return 0;
1596 }
1597
1598 static void
1599 eth_igb_close(struct rte_eth_dev *dev)
1600 {
1601         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1602         struct e1000_adapter *adapter =
1603                 E1000_DEV_PRIVATE(dev->data->dev_private);
1604         struct rte_eth_link link;
1605         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1606         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1607
1608         eth_igb_stop(dev);
1609         adapter->stopped = 1;
1610
1611         e1000_phy_hw_reset(hw);
1612         igb_release_manageability(hw);
1613         igb_hw_control_release(hw);
1614
1615         /* Clear bit for Go Link disconnect */
1616         if (hw->mac.type >= e1000_82580) {
1617                 uint32_t phpm_reg;
1618
1619                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1620                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1621                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1622         }
1623
1624         igb_dev_free_queues(dev);
1625
1626         if (intr_handle->intr_vec) {
1627                 rte_free(intr_handle->intr_vec);
1628                 intr_handle->intr_vec = NULL;
1629         }
1630
1631         memset(&link, 0, sizeof(link));
1632         rte_igb_dev_atomic_write_link_status(dev, &link);
1633 }
1634
1635 static int
1636 igb_get_rx_buffer_size(struct e1000_hw *hw)
1637 {
1638         uint32_t rx_buf_size;
1639         if (hw->mac.type == e1000_82576) {
1640                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1641         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1642                 /* PBS needs to be translated according to a lookup table */
1643                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1644                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1645                 rx_buf_size = (rx_buf_size << 10);
1646         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1647                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1648         } else {
1649                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1650         }
1651
1652         return rx_buf_size;
1653 }
1654
1655 /*********************************************************************
1656  *
1657  *  Initialize the hardware
1658  *
1659  **********************************************************************/
1660 static int
1661 igb_hardware_init(struct e1000_hw *hw)
1662 {
1663         uint32_t rx_buf_size;
1664         int diag;
1665
1666         /* Let the firmware know the OS is in control */
1667         igb_hw_control_acquire(hw);
1668
1669         /*
1670          * These parameters control the automatic generation (Tx) and
1671          * response (Rx) to Ethernet PAUSE frames.
1672          * - High water mark should allow for at least two standard size (1518)
1673          *   frames to be received after sending an XOFF.
1674          * - Low water mark works best when it is very near the high water mark.
1675          *   This allows the receiver to restart by sending XON when it has
1676          *   drained a bit. Here we use an arbitrary value of 1500 which will
1677          *   restart after one full frame is pulled from the buffer. There
1678          *   could be several smaller frames in the buffer and if so they will
1679          *   not trigger the XON until their total number reduces the buffer
1680          *   by 1500.
1681          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1682          */
1683         rx_buf_size = igb_get_rx_buffer_size(hw);
1684
1685         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
1686         hw->fc.low_water = hw->fc.high_water - 1500;
1687         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1688         hw->fc.send_xon = 1;
1689
1690         /* Set Flow control, use the tunable location if sane */
1691         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1692                 hw->fc.requested_mode = igb_fc_setting;
1693         else
1694                 hw->fc.requested_mode = e1000_fc_none;
1695
1696         /* Issue a global reset */
1697         igb_pf_reset_hw(hw);
1698         E1000_WRITE_REG(hw, E1000_WUC, 0);
1699
1700         diag = e1000_init_hw(hw);
1701         if (diag < 0)
1702                 return diag;
1703
1704         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1705         e1000_get_phy_info(hw);
1706         e1000_check_for_link(hw);
1707
1708         return 0;
1709 }
1710
1711 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1712 static void
1713 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1714 {
1715         int pause_frames;
1716
1717         uint64_t old_gprc  = stats->gprc;
1718         uint64_t old_gptc  = stats->gptc;
1719         uint64_t old_tpr   = stats->tpr;
1720         uint64_t old_tpt   = stats->tpt;
1721         uint64_t old_rpthc = stats->rpthc;
1722         uint64_t old_hgptc = stats->hgptc;
1723
1724         if(hw->phy.media_type == e1000_media_type_copper ||
1725             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1726                 stats->symerrs +=
1727                     E1000_READ_REG(hw,E1000_SYMERRS);
1728                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1729         }
1730
1731         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1732         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1733         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1734         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1735
1736         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1737         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1738         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1739         stats->dc += E1000_READ_REG(hw, E1000_DC);
1740         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1741         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1742         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1743         /*
1744         ** For watchdog management we need to know if we have been
1745         ** paused during the last interval, so capture that here.
1746         */
1747         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1748         stats->xoffrxc += pause_frames;
1749         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1750         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1751         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1752         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1753         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1754         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1755         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1756         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1757         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1758         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1759         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1760         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1761
1762         /* For the 64-bit byte counters the low dword must be read first. */
1763         /* Both registers clear on the read of the high dword */
1764
1765         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1766         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1767         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1768         stats->gorc -= (stats->gprc - old_gprc) * ETHER_CRC_LEN;
1769         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1770         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1771         stats->gotc -= (stats->gptc - old_gptc) * ETHER_CRC_LEN;
1772
1773         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1774         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1775         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1776         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1777         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1778
1779         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1780         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1781
1782         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1783         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1784         stats->tor -= (stats->tpr - old_tpr) * ETHER_CRC_LEN;
1785         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1786         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1787         stats->tot -= (stats->tpt - old_tpt) * ETHER_CRC_LEN;
1788
1789         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1790         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1791         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1792         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1793         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1794         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1795         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1796         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1797
1798         /* Interrupt Counts */
1799
1800         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1801         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1802         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1803         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1804         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1805         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1806         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1807         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1808         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1809
1810         /* Host to Card Statistics */
1811
1812         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1813         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1814         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1815         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1816         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1817         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1818         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1819         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1820         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1821         stats->hgorc -= (stats->rpthc - old_rpthc) * ETHER_CRC_LEN;
1822         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1823         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1824         stats->hgotc -= (stats->hgptc - old_hgptc) * ETHER_CRC_LEN;
1825         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1826         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1827         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1828
1829         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1830         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1831         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1832         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1833         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1834         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1835 }
1836
1837 static int
1838 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1839 {
1840         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1841         struct e1000_hw_stats *stats =
1842                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1843
1844         igb_read_stats_registers(hw, stats);
1845
1846         if (rte_stats == NULL)
1847                 return -EINVAL;
1848
1849         /* Rx Errors */
1850         rte_stats->imissed = stats->mpc;
1851         rte_stats->ierrors = stats->crcerrs +
1852                              stats->rlec + stats->ruc + stats->roc +
1853                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1854
1855         /* Tx Errors */
1856         rte_stats->oerrors = stats->ecol + stats->latecol;
1857
1858         rte_stats->ipackets = stats->gprc;
1859         rte_stats->opackets = stats->gptc;
1860         rte_stats->ibytes   = stats->gorc;
1861         rte_stats->obytes   = stats->gotc;
1862         return 0;
1863 }
1864
1865 static void
1866 eth_igb_stats_reset(struct rte_eth_dev *dev)
1867 {
1868         struct e1000_hw_stats *hw_stats =
1869                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1870
1871         /* HW registers are cleared on read */
1872         eth_igb_stats_get(dev, NULL);
1873
1874         /* Reset software totals */
1875         memset(hw_stats, 0, sizeof(*hw_stats));
1876 }
1877
1878 static void
1879 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1880 {
1881         struct e1000_hw_stats *stats =
1882                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1883
1884         /* HW registers are cleared on read */
1885         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1886
1887         /* Reset software totals */
1888         memset(stats, 0, sizeof(*stats));
1889 }
1890
1891 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1892         struct rte_eth_xstat_name *xstats_names,
1893         __rte_unused unsigned int size)
1894 {
1895         unsigned i;
1896
1897         if (xstats_names == NULL)
1898                 return IGB_NB_XSTATS;
1899
1900         /* Note: limit checked in rte_eth_xstats_names() */
1901
1902         for (i = 0; i < IGB_NB_XSTATS; i++) {
1903                 snprintf(xstats_names[i].name, sizeof(xstats_names[i].name),
1904                          "%s", rte_igb_stats_strings[i].name);
1905         }
1906
1907         return IGB_NB_XSTATS;
1908 }
1909
1910 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1911                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1912                 unsigned int limit)
1913 {
1914         unsigned int i;
1915
1916         if (!ids) {
1917                 if (xstats_names == NULL)
1918                         return IGB_NB_XSTATS;
1919
1920                 for (i = 0; i < IGB_NB_XSTATS; i++)
1921                         snprintf(xstats_names[i].name,
1922                                         sizeof(xstats_names[i].name),
1923                                         "%s", rte_igb_stats_strings[i].name);
1924
1925                 return IGB_NB_XSTATS;
1926
1927         } else {
1928                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1929
1930                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1931                                 IGB_NB_XSTATS);
1932
1933                 for (i = 0; i < limit; i++) {
1934                         if (ids[i] >= IGB_NB_XSTATS) {
1935                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1936                                 return -1;
1937                         }
1938                         strcpy(xstats_names[i].name,
1939                                         xstats_names_copy[ids[i]].name);
1940                 }
1941                 return limit;
1942         }
1943 }
1944
1945 static int
1946 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1947                    unsigned n)
1948 {
1949         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1950         struct e1000_hw_stats *hw_stats =
1951                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1952         unsigned i;
1953
1954         if (n < IGB_NB_XSTATS)
1955                 return IGB_NB_XSTATS;
1956
1957         igb_read_stats_registers(hw, hw_stats);
1958
1959         /* If this is a reset xstats is NULL, and we have cleared the
1960          * registers by reading them.
1961          */
1962         if (!xstats)
1963                 return 0;
1964
1965         /* Extended stats */
1966         for (i = 0; i < IGB_NB_XSTATS; i++) {
1967                 xstats[i].id = i;
1968                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1969                         rte_igb_stats_strings[i].offset);
1970         }
1971
1972         return IGB_NB_XSTATS;
1973 }
1974
1975 static int
1976 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1977                 uint64_t *values, unsigned int n)
1978 {
1979         unsigned int i;
1980
1981         if (!ids) {
1982                 struct e1000_hw *hw =
1983                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1984                 struct e1000_hw_stats *hw_stats =
1985                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1986
1987                 if (n < IGB_NB_XSTATS)
1988                         return IGB_NB_XSTATS;
1989
1990                 igb_read_stats_registers(hw, hw_stats);
1991
1992                 /* If this is a reset xstats is NULL, and we have cleared the
1993                  * registers by reading them.
