New upstream version 18.11-rc1
[deb_dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_log.h>
15 #include <rte_debug.h>
16 #include <rte_pci.h>
17 #include <rte_bus_pci.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_memory.h>
22 #include <rte_eal.h>
23 #include <rte_malloc.h>
24 #include <rte_dev.h>
25
26 #include "e1000_logs.h"
27 #include "base/e1000_api.h"
28 #include "e1000_ethdev.h"
29 #include "igb_regs.h"
30
31 /*
32  * Default values for port configuration
33  */
34 #define IGB_DEFAULT_RX_FREE_THRESH  32
35
36 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
37 #define IGB_DEFAULT_RX_HTHRESH      8
38 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
39
40 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
41 #define IGB_DEFAULT_TX_HTHRESH      1
42 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
43
44 /* Bit shift and mask */
45 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
46 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
47 #define IGB_8_BIT_WIDTH  CHAR_BIT
48 #define IGB_8_BIT_MASK   UINT8_MAX
49
50 /* Additional timesync values. */
51 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
52 #define E1000_ETQF_FILTER_1588       3
53 #define IGB_82576_TSYNC_SHIFT        16
54 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
55 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
56 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
57
58 #define E1000_VTIVAR_MISC                0x01740
59 #define E1000_VTIVAR_MISC_MASK           0xFF
60 #define E1000_VTIVAR_VALID               0x80
61 #define E1000_VTIVAR_MISC_MAILBOX        0
62 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
63
64 /* External VLAN Enable bit mask */
65 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
66
67 /* External VLAN Ether Type bit mask and shift */
68 #define E1000_VET_VET_EXT            0xFFFF0000
69 #define E1000_VET_VET_EXT_SHIFT      16
70
71 static int  eth_igb_configure(struct rte_eth_dev *dev);
72 static int  eth_igb_start(struct rte_eth_dev *dev);
73 static void eth_igb_stop(struct rte_eth_dev *dev);
74 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
75 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
76 static void eth_igb_close(struct rte_eth_dev *dev);
77 static int eth_igb_reset(struct rte_eth_dev *dev);
78 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
79 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
80 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
81 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
82 static int  eth_igb_link_update(struct rte_eth_dev *dev,
83                                 int wait_to_complete);
84 static int eth_igb_stats_get(struct rte_eth_dev *dev,
85                                 struct rte_eth_stats *rte_stats);
86 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
87                               struct rte_eth_xstat *xstats, unsigned n);
88 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
89                 const uint64_t *ids,
90                 uint64_t *values, unsigned int n);
91 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
92                                     struct rte_eth_xstat_name *xstats_names,
93                                     unsigned int size);
94 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
95                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
96                 unsigned int limit);
97 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
98 static void eth_igb_xstats_reset(struct rte_eth_dev *dev);
99 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
100                                    char *fw_version, size_t fw_size);
101 static void eth_igb_infos_get(struct rte_eth_dev *dev,
102                               struct rte_eth_dev_info *dev_info);
103 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
104 static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
105                                 struct rte_eth_dev_info *dev_info);
106 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
107                                 struct rte_eth_fc_conf *fc_conf);
108 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
109                                 struct rte_eth_fc_conf *fc_conf);
110 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
111 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
112 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
113 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
114                                     struct rte_intr_handle *handle);
115 static void eth_igb_interrupt_handler(void *param);
116 static int  igb_hardware_init(struct e1000_hw *hw);
117 static void igb_hw_control_acquire(struct e1000_hw *hw);
118 static void igb_hw_control_release(struct e1000_hw *hw);
119 static void igb_init_manageability(struct e1000_hw *hw);
120 static void igb_release_manageability(struct e1000_hw *hw);
121
122 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
123
124 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
125                 uint16_t vlan_id, int on);
126 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
127                                  enum rte_vlan_type vlan_type,
128                                  uint16_t tpid_id);
129 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
130
131 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
132 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
133 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
134 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
135 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
137
138 static int eth_igb_led_on(struct rte_eth_dev *dev);
139 static int eth_igb_led_off(struct rte_eth_dev *dev);
140
141 static void igb_intr_disable(struct e1000_hw *hw);
142 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
143 static int eth_igb_rar_set(struct rte_eth_dev *dev,
144                            struct ether_addr *mac_addr,
145                            uint32_t index, uint32_t pool);
146 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
147 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
148                 struct ether_addr *addr);
149
150 static void igbvf_intr_disable(struct e1000_hw *hw);
151 static int igbvf_dev_configure(struct rte_eth_dev *dev);
152 static int igbvf_dev_start(struct rte_eth_dev *dev);
153 static void igbvf_dev_stop(struct rte_eth_dev *dev);
154 static void igbvf_dev_close(struct rte_eth_dev *dev);
155 static void igbvf_promiscuous_enable(struct rte_eth_dev *dev);
156 static void igbvf_promiscuous_disable(struct rte_eth_dev *dev);
157 static void igbvf_allmulticast_enable(struct rte_eth_dev *dev);
158 static void igbvf_allmulticast_disable(struct rte_eth_dev *dev);
159 static int eth_igbvf_link_update(struct e1000_hw *hw);
160 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
161                                 struct rte_eth_stats *rte_stats);
162 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
163                                 struct rte_eth_xstat *xstats, unsigned n);
164 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
165                                       struct rte_eth_xstat_name *xstats_names,
166                                       unsigned limit);
167 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
168 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
169                 uint16_t vlan_id, int on);
170 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
171 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
172 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
173                 struct ether_addr *addr);
174 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
175 static int igbvf_get_regs(struct rte_eth_dev *dev,
176                 struct rte_dev_reg_info *regs);
177
178 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
179                                    struct rte_eth_rss_reta_entry64 *reta_conf,
180                                    uint16_t reta_size);
181 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
182                                   struct rte_eth_rss_reta_entry64 *reta_conf,
183                                   uint16_t reta_size);
184
185 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
186                         struct rte_eth_syn_filter *filter);
187 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
188                         enum rte_filter_op filter_op,
189                         void *arg);
190 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
191                         struct rte_eth_ntuple_filter *ntuple_filter);
192 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
193                         struct rte_eth_ntuple_filter *ntuple_filter);
194 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
195                         struct rte_eth_flex_filter *filter);
196 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
197                         enum rte_filter_op filter_op,
198                         void *arg);
199 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
200                         struct rte_eth_ntuple_filter *ntuple_filter);
201 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
202                         struct rte_eth_ntuple_filter *ntuple_filter);
203 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
204                         struct rte_eth_ntuple_filter *filter);
205 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
206                                 enum rte_filter_op filter_op,
207                                 void *arg);
208 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
209                                 enum rte_filter_op filter_op,
210                                 void *arg);
211 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
212                         struct rte_eth_ethertype_filter *filter);
213 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
214                      enum rte_filter_type filter_type,
215                      enum rte_filter_op filter_op,
216                      void *arg);
217 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
218 static int eth_igb_get_regs(struct rte_eth_dev *dev,
219                 struct rte_dev_reg_info *regs);
220 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
221 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
222                 struct rte_dev_eeprom_info *eeprom);
223 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
224                 struct rte_dev_eeprom_info *eeprom);
225 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
226                                    struct rte_eth_dev_module_info *modinfo);
227 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
228                                      struct rte_dev_eeprom_info *info);
229 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
230                                     struct ether_addr *mc_addr_set,
231                                     uint32_t nb_mc_addr);
232 static int igb_timesync_enable(struct rte_eth_dev *dev);
233 static int igb_timesync_disable(struct rte_eth_dev *dev);
234 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
235                                           struct timespec *timestamp,
236                                           uint32_t flags);
237 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
238                                           struct timespec *timestamp);
239 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
240 static int igb_timesync_read_time(struct rte_eth_dev *dev,
241                                   struct timespec *timestamp);
242 static int igb_timesync_write_time(struct rte_eth_dev *dev,
243                                    const struct timespec *timestamp);
244 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
245                                         uint16_t queue_id);
246 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
247                                          uint16_t queue_id);
248 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
249                                        uint8_t queue, uint8_t msix_vector);
250 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
251                                uint8_t index, uint8_t offset);
252 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
253 static void eth_igbvf_interrupt_handler(void *param);
254 static void igbvf_mbx_process(struct rte_eth_dev *dev);
255 static int igb_filter_restore(struct rte_eth_dev *dev);
256
257 /*
258  * Define VF Stats MACRO for Non "cleared on read" register
259  */
260 #define UPDATE_VF_STAT(reg, last, cur)            \
261 {                                                 \
262         u32 latest = E1000_READ_REG(hw, reg);     \
263         cur += (latest - last) & UINT_MAX;        \
264         last = latest;                            \
265 }
266
267 #define IGB_FC_PAUSE_TIME 0x0680
268 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
269 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
270
271 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
272
273 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
274
275 /*
276  * The set of PCI devices this driver supports
277  */
278 static const struct rte_pci_id pci_id_igb_map[] = {
279         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
280         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
281         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
282         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
285         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
286         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
287
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
289         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
290         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
291
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
294         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
295         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
296         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
297         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
298
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
301         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
302         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
303         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
304         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
305         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
306         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
307         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
308         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
313         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
314         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
315         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
316         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
317         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
318         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
319         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
320         { .vendor_id = 0, /* sentinel */ },
321 };
322
323 /*
324  * The set of PCI devices this driver supports (for 82576&I350 VF)
325  */
326 static const struct rte_pci_id pci_id_igbvf_map[] = {
327         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
328         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
329         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
330         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
331         { .vendor_id = 0, /* sentinel */ },
332 };
333
334 static const struct rte_eth_desc_lim rx_desc_lim = {
335         .nb_max = E1000_MAX_RING_DESC,
336         .nb_min = E1000_MIN_RING_DESC,
337         .nb_align = IGB_RXD_ALIGN,
338 };
339
340 static const struct rte_eth_desc_lim tx_desc_lim = {
341         .nb_max = E1000_MAX_RING_DESC,
342         .nb_min = E1000_MIN_RING_DESC,
343         .nb_align = IGB_RXD_ALIGN,
344         .nb_seg_max = IGB_TX_MAX_SEG,
345         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
346 };
347
348 static const struct eth_dev_ops eth_igb_ops = {
349         .dev_configure        = eth_igb_configure,
350         .dev_start            = eth_igb_start,
351         .dev_stop             = eth_igb_stop,
352         .dev_set_link_up      = eth_igb_dev_set_link_up,
353         .dev_set_link_down    = eth_igb_dev_set_link_down,
354         .dev_close            = eth_igb_close,
355         .dev_reset            = eth_igb_reset,
356         .promiscuous_enable   = eth_igb_promiscuous_enable,
357         .promiscuous_disable  = eth_igb_promiscuous_disable,
358         .allmulticast_enable  = eth_igb_allmulticast_enable,
359         .allmulticast_disable = eth_igb_allmulticast_disable,
360         .link_update          = eth_igb_link_update,
361         .stats_get            = eth_igb_stats_get,
362         .xstats_get           = eth_igb_xstats_get,
363         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
364         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
365         .xstats_get_names     = eth_igb_xstats_get_names,
366         .stats_reset          = eth_igb_stats_reset,
367         .xstats_reset         = eth_igb_xstats_reset,
368         .fw_version_get       = eth_igb_fw_version_get,
369         .dev_infos_get        = eth_igb_infos_get,
370         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
371         .mtu_set              = eth_igb_mtu_set,
372         .vlan_filter_set      = eth_igb_vlan_filter_set,
373         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
374         .vlan_offload_set     = eth_igb_vlan_offload_set,
375         .rx_queue_setup       = eth_igb_rx_queue_setup,