1994                  */
1995                 if (!values)
1996                         return 0;
1997
1998                 /* Extended stats */
1999                 for (i = 0; i < IGB_NB_XSTATS; i++)
2000                         values[i] = *(uint64_t *)(((char *)hw_stats) +
2001                                         rte_igb_stats_strings[i].offset);
2002
2003                 return IGB_NB_XSTATS;
2004
2005         } else {
2006                 uint64_t values_copy[IGB_NB_XSTATS];
2007
2008                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
2009                                 IGB_NB_XSTATS);
2010
2011                 for (i = 0; i < n; i++) {
2012                         if (ids[i] >= IGB_NB_XSTATS) {
2013                                 PMD_INIT_LOG(ERR, "id value isn't valid");
2014                                 return -1;
2015                         }
2016                         values[i] = values_copy[ids[i]];
2017                 }
2018                 return n;
2019         }
2020 }
2021
2022 static void
2023 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2024 {
2025         /* Good Rx packets, include VF loopback */
2026         UPDATE_VF_STAT(E1000_VFGPRC,
2027             hw_stats->last_gprc, hw_stats->gprc);
2028
2029         /* Good Rx octets, include VF loopback */
2030         UPDATE_VF_STAT(E1000_VFGORC,
2031             hw_stats->last_gorc, hw_stats->gorc);
2032
2033         /* Good Tx packets, include VF loopback */
2034         UPDATE_VF_STAT(E1000_VFGPTC,
2035             hw_stats->last_gptc, hw_stats->gptc);
2036
2037         /* Good Tx octets, include VF loopback */
2038         UPDATE_VF_STAT(E1000_VFGOTC,
2039             hw_stats->last_gotc, hw_stats->gotc);
2040
2041         /* Rx Multicst packets */
2042         UPDATE_VF_STAT(E1000_VFMPRC,
2043             hw_stats->last_mprc, hw_stats->mprc);
2044
2045         /* Good Rx loopback packets */
2046         UPDATE_VF_STAT(E1000_VFGPRLBC,
2047             hw_stats->last_gprlbc, hw_stats->gprlbc);
2048
2049         /* Good Rx loopback octets */
2050         UPDATE_VF_STAT(E1000_VFGORLBC,
2051             hw_stats->last_gorlbc, hw_stats->gorlbc);
2052
2053         /* Good Tx loopback packets */
2054         UPDATE_VF_STAT(E1000_VFGPTLBC,
2055             hw_stats->last_gptlbc, hw_stats->gptlbc);
2056
2057         /* Good Tx loopback octets */
2058         UPDATE_VF_STAT(E1000_VFGOTLBC,
2059             hw_stats->last_gotlbc, hw_stats->gotlbc);
2060 }
2061
2062 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2063                                      struct rte_eth_xstat_name *xstats_names,
2064                                      __rte_unused unsigned limit)
2065 {
2066         unsigned i;
2067
2068         if (xstats_names != NULL)
2069                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2070                         snprintf(xstats_names[i].name,
2071                                 sizeof(xstats_names[i].name), "%s",
2072                                 rte_igbvf_stats_strings[i].name);
2073                 }
2074         return IGBVF_NB_XSTATS;
2075 }
2076
2077 static int
2078 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2079                      unsigned n)
2080 {
2081         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2082         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2083                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2084         unsigned i;
2085
2086         if (n < IGBVF_NB_XSTATS)
2087                 return IGBVF_NB_XSTATS;
2088
2089         igbvf_read_stats_registers(hw, hw_stats);
2090
2091         if (!xstats)
2092                 return 0;
2093
2094         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2095                 xstats[i].id = i;
2096                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2097                         rte_igbvf_stats_strings[i].offset);
2098         }
2099
2100         return IGBVF_NB_XSTATS;
2101 }
2102
2103 static int
2104 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2105 {
2106         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2107         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2108                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2109
2110         igbvf_read_stats_registers(hw, hw_stats);
2111
2112         if (rte_stats == NULL)
2113                 return -EINVAL;
2114
2115         rte_stats->ipackets = hw_stats->gprc;
2116         rte_stats->ibytes = hw_stats->gorc;
2117         rte_stats->opackets = hw_stats->gptc;
2118         rte_stats->obytes = hw_stats->gotc;
2119         return 0;
2120 }
2121
2122 static void
2123 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2124 {
2125         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2126                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2127
2128         /* Sync HW register to the last stats */
2129         eth_igbvf_stats_get(dev, NULL);
2130
2131         /* reset HW current stats*/
2132         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2133                offsetof(struct e1000_vf_stats, gprc));
2134 }
2135
2136 static int
2137 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2138                        size_t fw_size)
2139 {
2140         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2141         struct e1000_fw_version fw;
2142         int ret;
2143
2144         e1000_get_fw_version(hw, &fw);
2145
2146         switch (hw->mac.type) {
2147         case e1000_i210:
2148         case e1000_i211:
2149                 if (!(e1000_get_flash_presence_i210(hw))) {
2150                         ret = snprintf(fw_version, fw_size,
2151                                  "%2d.%2d-%d",
2152                                  fw.invm_major, fw.invm_minor,
2153                                  fw.invm_img_type);
2154                         break;
2155                 }
2156                 /* fall through */
2157         default:
2158                 /* if option rom is valid, display its version too */
2159                 if (fw.or_valid) {
2160                         ret = snprintf(fw_version, fw_size,
2161                                  "%d.%d, 0x%08x, %d.%d.%d",
2162                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2163                                  fw.or_major, fw.or_build, fw.or_patch);
2164                 /* no option rom */
2165                 } else {
2166                         if (fw.etrack_id != 0X0000) {
2167                                 ret = snprintf(fw_version, fw_size,
2168                                          "%d.%d, 0x%08x",
2169                                          fw.eep_major, fw.eep_minor,
2170                                          fw.etrack_id);
2171                         } else {
2172                                 ret = snprintf(fw_version, fw_size,
2173                                          "%d.%d.%d",
2174                                          fw.eep_major, fw.eep_minor,
2175                                          fw.eep_build);
2176                         }
2177                 }
2178                 break;
2179         }
2180
2181         ret += 1; /* add the size of '\0' */
2182         if (fw_size < (u32)ret)
2183                 return ret;
2184         else
2185                 return 0;
2186 }
2187
2188 static void
2189 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2190 {
2191         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2192
2193         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2194         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2195         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2196         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2197         dev_info->rx_offload_capa =
2198                 DEV_RX_OFFLOAD_VLAN_STRIP |
2199                 DEV_RX_OFFLOAD_IPV4_CKSUM |
2200                 DEV_RX_OFFLOAD_UDP_CKSUM  |
2201                 DEV_RX_OFFLOAD_TCP_CKSUM;
2202         dev_info->tx_offload_capa =
2203                 DEV_TX_OFFLOAD_VLAN_INSERT |
2204                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2205                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2206                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2207                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2208                 DEV_TX_OFFLOAD_TCP_TSO;
2209
2210         switch (hw->mac.type) {
2211         case e1000_82575:
2212                 dev_info->max_rx_queues = 4;
2213                 dev_info->max_tx_queues = 4;
2214                 dev_info->max_vmdq_pools = 0;
2215                 break;
2216
2217         case e1000_82576:
2218                 dev_info->max_rx_queues = 16;
2219                 dev_info->max_tx_queues = 16;
2220                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2221                 dev_info->vmdq_queue_num = 16;
2222                 break;
2223
2224         case e1000_82580:
2225                 dev_info->max_rx_queues = 8;
2226                 dev_info->max_tx_queues = 8;
2227                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2228                 dev_info->vmdq_queue_num = 8;
2229                 break;
2230
2231         case e1000_i350:
2232                 dev_info->max_rx_queues = 8;
2233                 dev_info->max_tx_queues = 8;
2234                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2235                 dev_info->vmdq_queue_num = 8;
2236                 break;
2237
2238         case e1000_i354:
2239                 dev_info->max_rx_queues = 8;
2240                 dev_info->max_tx_queues = 8;
2241                 break;
2242
2243         case e1000_i210:
2244                 dev_info->max_rx_queues = 4;
2245                 dev_info->max_tx_queues = 4;
2246                 dev_info->max_vmdq_pools = 0;
2247                 break;
2248
2249         case e1000_i211:
2250                 dev_info->max_rx_queues = 2;
2251                 dev_info->max_tx_queues = 2;
2252                 dev_info->max_vmdq_pools = 0;
2253                 break;
2254
2255         default:
2256                 /* Should not happen */
2257                 break;
2258         }
2259         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2260         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2261         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2262
2263         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2264                 .rx_thresh = {
2265                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2266                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2267                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2268                 },
2269                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2270                 .rx_drop_en = 0,
2271         };
2272
2273         dev_info->default_txconf = (struct rte_eth_txconf) {
2274                 .tx_thresh = {
2275                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2276                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2277                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2278                 },
2279                 .txq_flags = 0,
2280         };
2281
2282         dev_info->rx_desc_lim = rx_desc_lim;
2283         dev_info->tx_desc_lim = tx_desc_lim;
2284
2285         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2286                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2287                         ETH_LINK_SPEED_1G;
2288 }
2289
2290 static const uint32_t *
2291 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2292 {
2293         static const uint32_t ptypes[] = {
2294                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2295                 RTE_PTYPE_L2_ETHER,
2296                 RTE_PTYPE_L3_IPV4,
2297                 RTE_PTYPE_L3_IPV4_EXT,
2298                 RTE_PTYPE_L3_IPV6,
2299                 RTE_PTYPE_L3_IPV6_EXT,
2300                 RTE_PTYPE_L4_TCP,
2301                 RTE_PTYPE_L4_UDP,
2302                 RTE_PTYPE_L4_SCTP,
2303                 RTE_PTYPE_TUNNEL_IP,
2304                 RTE_PTYPE_INNER_L3_IPV6,
2305                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2306                 RTE_PTYPE_INNER_L4_TCP,
2307                 RTE_PTYPE_INNER_L4_UDP,
2308                 RTE_PTYPE_UNKNOWN
2309         };
2310
2311         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2312             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2313                 return ptypes;
2314         return NULL;
2315 }
2316
2317 static void
2318 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2319 {
2320         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2321
2322         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2323         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2324         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2325         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2326         dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
2327                                 DEV_RX_OFFLOAD_IPV4_CKSUM |
2328                                 DEV_RX_OFFLOAD_UDP_CKSUM  |
2329                                 DEV_RX_OFFLOAD_TCP_CKSUM;
2330         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2331                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2332                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2333                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2334                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2335                                 DEV_TX_OFFLOAD_TCP_TSO;
2336         switch (hw->mac.type) {
2337         case e1000_vfadapt:
2338                 dev_info->max_rx_queues = 2;
2339                 dev_info->max_tx_queues = 2;
2340                 break;
2341         case e1000_vfadapt_i350:
2342                 dev_info->max_rx_queues = 1;
2343                 dev_info->max_tx_queues = 1;
2344                 break;
2345         default:
2346                 /* Should not happen */
2347                 break;
2348         }
2349
2350         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2351                 .rx_thresh = {
2352                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2353                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2354                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2355                 },
2356                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2357                 .rx_drop_en = 0,
2358         };
2359
2360         dev_info->default_txconf = (struct rte_eth_txconf) {
2361                 .tx_thresh = {
2362                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2363                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2364                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2365                 },
2366                 .txq_flags = 0,
2367         };
2368
2369         dev_info->rx_desc_lim = rx_desc_lim;
2370         dev_info->tx_desc_lim = tx_desc_lim;
2371 }
2372
2373 /* return 0 means link status changed, -1 means not changed */
2374 static int
2375 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2376 {
2377         struct e1000_hw *hw =
2378                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2379         struct rte_eth_link link, old;
2380         int link_check, count;
2381
2382         link_check = 0;
2383         hw->mac.get_link_status = 1;
2384
2385         /* possible wait-to-complete in up to 9 seconds */
2386         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2387                 /* Read the real link status */
2388                 switch (hw->phy.media_type) {
2389                 case e1000_media_type_copper:
2390                         /* Do the work to read phy */
2391                         e1000_check_for_link(hw);
2392                         link_check = !hw->mac.get_link_status;
2393                         break;
2394
2395                 case e1000_media_type_fiber:
2396                         e1000_check_for_link(hw);
2397                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2398                                       E1000_STATUS_LU);
2399                         break;
2400
2401                 case e1000_media_type_internal_serdes:
2402                         e1000_check_for_link(hw);
2403                         link_check = hw->mac.serdes_has_link;
2404                         break;
2405
2406                 /* VF device is type_unknown */
2407                 case e1000_media_type_unknown:
2408                         eth_igbvf_link_update(hw);
2409                         link_check = !hw->mac.get_link_status;
2410                         break;
2411
2412                 default:
2413                         break;
2414                 }
2415                 if (link_check || wait_to_complete == 0)
2416                         break;
2417                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2418         }
2419         memset(&link, 0, sizeof(link));
2420         rte_igb_dev_atomic_read_link_status(dev, &link);
2421         old = link;
2422
2423         /* Now we check if a transition has happened */
2424         if (link_check) {
2425                 uint16_t duplex, speed;
2426                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2427                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2428                                 ETH_LINK_FULL_DUPLEX :
2429                                 ETH_LINK_HALF_DUPLEX;
2430                 link.link_speed = speed;
2431                 link.link_status = ETH_LINK_UP;
2432                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2433                                 ETH_LINK_SPEED_FIXED);
2434         } else if (!link_check) {
2435                 link.link_speed = 0;
2436                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2437                 link.link_status = ETH_LINK_DOWN;
2438                 link.link_autoneg = ETH_LINK_FIXED;
2439         }
2440         rte_igb_dev_atomic_write_link_status(dev, &link);
2441
2442         /* not changed */
2443         if (old.link_status == link.link_status)
2444                 return -1;
2445
2446         /* changed */
2447         return 0;
2448 }
2449
2450 /*
2451  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2452  * For ASF and Pass Through versions of f/w this means
2453  * that the driver is loaded.
2454  */
2455 static void
2456 igb_hw_control_acquire(struct e1000_hw *hw)
2457 {
2458         uint32_t ctrl_ext;
2459
2460         /* Let firmware know the driver has taken over */
2461         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2462         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2463 }
2464
2465 /*
2466  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2467  * For ASF and Pass Through versions of f/w this means that the
2468  * driver is no longer loaded.
2469  */
2470 static void
2471 igb_hw_control_release(struct e1000_hw *hw)
2472 {
2473         uint32_t ctrl_ext;
2474
2475         /* Let firmware taken over control of h/w */
2476         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2477         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2478                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2479 }
2480
2481 /*
2482  * Bit of a misnomer, what this really means is
2483  * to enable OS management of the system... aka
2484  * to disable special hardware management features.