376         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
377         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
378         .rx_queue_release     = eth_igb_rx_queue_release,
379         .rx_queue_count       = eth_igb_rx_queue_count,
380         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
381         .rx_descriptor_status = eth_igb_rx_descriptor_status,
382         .tx_descriptor_status = eth_igb_tx_descriptor_status,
383         .tx_queue_setup       = eth_igb_tx_queue_setup,
384         .tx_queue_release     = eth_igb_tx_queue_release,
385         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
386         .dev_led_on           = eth_igb_led_on,
387         .dev_led_off          = eth_igb_led_off,
388         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
389         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
390         .mac_addr_add         = eth_igb_rar_set,
391         .mac_addr_remove      = eth_igb_rar_clear,
392         .mac_addr_set         = eth_igb_default_mac_addr_set,
393         .reta_update          = eth_igb_rss_reta_update,
394         .reta_query           = eth_igb_rss_reta_query,
395         .rss_hash_update      = eth_igb_rss_hash_update,
396         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
397         .filter_ctrl          = eth_igb_filter_ctrl,
398         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
399         .rxq_info_get         = igb_rxq_info_get,
400         .txq_info_get         = igb_txq_info_get,
401         .timesync_enable      = igb_timesync_enable,
402         .timesync_disable     = igb_timesync_disable,
403         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
404         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
405         .get_reg              = eth_igb_get_regs,
406         .get_eeprom_length    = eth_igb_get_eeprom_length,
407         .get_eeprom           = eth_igb_get_eeprom,
408         .set_eeprom           = eth_igb_set_eeprom,
409         .get_module_info      = eth_igb_get_module_info,
410         .get_module_eeprom    = eth_igb_get_module_eeprom,
411         .timesync_adjust_time = igb_timesync_adjust_time,
412         .timesync_read_time   = igb_timesync_read_time,
413         .timesync_write_time  = igb_timesync_write_time,
414 };
415
416 /*
417  * dev_ops for virtual function, bare necessities for basic vf
418  * operation have been implemented
419  */
420 static const struct eth_dev_ops igbvf_eth_dev_ops = {
421         .dev_configure        = igbvf_dev_configure,
422         .dev_start            = igbvf_dev_start,
423         .dev_stop             = igbvf_dev_stop,
424         .dev_close            = igbvf_dev_close,
425         .promiscuous_enable   = igbvf_promiscuous_enable,
426         .promiscuous_disable  = igbvf_promiscuous_disable,
427         .allmulticast_enable  = igbvf_allmulticast_enable,
428         .allmulticast_disable = igbvf_allmulticast_disable,
429         .link_update          = eth_igb_link_update,
430         .stats_get            = eth_igbvf_stats_get,
431         .xstats_get           = eth_igbvf_xstats_get,
432         .xstats_get_names     = eth_igbvf_xstats_get_names,
433         .stats_reset          = eth_igbvf_stats_reset,
434         .xstats_reset         = eth_igbvf_stats_reset,
435         .vlan_filter_set      = igbvf_vlan_filter_set,
436         .dev_infos_get        = eth_igbvf_infos_get,
437         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
438         .rx_queue_setup       = eth_igb_rx_queue_setup,
439         .rx_queue_release     = eth_igb_rx_queue_release,
440         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
441         .rx_descriptor_status = eth_igb_rx_descriptor_status,
442         .tx_descriptor_status = eth_igb_tx_descriptor_status,
443         .tx_queue_setup       = eth_igb_tx_queue_setup,
444         .tx_queue_release     = eth_igb_tx_queue_release,
445         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
446         .rxq_info_get         = igb_rxq_info_get,
447         .txq_info_get         = igb_txq_info_get,
448         .mac_addr_set         = igbvf_default_mac_addr_set,
449         .get_reg              = igbvf_get_regs,
450 };
451
452 /* store statistics names and its offset in stats structure */
453 struct rte_igb_xstats_name_off {
454         char name[RTE_ETH_XSTATS_NAME_SIZE];
455         unsigned offset;
456 };
457
458 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
459         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
460         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
461         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
462         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
463         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
464         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
465         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
466                 ecol)},
467         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
468         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
469         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
470         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
471         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
472         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
473         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
474         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
475         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
476         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
477         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
478                 fcruc)},
479         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
480         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
481         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
482         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
483         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
484                 prc1023)},
485         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
486                 prc1522)},
487         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
488         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
489         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
490         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
491         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
492         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
493         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
494         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
495         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
496         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
497         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
498         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
499         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
500         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
501         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
502         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
503         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
504         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
505                 ptc1023)},
506         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
507                 ptc1522)},
508         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
509         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
510         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
511         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
512         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
513         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
514         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
515
516         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
517 };
518
519 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
520                 sizeof(rte_igb_stats_strings[0]))
521
522 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
523         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
524         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
525         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
526         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
527         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
528 };
529
530 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
531                 sizeof(rte_igbvf_stats_strings[0]))
532
533
534 static inline void
535 igb_intr_enable(struct rte_eth_dev *dev)
536 {
537         struct e1000_interrupt *intr =
538                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
539         struct e1000_hw *hw =
540                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
541
542         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
543         E1000_WRITE_FLUSH(hw);
544 }
545
546 static void
547 igb_intr_disable(struct e1000_hw *hw)
548 {
549         E1000_WRITE_REG(hw, E1000_IMC, ~0);
550         E1000_WRITE_FLUSH(hw);
551 }
552
553 static inline void
554 igbvf_intr_enable(struct rte_eth_dev *dev)
555 {
556         struct e1000_hw *hw =
557                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
558
559         /* only for mailbox */
560         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
561         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
562         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
563         E1000_WRITE_FLUSH(hw);
564 }
565
566 /* only for mailbox now. If RX/TX needed, should extend this function.  */
567 static void
568 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
569 {
570         uint32_t tmp = 0;
571
572         /* mailbox */
573         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
574         tmp |= E1000_VTIVAR_VALID;
575         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
576 }
577
578 static void
579 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
580 {
581         struct e1000_hw *hw =
582                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
583
584         /* Configure VF other cause ivar */
585         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
586 }
587
588 static inline int32_t
589 igb_pf_reset_hw(struct e1000_hw *hw)
590 {
591         uint32_t ctrl_ext;
592         int32_t status;
593
594         status = e1000_reset_hw(hw);
595
596         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
597         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
598         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
599         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
600         E1000_WRITE_FLUSH(hw);
601
602         return status;
603 }
604
605 static void
606 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
607 {
608         struct e1000_hw *hw =
609                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
610
611
612         hw->vendor_id = pci_dev->id.vendor_id;
613         hw->device_id = pci_dev->id.device_id;
614         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
615         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
616
617         e1000_set_mac_type(hw);
618
619         /* need to check if it is a vf device below */
620 }
621
622 static int
623 igb_reset_swfw_lock(struct e1000_hw *hw)
624 {
625         int ret_val;
626
627         /*
628          * Do mac ops initialization manually here, since we will need
629          * some function pointers set by this call.
630          */
631         ret_val = e1000_init_mac_params(hw);
632         if (ret_val)
633                 return ret_val;
634
635         /*
636          * SMBI lock should not fail in this early stage. If this is the case,
637          * it is due to an improper exit of the application.
638          * So force the release of the faulty lock.
639          */
640         if (e1000_get_hw_semaphore_generic(hw) < 0) {
641                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
642         }
643         e1000_put_hw_semaphore_generic(hw);
644
645         if (hw->mac.ops.acquire_swfw_sync != NULL) {
646                 uint16_t mask;
647
648                 /*
649                  * Phy lock should not fail in this early stage. If this is the case,
650                  * it is due to an improper exit of the application.
651                  * So force the release of the faulty lock.
652                  */
653                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
654                 if (hw->bus.func > E1000_FUNC_1)
655                         mask <<= 2;
656                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
657                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
658                                     hw->bus.func);
659                 }
660                 hw->mac.ops.release_swfw_sync(hw, mask);
661
662                 /*
663                  * This one is more tricky since it is common to all ports; but
664                  * swfw_sync retries last long enough (1s) to be almost sure that if
665                  * lock can not be taken it is due to an improper lock of the
666                  * semaphore.
667                  */
668                 mask = E1000_SWFW_EEP_SM;
669                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
670                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
671                 }
672                 hw->mac.ops.release_swfw_sync(hw, mask);
673         }
674
675         return E1000_SUCCESS;
676 }
677
678 /* Remove all ntuple filters of the device */
679 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
680 {
681         struct e1000_filter_info *filter_info =
682                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
683         struct e1000_5tuple_filter *p_5tuple;
684         struct e1000_2tuple_filter *p_2tuple;
685
686         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
687                 TAILQ_REMOVE(&filter_info->fivetuple_list,
688                         p_5tuple, entries);
689                         rte_free(p_5tuple);
690         }
691         filter_info->fivetuple_mask = 0;
692         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
693                 TAILQ_REMOVE(&filter_info->twotuple_list,
694                         p_2tuple, entries);
695                         rte_free(p_2tuple);
696         }
697         filter_info->twotuple_mask = 0;
698
699         return 0;
700 }
701
702 /* Remove all flex filters of the device */
703 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
704 {
705         struct e1000_filter_info *filter_info =
706                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
707         struct e1000_flex_filter *p_flex;
708
709         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
710                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
711                 rte_free(p_flex);
712         }
713         filter_info->flex_mask = 0;
714
715         return 0;
716 }
717
718 static int
719 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
720 {
721         int error = 0;
722         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
723         struct e1000_hw *hw =
724                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
725         struct e1000_vfta * shadow_vfta =
726                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
727         struct e1000_filter_info *filter_info =
728                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
729         struct e1000_adapter *adapter =
730                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
731
732         uint32_t ctrl_ext;
733
734         eth_dev->dev_ops = &eth_igb_ops;
735         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
736         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
737         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
738
739         /* for secondary processes, we don't initialise any further as primary
740          * has already done this work. Only check we don't need a different
741          * RX function */
742         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
743                 if (eth_dev->data->scattered_rx)
744                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
745                 return 0;
746         }
747
748         rte_eth_copy_pci_info(eth_dev, pci_dev);
749
750         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
751
752         igb_identify_hardware(eth_dev, pci_dev);
753         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
754                 error = -EIO;
755                 goto err_late;
756         }
757
758         e1000_get_bus_info(hw);
759
760         /* Reset any pending lock */
761         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
762                 error = -EIO;
763                 goto err_late;
764         }
765
766         /* Finish initialization */
767         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
768                 error = -EIO;
769                 goto err_late;
770         }
771
772         hw->mac.autoneg = 1;
773         hw->phy.autoneg_wait_to_complete = 0;
774         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
775
776         /* Copper options */
777         if (hw->phy.media_type == e1000_media_type_copper) {
778                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
779                 hw->phy.disable_polarity_correction = 0;
780                 hw->phy.ms_type = e1000_ms_hw_default;
781         }
782
783         /*
784          * Start from a known state, this is important in reading the nvm
785          * and mac from that.
786          */
787         igb_pf_reset_hw(hw);
788
789         /* Make sure we have a good EEPROM before we read from it */
790         if (e1000_validate_nvm_checksum(hw) < 0) {
791                 /*
792                  * Some PCI-E parts fail the first check due to
793                  * the link being in sleep state, call it again,
794                  * if it fails a second time its a real issue.
795                  */
796                 if (e1000_validate_nvm_checksum(hw) < 0) {
797                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
798                         error = -EIO;
799                         goto err_late;
800                 }
801         }
802
803         /* Read the permanent MAC address out of the EEPROM */
804         if (e1000_read_mac_addr(hw) != 0) {
805                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
806                 error = -EIO;
807                 goto err_late;
808         }
809
810         /* Allocate memory for storing MAC addresses */
811         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
812                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
813         if (eth_dev->data->mac_addrs == NULL) {
814                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
815                                                 "store MAC addresses",
816                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
817                 error = -ENOMEM;
818                 goto err_late;
819         }
820
821         /* Copy the permanent MAC address */
822         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
823
824         /* initialize the vfta */
825         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
826
827         /* Now initialize the hardware */
828         if (igb_hardware_init(hw) != 0) {
829                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
830                 rte_free(eth_dev->data->mac_addrs);
831                 eth_dev->data->mac_addrs = NULL;
832                 error = -ENODEV;
833                 goto err_late;
834         }
835         hw->mac.get_link_status = 1;
836         adapter->stopped = 0;
837
838         /* Indicate SOL/IDER usage */
839         if (e1000_check_reset_block(hw) < 0) {
840                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
841                                         "SOL/IDER session");
842         }
843
844         /* initialize PF if max_vfs not zero */
845         igb_pf_host_init(eth_dev);
846
847         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
848         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
849         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
850         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
851         E1000_WRITE_FLUSH(hw);
852
853         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
854                      eth_dev->data->port_id, pci_dev->id.vendor_id,
855                      pci_dev->id.device_id);
856
857         rte_intr_callback_register(&pci_dev->intr_handle,
858                                    eth_igb_interrupt_handler,
859                                    (void *)eth_dev);
860
861         /* enable uio/vfio intr/eventfd mapping */
862         rte_intr_enable(&pci_dev->intr_handle);
863
864         /* enable support intr */
865         igb_intr_enable(eth_dev);
866
867         /* initialize filter info */
868         memset(filter_info, 0,
869                sizeof(struct e1000_filter_info));
870
871         TAILQ_INIT(&filter_info->flex_list);
872         TAILQ_INIT(&filter_info->twotuple_list);
873         TAILQ_INIT(&filter_info->fivetuple_list);
874
875         TAILQ_INIT(&igb_filter_ntuple_list);
876         TAILQ_INIT(&igb_filter_ethertype_list);
877         TAILQ_INIT(&igb_filter_syn_list);
878         TAILQ_INIT(&igb_filter_flex_list);
879         TAILQ_INIT(&igb_filter_rss_list);
880         TAILQ_INIT(&igb_flow_list);
881
882         return 0;
883
884 err_late:
885         igb_hw_control_release(hw);
886
887         return error;
888 }
889
890 static int
891 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
892 {
893         struct rte_pci_device *pci_dev;
894         struct rte_intr_handle *intr_handle;
895         struct e1000_hw *hw;
896         struct e1000_adapter *adapter =
897                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
898         struct e1000_filter_info *filter_info =
899                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
900
901         PMD_INIT_FUNC_TRACE();
902
903         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
904                 return -EPERM;
905
906         hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
907         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
908         intr_handle = &pci_dev->intr_handle;
909
910         if (adapter->stopped == 0)
911                 eth_igb_close(eth_dev);
912
913         eth_dev->dev_ops = NULL;
914         eth_dev->rx_pkt_burst = NULL;
915         eth_dev->tx_pkt_burst = NULL;
916
917         /* Reset any pending lock */
918         igb_reset_swfw_lock(hw);
919
920         /* uninitialize PF if max_vfs not zero */
921         igb_pf_host_uninit(eth_dev);
922
923         /* disable uio intr before callback unregister */
924         rte_intr_disable(intr_handle);
925         rte_intr_callback_unregister(intr_handle,
926                                      eth_igb_interrupt_handler, eth_dev);
927
928         /* clear the SYN filter info */
929         filter_info->syn_info = 0;
930
931         /* clear the ethertype filters info */
932         filter_info->ethertype_mask = 0;
933         memset(filter_info->ethertype_filters, 0,
934                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
935
936         /* clear the rss filter info */
937         memset(&filter_info->rss_info, 0,
938                 sizeof(struct igb_rte_flow_rss_conf));
939
940         /* remove all ntuple filters of the device */
941         igb_ntuple_filter_uninit(eth_dev);
942
943         /* remove all flex filters of the device */
944         igb_flex_filter_uninit(eth_dev);
945
946         /* clear all the filters list */
947         igb_filterlist_flush(eth_dev);
948
949         return 0;
950 }
951
952 /*
953  * Virtual Function device init
954  */
955 static int
956 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
957 {
958         struct rte_pci_device *pci_dev;
959         struct rte_intr_handle *intr_handle;
960         struct e1000_adapter *adapter =
961                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
962         struct e1000_hw *hw =
963                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
964         int diag;
965         struct ether_addr *perm_addr = (struct ether_addr *)hw->mac.perm_addr;
966
967         PMD_INIT_FUNC_TRACE();
968
969         eth_dev->dev_ops = &igbvf_eth_dev_ops;
970         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
971         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
972         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
973
974         /* for secondary processes, we don't initialise any further as primary
975          * has already done this work. Only check we don't need a different
976          * RX function */
977         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
978                 if (eth_dev->data->scattered_rx)
979                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
980                 return 0;
981         }
982
983         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
984         rte_eth_copy_pci_info(eth_dev, pci_dev);
985
986         hw->device_id = pci_dev->id.device_id;
987         hw->vendor_id = pci_dev->id.vendor_id;
988         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
989         adapter->stopped = 0;
990
991         /* Initialize the shared code (base driver) */
992         diag = e1000_setup_init_funcs(hw, TRUE);
993         if (diag != 0) {
994                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
995                         diag);
996                 return -EIO;
997         }
998
999         /* init_mailbox_params */
1000         hw->mbx.ops.init_params(hw);
1001
1002         /* Disable the interrupts for VF */
1003         igbvf_intr_disable(hw);
1004
1005         diag = hw->mac.ops.reset_hw(hw);
1006
1007         /* Allocate memory for storing MAC addresses */
1008         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
1009                 hw->mac.rar_entry_count, 0);
1010         if (eth_dev->data->mac_addrs == NULL) {
1011                 PMD_INIT_LOG(ERR,
1012                         "Failed to allocate %d bytes needed to store MAC "
1013                         "addresses",
1014                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
1015                 return -ENOMEM;
1016         }
1017
1018         /* Generate a random MAC address, if none was assigned by PF. */
1019         if (is_zero_ether_addr(perm_addr)) {
1020                 eth_random_addr(perm_addr->addr_bytes);
1021                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
1022                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
1023                              "%02x:%02x:%02x:%02x:%02x:%02x",
1024                              perm_addr->addr_bytes[0],
1025                              perm_addr->addr_bytes[1],
1026                              perm_addr->addr_bytes[2],
1027                              perm_addr->addr_bytes[3],
1028                              perm_addr->addr_bytes[4],
1029                              perm_addr->addr_bytes[5]);
1030         }
1031
1032         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
1033         if (diag) {
1034                 rte_free(eth_dev->data->mac_addrs);
1035                 eth_dev->data->mac_addrs = NULL;
1036                 return diag;
1037         }
1038         /* Copy the permanent MAC address */
1039         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
1040                         &eth_dev->data->mac_addrs[0]);
1041
1042         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1043                      "mac.type=%s",
1044                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1045                      pci_dev->id.device_id, "igb_mac_82576_vf");
1046
1047         intr_handle = &pci_dev->intr_handle;
1048         rte_intr_callback_register(intr_handle,
1049                                    eth_igbvf_interrupt_handler, eth_dev);
1050
1051         return 0;
1052 }
1053
1054 static int
1055 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1056 {
1057         struct e1000_adapter *adapter =
1058                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
1059         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1060
1061         PMD_INIT_FUNC_TRACE();
1062
1063         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1064                 return -EPERM;
1065
1066         if (adapter->stopped == 0)
1067                 igbvf_dev_close(eth_dev);
1068
1069         eth_dev->dev_ops = NULL;
1070         eth_dev->rx_pkt_burst = NULL;
1071         eth_dev->tx_pkt_burst = NULL;
1072
1073         /* disable uio intr before callback unregister */
1074         rte_intr_disable(&pci_dev->intr_handle);
1075         rte_intr_callback_unregister(&pci_dev->intr_handle,
1076                                      eth_igbvf_interrupt_handler,
1077                                      (void *)eth_dev);
1078
1079         return 0;
1080 }
1081
1082 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1083         struct rte_pci_device *pci_dev)
1084 {
1085         return rte_eth_dev_pci_generic_probe(pci_dev,
1086                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1087 }
1088
1089 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1090 {
1091         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1092 }
1093
1094 static struct rte_pci_driver rte_igb_pmd = {
1095         .id_table = pci_id_igb_map,
1096         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1097                      RTE_PCI_DRV_IOVA_AS_VA,
1098         .probe = eth_igb_pci_probe,
1099         .remove = eth_igb_pci_remove,
1100 };
1101
1102
1103 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1104         struct rte_pci_device *pci_dev)
1105 {
1106         return rte_eth_dev_pci_generic_probe(pci_dev,
1107                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1108 }
1109
1110 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1111 {
1112         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1113 }
1114
1115 /*
1116  * virtual function driver struct
1117  */
1118 static struct rte_pci_driver rte_igbvf_pmd = {
1119         .id_table = pci_id_igbvf_map,
1120         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_IOVA_AS_VA,
1121         .probe = eth_igbvf_pci_probe,
1122         .remove = eth_igbvf_pci_remove,
1123 };
1124
1125 static void
1126 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1127 {
1128         struct e1000_hw *hw =
1129                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1130         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1131         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1132         rctl |= E1000_RCTL_VFE;
1133         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1134 }
1135
1136 static int
1137 igb_check_mq_mode(struct rte_eth_dev *dev)
1138 {
1139         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1140         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1141         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1142         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1143
1144         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1145             tx_mq_mode == ETH_MQ_TX_DCB ||
1146             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1147                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1148                 return -EINVAL;
1149         }
1150         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1151                 /* Check multi-queue mode.
1152                  * To no break software we accept ETH_MQ_RX_NONE as this might
1153                  * be used to turn off VLAN filter.
1154                  */
1155
1156                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1157                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1158                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1159                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1160                 } else {
1161                         /* Only support one queue on VFs.
1162                          * RSS together with SRIOV is not supported.