2485  */
2486 static void
2487 igb_init_manageability(struct e1000_hw *hw)
2488 {
2489         if (e1000_enable_mng_pass_thru(hw)) {
2490                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2491                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2492
2493                 /* disable hardware interception of ARP */
2494                 manc &= ~(E1000_MANC_ARP_EN);
2495
2496                 /* enable receiving management packets to the host */
2497                 manc |= E1000_MANC_EN_MNG2HOST;
2498                 manc2h |= 1 << 5;  /* Mng Port 623 */
2499                 manc2h |= 1 << 6;  /* Mng Port 664 */
2500                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2501                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2502         }
2503 }
2504
2505 static void
2506 igb_release_manageability(struct e1000_hw *hw)
2507 {
2508         if (e1000_enable_mng_pass_thru(hw)) {
2509                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2510
2511                 manc |= E1000_MANC_ARP_EN;
2512                 manc &= ~E1000_MANC_EN_MNG2HOST;
2513
2514                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2515         }
2516 }
2517
2518 static void
2519 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2520 {
2521         struct e1000_hw *hw =
2522                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2523         uint32_t rctl;
2524
2525         rctl = E1000_READ_REG(hw, E1000_RCTL);
2526         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2527         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2528 }
2529
2530 static void
2531 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2532 {
2533         struct e1000_hw *hw =
2534                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2535         uint32_t rctl;
2536
2537         rctl = E1000_READ_REG(hw, E1000_RCTL);
2538         rctl &= (~E1000_RCTL_UPE);
2539         if (dev->data->all_multicast == 1)
2540                 rctl |= E1000_RCTL_MPE;
2541         else
2542                 rctl &= (~E1000_RCTL_MPE);
2543         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2544 }
2545
2546 static void
2547 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2548 {
2549         struct e1000_hw *hw =
2550                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2551         uint32_t rctl;
2552
2553         rctl = E1000_READ_REG(hw, E1000_RCTL);
2554         rctl |= E1000_RCTL_MPE;
2555         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2556 }
2557
2558 static void
2559 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2560 {
2561         struct e1000_hw *hw =
2562                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2563         uint32_t rctl;
2564
2565         if (dev->data->promiscuous == 1)
2566                 return; /* must remain in all_multicast mode */
2567         rctl = E1000_READ_REG(hw, E1000_RCTL);
2568         rctl &= (~E1000_RCTL_MPE);
2569         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2570 }
2571
2572 static int
2573 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2574 {
2575         struct e1000_hw *hw =
2576                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2577         struct e1000_vfta * shadow_vfta =
2578                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2579         uint32_t vfta;
2580         uint32_t vid_idx;
2581         uint32_t vid_bit;
2582
2583         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2584                               E1000_VFTA_ENTRY_MASK);
2585         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2586         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2587         if (on)
2588                 vfta |= vid_bit;
2589         else
2590                 vfta &= ~vid_bit;
2591         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2592
2593         /* update local VFTA copy */
2594         shadow_vfta->vfta[vid_idx] = vfta;
2595
2596         return 0;
2597 }
2598
2599 static int
2600 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2601                       enum rte_vlan_type vlan_type,
2602                       uint16_t tpid)
2603 {
2604         struct e1000_hw *hw =
2605                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2606         uint32_t reg, qinq;
2607
2608         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2609         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2610
2611         /* only outer TPID of double VLAN can be configured*/
2612         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2613                 reg = E1000_READ_REG(hw, E1000_VET);
2614                 reg = (reg & (~E1000_VET_VET_EXT)) |
2615                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2616                 E1000_WRITE_REG(hw, E1000_VET, reg);
2617
2618                 return 0;
2619         }
2620
2621         /* all other TPID values are read-only*/
2622         PMD_DRV_LOG(ERR, "Not supported");
2623
2624         return -ENOTSUP;
2625 }
2626
2627 static void
2628 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2629 {
2630         struct e1000_hw *hw =
2631                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2632         uint32_t reg;
2633
2634         /* Filter Table Disable */
2635         reg = E1000_READ_REG(hw, E1000_RCTL);
2636         reg &= ~E1000_RCTL_CFIEN;
2637         reg &= ~E1000_RCTL_VFE;
2638         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2639 }
2640
2641 static void
2642 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2643 {
2644         struct e1000_hw *hw =
2645                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2646         struct e1000_vfta * shadow_vfta =
2647                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2648         uint32_t reg;
2649         int i;
2650
2651         /* Filter Table Enable, CFI not used for packet acceptance */
2652         reg = E1000_READ_REG(hw, E1000_RCTL);
2653         reg &= ~E1000_RCTL_CFIEN;
2654         reg |= E1000_RCTL_VFE;
2655         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2656
2657         /* restore VFTA table */
2658         for (i = 0; i < IGB_VFTA_SIZE; i++)
2659                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2660 }
2661
2662 static void
2663 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2664 {
2665         struct e1000_hw *hw =
2666                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2667         uint32_t reg;
2668
2669         /* VLAN Mode Disable */
2670         reg = E1000_READ_REG(hw, E1000_CTRL);
2671         reg &= ~E1000_CTRL_VME;
2672         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2673 }
2674
2675 static void
2676 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2677 {
2678         struct e1000_hw *hw =
2679                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2680         uint32_t reg;
2681
2682         /* VLAN Mode Enable */
2683         reg = E1000_READ_REG(hw, E1000_CTRL);
2684         reg |= E1000_CTRL_VME;
2685         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2686 }
2687
2688 static void
2689 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2690 {
2691         struct e1000_hw *hw =
2692                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2693         uint32_t reg;
2694
2695         /* CTRL_EXT: Extended VLAN */
2696         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2697         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2698         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2699
2700         /* Update maximum packet length */
2701         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
2702                 E1000_WRITE_REG(hw, E1000_RLPML,
2703                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2704                                                 VLAN_TAG_SIZE);
2705 }
2706
2707 static void
2708 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2709 {
2710         struct e1000_hw *hw =
2711                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2712         uint32_t reg;
2713
2714         /* CTRL_EXT: Extended VLAN */
2715         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2716         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2717         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2718
2719         /* Update maximum packet length */
2720         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
2721                 E1000_WRITE_REG(hw, E1000_RLPML,
2722                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2723                                                 2 * VLAN_TAG_SIZE);
2724 }
2725
2726 static int
2727 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2728 {
2729         if(mask & ETH_VLAN_STRIP_MASK){
2730                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
2731                         igb_vlan_hw_strip_enable(dev);
2732                 else
2733                         igb_vlan_hw_strip_disable(dev);
2734         }
2735
2736         if(mask & ETH_VLAN_FILTER_MASK){
2737                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
2738                         igb_vlan_hw_filter_enable(dev);
2739                 else
2740                         igb_vlan_hw_filter_disable(dev);
2741         }
2742
2743         if(mask & ETH_VLAN_EXTEND_MASK){
2744                 if (dev->data->dev_conf.rxmode.hw_vlan_extend)
2745                         igb_vlan_hw_extend_enable(dev);
2746                 else
2747                         igb_vlan_hw_extend_disable(dev);
2748         }
2749
2750         return 0;
2751 }
2752
2753
2754 /**
2755  * It enables the interrupt mask and then enable the interrupt.
2756  *
2757  * @param dev
2758  *  Pointer to struct rte_eth_dev.
2759  * @param on
2760  *  Enable or Disable
2761  *
2762  * @return
2763  *  - On success, zero.
2764  *  - On failure, a negative value.
2765  */
2766 static int
2767 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2768 {
2769         struct e1000_interrupt *intr =
2770                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2771
2772         if (on)
2773                 intr->mask |= E1000_ICR_LSC;
2774         else
2775                 intr->mask &= ~E1000_ICR_LSC;
2776
2777         return 0;
2778 }
2779
2780 /* It clears the interrupt causes and enables the interrupt.
2781  * It will be called once only during nic initialized.
2782  *
2783  * @param dev
2784  *  Pointer to struct rte_eth_dev.
2785  *
2786  * @return
2787  *  - On success, zero.
2788  *  - On failure, a negative value.
2789  */
2790 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2791 {
2792         uint32_t mask, regval;
2793         struct e1000_hw *hw =
2794                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2795         struct rte_eth_dev_info dev_info;
2796
2797         memset(&dev_info, 0, sizeof(dev_info));
2798         eth_igb_infos_get(dev, &dev_info);
2799
2800         mask = 0xFFFFFFFF >> (32 - dev_info.max_rx_queues);
2801         regval = E1000_READ_REG(hw, E1000_EIMS);
2802         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2803
2804         return 0;
2805 }
2806
2807 /*
2808  * It reads ICR and gets interrupt causes, check it and set a bit flag
2809  * to update link status.
2810  *
2811  * @param dev
2812  *  Pointer to struct rte_eth_dev.
2813  *
2814  * @return
2815  *  - On success, zero.
2816  *  - On failure, a negative value.
2817  */
2818 static int
2819 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2820 {
2821         uint32_t icr;
2822         struct e1000_hw *hw =
2823                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2824         struct e1000_interrupt *intr =
2825                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2826
2827         igb_intr_disable(hw);
2828
2829         /* read-on-clear nic registers here */
2830         icr = E1000_READ_REG(hw, E1000_ICR);
2831
2832         intr->flags = 0;
2833         if (icr & E1000_ICR_LSC) {
2834                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2835         }
2836
2837         if (icr & E1000_ICR_VMMB)
2838                 intr->flags |= E1000_FLAG_MAILBOX;
2839
2840         return 0;
2841 }
2842
2843 /*
2844  * It executes link_update after knowing an interrupt is prsent.
2845  *
2846  * @param dev
2847  *  Pointer to struct rte_eth_dev.
2848  *
2849  * @return
2850  *  - On success, zero.
2851  *  - On failure, a negative value.
2852  */
2853 static int
2854 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2855                          struct rte_intr_handle *intr_handle)
2856 {
2857         struct e1000_hw *hw =
2858                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2859         struct e1000_interrupt *intr =
2860                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2861         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2862         uint32_t tctl, rctl;
2863         struct rte_eth_link link;
2864         int ret;
2865
2866         if (intr->flags & E1000_FLAG_MAILBOX) {
2867                 igb_pf_mbx_process(dev);
2868                 intr->flags &= ~E1000_FLAG_MAILBOX;
2869         }
2870
2871         igb_intr_enable(dev);
2872         rte_intr_enable(intr_handle);
2873
2874         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2875                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2876
2877                 /* set get_link_status to check register later */
2878                 hw->mac.get_link_status = 1;
2879                 ret = eth_igb_link_update(dev, 0);
2880
2881                 /* check if link has changed */
2882                 if (ret < 0)
2883                         return 0;
2884
2885                 memset(&link, 0, sizeof(link));
2886                 rte_igb_dev_atomic_read_link_status(dev, &link);
2887                 if (link.link_status) {
2888                         PMD_INIT_LOG(INFO,
2889                                      " Port %d: Link Up - speed %u Mbps - %s",
2890                                      dev->data->port_id,
2891                                      (unsigned)link.link_speed,
2892                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2893                                      "full-duplex" : "half-duplex");
2894                 } else {
2895                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2896                                      dev->data->port_id);
2897                 }
2898
2899                 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
2900                              pci_dev->addr.domain,
2901                              pci_dev->addr.bus,
2902                              pci_dev->addr.devid,
2903                              pci_dev->addr.function);
2904                 tctl = E1000_READ_REG(hw, E1000_TCTL);
2905                 rctl = E1000_READ_REG(hw, E1000_RCTL);
2906                 if (link.link_status) {
2907                         /* enable Tx/Rx */
2908                         tctl |= E1000_TCTL_EN;
2909                         rctl |= E1000_RCTL_EN;
2910                 } else {
2911                         /* disable Tx/Rx */
2912                         tctl &= ~E1000_TCTL_EN;
2913                         rctl &= ~E1000_RCTL_EN;
2914                 }
2915                 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2916                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2917                 E1000_WRITE_FLUSH(hw);
2918                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
2919                                               NULL, NULL);
2920         }
2921
2922         return 0;
2923 }
2924
2925 /**
2926  * Interrupt handler which shall be registered at first.
2927  *
2928  * @param handle
2929  *  Pointer to interrupt handle.
2930  * @param param
2931  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2932  *
2933  * @return
2934  *  void
2935  */
2936 static void
2937 eth_igb_interrupt_handler(void *param)
2938 {
2939         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2940
2941         eth_igb_interrupt_get_status(dev);
2942         eth_igb_interrupt_action(dev, dev->intr_handle);
2943 }
2944
2945 static int
2946 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2947 {
2948         uint32_t eicr;
2949         struct e1000_hw *hw =
2950                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2951         struct e1000_interrupt *intr =
2952                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2953
2954         igbvf_intr_disable(hw);
2955
2956         /* read-on-clear nic registers here */
2957         eicr = E1000_READ_REG(hw, E1000_EICR);
2958         intr->flags = 0;
2959
2960         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2961                 intr->flags |= E1000_FLAG_MAILBOX;
2962
2963         return 0;
2964 }
2965
2966 void igbvf_mbx_process(struct rte_eth_dev *dev)
2967 {
2968         struct e1000_hw *hw =
2969                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2970         struct e1000_mbx_info *mbx = &hw->mbx;
2971         u32 in_msg = 0;
2972
2973         if (mbx->ops.read(hw, &in_msg, 1, 0))
2974                 return;
2975
2976         /* PF reset VF event */
2977         if (in_msg == E1000_PF_CONTROL_MSG)
2978                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2979                                               NULL, NULL);
2980 }
2981
2982 static int
2983 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2984 {
2985         struct e1000_interrupt *intr =
2986                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2987
2988         if (intr->flags & E1000_FLAG_MAILBOX) {
2989                 igbvf_mbx_process(dev);
2990                 intr->flags &= ~E1000_FLAG_MAILBOX;
2991         }
2992
2993         igbvf_intr_enable(dev);
2994         rte_intr_enable(intr_handle);
2995
2996         return 0;
2997 }
2998
2999 static void
3000 eth_igbvf_interrupt_handler(void *param)
3001 {
3002         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
3003
3004         eth_igbvf_interrupt_get_status(dev);
3005         eth_igbvf_interrupt_action(dev, dev->intr_handle);
3006 }
3007
3008 static int
3009 eth_igb_led_on(struct rte_eth_dev *dev)
3010 {
3011         struct e1000_hw *hw;
3012
3013         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3014         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3015 }
3016
3017 static int
3018 eth_igb_led_off(struct rte_eth_dev *dev)
3019 {
3020         struct e1000_hw *hw;
3021
3022         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3023         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3024 }
3025
3026 static int
3027 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3028 {
3029         struct e1000_hw *hw;
3030         uint32_t ctrl;
3031         int tx_pause;
3032         int rx_pause;
3033
3034         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3035         fc_conf->pause_time = hw->fc.pause_time;
3036         fc_conf->high_water = hw->fc.high_water;
3037         fc_conf->low_water = hw->fc.low_water;
3038         fc_conf->send_xon = hw->fc.send_xon;
3039         fc_conf->autoneg = hw->mac.autoneg;
3040
3041         /*
3042          * Return rx_pause and tx_pause status according to actual setting of
3043          * the TFCE and RFCE bits in the CTRL register.