1163                          */
1164                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1165                                         " wrong mq_mode rx %d.",
1166                                         rx_mq_mode);
1167                         return -EINVAL;
1168                 }
1169                 /* TX mode is not used here, so mode might be ignored.*/
1170                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1171                         /* SRIOV only works in VMDq enable mode */
1172                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1173                                         " TX mode %d is not supported. "
1174                                         " Driver will behave as %d mode.",
1175                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1176                 }
1177
1178                 /* check valid queue number */
1179                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1180                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1181                                         " only support one queue on VFs.");
1182                         return -EINVAL;
1183                 }
1184         } else {
1185                 /* To no break software that set invalid mode, only display
1186                  * warning if invalid mode is used.
1187                  */
1188                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1189                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1190                     rx_mq_mode != ETH_MQ_RX_RSS) {
1191                         /* RSS together with VMDq not supported*/
1192                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1193                                      rx_mq_mode);
1194                         return -EINVAL;
1195                 }
1196
1197                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1198                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1199                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1200                                         " Due to txmode is meaningless in this"
1201                                         " driver, just ignore.",
1202                                         tx_mq_mode);
1203                 }
1204         }
1205         return 0;
1206 }
1207
1208 static int
1209 eth_igb_configure(struct rte_eth_dev *dev)
1210 {
1211         struct e1000_interrupt *intr =
1212                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1213         int ret;
1214
1215         PMD_INIT_FUNC_TRACE();
1216
1217         /* multipe queue mode checking */
1218         ret  = igb_check_mq_mode(dev);
1219         if (ret != 0) {
1220                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1221                             ret);
1222                 return ret;
1223         }
1224
1225         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1226         PMD_INIT_FUNC_TRACE();
1227
1228         return 0;
1229 }
1230
1231 static void
1232 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1233                      bool enable)
1234 {
1235         struct e1000_hw *hw =
1236                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1237         uint32_t tctl, rctl;
1238
1239         tctl = E1000_READ_REG(hw, E1000_TCTL);
1240         rctl = E1000_READ_REG(hw, E1000_RCTL);
1241
1242         if (enable) {
1243                 /* enable Tx/Rx */
1244                 tctl |= E1000_TCTL_EN;
1245                 rctl |= E1000_RCTL_EN;
1246         } else {
1247                 /* disable Tx/Rx */
1248                 tctl &= ~E1000_TCTL_EN;
1249                 rctl &= ~E1000_RCTL_EN;
1250         }
1251         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1252         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1253         E1000_WRITE_FLUSH(hw);
1254 }
1255
1256 static int
1257 eth_igb_start(struct rte_eth_dev *dev)
1258 {
1259         struct e1000_hw *hw =
1260                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1261         struct e1000_adapter *adapter =
1262                 E1000_DEV_PRIVATE(dev->data->dev_private);
1263         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1264         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1265         int ret, mask;
1266         uint32_t intr_vector = 0;
1267         uint32_t ctrl_ext;
1268         uint32_t *speeds;
1269         int num_speeds;
1270         bool autoneg;
1271
1272         PMD_INIT_FUNC_TRACE();
1273
1274         /* disable uio/vfio intr/eventfd mapping */
1275         rte_intr_disable(intr_handle);
1276
1277         /* Power up the phy. Needed to make the link go Up */
1278         eth_igb_dev_set_link_up(dev);
1279
1280         /*
1281          * Packet Buffer Allocation (PBA)
1282          * Writing PBA sets the receive portion of the buffer
1283          * the remainder is used for the transmit buffer.
1284          */
1285         if (hw->mac.type == e1000_82575) {
1286                 uint32_t pba;
1287
1288                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1289                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1290         }
1291
1292         /* Put the address into the Receive Address Array */
1293         e1000_rar_set(hw, hw->mac.addr, 0);
1294
1295         /* Initialize the hardware */
1296         if (igb_hardware_init(hw)) {
1297                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1298                 return -EIO;
1299         }
1300         adapter->stopped = 0;
1301
1302         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1303
1304         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1305         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1306         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1307         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1308         E1000_WRITE_FLUSH(hw);
1309
1310         /* configure PF module if SRIOV enabled */
1311         igb_pf_host_configure(dev);
1312
1313         /* check and configure queue intr-vector mapping */
1314         if ((rte_intr_cap_multiple(intr_handle) ||
1315              !RTE_ETH_DEV_SRIOV(dev).active) &&
1316             dev->data->dev_conf.intr_conf.rxq != 0) {
1317                 intr_vector = dev->data->nb_rx_queues;
1318                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1319                         return -1;
1320         }
1321
1322         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1323                 intr_handle->intr_vec =
1324                         rte_zmalloc("intr_vec",
1325                                     dev->data->nb_rx_queues * sizeof(int), 0);
1326                 if (intr_handle->intr_vec == NULL) {
1327                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1328                                      " intr_vec", dev->data->nb_rx_queues);
1329                         return -ENOMEM;
1330                 }
1331         }
1332
1333         /* confiugre msix for rx interrupt */
1334         eth_igb_configure_msix_intr(dev);
1335
1336         /* Configure for OS presence */
1337         igb_init_manageability(hw);
1338
1339         eth_igb_tx_init(dev);
1340
1341         /* This can fail when allocating mbufs for descriptor rings */
1342         ret = eth_igb_rx_init(dev);
1343         if (ret) {
1344                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1345                 igb_dev_clear_queues(dev);
1346                 return ret;
1347         }
1348
1349         e1000_clear_hw_cntrs_base_generic(hw);
1350
1351         /*
1352          * VLAN Offload Settings
1353          */
1354         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1355                         ETH_VLAN_EXTEND_MASK;
1356         ret = eth_igb_vlan_offload_set(dev, mask);
1357         if (ret) {
1358                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1359                 igb_dev_clear_queues(dev);
1360                 return ret;
1361         }
1362
1363         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1364                 /* Enable VLAN filter since VMDq always use VLAN filter */
1365                 igb_vmdq_vlan_hw_filter_enable(dev);
1366         }
1367
1368         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1369                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1370                 (hw->mac.type == e1000_i211)) {
1371                 /* Configure EITR with the maximum possible value (0xFFFF) */
1372                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1373         }
1374
1375         /* Setup link speed and duplex */
1376         speeds = &dev->data->dev_conf.link_speeds;
1377         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1378                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1379                 hw->mac.autoneg = 1;
1380         } else {
1381                 num_speeds = 0;
1382                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1383
1384                 /* Reset */
1385                 hw->phy.autoneg_advertised = 0;
1386
1387                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1388                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1389                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1390                         num_speeds = -1;
1391                         goto error_invalid_config;
1392                 }
1393                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1394                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1395                         num_speeds++;
1396                 }
1397                 if (*speeds & ETH_LINK_SPEED_10M) {
1398                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1399                         num_speeds++;
1400                 }
1401                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1402                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1403                         num_speeds++;
1404                 }
1405                 if (*speeds & ETH_LINK_SPEED_100M) {
1406                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1407                         num_speeds++;
1408                 }
1409                 if (*speeds & ETH_LINK_SPEED_1G) {
1410                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1411                         num_speeds++;
1412                 }
1413                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1414                         goto error_invalid_config;
1415
1416                 /* Set/reset the mac.autoneg based on the link speed,
1417                  * fixed or not
1418                  */
1419                 if (!autoneg) {
1420                         hw->mac.autoneg = 0;
1421                         hw->mac.forced_speed_duplex =
1422                                         hw->phy.autoneg_advertised;
1423                 } else {
1424                         hw->mac.autoneg = 1;
1425                 }
1426         }
1427
1428         e1000_setup_link(hw);
1429
1430         if (rte_intr_allow_others(intr_handle)) {
1431                 /* check if lsc interrupt is enabled */
1432                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1433                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1434                 else
1435                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1436         } else {
1437                 rte_intr_callback_unregister(intr_handle,
1438                                              eth_igb_interrupt_handler,
1439                                              (void *)dev);
1440                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1441                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1442                                      " no intr multiplex");
1443         }
1444
1445         /* check if rxq interrupt is enabled */
1446         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1447             rte_intr_dp_is_en(intr_handle))
1448                 eth_igb_rxq_interrupt_setup(dev);
1449
1450         /* enable uio/vfio intr/eventfd mapping */
1451         rte_intr_enable(intr_handle);
1452
1453         /* resume enabled intr since hw reset */
1454         igb_intr_enable(dev);
1455
1456         /* restore all types filter */
1457         igb_filter_restore(dev);
1458
1459         eth_igb_rxtx_control(dev, true);
1460         eth_igb_link_update(dev, 0);
1461
1462         PMD_INIT_LOG(DEBUG, "<<");
1463
1464         return 0;
1465
1466 error_invalid_config:
1467         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1468                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1469         igb_dev_clear_queues(dev);
1470         return -EINVAL;
1471 }
1472
1473 /*********************************************************************
1474  *
1475  *  This routine disables all traffic on the adapter by issuing a
1476  *  global reset on the MAC.
1477  *
1478  **********************************************************************/
1479 static void
1480 eth_igb_stop(struct rte_eth_dev *dev)
1481 {
1482         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1483         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1484         struct rte_eth_link link;
1485         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1486
1487         eth_igb_rxtx_control(dev, false);
1488
1489         igb_intr_disable(hw);
1490
1491         /* disable intr eventfd mapping */
1492         rte_intr_disable(intr_handle);
1493
1494         igb_pf_reset_hw(hw);
1495         E1000_WRITE_REG(hw, E1000_WUC, 0);
1496
1497         /* Set bit for Go Link disconnect */
1498         if (hw->mac.type >= e1000_82580) {
1499                 uint32_t phpm_reg;
1500
1501                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1502                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1503                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1504         }
1505
1506         /* Power down the phy. Needed to make the link go Down */
1507         eth_igb_dev_set_link_down(dev);
1508
1509         igb_dev_clear_queues(dev);
1510
1511         /* clear the recorded link status */
1512         memset(&link, 0, sizeof(link));
1513         rte_eth_linkstatus_set(dev, &link);
1514
1515         if (!rte_intr_allow_others(intr_handle))
1516                 /* resume to the default handler */
1517                 rte_intr_callback_register(intr_handle,
1518                                            eth_igb_interrupt_handler,
1519                                            (void *)dev);
1520
1521         /* Clean datapath event and queue/vec mapping */
1522         rte_intr_efd_disable(intr_handle);
1523         if (intr_handle->intr_vec != NULL) {
1524                 rte_free(intr_handle->intr_vec);
1525                 intr_handle->intr_vec = NULL;
1526         }
1527 }
1528
1529 static int
1530 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1531 {
1532         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1533
1534         if (hw->phy.media_type == e1000_media_type_copper)
1535                 e1000_power_up_phy(hw);
1536         else
1537                 e1000_power_up_fiber_serdes_link(hw);
1538
1539         return 0;
1540 }
1541
1542 static int
1543 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1544 {
1545         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1546
1547         if (hw->phy.media_type == e1000_media_type_copper)
1548                 e1000_power_down_phy(hw);
1549         else
1550                 e1000_shutdown_fiber_serdes_link(hw);
1551
1552         return 0;
1553 }
1554
1555 static void
1556 eth_igb_close(struct rte_eth_dev *dev)
1557 {
1558         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1559         struct e1000_adapter *adapter =
1560                 E1000_DEV_PRIVATE(dev->data->dev_private);
1561         struct rte_eth_link link;
1562         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1563         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1564
1565         eth_igb_stop(dev);
1566         adapter->stopped = 1;
1567
1568         e1000_phy_hw_reset(hw);
1569         igb_release_manageability(hw);
1570         igb_hw_control_release(hw);
1571
1572         /* Clear bit for Go Link disconnect */
1573         if (hw->mac.type >= e1000_82580) {
1574                 uint32_t phpm_reg;
1575
1576                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1577                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1578                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1579         }
1580
1581         igb_dev_free_queues(dev);
1582
1583         if (intr_handle->intr_vec) {
1584                 rte_free(intr_handle->intr_vec);
1585                 intr_handle->intr_vec = NULL;
1586         }
1587
1588         memset(&link, 0, sizeof(link));
1589         rte_eth_linkstatus_set(dev, &link);
1590 }
1591
1592 /*
1593  * Reset PF device.