3044          */
3045         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3046         if (ctrl & E1000_CTRL_TFCE)
3047                 tx_pause = 1;
3048         else
3049                 tx_pause = 0;
3050
3051         if (ctrl & E1000_CTRL_RFCE)
3052                 rx_pause = 1;
3053         else
3054                 rx_pause = 0;
3055
3056         if (rx_pause && tx_pause)
3057                 fc_conf->mode = RTE_FC_FULL;
3058         else if (rx_pause)
3059                 fc_conf->mode = RTE_FC_RX_PAUSE;
3060         else if (tx_pause)
3061                 fc_conf->mode = RTE_FC_TX_PAUSE;
3062         else
3063                 fc_conf->mode = RTE_FC_NONE;
3064
3065         return 0;
3066 }
3067
3068 static int
3069 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3070 {
3071         struct e1000_hw *hw;
3072         int err;
3073         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3074                 e1000_fc_none,
3075                 e1000_fc_rx_pause,
3076                 e1000_fc_tx_pause,
3077                 e1000_fc_full
3078         };
3079         uint32_t rx_buf_size;
3080         uint32_t max_high_water;
3081         uint32_t rctl;
3082
3083         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3084         if (fc_conf->autoneg != hw->mac.autoneg)
3085                 return -ENOTSUP;
3086         rx_buf_size = igb_get_rx_buffer_size(hw);
3087         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3088
3089         /* At least reserve one Ethernet frame for watermark */
3090         max_high_water = rx_buf_size - ETHER_MAX_LEN;
3091         if ((fc_conf->high_water > max_high_water) ||
3092             (fc_conf->high_water < fc_conf->low_water)) {
3093                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3094                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3095                 return -EINVAL;
3096         }
3097
3098         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3099         hw->fc.pause_time     = fc_conf->pause_time;
3100         hw->fc.high_water     = fc_conf->high_water;
3101         hw->fc.low_water      = fc_conf->low_water;
3102         hw->fc.send_xon       = fc_conf->send_xon;
3103
3104         err = e1000_setup_link_generic(hw);
3105         if (err == E1000_SUCCESS) {
3106
3107                 /* check if we want to forward MAC frames - driver doesn't have native
3108                  * capability to do that, so we'll write the registers ourselves */
3109
3110                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3111
3112                 /* set or clear MFLCN.PMCF bit depending on configuration */
3113                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3114                         rctl |= E1000_RCTL_PMCF;
3115                 else
3116                         rctl &= ~E1000_RCTL_PMCF;
3117
3118                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3119                 E1000_WRITE_FLUSH(hw);
3120
3121                 return 0;
3122         }
3123
3124         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3125         return -EIO;
3126 }
3127
3128 #define E1000_RAH_POOLSEL_SHIFT      (18)
3129 static int
3130 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
3131                 uint32_t index, uint32_t pool)
3132 {
3133         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3134         uint32_t rah;
3135
3136         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3137         rah = E1000_READ_REG(hw, E1000_RAH(index));
3138         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3139         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3140         return 0;
3141 }
3142
3143 static void
3144 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3145 {
3146         uint8_t addr[ETHER_ADDR_LEN];
3147         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3148
3149         memset(addr, 0, sizeof(addr));
3150
3151         e1000_rar_set(hw, addr, index);
3152 }
3153
3154 static void
3155 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3156                                 struct ether_addr *addr)
3157 {
3158         eth_igb_rar_clear(dev, 0);
3159
3160         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3161 }
3162 /*
3163  * Virtual Function operations
3164  */
3165 static void
3166 igbvf_intr_disable(struct e1000_hw *hw)
3167 {
3168         PMD_INIT_FUNC_TRACE();
3169
3170         /* Clear interrupt mask to stop from interrupts being generated */
3171         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3172
3173         E1000_WRITE_FLUSH(hw);
3174 }
3175
3176 static void
3177 igbvf_stop_adapter(struct rte_eth_dev *dev)
3178 {
3179         u32 reg_val;
3180         u16 i;
3181         struct rte_eth_dev_info dev_info;
3182         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3183
3184         memset(&dev_info, 0, sizeof(dev_info));
3185         eth_igbvf_infos_get(dev, &dev_info);
3186
3187         /* Clear interrupt mask to stop from interrupts being generated */
3188         igbvf_intr_disable(hw);
3189
3190         /* Clear any pending interrupts, flush previous writes */
3191         E1000_READ_REG(hw, E1000_EICR);
3192
3193         /* Disable the transmit unit.  Each queue must be disabled. */
3194         for (i = 0; i < dev_info.max_tx_queues; i++)
3195                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3196
3197         /* Disable the receive unit by stopping each queue */
3198         for (i = 0; i < dev_info.max_rx_queues; i++) {
3199                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3200                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3201                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3202                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3203                         ;
3204         }
3205
3206         /* flush all queues disables */
3207         E1000_WRITE_FLUSH(hw);
3208         msec_delay(2);
3209 }
3210
3211 static int eth_igbvf_link_update(struct e1000_hw *hw)
3212 {
3213         struct e1000_mbx_info *mbx = &hw->mbx;
3214         struct e1000_mac_info *mac = &hw->mac;
3215         int ret_val = E1000_SUCCESS;
3216
3217         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3218
3219         /*
3220          * We only want to run this if there has been a rst asserted.
3221          * in this case that could mean a link change, device reset,
3222          * or a virtual function reset
3223          */
3224
3225         /* If we were hit with a reset or timeout drop the link */
3226         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3227                 mac->get_link_status = TRUE;
3228
3229         if (!mac->get_link_status)
3230                 goto out;
3231
3232         /* if link status is down no point in checking to see if pf is up */
3233         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3234                 goto out;
3235
3236         /* if we passed all the tests above then the link is up and we no
3237          * longer need to check for link */
3238         mac->get_link_status = FALSE;
3239
3240 out:
3241         return ret_val;
3242 }
3243
3244
3245 static int
3246 igbvf_dev_configure(struct rte_eth_dev *dev)
3247 {
3248         struct rte_eth_conf* conf = &dev->data->dev_conf;
3249
3250         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3251                      dev->data->port_id);
3252
3253         /*
3254          * VF has no ability to enable/disable HW CRC
3255          * Keep the persistent behavior the same as Host PF
3256          */
3257 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3258         if (!conf->rxmode.hw_strip_crc) {
3259                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3260                 conf->rxmode.hw_strip_crc = 1;
3261         }
3262 #else
3263         if (conf->rxmode.hw_strip_crc) {
3264                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3265                 conf->rxmode.hw_strip_crc = 0;
3266         }
3267 #endif
3268
3269         return 0;
3270 }
3271
3272 static int
3273 igbvf_dev_start(struct rte_eth_dev *dev)
3274 {
3275         struct e1000_hw *hw =
3276                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3277         struct e1000_adapter *adapter =
3278                 E1000_DEV_PRIVATE(dev->data->dev_private);
3279         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3280         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3281         int ret;
3282         uint32_t intr_vector = 0;
3283
3284         PMD_INIT_FUNC_TRACE();
3285
3286         hw->mac.ops.reset_hw(hw);
3287         adapter->stopped = 0;
3288
3289         /* Set all vfta */
3290         igbvf_set_vfta_all(dev,1);
3291
3292         eth_igbvf_tx_init(dev);
3293
3294         /* This can fail when allocating mbufs for descriptor rings */
3295         ret = eth_igbvf_rx_init(dev);
3296         if (ret) {
3297                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3298                 igb_dev_clear_queues(dev);
3299                 return ret;
3300         }
3301
3302         /* check and configure queue intr-vector mapping */
3303         if (rte_intr_cap_multiple(intr_handle) &&
3304             dev->data->dev_conf.intr_conf.rxq) {
3305                 intr_vector = dev->data->nb_rx_queues;
3306                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3307                 if (ret)
3308                         return ret;
3309         }
3310
3311         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3312                 intr_handle->intr_vec =
3313                         rte_zmalloc("intr_vec",
3314                                     dev->data->nb_rx_queues * sizeof(int), 0);
3315                 if (!intr_handle->intr_vec) {
3316                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3317                                      " intr_vec", dev->data->nb_rx_queues);
3318                         return -ENOMEM;
3319                 }
3320         }
3321
3322         eth_igbvf_configure_msix_intr(dev);
3323
3324         /* enable uio/vfio intr/eventfd mapping */
3325         rte_intr_enable(intr_handle);
3326
3327         /* resume enabled intr since hw reset */
3328         igbvf_intr_enable(dev);
3329
3330         return 0;
3331 }
3332
3333 static void
3334 igbvf_dev_stop(struct rte_eth_dev *dev)
3335 {
3336         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3337         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3338
3339         PMD_INIT_FUNC_TRACE();
3340
3341         igbvf_stop_adapter(dev);
3342
3343         /*
3344           * Clear what we set, but we still keep shadow_vfta to
3345           * restore after device starts
3346           */
3347         igbvf_set_vfta_all(dev,0);
3348
3349         igb_dev_clear_queues(dev);
3350
3351         /* disable intr eventfd mapping */
3352         rte_intr_disable(intr_handle);
3353
3354         /* Clean datapath event and queue/vec mapping */
3355         rte_intr_efd_disable(intr_handle);
3356         if (intr_handle->intr_vec) {
3357                 rte_free(intr_handle->intr_vec);
3358                 intr_handle->intr_vec = NULL;
3359         }
3360 }
3361
3362 static void
3363 igbvf_dev_close(struct rte_eth_dev *dev)
3364 {
3365         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3366         struct e1000_adapter *adapter =
3367                 E1000_DEV_PRIVATE(dev->data->dev_private);
3368         struct ether_addr addr;
3369
3370         PMD_INIT_FUNC_TRACE();
3371
3372         e1000_reset_hw(hw);
3373
3374         igbvf_dev_stop(dev);
3375         adapter->stopped = 1;
3376         igb_dev_free_queues(dev);
3377
3378         /**
3379          * reprogram the RAR with a zero mac address,
3380          * to ensure that the VF traffic goes to the PF
3381          * after stop, close and detach of the VF.
3382          **/
3383
3384         memset(&addr, 0, sizeof(addr));
3385         igbvf_default_mac_addr_set(dev, &addr);
3386 }
3387
3388 static void
3389 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3390 {
3391         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3392
3393         /* Set both unicast and multicast promisc */
3394         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3395 }
3396
3397 static void
3398 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3399 {
3400         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3401
3402         /* If in allmulticast mode leave multicast promisc */
3403         if (dev->data->all_multicast == 1)
3404                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3405         else
3406                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3407 }
3408
3409 static void
3410 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3411 {
3412         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3413
3414         /* In promiscuous mode multicast promisc already set */
3415         if (dev->data->promiscuous == 0)
3416                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3417 }
3418
3419 static void
3420 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3421 {
3422         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3423
3424         /* In promiscuous mode leave multicast promisc enabled */
3425         if (dev->data->promiscuous == 0)
3426                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3427 }
3428
3429 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3430 {
3431         struct e1000_mbx_info *mbx = &hw->mbx;
3432         uint32_t msgbuf[2];
3433         s32 err;
3434
3435         /* After set vlan, vlan strip will also be enabled in igb driver*/
3436         msgbuf[0] = E1000_VF_SET_VLAN;
3437         msgbuf[1] = vid;
3438         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3439         if (on)
3440                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3441
3442         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3443         if (err)
3444                 goto mbx_err;
3445
3446         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3447         if (err)
3448                 goto mbx_err;
3449
3450         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3451         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3452                 err = -EINVAL;
3453
3454 mbx_err:
3455         return err;
3456 }
3457
3458 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3459 {
3460         struct e1000_hw *hw =
3461                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3462         struct e1000_vfta * shadow_vfta =
3463                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3464         int i = 0, j = 0, vfta = 0, mask = 1;
3465
3466         for (i = 0; i < IGB_VFTA_SIZE; i++){
3467                 vfta = shadow_vfta->vfta[i];
3468                 if(vfta){
3469                         mask = 1;
3470                         for (j = 0; j < 32; j++){
3471                                 if(vfta & mask)
3472                                         igbvf_set_vfta(hw,
3473                                                 (uint16_t)((i<<5)+j), on);
3474                                 mask<<=1;
3475                         }
3476                 }
3477         }
3478
3479 }
3480
3481 static int
3482 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3483 {
3484         struct e1000_hw *hw =
3485                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3486         struct e1000_vfta * shadow_vfta =
3487                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3488         uint32_t vid_idx = 0;
3489         uint32_t vid_bit = 0;
3490         int ret = 0;
3491
3492         PMD_INIT_FUNC_TRACE();
3493
3494         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3495         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3496         if(ret){
3497                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3498                 return ret;
3499         }
3500         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3501         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3502
3503         /*Save what we set and retore it after device reset*/
3504         if (on)
3505                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3506         else
3507                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3508
3509         return 0;
3510 }
3511
3512 static void
3513 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr)
3514 {
3515         struct e1000_hw *hw =
3516                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3517
3518         /* index is not used by rar_set() */
3519         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3520 }
3521
3522
3523 static int
3524 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3525                         struct rte_eth_rss_reta_entry64 *reta_conf,
3526                         uint16_t reta_size)
3527 {
3528         uint8_t i, j, mask;
3529         uint32_t reta, r;
3530         uint16_t idx, shift;
3531         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3532
3533         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3534                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3535                         "(%d) doesn't match the number hardware can supported "
3536                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3537                 return -EINVAL;
3538         }
3539
3540         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3541                 idx = i / RTE_RETA_GROUP_SIZE;
3542                 shift = i % RTE_RETA_GROUP_SIZE;
3543                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3544                                                 IGB_4_BIT_MASK);
3545                 if (!mask)
3546                         continue;
3547                 if (mask == IGB_4_BIT_MASK)
3548                         r = 0;
3549                 else
3550                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3551                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3552                         if (mask & (0x1 << j))
3553                                 reta |= reta_conf[idx].reta[shift + j] <<
3554                                                         (CHAR_BIT * j);
3555                         else
3556                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3557                 }
3558                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3559         }
3560
3561         return 0;
3562 }
3563
3564 static int
3565 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3566                        struct rte_eth_rss_reta_entry64 *reta_conf,
3567                        uint16_t reta_size)
3568 {
3569         uint8_t i, j, mask;
3570         uint32_t reta;
3571         uint16_t idx, shift;
3572         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3573
3574         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3575                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3576                         "(%d) doesn't match the number hardware can supported "
3577                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3578                 return -EINVAL;
3579         }
3580
3581         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3582                 idx = i / RTE_RETA_GROUP_SIZE;