1594  */
1595 static int
1596 eth_igb_reset(struct rte_eth_dev *dev)
1597 {
1598         int ret;
1599
1600         /* When a DPDK PMD PF begin to reset PF port, it should notify all
1601          * its VF to make them align with it. The detailed notification
1602          * mechanism is PMD specific and is currently not implemented.
1603          * To avoid unexpected behavior in VF, currently reset of PF with
1604          * SR-IOV activation is not supported. It might be supported later.
1605          */
1606         if (dev->data->sriov.active)
1607                 return -ENOTSUP;
1608
1609         ret = eth_igb_dev_uninit(dev);
1610         if (ret)
1611                 return ret;
1612
1613         ret = eth_igb_dev_init(dev);
1614
1615         return ret;
1616 }
1617
1618
1619 static int
1620 igb_get_rx_buffer_size(struct e1000_hw *hw)
1621 {
1622         uint32_t rx_buf_size;
1623         if (hw->mac.type == e1000_82576) {
1624                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1625         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1626                 /* PBS needs to be translated according to a lookup table */
1627                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1628                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1629                 rx_buf_size = (rx_buf_size << 10);
1630         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1631                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1632         } else {
1633                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1634         }
1635
1636         return rx_buf_size;
1637 }
1638
1639 /*********************************************************************
1640  *
1641  *  Initialize the hardware
1642  *
1643  **********************************************************************/
1644 static int
1645 igb_hardware_init(struct e1000_hw *hw)
1646 {
1647         uint32_t rx_buf_size;
1648         int diag;
1649
1650         /* Let the firmware know the OS is in control */
1651         igb_hw_control_acquire(hw);
1652
1653         /*
1654          * These parameters control the automatic generation (Tx) and
1655          * response (Rx) to Ethernet PAUSE frames.
1656          * - High water mark should allow for at least two standard size (1518)
1657          *   frames to be received after sending an XOFF.
1658          * - Low water mark works best when it is very near the high water mark.
1659          *   This allows the receiver to restart by sending XON when it has
1660          *   drained a bit. Here we use an arbitrary value of 1500 which will
1661          *   restart after one full frame is pulled from the buffer. There
1662          *   could be several smaller frames in the buffer and if so they will
1663          *   not trigger the XON until their total number reduces the buffer
1664          *   by 1500.
1665          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1666          */
1667         rx_buf_size = igb_get_rx_buffer_size(hw);
1668
1669         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
1670         hw->fc.low_water = hw->fc.high_water - 1500;
1671         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1672         hw->fc.send_xon = 1;
1673
1674         /* Set Flow control, use the tunable location if sane */
1675         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1676                 hw->fc.requested_mode = igb_fc_setting;
1677         else
1678                 hw->fc.requested_mode = e1000_fc_none;
1679
1680         /* Issue a global reset */
1681         igb_pf_reset_hw(hw);
1682         E1000_WRITE_REG(hw, E1000_WUC, 0);
1683
1684         diag = e1000_init_hw(hw);
1685         if (diag < 0)
1686                 return diag;
1687
1688         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1689         e1000_get_phy_info(hw);
1690         e1000_check_for_link(hw);
1691
1692         return 0;
1693 }
1694
1695 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1696 static void
1697 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1698 {
1699         int pause_frames;
1700
1701         uint64_t old_gprc  = stats->gprc;
1702         uint64_t old_gptc  = stats->gptc;
1703         uint64_t old_tpr   = stats->tpr;
1704         uint64_t old_tpt   = stats->tpt;
1705         uint64_t old_rpthc = stats->rpthc;
1706         uint64_t old_hgptc = stats->hgptc;
1707
1708         if(hw->phy.media_type == e1000_media_type_copper ||
1709             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1710                 stats->symerrs +=
1711                     E1000_READ_REG(hw,E1000_SYMERRS);
1712                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1713         }
1714
1715         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1716         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1717         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1718         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1719
1720         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1721         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1722         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1723         stats->dc += E1000_READ_REG(hw, E1000_DC);
1724         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1725         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1726         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1727         /*
1728         ** For watchdog management we need to know if we have been
1729         ** paused during the last interval, so capture that here.
1730         */
1731         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1732         stats->xoffrxc += pause_frames;
1733         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1734         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1735         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1736         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1737         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1738         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1739         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1740         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1741         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1742         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1743         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1744         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1745
1746         /* For the 64-bit byte counters the low dword must be read first. */
1747         /* Both registers clear on the read of the high dword */
1748
1749         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1750         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1751         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1752         stats->gorc -= (stats->gprc - old_gprc) * ETHER_CRC_LEN;
1753         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1754         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1755         stats->gotc -= (stats->gptc - old_gptc) * ETHER_CRC_LEN;
1756
1757         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1758         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1759         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1760         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1761         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1762
1763         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1764         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1765
1766         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1767         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1768         stats->tor -= (stats->tpr - old_tpr) * ETHER_CRC_LEN;
1769         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1770         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1771         stats->tot -= (stats->tpt - old_tpt) * ETHER_CRC_LEN;
1772
1773         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1774         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1775         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1776         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1777         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1778         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1779         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1780         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1781
1782         /* Interrupt Counts */
1783
1784         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1785         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1786         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1787         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1788         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1789         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1790         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1791         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1792         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1793
1794         /* Host to Card Statistics */
1795
1796         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1797         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1798         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1799         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1800         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1801         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1802         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1803         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1804         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1805         stats->hgorc -= (stats->rpthc - old_rpthc) * ETHER_CRC_LEN;
1806         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1807         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1808         stats->hgotc -= (stats->hgptc - old_hgptc) * ETHER_CRC_LEN;
1809         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1810         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1811         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1812
1813         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1814         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1815         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1816         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1817         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1818         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1819 }
1820
1821 static int
1822 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1823 {
1824         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1825         struct e1000_hw_stats *stats =
1826                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1827
1828         igb_read_stats_registers(hw, stats);
1829
1830         if (rte_stats == NULL)
1831                 return -EINVAL;
1832
1833         /* Rx Errors */
1834         rte_stats->imissed = stats->mpc;
1835         rte_stats->ierrors = stats->crcerrs +
1836                              stats->rlec + stats->ruc + stats->roc +
1837                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1838
1839         /* Tx Errors */
1840         rte_stats->oerrors = stats->ecol + stats->latecol;
1841
1842         rte_stats->ipackets = stats->gprc;
1843         rte_stats->opackets = stats->gptc;
1844         rte_stats->ibytes   = stats->gorc;
1845         rte_stats->obytes   = stats->gotc;
1846         return 0;
1847 }
1848
1849 static void
1850 eth_igb_stats_reset(struct rte_eth_dev *dev)
1851 {
1852         struct e1000_hw_stats *hw_stats =
1853                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1854
1855         /* HW registers are cleared on read */
1856         eth_igb_stats_get(dev, NULL);
1857
1858         /* Reset software totals */
1859         memset(hw_stats, 0, sizeof(*hw_stats));
1860 }
1861
1862 static void
1863 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1864 {
1865         struct e1000_hw_stats *stats =
1866                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1867
1868         /* HW registers are cleared on read */
1869         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1870
1871         /* Reset software totals */
1872         memset(stats, 0, sizeof(*stats));
1873 }
1874
1875 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1876         struct rte_eth_xstat_name *xstats_names,
1877         __rte_unused unsigned int size)
1878 {
1879         unsigned i;
1880
1881         if (xstats_names == NULL)
1882                 return IGB_NB_XSTATS;
1883
1884         /* Note: limit checked in rte_eth_xstats_names() */
1885
1886         for (i = 0; i < IGB_NB_XSTATS; i++) {
1887                 snprintf(xstats_names[i].name, sizeof(xstats_names[i].name),
1888                          "%s", rte_igb_stats_strings[i].name);
1889         }
1890
1891         return IGB_NB_XSTATS;
1892 }
1893
1894 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1895                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1896                 unsigned int limit)
1897 {
1898         unsigned int i;
1899
1900         if (!ids) {
1901                 if (xstats_names == NULL)
1902                         return IGB_NB_XSTATS;
1903
1904                 for (i = 0; i < IGB_NB_XSTATS; i++)
1905                         snprintf(xstats_names[i].name,
1906                                         sizeof(xstats_names[i].name),
1907                                         "%s", rte_igb_stats_strings[i].name);
1908
1909                 return IGB_NB_XSTATS;
1910
1911         } else {
1912                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1913
1914                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1915                                 IGB_NB_XSTATS);
1916
1917                 for (i = 0; i < limit; i++) {
1918                         if (ids[i] >= IGB_NB_XSTATS) {
1919                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1920                                 return -1;
1921                         }
1922                         strcpy(xstats_names[i].name,
1923                                         xstats_names_copy[ids[i]].name);
1924                 }
1925                 return limit;
1926         }
1927 }
1928
1929 static int
1930 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1931                    unsigned n)
1932 {
1933         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1934         struct e1000_hw_stats *hw_stats =
1935                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1936         unsigned i;
1937
1938         if (n < IGB_NB_XSTATS)
1939                 return IGB_NB_XSTATS;
1940
1941         igb_read_stats_registers(hw, hw_stats);
1942
1943         /* If this is a reset xstats is NULL, and we have cleared the
1944          * registers by reading them.
1945          */
1946         if (!xstats)
1947                 return 0;
1948
1949         /* Extended stats */
1950         for (i = 0; i < IGB_NB_XSTATS; i++) {
1951                 xstats[i].id = i;
1952                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1953                         rte_igb_stats_strings[i].offset);
1954         }
1955
1956         return IGB_NB_XSTATS;
1957 }
1958
1959 static int
1960 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1961                 uint64_t *values, unsigned int n)
1962 {
1963         unsigned int i;
1964
1965         if (!ids) {
1966                 struct e1000_hw *hw =
1967                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1968                 struct e1000_hw_stats *hw_stats =
1969                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1970
1971                 if (n < IGB_NB_XSTATS)
1972                         return IGB_NB_XSTATS;
1973
1974                 igb_read_stats_registers(hw, hw_stats);
1975
1976                 /* If this is a reset xstats is NULL, and we have cleared the
1977                  * registers by reading them.
1978                  */
1979                 if (!values)
1980                         return 0;
1981
1982                 /* Extended stats */
1983                 for (i = 0; i < IGB_NB_XSTATS; i++)
1984                         values[i] = *(uint64_t *)(((char *)hw_stats) +
1985                                         rte_igb_stats_strings[i].offset);
1986
1987                 return IGB_NB_XSTATS;
1988
1989         } else {
1990                 uint64_t values_copy[IGB_NB_XSTATS];
1991
1992                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
1993                                 IGB_NB_XSTATS);
1994
1995                 for (i = 0; i < n; i++) {
1996                         if (ids[i] >= IGB_NB_XSTATS) {
1997                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1998                                 return -1;
1999                         }
2000                         values[i] = values_copy[ids[i]];
2001                 }
2002                 return n;
2003         }
2004 }
2005
2006 static void
2007 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2008 {
2009         /* Good Rx packets, include VF loopback */
2010         UPDATE_VF_STAT(E1000_VFGPRC,
2011             hw_stats->last_gprc, hw_stats->gprc);
2012
2013         /* Good Rx octets, include VF loopback */
2014         UPDATE_VF_STAT(E1000_VFGORC,
2015             hw_stats->last_gorc, hw_stats->gorc);
2016
2017         /* Good Tx packets, include VF loopback */
2018         UPDATE_VF_STAT(E1000_VFGPTC,
2019             hw_stats->last_gptc, hw_stats->gptc);
2020
2021         /* Good Tx octets, include VF loopback */
2022         UPDATE_VF_STAT(E1000_VFGOTC,
2023             hw_stats->last_gotc, hw_stats->gotc);
2024
2025         /* Rx Multicst packets */
2026         UPDATE_VF_STAT(E1000_VFMPRC,
2027             hw_stats->last_mprc, hw_stats->mprc);
2028
2029         /* Good Rx loopback packets */
2030         UPDATE_VF_STAT(E1000_VFGPRLBC,
2031             hw_stats->last_gprlbc, hw_stats->gprlbc);
2032
2033         /* Good Rx loopback octets */
2034         UPDATE_VF_STAT(E1000_VFGORLBC,
2035             hw_stats->last_gorlbc, hw_stats->gorlbc);
2036
2037         /* Good Tx loopback packets */
2038         UPDATE_VF_STAT(E1000_VFGPTLBC,
2039             hw_stats->last_gptlbc, hw_stats->gptlbc);
2040
2041         /* Good Tx loopback octets */
2042         UPDATE_VF_STAT(E1000_VFGOTLBC,
2043             hw_stats->last_gotlbc, hw_stats->gotlbc);
2044 }
2045
2046 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2047                                      struct rte_eth_xstat_name *xstats_names,
2048                                      __rte_unused unsigned limit)
2049 {
2050         unsigned i;
2051
2052         if (xstats_names != NULL)
2053                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2054                         snprintf(xstats_names[i].name,
2055                                 sizeof(xstats_names[i].name), "%s",
2056                                 rte_igbvf_stats_strings[i].name);
2057                 }
2058         return IGBVF_NB_XSTATS;
2059 }
2060
2061 static int
2062 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2063                      unsigned n)
2064 {
2065         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2066         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2067                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2068         unsigned i;
2069
2070         if (n < IGBVF_NB_XSTATS)
2071                 return IGBVF_NB_XSTATS;
2072
2073         igbvf_read_stats_registers(hw, hw_stats);
2074
2075         if (!xstats)
2076                 return 0;
2077
2078         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2079                 xstats[i].id = i;
2080                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2081                         rte_igbvf_stats_strings[i].offset);
2082         }
2083
2084         return IGBVF_NB_XSTATS;
2085 }
2086
2087 static int
2088 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2089 {
2090         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2091         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2092                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2093
2094         igbvf_read_stats_registers(hw, hw_stats);
2095
2096         if (rte_stats == NULL)
2097                 return -EINVAL;
2098
2099         rte_stats->ipackets = hw_stats->gprc;
2100         rte_stats->ibytes = hw_stats->gorc;
2101         rte_stats->opackets = hw_stats->gptc;
2102         rte_stats->obytes = hw_stats->gotc;
2103         return 0;
2104 }
2105
2106 static void
2107 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2108 {
2109         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2110                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2111
2112         /* Sync HW register to the last stats */
2113         eth_igbvf_stats_get(dev, NULL);
2114
2115         /* reset HW current stats*/
2116         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2117                offsetof(struct e1000_vf_stats, gprc));
2118 }
2119
2120 static int
2121 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2122                        size_t fw_size)
2123 {
2124         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2125         struct e1000_fw_version fw;
2126         int ret;
2127
2128         e1000_get_fw_version(hw, &fw);
2129
2130         switch (hw->mac.type) {
2131         case e1000_i210:
2132         case e1000_i211:
2133                 if (!(e1000_get_flash_presence_i210(hw))) {
2134                         ret = snprintf(fw_version, fw_size,
2135                                  "%2d.%2d-%d",
2136                                  fw.invm_major, fw.invm_minor,
2137                                  fw.invm_img_type);
2138                         break;
2139                 }
2140                 /* fall through */
2141         default:
2142                 /* if option rom is valid, display its version too */
2143                 if (fw.or_valid) {
2144                         ret = snprintf(fw_version, fw_size,
2145                                  "%d.%d, 0x%08x, %d.%d.%d",
2146                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2147                                  fw.or_major, fw.or_build, fw.or_patch);
2148                 /* no option rom */
2149                 } else {
2150                         if (fw.etrack_id != 0X0000) {
2151                                 ret = snprintf(fw_version, fw_size,
2152                                          "%d.%d, 0x%08x",
2153                                          fw.eep_major, fw.eep_minor,
2154                                          fw.etrack_id);
2155                         } else {
2156                                 ret = snprintf(fw_version, fw_size,
2157                                          "%d.%d.%d",
2158                                          fw.eep_major, fw.eep_minor,
2159                                          fw.eep_build);
2160                         }
2161                 }
2162                 break;
2163         }
2164
2165         ret += 1; /* add the size of '\0' */
2166         if (fw_size < (u32)ret)
2167                 return ret;
2168         else
2169                 return 0;
2170 }
2171
2172 static void
2173 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2174 {
2175         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2176
2177         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2178         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2179         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2180         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2181         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2182                                     dev_info->rx_queue_offload_capa;
2183         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2184         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2185                                     dev_info->tx_queue_offload_capa;
2186
2187         switch (hw->mac.type) {
2188         case e1000_82575:
2189                 dev_info->max_rx_queues = 4;
2190                 dev_info->max_tx_queues = 4;
2191                 dev_info->max_vmdq_pools = 0;
2192                 break;
2193
2194         case e1000_82576:
2195                 dev_info->max_rx_queues = 16;
2196                 dev_info->max_tx_queues = 16;
2197                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2198                 dev_info->vmdq_queue_num = 16;
2199                 break;
2200
2201         case e1000_82580:
2202                 dev_info->max_rx_queues = 8;
2203                 dev_info->max_tx_queues = 8;
2204                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2205                 dev_info->vmdq_queue_num = 8;
2206                 break;
2207
2208         case e1000_i350:
2209                 dev_info->max_rx_queues = 8;
2210                 dev_info->max_tx_queues = 8;
2211                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2212                 dev_info->vmdq_queue_num = 8;
2213                 break;
2214
2215         case e1000_i354:
2216                 dev_info->max_rx_queues = 8;
2217                 dev_info->max_tx_queues = 8;
2218                 break;
2219
2220         case e1000_i210:
2221                 dev_info->max_rx_queues = 4;
2222                 dev_info->max_tx_queues = 4;
2223                 dev_info->max_vmdq_pools = 0;
2224                 break;
2225
2226         case e1000_i211:
2227                 dev_info->max_rx_queues = 2;
2228                 dev_info->max_tx_queues = 2;
2229                 dev_info->max_vmdq_pools = 0;
2230                 break;
2231
2232         default:
2233                 /* Should not happen */
2234                 break;
2235         }
2236         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2237         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2238         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2239
2240         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2241                 .rx_thresh = {
2242                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2243                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2244                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2245                 },
2246                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2247                 .rx_drop_en = 0,
2248                 .offloads = 0,
2249         };
2250
2251         dev_info->default_txconf = (struct rte_eth_txconf) {
2252                 .tx_thresh = {
2253                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2254                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2255                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2256                 },
2257                 .offloads = 0,
2258         };
2259
2260         dev_info->rx_desc_lim = rx_desc_lim;
2261         dev_info->tx_desc_lim = tx_desc_lim;
2262
2263         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2264                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2265                         ETH_LINK_SPEED_1G;
2266 }
2267
2268 static const uint32_t *
2269 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2270 {
2271         static const uint32_t ptypes[] = {
2272                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2273                 RTE_PTYPE_L2_ETHER,
2274                 RTE_PTYPE_L3_IPV4,
2275                 RTE_PTYPE_L3_IPV4_EXT,
2276                 RTE_PTYPE_L3_IPV6,
2277                 RTE_PTYPE_L3_IPV6_EXT,
2278                 RTE_PTYPE_L4_TCP,
2279                 RTE_PTYPE_L4_UDP,
2280                 RTE_PTYPE_L4_SCTP,
2281                 RTE_PTYPE_TUNNEL_IP,
2282                 RTE_PTYPE_INNER_L3_IPV6,
2283                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2284                 RTE_PTYPE_INNER_L4_TCP,
2285                 RTE_PTYPE_INNER_L4_UDP,
2286                 RTE_PTYPE_UNKNOWN
2287         };
2288
2289         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2290             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2291                 return ptypes;
2292         return NULL;
2293 }
2294
2295 static void
2296 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2297 {
2298         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2299
2300         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2301         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2302         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2303         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2304                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2305                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2306                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2307                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2308                                 DEV_TX_OFFLOAD_TCP_TSO;
2309         switch (hw->mac.type) {
2310         case e1000_vfadapt:
2311                 dev_info->max_rx_queues = 2;
2312                 dev_info->max_tx_queues = 2;
2313                 break;
2314         case e1000_vfadapt_i350:
2315                 dev_info->max_rx_queues = 1;
2316                 dev_info->max_tx_queues = 1;
2317                 break;
2318         default:
2319                 /* Should not happen */
2320                 break;
2321         }
2322
2323         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2324         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2325                                     dev_info->rx_queue_offload_capa;
2326         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2327         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2328                                     dev_info->tx_queue_offload_capa;
2329
2330         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2331                 .rx_thresh = {
2332                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2333                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2334                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2335                 },
2336                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2337                 .rx_drop_en = 0,
2338                 .offloads = 0,
2339         };
2340
2341         dev_info->default_txconf = (struct rte_eth_txconf) {
2342                 .tx_thresh = {
2343                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2344                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2345                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2346                 },
2347                 .offloads = 0,
2348         };
2349
2350         dev_info->rx_desc_lim = rx_desc_lim;
2351         dev_info->tx_desc_lim = tx_desc_lim;
2352 }
2353
2354 /* return 0 means link status changed, -1 means not changed */
2355 static int
2356 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2357 {
2358         struct e1000_hw *hw =
2359                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2360         struct rte_eth_link link;
2361         int link_check, count;
2362
2363         link_check = 0;
2364         hw->mac.get_link_status = 1;
2365
2366         /* possible wait-to-complete in up to 9 seconds */
2367         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2368                 /* Read the real link status */
2369                 switch (hw->phy.media_type) {
2370                 case e1000_media_type_copper:
2371                         /* Do the work to read phy */
2372                         e1000_check_for_link(hw);
2373                         link_check = !hw->mac.get_link_status;
2374                         break;
2375
2376                 case e1000_media_type_fiber:
2377                         e1000_check_for_link(hw);
2378                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2379                                       E1000_STATUS_LU);
2380                         break;
2381
2382                 case e1000_media_type_internal_serdes:
2383                         e1000_check_for_link(hw);
2384                         link_check = hw->mac.serdes_has_link;
2385                         break;
2386
2387                 /* VF device is type_unknown */
2388                 case e1000_media_type_unknown:
2389                         eth_igbvf_link_update(hw);
2390                         link_check = !hw->mac.get_link_status;
2391                         break;
2392
2393                 default:
2394                         break;
2395                 }
2396                 if (link_check || wait_to_complete == 0)
2397                         break;
2398                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2399         }
2400         memset(&link, 0, sizeof(link));
2401
2402         /* Now we check if a transition has happened */
2403         if (link_check) {
2404                 uint16_t duplex, speed;
2405                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2406                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2407                                 ETH_LINK_FULL_DUPLEX :
2408                                 ETH_LINK_HALF_DUPLEX;
2409                 link.link_speed = speed;
2410                 link.link_status = ETH_LINK_UP;
2411                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2412                                 ETH_LINK_SPEED_FIXED);
2413         } else if (!link_check) {
2414                 link.link_speed = 0;
2415                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2416                 link.link_status = ETH_LINK_DOWN;
2417                 link.link_autoneg = ETH_LINK_FIXED;
2418         }
2419
2420         return rte_eth_linkstatus_set(dev, &link);
2421 }
2422
2423 /*
2424  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2425  * For ASF and Pass Through versions of f/w this means
2426  * that the driver is loaded.