3583                 shift = i % RTE_RETA_GROUP_SIZE;
3584                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3585                                                 IGB_4_BIT_MASK);
3586                 if (!mask)
3587                         continue;
3588                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3589                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3590                         if (mask & (0x1 << j))
3591                                 reta_conf[idx].reta[shift + j] =
3592                                         ((reta >> (CHAR_BIT * j)) &
3593                                                 IGB_8_BIT_MASK);
3594                 }
3595         }
3596
3597         return 0;
3598 }
3599
3600 int
3601 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3602                         struct rte_eth_syn_filter *filter,
3603                         bool add)
3604 {
3605         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3606         struct e1000_filter_info *filter_info =
3607                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3608         uint32_t synqf, rfctl;
3609
3610         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3611                 return -EINVAL;
3612
3613         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3614
3615         if (add) {
3616                 if (synqf & E1000_SYN_FILTER_ENABLE)
3617                         return -EINVAL;
3618
3619                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3620                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3621
3622                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3623                 if (filter->hig_pri)
3624                         rfctl |= E1000_RFCTL_SYNQFP;
3625                 else
3626                         rfctl &= ~E1000_RFCTL_SYNQFP;
3627
3628                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3629         } else {
3630                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3631                         return -ENOENT;
3632                 synqf = 0;
3633         }
3634
3635         filter_info->syn_info = synqf;
3636         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3637         E1000_WRITE_FLUSH(hw);
3638         return 0;
3639 }
3640
3641 static int
3642 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
3643                         struct rte_eth_syn_filter *filter)
3644 {
3645         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3646         uint32_t synqf, rfctl;
3647
3648         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3649         if (synqf & E1000_SYN_FILTER_ENABLE) {
3650                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3651                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
3652                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
3653                                 E1000_SYN_FILTER_QUEUE_SHIFT);
3654                 return 0;
3655         }
3656
3657         return -ENOENT;
3658 }
3659
3660 static int
3661 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
3662                         enum rte_filter_op filter_op,
3663                         void *arg)
3664 {
3665         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3666         int ret;
3667
3668         MAC_TYPE_FILTER_SUP(hw->mac.type);
3669
3670         if (filter_op == RTE_ETH_FILTER_NOP)
3671                 return 0;
3672
3673         if (arg == NULL) {
3674                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3675                             filter_op);
3676                 return -EINVAL;
3677         }
3678
3679         switch (filter_op) {
3680         case RTE_ETH_FILTER_ADD:
3681                 ret = eth_igb_syn_filter_set(dev,
3682                                 (struct rte_eth_syn_filter *)arg,
3683                                 TRUE);
3684                 break;
3685         case RTE_ETH_FILTER_DELETE:
3686                 ret = eth_igb_syn_filter_set(dev,
3687                                 (struct rte_eth_syn_filter *)arg,
3688                                 FALSE);
3689                 break;
3690         case RTE_ETH_FILTER_GET:
3691                 ret = eth_igb_syn_filter_get(dev,
3692                                 (struct rte_eth_syn_filter *)arg);
3693                 break;
3694         default:
3695                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3696                 ret = -EINVAL;
3697                 break;
3698         }
3699
3700         return ret;
3701 }
3702
3703 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3704 static inline int
3705 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3706                         struct e1000_2tuple_filter_info *filter_info)
3707 {
3708         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3709                 return -EINVAL;
3710         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3711                 return -EINVAL;  /* filter index is out of range. */
3712         if (filter->tcp_flags > TCP_FLAG_ALL)
3713                 return -EINVAL;  /* flags is invalid. */
3714
3715         switch (filter->dst_port_mask) {
3716         case UINT16_MAX:
3717                 filter_info->dst_port_mask = 0;
3718                 filter_info->dst_port = filter->dst_port;
3719                 break;
3720         case 0:
3721                 filter_info->dst_port_mask = 1;
3722                 break;
3723         default:
3724                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3725                 return -EINVAL;
3726         }
3727
3728         switch (filter->proto_mask) {
3729         case UINT8_MAX:
3730                 filter_info->proto_mask = 0;
3731                 filter_info->proto = filter->proto;
3732                 break;
3733         case 0:
3734                 filter_info->proto_mask = 1;
3735                 break;
3736         default:
3737                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3738                 return -EINVAL;
3739         }
3740
3741         filter_info->priority = (uint8_t)filter->priority;
3742         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3743                 filter_info->tcp_flags = filter->tcp_flags;
3744         else
3745                 filter_info->tcp_flags = 0;
3746
3747         return 0;
3748 }
3749
3750 static inline struct e1000_2tuple_filter *
3751 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3752                         struct e1000_2tuple_filter_info *key)
3753 {
3754         struct e1000_2tuple_filter *it;
3755
3756         TAILQ_FOREACH(it, filter_list, entries) {
3757                 if (memcmp(key, &it->filter_info,
3758                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3759                         return it;
3760                 }
3761         }
3762         return NULL;
3763 }
3764
3765 /* inject a igb 2tuple filter to HW */
3766 static inline void
3767 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3768                            struct e1000_2tuple_filter *filter)
3769 {
3770         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3771         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3772         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3773         int i;
3774
3775         i = filter->index;
3776         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3777         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3778                 imir |= E1000_IMIR_PORT_BP;
3779         else
3780                 imir &= ~E1000_IMIR_PORT_BP;
3781
3782         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3783
3784         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3785         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3786         ttqf |= (uint32_t)(filter->filter_info.proto &
3787                                                 E1000_TTQF_PROTOCOL_MASK);
3788         if (filter->filter_info.proto_mask == 0)
3789                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3790
3791         /* tcp flags bits setting. */
3792         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
3793                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
3794                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3795                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
3796                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3797                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
3798                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3799                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
3800                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3801                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
3802                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3803                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
3804                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3805         } else {
3806                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3807         }
3808         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3809         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3810         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3811 }
3812
3813 /*
3814  * igb_add_2tuple_filter - add a 2tuple filter
3815  *
3816  * @param
3817  * dev: Pointer to struct rte_eth_dev.
3818  * ntuple_filter: ponter to the filter that will be added.
3819  *
3820  * @return
3821  *    - On success, zero.
3822  *    - On failure, a negative value.
3823  */
3824 static int
3825 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3826                         struct rte_eth_ntuple_filter *ntuple_filter)
3827 {
3828         struct e1000_filter_info *filter_info =
3829                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3830         struct e1000_2tuple_filter *filter;
3831         int i, ret;
3832
3833         filter = rte_zmalloc("e1000_2tuple_filter",
3834                         sizeof(struct e1000_2tuple_filter), 0);
3835         if (filter == NULL)
3836                 return -ENOMEM;
3837
3838         ret = ntuple_filter_to_2tuple(ntuple_filter,
3839                                       &filter->filter_info);
3840         if (ret < 0) {
3841                 rte_free(filter);
3842                 return ret;
3843         }
3844         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3845                                          &filter->filter_info) != NULL) {
3846                 PMD_DRV_LOG(ERR, "filter exists.");
3847                 rte_free(filter);
3848                 return -EEXIST;
3849         }
3850         filter->queue = ntuple_filter->queue;
3851
3852         /*
3853          * look for an unused 2tuple filter index,
3854          * and insert the filter to list.
3855          */
3856         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3857                 if (!(filter_info->twotuple_mask & (1 << i))) {
3858                         filter_info->twotuple_mask |= 1 << i;
3859                         filter->index = i;
3860                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3861                                           filter,
3862                                           entries);
3863                         break;
3864                 }
3865         }
3866         if (i >= E1000_MAX_TTQF_FILTERS) {
3867                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3868                 rte_free(filter);
3869                 return -ENOSYS;
3870         }
3871
3872         igb_inject_2uple_filter(dev, filter);
3873         return 0;
3874 }
3875
3876 int
3877 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3878                         struct e1000_2tuple_filter *filter)
3879 {
3880         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3881         struct e1000_filter_info *filter_info =
3882                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3883
3884         filter_info->twotuple_mask &= ~(1 << filter->index);
3885         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3886         rte_free(filter);
3887
3888         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3889         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3890         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3891         return 0;
3892 }
3893
3894 /*
3895  * igb_remove_2tuple_filter - remove a 2tuple filter
3896  *
3897  * @param
3898  * dev: Pointer to struct rte_eth_dev.
3899  * ntuple_filter: ponter to the filter that will be removed.
3900  *
3901  * @return
3902  *    - On success, zero.
3903  *    - On failure, a negative value.
3904  */
3905 static int
3906 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3907                         struct rte_eth_ntuple_filter *ntuple_filter)
3908 {
3909         struct e1000_filter_info *filter_info =
3910                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3911         struct e1000_2tuple_filter_info filter_2tuple;
3912         struct e1000_2tuple_filter *filter;
3913         int ret;
3914
3915         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3916         ret = ntuple_filter_to_2tuple(ntuple_filter,
3917                                       &filter_2tuple);
3918         if (ret < 0)
3919                 return ret;
3920
3921         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3922                                          &filter_2tuple);
3923         if (filter == NULL) {
3924                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3925                 return -ENOENT;
3926         }
3927
3928         igb_delete_2tuple_filter(dev, filter);
3929
3930         return 0;
3931 }
3932
3933 /* inject a igb flex filter to HW */
3934 static inline void
3935 igb_inject_flex_filter(struct rte_eth_dev *dev,
3936                            struct e1000_flex_filter *filter)
3937 {
3938         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3939         uint32_t wufc, queueing;
3940         uint32_t reg_off;
3941         uint8_t i, j = 0;
3942
3943         wufc = E1000_READ_REG(hw, E1000_WUFC);
3944         if (filter->index < E1000_MAX_FHFT)
3945                 reg_off = E1000_FHFT(filter->index);
3946         else
3947                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3948
3949         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3950                         (E1000_WUFC_FLX0 << filter->index));
3951         queueing = filter->filter_info.len |
3952                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3953                 (filter->filter_info.priority <<
3954                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3955         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3956                         queueing);
3957
3958         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3959                 E1000_WRITE_REG(hw, reg_off,
3960                                 filter->filter_info.dwords[j]);
3961                 reg_off += sizeof(uint32_t);
3962                 E1000_WRITE_REG(hw, reg_off,
3963                                 filter->filter_info.dwords[++j]);
3964                 reg_off += sizeof(uint32_t);
3965                 E1000_WRITE_REG(hw, reg_off,
3966                         (uint32_t)filter->filter_info.mask[i]);
3967                 reg_off += sizeof(uint32_t) * 2;
3968                 ++j;
3969         }
3970 }
3971
3972 static inline struct e1000_flex_filter *
3973 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3974                         struct e1000_flex_filter_info *key)
3975 {
3976         struct e1000_flex_filter *it;
3977
3978         TAILQ_FOREACH(it, filter_list, entries) {
3979                 if (memcmp(key, &it->filter_info,
3980                         sizeof(struct e1000_flex_filter_info)) == 0)
3981                         return it;
3982         }
3983
3984         return NULL;
3985 }
3986
3987 /* remove a flex byte filter
3988  * @param
3989  * dev: Pointer to struct rte_eth_dev.
3990  * filter: the pointer of the filter will be removed.
3991  */
3992 void
3993 igb_remove_flex_filter(struct rte_eth_dev *dev,
3994                         struct e1000_flex_filter *filter)
3995 {
3996         struct e1000_filter_info *filter_info =
3997                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3998         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3999         uint32_t wufc, i;
4000         uint32_t reg_off;
4001
4002         wufc = E1000_READ_REG(hw, E1000_WUFC);
4003         if (filter->index < E1000_MAX_FHFT)
4004                 reg_off = E1000_FHFT(filter->index);
4005         else
4006                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
4007
4008         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
4009                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
4010
4011         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
4012                 (~(E1000_WUFC_FLX0 << filter->index)));
4013
4014         filter_info->flex_mask &= ~(1 << filter->index);
4015         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
4016         rte_free(filter);
4017 }
4018
4019 int
4020 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4021                         struct rte_eth_flex_filter *filter,
4022                         bool add)
4023 {
4024         struct e1000_filter_info *filter_info =
4025                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4026         struct e1000_flex_filter *flex_filter, *it;
4027         uint32_t mask;
4028         uint8_t shift, i;
4029
4030         flex_filter = rte_zmalloc("e1000_flex_filter",
4031                         sizeof(struct e1000_flex_filter), 0);
4032         if (flex_filter == NULL)
4033                 return -ENOMEM;
4034
4035         flex_filter->filter_info.len = filter->len;
4036         flex_filter->filter_info.priority = filter->priority;
4037         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4038         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4039                 mask = 0;
4040                 /* reverse bits in flex filter's mask*/
4041                 for (shift = 0; shift < CHAR_BIT; shift++) {
4042                         if (filter->mask[i] & (0x01 << shift))
4043                                 mask |= (0x80 >> shift);
4044                 }
4045                 flex_filter->filter_info.mask[i] = mask;
4046         }
4047
4048         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4049                                 &flex_filter->filter_info);
4050         if (it == NULL && !add) {
4051                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4052                 rte_free(flex_filter);
4053                 return -ENOENT;
4054         }
4055         if (it != NULL && add) {
4056                 PMD_DRV_LOG(ERR, "filter exists.");
4057                 rte_free(flex_filter);
4058                 return -EEXIST;
4059         }
4060
4061         if (add) {
4062                 flex_filter->queue = filter->queue;
4063                 /*
4064                  * look for an unused flex filter index
4065                  * and insert the filter into the list.