2427  */
2428 static void
2429 igb_hw_control_acquire(struct e1000_hw *hw)
2430 {
2431         uint32_t ctrl_ext;
2432
2433         /* Let firmware know the driver has taken over */
2434         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2435         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2436 }
2437
2438 /*
2439  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2440  * For ASF and Pass Through versions of f/w this means that the
2441  * driver is no longer loaded.
2442  */
2443 static void
2444 igb_hw_control_release(struct e1000_hw *hw)
2445 {
2446         uint32_t ctrl_ext;
2447
2448         /* Let firmware taken over control of h/w */
2449         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2450         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2451                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2452 }
2453
2454 /*
2455  * Bit of a misnomer, what this really means is
2456  * to enable OS management of the system... aka
2457  * to disable special hardware management features.
2458  */
2459 static void
2460 igb_init_manageability(struct e1000_hw *hw)
2461 {
2462         if (e1000_enable_mng_pass_thru(hw)) {
2463                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2464                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2465
2466                 /* disable hardware interception of ARP */
2467                 manc &= ~(E1000_MANC_ARP_EN);
2468
2469                 /* enable receiving management packets to the host */
2470                 manc |= E1000_MANC_EN_MNG2HOST;
2471                 manc2h |= 1 << 5;  /* Mng Port 623 */
2472                 manc2h |= 1 << 6;  /* Mng Port 664 */
2473                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2474                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2475         }
2476 }
2477
2478 static void
2479 igb_release_manageability(struct e1000_hw *hw)
2480 {
2481         if (e1000_enable_mng_pass_thru(hw)) {
2482                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2483
2484                 manc |= E1000_MANC_ARP_EN;
2485                 manc &= ~E1000_MANC_EN_MNG2HOST;
2486
2487                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2488         }
2489 }
2490
2491 static void
2492 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2493 {
2494         struct e1000_hw *hw =
2495                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2496         uint32_t rctl;
2497
2498         rctl = E1000_READ_REG(hw, E1000_RCTL);
2499         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2500         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2501 }
2502
2503 static void
2504 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2505 {
2506         struct e1000_hw *hw =
2507                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2508         uint32_t rctl;
2509
2510         rctl = E1000_READ_REG(hw, E1000_RCTL);
2511         rctl &= (~E1000_RCTL_UPE);
2512         if (dev->data->all_multicast == 1)
2513                 rctl |= E1000_RCTL_MPE;
2514         else
2515                 rctl &= (~E1000_RCTL_MPE);
2516         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2517 }
2518
2519 static void
2520 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2521 {
2522         struct e1000_hw *hw =
2523                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2524         uint32_t rctl;
2525
2526         rctl = E1000_READ_REG(hw, E1000_RCTL);
2527         rctl |= E1000_RCTL_MPE;
2528         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2529 }
2530
2531 static void
2532 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2533 {
2534         struct e1000_hw *hw =
2535                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2536         uint32_t rctl;
2537
2538         if (dev->data->promiscuous == 1)
2539                 return; /* must remain in all_multicast mode */
2540         rctl = E1000_READ_REG(hw, E1000_RCTL);
2541         rctl &= (~E1000_RCTL_MPE);
2542         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2543 }
2544
2545 static int
2546 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2547 {
2548         struct e1000_hw *hw =
2549                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2550         struct e1000_vfta * shadow_vfta =
2551                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2552         uint32_t vfta;
2553         uint32_t vid_idx;
2554         uint32_t vid_bit;
2555
2556         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2557                               E1000_VFTA_ENTRY_MASK);
2558         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2559         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2560         if (on)
2561                 vfta |= vid_bit;
2562         else
2563                 vfta &= ~vid_bit;
2564         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2565
2566         /* update local VFTA copy */
2567         shadow_vfta->vfta[vid_idx] = vfta;
2568
2569         return 0;
2570 }
2571
2572 static int
2573 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2574                       enum rte_vlan_type vlan_type,
2575                       uint16_t tpid)
2576 {
2577         struct e1000_hw *hw =
2578                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2579         uint32_t reg, qinq;
2580
2581         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2582         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2583
2584         /* only outer TPID of double VLAN can be configured*/
2585         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2586                 reg = E1000_READ_REG(hw, E1000_VET);
2587                 reg = (reg & (~E1000_VET_VET_EXT)) |
2588                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2589                 E1000_WRITE_REG(hw, E1000_VET, reg);
2590
2591                 return 0;
2592         }
2593
2594         /* all other TPID values are read-only*/
2595         PMD_DRV_LOG(ERR, "Not supported");
2596
2597         return -ENOTSUP;
2598 }
2599
2600 static void
2601 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2602 {
2603         struct e1000_hw *hw =
2604                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2605         uint32_t reg;
2606
2607         /* Filter Table Disable */
2608         reg = E1000_READ_REG(hw, E1000_RCTL);
2609         reg &= ~E1000_RCTL_CFIEN;
2610         reg &= ~E1000_RCTL_VFE;
2611         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2612 }
2613
2614 static void
2615 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2616 {
2617         struct e1000_hw *hw =
2618                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2619         struct e1000_vfta * shadow_vfta =
2620                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2621         uint32_t reg;
2622         int i;
2623
2624         /* Filter Table Enable, CFI not used for packet acceptance */
2625         reg = E1000_READ_REG(hw, E1000_RCTL);
2626         reg &= ~E1000_RCTL_CFIEN;
2627         reg |= E1000_RCTL_VFE;
2628         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2629
2630         /* restore VFTA table */
2631         for (i = 0; i < IGB_VFTA_SIZE; i++)
2632                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2633 }
2634
2635 static void
2636 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2637 {
2638         struct e1000_hw *hw =
2639                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2640         uint32_t reg;
2641
2642         /* VLAN Mode Disable */
2643         reg = E1000_READ_REG(hw, E1000_CTRL);
2644         reg &= ~E1000_CTRL_VME;
2645         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2646 }
2647
2648 static void
2649 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2650 {
2651         struct e1000_hw *hw =
2652                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2653         uint32_t reg;
2654
2655         /* VLAN Mode Enable */
2656         reg = E1000_READ_REG(hw, E1000_CTRL);
2657         reg |= E1000_CTRL_VME;
2658         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2659 }
2660
2661 static void
2662 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2663 {
2664         struct e1000_hw *hw =
2665                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2666         uint32_t reg;
2667
2668         /* CTRL_EXT: Extended VLAN */
2669         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2670         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2671         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2672
2673         /* Update maximum packet length */
2674         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2675                 E1000_WRITE_REG(hw, E1000_RLPML,
2676                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2677                                                 VLAN_TAG_SIZE);
2678 }
2679
2680 static void
2681 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2682 {
2683         struct e1000_hw *hw =
2684                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2685         uint32_t reg;
2686
2687         /* CTRL_EXT: Extended VLAN */
2688         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2689         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2690         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2691
2692         /* Update maximum packet length */
2693         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2694                 E1000_WRITE_REG(hw, E1000_RLPML,
2695                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2696                                                 2 * VLAN_TAG_SIZE);
2697 }
2698
2699 static int
2700 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2701 {
2702         struct rte_eth_rxmode *rxmode;
2703
2704         rxmode = &dev->data->dev_conf.rxmode;
2705         if(mask & ETH_VLAN_STRIP_MASK){
2706                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2707                         igb_vlan_hw_strip_enable(dev);
2708                 else
2709                         igb_vlan_hw_strip_disable(dev);
2710         }
2711
2712         if(mask & ETH_VLAN_FILTER_MASK){
2713                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2714                         igb_vlan_hw_filter_enable(dev);
2715                 else
2716                         igb_vlan_hw_filter_disable(dev);
2717         }
2718
2719         if(mask & ETH_VLAN_EXTEND_MASK){
2720                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2721                         igb_vlan_hw_extend_enable(dev);
2722                 else
2723                         igb_vlan_hw_extend_disable(dev);
2724         }
2725
2726         return 0;
2727 }
2728
2729
2730 /**
2731  * It enables the interrupt mask and then enable the interrupt.
2732  *
2733  * @param dev
2734  *  Pointer to struct rte_eth_dev.
2735  * @param on
2736  *  Enable or Disable
2737  *
2738  * @return
2739  *  - On success, zero.
2740  *  - On failure, a negative value.
2741  */
2742 static int
2743 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2744 {
2745         struct e1000_interrupt *intr =
2746                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2747
2748         if (on)
2749                 intr->mask |= E1000_ICR_LSC;
2750         else
2751                 intr->mask &= ~E1000_ICR_LSC;
2752
2753         return 0;
2754 }
2755
2756 /* It clears the interrupt causes and enables the interrupt.
2757  * It will be called once only during nic initialized.
2758  *
2759  * @param dev
2760  *  Pointer to struct rte_eth_dev.
2761  *
2762  * @return
2763  *  - On success, zero.
2764  *  - On failure, a negative value.
2765  */
2766 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2767 {
2768         uint32_t mask, regval;
2769         struct e1000_hw *hw =
2770                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2771         struct rte_eth_dev_info dev_info;
2772
2773         memset(&dev_info, 0, sizeof(dev_info));
2774         eth_igb_infos_get(dev, &dev_info);
2775
2776         mask = 0xFFFFFFFF >> (32 - dev_info.max_rx_queues);
2777         regval = E1000_READ_REG(hw, E1000_EIMS);
2778         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2779
2780         return 0;
2781 }
2782
2783 /*
2784  * It reads ICR and gets interrupt causes, check it and set a bit flag
2785  * to update link status.
2786  *
2787  * @param dev
2788  *  Pointer to struct rte_eth_dev.
2789  *
2790  * @return
2791  *  - On success, zero.