4066                  */
4067                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4068                         if (!(filter_info->flex_mask & (1 << i))) {
4069                                 filter_info->flex_mask |= 1 << i;
4070                                 flex_filter->index = i;
4071                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4072                                         flex_filter,
4073                                         entries);
4074                                 break;
4075                         }
4076                 }
4077                 if (i >= E1000_MAX_FLEX_FILTERS) {
4078                         PMD_DRV_LOG(ERR, "flex filters are full.");
4079                         rte_free(flex_filter);
4080                         return -ENOSYS;
4081                 }
4082
4083                 igb_inject_flex_filter(dev, flex_filter);
4084
4085         } else {
4086                 igb_remove_flex_filter(dev, it);
4087                 rte_free(flex_filter);
4088         }
4089
4090         return 0;
4091 }
4092
4093 static int
4094 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
4095                         struct rte_eth_flex_filter *filter)
4096 {
4097         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4098         struct e1000_filter_info *filter_info =
4099                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4100         struct e1000_flex_filter flex_filter, *it;
4101         uint32_t wufc, queueing, wufc_en = 0;
4102
4103         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
4104         flex_filter.filter_info.len = filter->len;
4105         flex_filter.filter_info.priority = filter->priority;
4106         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
4107         memcpy(flex_filter.filter_info.mask, filter->mask,
4108                         RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT);
4109
4110         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4111                                 &flex_filter.filter_info);
4112         if (it == NULL) {
4113                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4114                 return -ENOENT;
4115         }
4116
4117         wufc = E1000_READ_REG(hw, E1000_WUFC);
4118         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
4119
4120         if ((wufc & wufc_en) == wufc_en) {
4121                 uint32_t reg_off = 0;
4122                 if (it->index < E1000_MAX_FHFT)
4123                         reg_off = E1000_FHFT(it->index);
4124                 else
4125                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
4126
4127                 queueing = E1000_READ_REG(hw,
4128                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
4129                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
4130                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
4131                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
4132                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
4133                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
4134                 return 0;
4135         }
4136         return -ENOENT;
4137 }
4138
4139 static int
4140 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
4141                         enum rte_filter_op filter_op,
4142                         void *arg)
4143 {
4144         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4145         struct rte_eth_flex_filter *filter;
4146         int ret = 0;
4147
4148         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
4149
4150         if (filter_op == RTE_ETH_FILTER_NOP)
4151                 return ret;
4152
4153         if (arg == NULL) {
4154                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
4155                             filter_op);
4156                 return -EINVAL;
4157         }
4158
4159         filter = (struct rte_eth_flex_filter *)arg;
4160         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
4161             || filter->len % sizeof(uint64_t) != 0) {
4162                 PMD_DRV_LOG(ERR, "filter's length is out of range");
4163                 return -EINVAL;
4164         }
4165         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
4166                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
4167                 return -EINVAL;
4168         }
4169
4170         switch (filter_op) {
4171         case RTE_ETH_FILTER_ADD:
4172                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
4173                 break;
4174         case RTE_ETH_FILTER_DELETE:
4175                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
4176                 break;
4177         case RTE_ETH_FILTER_GET:
4178                 ret = eth_igb_get_flex_filter(dev, filter);
4179                 break;
4180         default:
4181                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
4182                 ret = -EINVAL;
4183                 break;
4184         }
4185
4186         return ret;
4187 }
4188
4189 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4190 static inline int
4191 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4192                         struct e1000_5tuple_filter_info *filter_info)
4193 {
4194         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4195                 return -EINVAL;
4196         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4197                 return -EINVAL;  /* filter index is out of range. */
4198         if (filter->tcp_flags > TCP_FLAG_ALL)
4199                 return -EINVAL;  /* flags is invalid. */
4200
4201         switch (filter->dst_ip_mask) {
4202         case UINT32_MAX:
4203                 filter_info->dst_ip_mask = 0;
4204                 filter_info->dst_ip = filter->dst_ip;
4205                 break;
4206         case 0:
4207                 filter_info->dst_ip_mask = 1;
4208                 break;
4209         default:
4210                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4211                 return -EINVAL;
4212         }
4213
4214         switch (filter->src_ip_mask) {
4215         case UINT32_MAX:
4216                 filter_info->src_ip_mask = 0;
4217                 filter_info->src_ip = filter->src_ip;
4218                 break;
4219         case 0:
4220                 filter_info->src_ip_mask = 1;
4221                 break;
4222         default:
4223                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4224                 return -EINVAL;
4225         }
4226
4227         switch (filter->dst_port_mask) {
4228         case UINT16_MAX:
4229                 filter_info->dst_port_mask = 0;
4230                 filter_info->dst_port = filter->dst_port;
4231                 break;
4232         case 0:
4233                 filter_info->dst_port_mask = 1;
4234                 break;
4235         default:
4236                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4237                 return -EINVAL;
4238         }
4239
4240         switch (filter->src_port_mask) {
4241         case UINT16_MAX:
4242                 filter_info->src_port_mask = 0;
4243                 filter_info->src_port = filter->src_port;
4244                 break;
4245         case 0:
4246                 filter_info->src_port_mask = 1;
4247                 break;
4248         default:
4249                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4250                 return -EINVAL;
4251         }
4252
4253         switch (filter->proto_mask) {
4254         case UINT8_MAX:
4255                 filter_info->proto_mask = 0;
4256                 filter_info->proto = filter->proto;
4257                 break;
4258         case 0:
4259                 filter_info->proto_mask = 1;
4260                 break;
4261         default:
4262                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4263                 return -EINVAL;
4264         }
4265
4266         filter_info->priority = (uint8_t)filter->priority;
4267         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4268                 filter_info->tcp_flags = filter->tcp_flags;
4269         else
4270                 filter_info->tcp_flags = 0;
4271
4272         return 0;
4273 }
4274
4275 static inline struct e1000_5tuple_filter *
4276 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4277                         struct e1000_5tuple_filter_info *key)
4278 {
4279         struct e1000_5tuple_filter *it;
4280
4281         TAILQ_FOREACH(it, filter_list, entries) {
4282                 if (memcmp(key, &it->filter_info,
4283                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4284                         return it;
4285                 }
4286         }
4287         return NULL;
4288 }
4289
4290 /* inject a igb 5-tuple filter to HW */
4291 static inline void
4292 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4293                            struct e1000_5tuple_filter *filter)
4294 {
4295         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4296         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4297         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4298         uint8_t i;
4299
4300         i = filter->index;
4301         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4302         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4303                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4304         if (filter->filter_info.dst_ip_mask == 0)
4305                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4306         if (filter->filter_info.src_port_mask == 0)
4307                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4308         if (filter->filter_info.proto_mask == 0)
4309                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4310         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4311                 E1000_FTQF_QUEUE_MASK;
4312         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4313         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4314         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4315         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4316
4317         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4318         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4319
4320         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4321         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4322                 imir |= E1000_IMIR_PORT_BP;
4323         else
4324                 imir &= ~E1000_IMIR_PORT_BP;
4325         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4326
4327         /* tcp flags bits setting. */
4328         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
4329                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
4330                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4331                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
4332                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4333                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
4334                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4335                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
4336                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4337                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
4338                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4339                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
4340                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4341         } else {
4342                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4343         }
4344         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4345         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4346 }
4347
4348 /*
4349  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4350  *
4351  * @param
4352  * dev: Pointer to struct rte_eth_dev.
4353  * ntuple_filter: ponter to the filter that will be added.
4354  *
4355  * @return
4356  *    - On success, zero.
4357  *    - On failure, a negative value.
4358  */
4359 static int
4360 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4361                         struct rte_eth_ntuple_filter *ntuple_filter)
4362 {
4363         struct e1000_filter_info *filter_info =
4364                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4365         struct e1000_5tuple_filter *filter;
4366         uint8_t i;
4367         int ret;
4368
4369         filter = rte_zmalloc("e1000_5tuple_filter",
4370                         sizeof(struct e1000_5tuple_filter), 0);
4371         if (filter == NULL)
4372                 return -ENOMEM;
4373
4374         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4375                                             &filter->filter_info);
4376         if (ret < 0) {
4377                 rte_free(filter);
4378                 return ret;
4379         }
4380
4381         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4382                                          &filter->filter_info) != NULL) {
4383                 PMD_DRV_LOG(ERR, "filter exists.");
4384                 rte_free(filter);
4385                 return -EEXIST;
4386         }
4387         filter->queue = ntuple_filter->queue;
4388
4389         /*
4390          * look for an unused 5tuple filter index,
4391          * and insert the filter to list.
4392          */
4393         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4394                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4395                         filter_info->fivetuple_mask |= 1 << i;
4396                         filter->index = i;
4397                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4398                                           filter,
4399                                           entries);
4400                         break;
4401                 }
4402         }
4403         if (i >= E1000_MAX_FTQF_FILTERS) {
4404                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4405                 rte_free(filter);
4406                 return -ENOSYS;
4407         }
4408
4409         igb_inject_5tuple_filter_82576(dev, filter);
4410         return 0;
4411 }
4412
4413 int
4414 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4415                                 struct e1000_5tuple_filter *filter)
4416 {
4417         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4418         struct e1000_filter_info *filter_info =
4419                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4420
4421         filter_info->fivetuple_mask &= ~(1 << filter->index);
4422         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4423         rte_free(filter);
4424
4425         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4426                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4427         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4428         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4429         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4430         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4431         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4432         return 0;
4433 }
4434
4435 /*
4436  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4437  *
4438  * @param
4439  * dev: Pointer to struct rte_eth_dev.
4440  * ntuple_filter: ponter to the filter that will be removed.
4441  *
4442  * @return
4443  *    - On success, zero.
4444  *    - On failure, a negative value.
4445  */
4446 static int
4447 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4448                                 struct rte_eth_ntuple_filter *ntuple_filter)
4449 {
4450         struct e1000_filter_info *filter_info =
4451                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4452         struct e1000_5tuple_filter_info filter_5tuple;
4453         struct e1000_5tuple_filter *filter;
4454         int ret;
4455
4456         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4457         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4458                                             &filter_5tuple);
4459         if (ret < 0)
4460                 return ret;
4461
4462         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4463                                          &filter_5tuple);
4464         if (filter == NULL) {
4465                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4466                 return -ENOENT;
4467         }
4468
4469         igb_delete_5tuple_filter_82576(dev, filter);
4470
4471         return 0;
4472 }
4473
4474 static int
4475 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4476 {
4477         uint32_t rctl;
4478         struct e1000_hw *hw;
4479         struct rte_eth_dev_info dev_info;
4480         uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
4481                                      VLAN_TAG_SIZE);
4482
4483         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4484
4485 #ifdef RTE_LIBRTE_82571_SUPPORT
4486         /* XXX: not bigger than max_rx_pktlen */
4487         if (hw->mac.type == e1000_82571)
4488                 return -ENOTSUP;
4489 #endif
4490         eth_igb_infos_get(dev, &dev_info);
4491
4492         /* check that mtu is within the allowed range */
4493         if ((mtu < ETHER_MIN_MTU) ||
4494             (frame_size > dev_info.max_rx_pktlen))
4495                 return -EINVAL;
4496
4497         /* refuse mtu that requires the support of scattered packets when this
4498          * feature has not been enabled before. */
4499         if (!dev->data->scattered_rx &&
4500             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
4501                 return -EINVAL;
4502
4503         rctl = E1000_READ_REG(hw, E1000_RCTL);
4504
4505         /* switch to jumbo mode if needed */
4506         if (frame_size > ETHER_MAX_LEN) {
4507                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
4508                 rctl |= E1000_RCTL_LPE;
4509         } else {
4510                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
4511                 rctl &= ~E1000_RCTL_LPE;
4512         }
4513         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4514
4515         /* update max frame size */
4516         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4517
4518         E1000_WRITE_REG(hw, E1000_RLPML,
4519                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4520
4521         return 0;
4522 }
4523
4524 /*
4525  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4526  *
4527  * @param
4528  * dev: Pointer to struct rte_eth_dev.
4529  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4530  * add: if true, add filter, if false, remove filter
4531  *
4532  * @return
4533  *    - On success, zero.
4534  *    - On failure, a negative value.
4535  */
4536 int
4537 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4538                         struct rte_eth_ntuple_filter *ntuple_filter,
4539                         bool add)
4540 {
4541         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4542         int ret;
4543
4544         switch (ntuple_filter->flags) {
4545         case RTE_5TUPLE_FLAGS:
4546         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4547                 if (hw->mac.type != e1000_82576)
4548                         return -ENOTSUP;
4549                 if (add)
4550                         ret = igb_add_5tuple_filter_82576(dev,
4551                                                           ntuple_filter);
4552                 else
4553                         ret = igb_remove_5tuple_filter_82576(dev,
4554                                                              ntuple_filter);
4555                 break;
4556         case RTE_2TUPLE_FLAGS:
4557         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4558                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4559                         hw->mac.type != e1000_i210 &&
4560                         hw->mac.type != e1000_i211)
4561                         return -ENOTSUP;
4562                 if (add)
4563                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4564                 else
4565                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4566                 break;
4567         default:
4568                 ret = -EINVAL;
4569                 break;
4570         }
4571
4572         return ret;
4573 }
4574
4575 /*
4576  * igb_get_ntuple_filter - get a ntuple filter
4577  *
4578  * @param
4579  * dev: Pointer to struct rte_eth_dev.
4580  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4581  *
4582  * @return
4583  *    - On success, zero.
4584  *    - On failure, a negative value.
4585  */
4586 static int
4587 igb_get_ntuple_filter(struct rte_eth_dev *dev,
4588                         struct rte_eth_ntuple_filter *ntuple_filter)
4589 {
4590         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4591         struct e1000_filter_info *filter_info =
4592                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4593         struct e1000_5tuple_filter_info filter_5tuple;
4594         struct e1000_2tuple_filter_info filter_2tuple;
4595         struct e1000_5tuple_filter *p_5tuple_filter;
4596         struct e1000_2tuple_filter *p_2tuple_filter;
4597         int ret;
4598
4599         switch (ntuple_filter->flags) {
4600         case RTE_5TUPLE_FLAGS:
4601         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4602                 if (hw->mac.type != e1000_82576)
4603                         return -ENOTSUP;
4604                 memset(&filter_5tuple,
4605                         0,
4606                         sizeof(struct e1000_5tuple_filter_info));
4607                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4608                                                     &filter_5tuple);
4609                 if (ret < 0)
4610                         return ret;
4611                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
4612                                         &filter_info->fivetuple_list,
4613                                         &filter_5tuple);
4614                 if (p_5tuple_filter == NULL) {
4615                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4616                         return -ENOENT;
4617                 }
4618                 ntuple_filter->queue = p_5tuple_filter->queue;
4619                 break;
4620         case RTE_2TUPLE_FLAGS:
4621         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4622                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
4623                         return -ENOTSUP;
4624                 memset(&filter_2tuple,
4625                         0,
4626                         sizeof(struct e1000_2tuple_filter_info));
4627                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
4628                 if (ret < 0)
4629                         return ret;
4630                 p_2tuple_filter = igb_2tuple_filter_lookup(
4631                                         &filter_info->twotuple_list,
4632                                         &filter_2tuple);
4633                 if (p_2tuple_filter == NULL) {
4634                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4635                         return -ENOENT;
4636                 }
4637                 ntuple_filter->queue = p_2tuple_filter->queue;
4638                 break;
4639         default:
4640                 ret = -EINVAL;
4641                 break;
4642         }
4643
4644         return 0;
4645 }
4646
4647 /*
4648  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
4649  * @dev: pointer to rte_eth_dev structure
4650  * @filter_op:operation will be taken.
4651  * @arg: a pointer to specific structure corresponding to the filter_op
4652  */
4653 static int
4654 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
4655                                 enum rte_filter_op filter_op,
4656                                 void *arg)
4657 {
4658         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4659         int ret;
4660
4661         MAC_TYPE_FILTER_SUP(hw->mac.type);
4662
4663         if (filter_op == RTE_ETH_FILTER_NOP)
4664                 return 0;
4665
4666         if (arg == NULL) {
4667                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4668                             filter_op);
4669                 return -EINVAL;
4670         }
4671
4672         switch (filter_op) {
4673         case RTE_ETH_FILTER_ADD:
4674                 ret = igb_add_del_ntuple_filter(dev,
4675                         (struct rte_eth_ntuple_filter *)arg,
4676                         TRUE);
4677                 break;
4678         case RTE_ETH_FILTER_DELETE:
4679                 ret = igb_add_del_ntuple_filter(dev,
4680                         (struct rte_eth_ntuple_filter *)arg,
4681                         FALSE);
4682                 break;
4683         case RTE_ETH_FILTER_GET:
4684                 ret = igb_get_ntuple_filter(dev,
4685                         (struct rte_eth_ntuple_filter *)arg);
4686                 break;
4687         default:
4688                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4689                 ret = -EINVAL;
4690                 break;
4691         }
4692         return ret;
4693 }
4694
4695 static inline int
4696 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4697                         uint16_t ethertype)
4698 {
4699         int i;
4700
4701         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4702                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4703                     (filter_info->ethertype_mask & (1 << i)))
4704                         return i;
4705         }
4706         return -1;
4707 }
4708
4709 static inline int
4710 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4711                         uint16_t ethertype, uint32_t etqf)
4712 {
4713         int i;
4714
4715         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4716                 if (!(filter_info->ethertype_mask & (1 << i))) {
4717                         filter_info->ethertype_mask |= 1 << i;
4718                         filter_info->ethertype_filters[i].ethertype = ethertype;
4719                         filter_info->ethertype_filters[i].etqf = etqf;
4720                         return i;
4721                 }
4722         }
4723         return -1;
4724 }
4725
4726 int
4727 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4728                         uint8_t idx)
4729 {
4730         if (idx >= E1000_MAX_ETQF_FILTERS)
4731                 return -1;
4732         filter_info->ethertype_mask &= ~(1 << idx);
4733         filter_info->ethertype_filters[idx].ethertype = 0;
4734         filter_info->ethertype_filters[idx].etqf = 0;
4735         return idx;
4736 }
4737
4738
4739 int
4740 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4741                         struct rte_eth_ethertype_filter *filter,
4742                         bool add)
4743 {
4744         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4745         struct e1000_filter_info *filter_info =
4746                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4747         uint32_t etqf = 0;
4748         int ret;
4749
4750         if (filter->ether_type == ETHER_TYPE_IPv4 ||
4751                 filter->ether_type == ETHER_TYPE_IPv6) {
4752                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4753                         " ethertype filter.", filter->ether_type);
4754                 return -EINVAL;
4755         }
4756
4757         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4758                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4759                 return -EINVAL;
4760         }
4761         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4762                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4763                 return -EINVAL;
4764         }
4765
4766         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4767         if (ret >= 0 && add) {
4768                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4769                             filter->ether_type);
4770                 return -EEXIST;
4771         }
4772         if (ret < 0 && !add) {
4773                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4774                             filter->ether_type);
4775                 return -ENOENT;
4776         }
4777
4778         if (add) {
4779                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4780                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4781                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4782                 ret = igb_ethertype_filter_insert(filter_info,
4783                                 filter->ether_type, etqf);
4784                 if (ret < 0) {
4785                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4786                         return -ENOSYS;
4787                 }
4788         } else {
4789                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4790                 if (ret < 0)
4791                         return -ENOSYS;
4792         }
4793         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4794         E1000_WRITE_FLUSH(hw);
4795
4796         return 0;
4797 }
4798
4799 static int
4800 igb_get_ethertype_filter(struct rte_eth_dev *dev,
4801                         struct rte_eth_ethertype_filter *filter)
4802 {
4803         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4804         struct e1000_filter_info *filter_info =
4805                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4806         uint32_t etqf;
4807         int ret;
4808
4809         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4810         if (ret < 0) {
4811                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4812                             filter->ether_type);
4813                 return -ENOENT;
4814         }
4815
4816         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
4817         if (etqf & E1000_ETQF_FILTER_ENABLE) {
4818                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
4819                 filter->flags = 0;
4820                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
4821                                 E1000_ETQF_QUEUE_SHIFT;
4822                 return 0;
4823         }
4824
4825         return -ENOENT;
4826 }
4827
4828 /*
4829  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
4830  * @dev: pointer to rte_eth_dev structure
4831  * @filter_op:operation will be taken.
4832  * @arg: a pointer to specific structure corresponding to the filter_op
4833  */
4834 static int
4835 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
4836                                 enum rte_filter_op filter_op,
4837                                 void *arg)
4838 {
4839         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4840         int ret;
4841
4842         MAC_TYPE_FILTER_SUP(hw->mac.type);
4843
4844         if (filter_op == RTE_ETH_FILTER_NOP)
4845                 return 0;
4846
4847         if (arg == NULL) {
4848                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4849                             filter_op);
4850                 return -EINVAL;
4851         }
4852
4853         switch (filter_op) {
4854         case RTE_ETH_FILTER_ADD:
4855                 ret = igb_add_del_ethertype_filter(dev,
4856                         (struct rte_eth_ethertype_filter *)arg,
4857                         TRUE);
4858                 break;
4859         case RTE_ETH_FILTER_DELETE:
4860                 ret = igb_add_del_ethertype_filter(dev,
4861                         (struct rte_eth_ethertype_filter *)arg,
4862                         FALSE);
4863                 break;
4864         case RTE_ETH_FILTER_GET:
4865                 ret = igb_get_ethertype_filter(dev,
4866                         (struct rte_eth_ethertype_filter *)arg);
4867                 break;
4868         default:
4869                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4870                 ret = -EINVAL;
4871                 break;
4872         }
4873         return ret;
4874 }
4875
4876 static int
4877 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
4878                      enum rte_filter_type filter_type,
4879                      enum rte_filter_op filter_op,
4880                      void *arg)
4881 {
4882         int ret = 0;
4883
4884         switch (filter_type) {
4885         case RTE_ETH_FILTER_NTUPLE:
4886                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
4887                 break;
4888         case RTE_ETH_FILTER_ETHERTYPE:
4889                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
4890                 break;
4891         case RTE_ETH_FILTER_SYN:
4892                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
4893                 break;
4894         case RTE_ETH_FILTER_FLEXIBLE:
4895                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
4896                 break;
4897         case RTE_ETH_FILTER_GENERIC:
4898                 if (filter_op != RTE_ETH_FILTER_GET)
4899                         return -EINVAL;
4900                 *(const void **)arg = &igb_flow_ops;
4901                 break;
4902         default:
4903                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4904                                                         filter_type);
4905                 break;
4906         }
4907
4908         return ret;
4909 }
4910
4911 static int
4912 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4913                          struct ether_addr *mc_addr_set,
4914                          uint32_t nb_mc_addr)
4915 {
4916         struct e1000_hw *hw;
4917
4918         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4919         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4920         return 0;
4921 }
4922
4923 static uint64_t
4924 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4925 {
4926         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4927         uint64_t systime_cycles;
4928
4929         switch (hw->mac.type) {
4930         case e1000_i210:
4931         case e1000_i211:
4932                 /*
4933                  * Need to read System Time Residue Register to be able
4934                  * to read the other two registers.
4935                  */
4936                 E1000_READ_REG(hw, E1000_SYSTIMR);
4937                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4938                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4939                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4940                                 * NSEC_PER_SEC;
4941                 break;
4942         case e1000_82580:
4943         case e1000_i350:
4944         case e1000_i354:
4945                 /*
4946                  * Need to read System Time Residue Register to be able
4947                  * to read the other two registers.
4948                  */
4949                 E1000_READ_REG(hw, E1000_SYSTIMR);
4950                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4951                 /* Only the 8 LSB are valid. */
4952                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4953                                 & 0xff) << 32;
4954                 break;
4955         default:
4956                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4957                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4958                                 << 32;
4959                 break;
4960         }
4961
4962         return systime_cycles;
4963 }
4964
4965 static uint64_t
4966 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4967 {
4968         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4969         uint64_t rx_tstamp_cycles;
4970
4971         switch (hw->mac.type) {
4972         case e1000_i210:
4973         case e1000_i211:
4974                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4975                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4976                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4977                                 * NSEC_PER_SEC;
4978                 break;
4979         case e1000_82580:
4980         case e1000_i350:
4981         case e1000_i354:
4982                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4983                 /* Only the 8 LSB are valid. */
4984                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4985                                 & 0xff) << 32;
4986                 break;
4987         default:
4988                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4989                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4990                                 << 32;
4991                 break;
4992         }
4993
4994         return rx_tstamp_cycles;
4995 }
4996
4997 static uint64_t
4998 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4999 {
5000         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5001         uint64_t tx_tstamp_cycles;
5002
5003         switch (hw->mac.type) {
5004         case e1000_i210:
5005         case e1000_i211:
5006                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
5007                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5008                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5009                                 * NSEC_PER_SEC;
5010                 break;
5011         case e1000_82580:
5012         case e1000_i350:
5013         case e1000_i354:
5014                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5015                 /* Only the 8 LSB are valid. */
5016                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
5017                                 & 0xff) << 32;
5018                 break;
5019         default:
5020                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5021                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5022                                 << 32;
5023                 break;
5024         }
5025
5026         return tx_tstamp_cycles;
5027 }
5028
5029 static void
5030 igb_start_timecounters(struct rte_eth_dev *dev)
5031 {
5032         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5033         struct e1000_adapter *adapter =
5034                 (struct e1000_adapter *)dev->data->dev_private;
5035         uint32_t incval = 1;
5036         uint32_t shift = 0;
5037         uint64_t mask = E1000_CYCLECOUNTER_MASK;
5038
5039         switch (hw->mac.type) {
5040         case e1000_82580:
5041         case e1000_i350:
5042         case e1000_i354:
5043                 /* 32 LSB bits + 8 MSB bits = 40 bits */
5044                 mask = (1ULL << 40) - 1;
5045                 /* fall-through */
5046         case e1000_i210:
5047         case e1000_i211:
5048                 /*
5049                  * Start incrementing the register
5050                  * used to timestamp PTP packets.
5051                  */
5052                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
5053                 break;
5054         case e1000_82576:
5055                 incval = E1000_INCVALUE_82576;
5056                 shift = IGB_82576_TSYNC_SHIFT;
5057                 E1000_WRITE_REG(hw, E1000_TIMINCA,
5058                                 E1000_INCPERIOD_82576 | incval);
5059                 break;
5060         default:
5061                 /* Not supported */
5062                 return;
5063         }
5064
5065         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
5066         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5067         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5068
5069         adapter->systime_tc.cc_mask = mask;
5070         adapter->systime_tc.cc_shift = shift;
5071         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
5072
5073         adapter->rx_tstamp_tc.cc_mask = mask;
5074         adapter->rx_tstamp_tc.cc_shift = shift;
5075         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5076
5077         adapter->tx_tstamp_tc.cc_mask = mask;
5078         adapter->tx_tstamp_tc.cc_shift = shift;
5079         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5080 }
5081
5082 static int
5083 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
5084 {
5085         struct e1000_adapter *adapter =
5086                         (struct e1000_adapter *)dev->data->dev_private;
5087
5088         adapter->systime_tc.nsec += delta;
5089         adapter->rx_tstamp_tc.nsec += delta;
5090         adapter->tx_tstamp_tc.nsec += delta;
5091
5092         return 0;
5093 }
5094
5095 static int
5096 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
5097 {
5098         uint64_t ns;
5099         struct e1000_adapter *adapter =
5100                         (struct e1000_adapter *)dev->data->dev_private;
5101
5102         ns = rte_timespec_to_ns(ts);
5103
5104         /* Set the timecounters to a new value. */
5105         adapter->systime_tc.nsec = ns;
5106         adapter->rx_tstamp_tc.nsec = ns;
5107         adapter->tx_tstamp_tc.nsec = ns;
5108
5109         return 0;
5110 }
5111
5112 static int
5113 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
5114 {
5115         uint64_t ns, systime_cycles;
5116         struct e1000_adapter *adapter =
5117                         (struct e1000_adapter *)dev->data->dev_private;
5118
5119         systime_cycles = igb_read_systime_cyclecounter(dev);
5120         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
5121         *ts = rte_ns_to_timespec(ns);
5122
5123         return 0;
5124 }
5125
5126 static int
5127 igb_timesync_enable(struct rte_eth_dev *dev)
5128 {
5129         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5130         uint32_t tsync_ctl;
5131         uint32_t tsauxc;
5132
5133         /* Stop the timesync system time. */
5134         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
5135         /* Reset the timesync system time value. */
5136         switch (hw->mac.type) {
5137         case e1000_82580:
5138         case e1000_i350:
5139         case e1000_i354:
5140         case e1000_i210:
5141         case e1000_i211:
5142                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
5143                 /* fall-through */
5144         case e1000_82576:
5145                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
5146                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
5147                 break;
5148         default:
5149                 /* Not supported. */
5150                 return -ENOTSUP;
5151         }
5152
5153         /* Enable system time for it isn't on by default. */
5154         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
5155         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
5156         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
5157
5158         igb_start_timecounters(dev);
5159
5160         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5161         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
5162                         (ETHER_TYPE_1588 |
5163                          E1000_ETQF_FILTER_ENABLE |
5164                          E1000_ETQF_1588));
5165
5166         /* Enable timestamping of received PTP packets. */
5167         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5168         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
5169         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5170
5171         /* Enable Timestamping of transmitted PTP packets. */
5172         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5173         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
5174         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5175
5176         return 0;
5177 }
5178
5179 static int
5180 igb_timesync_disable(struct rte_eth_dev *dev)
5181 {
5182         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5183         uint32_t tsync_ctl;
5184
5185         /* Disable timestamping of transmitted PTP packets. */
5186         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5187         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
5188         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5189
5190         /* Disable timestamping of received PTP packets. */
5191         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5192         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
5193         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5194
5195         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5196         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
5197
5198         /* Stop incrementating the System Time registers. */
5199         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
5200
5201         return 0;
5202 }
5203
5204 static int
5205 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
5206                                struct timespec *timestamp,
5207                                uint32_t flags __rte_unused)
5208 {
5209         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5210         struct e1000_adapter *adapter =
5211                         (struct e1000_adapter *)dev->data->dev_private;
5212         uint32_t tsync_rxctl;
5213         uint64_t rx_tstamp_cycles;
5214         uint64_t ns;
5215
5216         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5217         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
5218                 return -EINVAL;
5219
5220         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
5221         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
5222         *timestamp = rte_ns_to_timespec(ns);
5223
5224         return  0;
5225 }
5226
5227 static int
5228 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
5229                                struct timespec *timestamp)
5230 {
5231         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5232         struct e1000_adapter *adapter =
5233                         (struct e1000_adapter *)dev->data->dev_private;
5234         uint32_t tsync_txctl;
5235         uint64_t tx_tstamp_cycles;
5236         uint64_t ns;
5237
5238         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5239         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
5240                 return -EINVAL;
5241
5242         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
5243         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
5244         *timestamp = rte_ns_to_timespec(ns);
5245
5246         return  0;
5247 }
5248
5249 static int
5250 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5251 {
5252         int count = 0;
5253         int g_ind = 0;
5254         const struct reg_info *reg_group;
5255
5256         while ((reg_group = igb_regs[g_ind++]))
5257                 count += igb_reg_group_count(reg_group);
5258
5259         return count;
5260 }
5261
5262 static int
5263 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5264 {
5265         int count = 0;
5266         int g_ind = 0;
5267         const struct reg_info *reg_group;
5268
5269         while ((reg_group = igbvf_regs[g_ind++]))
5270                 count += igb_reg_group_count(reg_group);
5271
5272         return count;
5273 }
5274
5275 static int
5276 eth_igb_get_regs(struct rte_eth_dev *dev,
5277         struct rte_dev_reg_info *regs)
5278 {
5279         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5280         uint32_t *data = regs->data;
5281         int g_ind = 0;
5282         int count = 0;
5283         const struct reg_info *reg_group;
5284
5285         if (data == NULL) {
5286                 regs->length = eth_igb_get_reg_length(dev);
5287                 regs->width = sizeof(uint32_t);
5288                 return 0;
5289         }
5290
5291         /* Support only full register dump */
5292         if ((regs->length == 0) ||
5293             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
5294                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5295                         hw->device_id;
5296                 while ((reg_group = igb_regs[g_ind++]))
5297                         count += igb_read_regs_group(dev, &data[count],
5298                                                         reg_group);
5299                 return 0;
5300         }
5301
5302         return -ENOTSUP;
5303 }
5304
5305 static int
5306 igbvf_get_regs(struct rte_eth_dev *dev,
5307         struct rte_dev_reg_info *regs)
5308 {
5309         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5310         uint32_t *data = regs->data;
5311         int g_ind = 0;
5312         int count = 0;
5313         const struct reg_info *reg_group;
5314
5315         if (data == NULL) {
5316                 regs->length = igbvf_get_reg_length(dev);
5317                 regs->width = sizeof(uint32_t);
5318                 return 0;
5319         }
5320
5321         /* Support only full register dump */
5322         if ((regs->length == 0) ||
5323             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
5324                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5325                         hw->device_id;
5326                 while ((reg_group = igbvf_regs[g_ind++]))
5327                         count += igb_read_regs_group(dev, &data[count],
5328                                                         reg_group);
5329                 return 0;
5330         }
5331
5332         return -ENOTSUP;
5333 }
5334
5335 static int
5336 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5337 {
5338         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5339
5340         /* Return unit is byte count */
5341         return hw->nvm.word_size * 2;
5342 }
5343
5344 static int
5345 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5346         struct rte_dev_eeprom_info *in_eeprom)
5347 {
5348         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5349         struct e1000_nvm_info *nvm = &hw->nvm;
5350         uint16_t *data = in_eeprom->data;
5351         int first, length;
5352
5353         first = in_eeprom->offset >> 1;
5354         length = in_eeprom->length >> 1;
5355         if ((first >= hw->nvm.word_size) ||
5356             ((first + length) >= hw->nvm.word_size))
5357                 return -EINVAL;
5358
5359         in_eeprom->magic = hw->vendor_id |
5360                 ((uint32_t)hw->device_id << 16);
5361
5362         if ((nvm->ops.read) == NULL)
5363                 return -ENOTSUP;
5364
5365         return nvm->ops.read(hw, first, length, data);
5366 }
5367
5368 static int
5369 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5370         struct rte_dev_eeprom_info *in_eeprom)
5371 {
5372         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5373         struct e1000_nvm_info *nvm = &hw->nvm;
5374         uint16_t *data = in_eeprom->data;
5375         int first, length;
5376
5377         first = in_eeprom->offset >> 1;
5378         length = in_eeprom->length >> 1;
5379         if ((first >= hw->nvm.word_size) ||
5380             ((first + length) >= hw->nvm.word_size))
5381                 return -EINVAL;
5382
5383         in_eeprom->magic = (uint32_t)hw->vendor_id |
5384                 ((uint32_t)hw->device_id << 16);
5385
5386         if ((nvm->ops.write) == NULL)
5387                 return -ENOTSUP;
5388         return nvm->ops.write(hw,  first, length, data);
5389 }
5390
5391 static int
5392 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5393 {
5394         struct e1000_hw *hw =
5395                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5396         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5397         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5398         uint32_t vec = E1000_MISC_VEC_ID;
5399
5400         if (rte_intr_allow_others(intr_handle))
5401                 vec = E1000_RX_VEC_START;
5402
5403         uint32_t mask = 1 << (queue_id + vec);
5404
5405         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5406         E1000_WRITE_FLUSH(hw);
5407
5408         return 0;
5409 }
5410
5411 static int
5412 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5413 {
5414         struct e1000_hw *hw =
5415                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5416         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5417         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5418         uint32_t vec = E1000_MISC_VEC_ID;
5419
5420         if (rte_intr_allow_others(intr_handle))
5421                 vec = E1000_RX_VEC_START;
5422
5423         uint32_t mask = 1 << (queue_id + vec);
5424         uint32_t regval;
5425
5426         regval = E1000_READ_REG(hw, E1000_EIMS);
5427         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5428         E1000_WRITE_FLUSH(hw);
5429
5430         rte_intr_enable(intr_handle);
5431
5432         return 0;
5433 }
5434
5435 static void
5436 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5437                    uint8_t index, uint8_t offset)
5438 {
5439         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5440
5441         /* clear bits */
5442         val &= ~((uint32_t)0xFF << offset);
5443
5444         /* write vector and valid bit */
5445         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5446
5447         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5448 }
5449
5450 static void
5451 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5452                            uint8_t queue, uint8_t msix_vector)
5453 {
5454         uint32_t tmp = 0;
5455
5456         if (hw->mac.type == e1000_82575) {
5457                 if (direction == 0)
5458                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5459                 else if (direction == 1)
5460                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5461                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5462         } else if (hw->mac.type == e1000_82576) {
5463                 if ((direction == 0) || (direction == 1))
5464                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5465                                            ((queue & 0x8) << 1) +
5466                                            8 * direction);
5467         } else if ((hw->mac.type == e1000_82580) ||
5468                         (hw->mac.type == e1000_i350) ||
5469                         (hw->mac.type == e1000_i354) ||
5470                         (hw->mac.type == e1000_i210) ||
5471                         (hw->mac.type == e1000_i211)) {
5472                 if ((direction == 0) || (direction == 1))
5473                         eth_igb_write_ivar(hw, msix_vector,
5474                                            queue >> 1,
5475                                            ((queue & 0x1) << 4) +
5476                                            8 * direction);
5477         }
5478 }
5479
5480 /* Sets up the hardware to generate MSI-X interrupts properly
5481  * @hw
5482  *  board private structure
5483  */
5484 static void
5485 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5486 {
5487         int queue_id;
5488         uint32_t tmpval, regval, intr_mask;
5489         struct e1000_hw *hw =
5490                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5491         uint32_t vec = E1000_MISC_VEC_ID;
5492         uint32_t base = E1000_MISC_VEC_ID;
5493         uint32_t misc_shift = 0;
5494         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5495         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5496
5497         /* won't configure msix register if no mapping is done
5498          * between intr vector and event fd
5499          */
5500         if (!rte_intr_dp_is_en(intr_handle))
5501                 return;
5502
5503         if (rte_intr_allow_others(intr_handle)) {
5504                 vec = base = E1000_RX_VEC_START;
5505                 misc_shift = 1;
5506         }
5507
5508         /* set interrupt vector for other causes */
5509         if (hw->mac.type == e1000_82575) {
5510                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5511                 /* enable MSI-X PBA support */
5512                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5513
5514                 /* Auto-Mask interrupts upon ICR read */
5515                 tmpval |= E1000_CTRL_EXT_EIAME;
5516                 tmpval |= E1000_CTRL_EXT_IRCA;
5517
5518                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5519
5520                 /* enable msix_other interrupt */
5521                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5522                 regval = E1000_READ_REG(hw, E1000_EIAC);
5523                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5524                 regval = E1000_READ_REG(hw, E1000_EIAM);
5525                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5526         } else if ((hw->mac.type == e1000_82576) ||
5527                         (hw->mac.type == e1000_82580) ||
5528                         (hw->mac.type == e1000_i350) ||
5529                         (hw->mac.type == e1000_i354) ||
5530                         (hw->mac.type == e1000_i210) ||
5531                         (hw->mac.type == e1000_i211)) {
5532                 /* turn on MSI-X capability first */
5533                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5534                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5535                                         E1000_GPIE_NSICR);
5536                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5537                         misc_shift;
5538                 regval = E1000_READ_REG(hw, E1000_EIAC);
5539                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5540
5541                 /* enable msix_other interrupt */
5542                 regval = E1000_READ_REG(hw, E1000_EIMS);
5543                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5544                 tmpval = (dev->data->nb_rx_queues | E1000_IVAR_VALID) << 8;
5545                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5546         }
5547
5548         /* use EIAM to auto-mask when MSI-X interrupt
5549          * is asserted, this saves a register write for every interrupt
5550          */
5551         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5552                 misc_shift;
5553         regval = E1000_READ_REG(hw, E1000_EIAM);
5554         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5555
5556         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5557                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5558                 intr_handle->intr_vec[queue_id] = vec;
5559                 if (vec < base + intr_handle->nb_efd - 1)
5560                         vec++;
5561         }
5562
5563         E1000_WRITE_FLUSH(hw);
5564 }
5565
5566 /* restore n-tuple filter */
5567 static inline void
5568 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5569 {
5570         struct e1000_filter_info *filter_info =
5571                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5572         struct e1000_5tuple_filter *p_5tuple;
5573         struct e1000_2tuple_filter *p_2tuple;
5574
5575         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5576                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5577         }
5578
5579         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5580                 igb_inject_2uple_filter(dev, p_2tuple);
5581         }
5582 }
5583
5584 /* restore SYN filter */
5585 static inline void
5586 igb_syn_filter_restore(struct rte_eth_dev *dev)
5587 {
5588         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5589         struct e1000_filter_info *filter_info =
5590                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5591         uint32_t synqf;
5592
5593         synqf = filter_info->syn_info;
5594
5595         if (synqf & E1000_SYN_FILTER_ENABLE) {
5596                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5597                 E1000_WRITE_FLUSH(hw);
5598         }
5599 }
5600
5601 /* restore ethernet type filter */
5602 static inline void
5603 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5604 {
5605         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5606         struct e1000_filter_info *filter_info =
5607                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5608         int i;
5609
5610         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5611                 if (filter_info->ethertype_mask & (1 << i)) {
5612                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5613                                 filter_info->ethertype_filters[i].etqf);
5614                         E1000_WRITE_FLUSH(hw);
5615                 }
5616         }
5617 }
5618
5619 /* restore flex byte filter */
5620 static inline void
5621 igb_flex_filter_restore(struct rte_eth_dev *dev)
5622 {
5623         struct e1000_filter_info *filter_info =
5624                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5625         struct e1000_flex_filter *flex_filter;
5626
5627         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5628                 igb_inject_flex_filter(dev, flex_filter);
5629         }
5630 }
5631
5632 /* restore all types filter */
5633 static int
5634 igb_filter_restore(struct rte_eth_dev *dev)
5635 {
5636         igb_ntuple_filter_restore(dev);
5637         igb_ethertype_filter_restore(dev);
5638         igb_syn_filter_restore(dev);
5639         igb_flex_filter_restore(dev);
5640
5641         return 0;
5642 }
5643
5644 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5645 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5646 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5647 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5648 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5649 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");