2792  *  - On failure, a negative value.
2793  */
2794 static int
2795 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2796 {
2797         uint32_t icr;
2798         struct e1000_hw *hw =
2799                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2800         struct e1000_interrupt *intr =
2801                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2802
2803         igb_intr_disable(hw);
2804
2805         /* read-on-clear nic registers here */
2806         icr = E1000_READ_REG(hw, E1000_ICR);
2807
2808         intr->flags = 0;
2809         if (icr & E1000_ICR_LSC) {
2810                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2811         }
2812
2813         if (icr & E1000_ICR_VMMB)
2814                 intr->flags |= E1000_FLAG_MAILBOX;
2815
2816         return 0;
2817 }
2818
2819 /*
2820  * It executes link_update after knowing an interrupt is prsent.
2821  *
2822  * @param dev
2823  *  Pointer to struct rte_eth_dev.
2824  *
2825  * @return
2826  *  - On success, zero.
2827  *  - On failure, a negative value.
2828  */
2829 static int
2830 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2831                          struct rte_intr_handle *intr_handle)
2832 {
2833         struct e1000_hw *hw =
2834                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2835         struct e1000_interrupt *intr =
2836                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2837         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2838         struct rte_eth_link link;
2839         int ret;
2840
2841         if (intr->flags & E1000_FLAG_MAILBOX) {
2842                 igb_pf_mbx_process(dev);
2843                 intr->flags &= ~E1000_FLAG_MAILBOX;
2844         }
2845
2846         igb_intr_enable(dev);
2847         rte_intr_enable(intr_handle);
2848
2849         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2850                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2851
2852                 /* set get_link_status to check register later */
2853                 hw->mac.get_link_status = 1;
2854                 ret = eth_igb_link_update(dev, 0);
2855
2856                 /* check if link has changed */
2857                 if (ret < 0)
2858                         return 0;
2859
2860                 rte_eth_linkstatus_get(dev, &link);
2861                 if (link.link_status) {
2862                         PMD_INIT_LOG(INFO,
2863                                      " Port %d: Link Up - speed %u Mbps - %s",
2864                                      dev->data->port_id,
2865                                      (unsigned)link.link_speed,
2866                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2867                                      "full-duplex" : "half-duplex");
2868                 } else {
2869                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2870                                      dev->data->port_id);
2871                 }
2872
2873                 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
2874                              pci_dev->addr.domain,
2875                              pci_dev->addr.bus,
2876                              pci_dev->addr.devid,
2877                              pci_dev->addr.function);
2878                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
2879                                               NULL);
2880         }
2881
2882         return 0;
2883 }
2884
2885 /**
2886  * Interrupt handler which shall be registered at first.
2887  *
2888  * @param handle
2889  *  Pointer to interrupt handle.
2890  * @param param
2891  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2892  *
2893  * @return
2894  *  void
2895  */
2896 static void
2897 eth_igb_interrupt_handler(void *param)
2898 {
2899         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2900
2901         eth_igb_interrupt_get_status(dev);
2902         eth_igb_interrupt_action(dev, dev->intr_handle);
2903 }
2904
2905 static int
2906 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2907 {
2908         uint32_t eicr;
2909         struct e1000_hw *hw =
2910                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2911         struct e1000_interrupt *intr =
2912                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2913
2914         igbvf_intr_disable(hw);
2915
2916         /* read-on-clear nic registers here */
2917         eicr = E1000_READ_REG(hw, E1000_EICR);
2918         intr->flags = 0;
2919
2920         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2921                 intr->flags |= E1000_FLAG_MAILBOX;
2922
2923         return 0;
2924 }
2925
2926 void igbvf_mbx_process(struct rte_eth_dev *dev)
2927 {
2928         struct e1000_hw *hw =
2929                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2930         struct e1000_mbx_info *mbx = &hw->mbx;
2931         u32 in_msg = 0;
2932
2933         /* peek the message first */
2934         in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2935
2936         /* PF reset VF event */
2937         if (in_msg == E1000_PF_CONTROL_MSG) {
2938                 /* dummy mbx read to ack pf */
2939                 if (mbx->ops.read(hw, &in_msg, 1, 0))
2940                         return;
2941                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2942                                               NULL);
2943         }
2944 }
2945
2946 static int
2947 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2948 {
2949         struct e1000_interrupt *intr =
2950                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2951
2952         if (intr->flags & E1000_FLAG_MAILBOX) {
2953                 igbvf_mbx_process(dev);
2954                 intr->flags &= ~E1000_FLAG_MAILBOX;
2955         }
2956
2957         igbvf_intr_enable(dev);
2958         rte_intr_enable(intr_handle);
2959
2960         return 0;
2961 }
2962
2963 static void
2964 eth_igbvf_interrupt_handler(void *param)
2965 {
2966         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2967
2968         eth_igbvf_interrupt_get_status(dev);
2969         eth_igbvf_interrupt_action(dev, dev->intr_handle);
2970 }
2971
2972 static int
2973 eth_igb_led_on(struct rte_eth_dev *dev)
2974 {
2975         struct e1000_hw *hw;
2976
2977         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2978         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2979 }
2980
2981 static int
2982 eth_igb_led_off(struct rte_eth_dev *dev)
2983 {
2984         struct e1000_hw *hw;
2985
2986         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2987         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2988 }
2989
2990 static int
2991 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
2992 {
2993         struct e1000_hw *hw;
2994         uint32_t ctrl;
2995         int tx_pause;
2996         int rx_pause;
2997
2998         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2999         fc_conf->pause_time = hw->fc.pause_time;
3000         fc_conf->high_water = hw->fc.high_water;
3001         fc_conf->low_water = hw->fc.low_water;
3002         fc_conf->send_xon = hw->fc.send_xon;
3003         fc_conf->autoneg = hw->mac.autoneg;
3004
3005         /*
3006          * Return rx_pause and tx_pause status according to actual setting of
3007          * the TFCE and RFCE bits in the CTRL register.
3008          */
3009         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3010         if (ctrl & E1000_CTRL_TFCE)
3011                 tx_pause = 1;
3012         else
3013                 tx_pause = 0;
3014
3015         if (ctrl & E1000_CTRL_RFCE)
3016                 rx_pause = 1;
3017         else
3018                 rx_pause = 0;
3019
3020         if (rx_pause && tx_pause)
3021                 fc_conf->mode = RTE_FC_FULL;
3022         else if (rx_pause)
3023                 fc_conf->mode = RTE_FC_RX_PAUSE;
3024         else if (tx_pause)
3025                 fc_conf->mode = RTE_FC_TX_PAUSE;
3026         else
3027                 fc_conf->mode = RTE_FC_NONE;
3028
3029         return 0;
3030 }
3031
3032 static int
3033 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3034 {
3035         struct e1000_hw *hw;
3036         int err;
3037         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3038                 e1000_fc_none,
3039                 e1000_fc_rx_pause,
3040                 e1000_fc_tx_pause,
3041                 e1000_fc_full
3042         };
3043         uint32_t rx_buf_size;
3044         uint32_t max_high_water;
3045         uint32_t rctl;
3046
3047         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3048         if (fc_conf->autoneg != hw->mac.autoneg)
3049                 return -ENOTSUP;
3050         rx_buf_size = igb_get_rx_buffer_size(hw);
3051         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3052
3053         /* At least reserve one Ethernet frame for watermark */
3054         max_high_water = rx_buf_size - ETHER_MAX_LEN;
3055         if ((fc_conf->high_water > max_high_water) ||
3056             (fc_conf->high_water < fc_conf->low_water)) {
3057                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3058                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3059                 return -EINVAL;
3060         }
3061
3062         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3063         hw->fc.pause_time     = fc_conf->pause_time;
3064         hw->fc.high_water     = fc_conf->high_water;
3065         hw->fc.low_water      = fc_conf->low_water;
3066         hw->fc.send_xon       = fc_conf->send_xon;
3067
3068         err = e1000_setup_link_generic(hw);
3069         if (err == E1000_SUCCESS) {
3070
3071                 /* check if we want to forward MAC frames - driver doesn't have native
3072                  * capability to do that, so we'll write the registers ourselves */
3073
3074                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3075
3076                 /* set or clear MFLCN.PMCF bit depending on configuration */
3077                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3078                         rctl |= E1000_RCTL_PMCF;
3079                 else
3080                         rctl &= ~E1000_RCTL_PMCF;
3081
3082                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3083                 E1000_WRITE_FLUSH(hw);
3084
3085                 return 0;
3086         }
3087
3088         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3089         return -EIO;
3090 }
3091
3092 #define E1000_RAH_POOLSEL_SHIFT      (18)
3093 static int
3094 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
3095                 uint32_t index, uint32_t pool)
3096 {
3097         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3098         uint32_t rah;
3099
3100         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3101         rah = E1000_READ_REG(hw, E1000_RAH(index));
3102         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3103         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3104         return 0;
3105 }
3106
3107 static void
3108 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3109 {
3110         uint8_t addr[ETHER_ADDR_LEN];
3111         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3112
3113         memset(addr, 0, sizeof(addr));
3114
3115         e1000_rar_set(hw, addr, index);
3116 }
3117
3118 static int
3119 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3120                                 struct ether_addr *addr)
3121 {
3122         eth_igb_rar_clear(dev, 0);
3123         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3124
3125         return 0;
3126 }
3127 /*
3128  * Virtual Function operations
3129  */
3130 static void
3131 igbvf_intr_disable(struct e1000_hw *hw)
3132 {
3133         PMD_INIT_FUNC_TRACE();
3134
3135         /* Clear interrupt mask to stop from interrupts being generated */
3136         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3137
3138         E1000_WRITE_FLUSH(hw);
3139 }
3140
3141 static void
3142 igbvf_stop_adapter(struct rte_eth_dev *dev)
3143 {
3144         u32 reg_val;
3145         u16 i;
3146         struct rte_eth_dev_info dev_info;
3147         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3148
3149         memset(&dev_info, 0, sizeof(dev_info));
3150         eth_igbvf_infos_get(dev, &dev_info);
3151
3152         /* Clear interrupt mask to stop from interrupts being generated */
3153         igbvf_intr_disable(hw);
3154
3155         /* Clear any pending interrupts, flush previous writes */
3156         E1000_READ_REG(hw, E1000_EICR);
3157
3158         /* Disable the transmit unit.  Each queue must be disabled. */
3159         for (i = 0; i < dev_info.max_tx_queues; i++)
3160                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3161
3162         /* Disable the receive unit by stopping each queue */
3163         for (i = 0; i < dev_info.max_rx_queues; i++) {
3164                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3165                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3166                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3167                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3168                         ;
3169         }
3170
3171         /* flush all queues disables */
3172         E1000_WRITE_FLUSH(hw);
3173         msec_delay(2);
3174 }
3175
3176 static int eth_igbvf_link_update(struct e1000_hw *hw)
3177 {
3178         struct e1000_mbx_info *mbx = &hw->mbx;
3179         struct e1000_mac_info *mac = &hw->mac;
3180         int ret_val = E1000_SUCCESS;
3181
3182         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3183
3184         /*
3185          * We only want to run this if there has been a rst asserted.
3186          * in this case that could mean a link change, device reset,
3187          * or a virtual function reset
3188          */
3189
3190         /* If we were hit with a reset or timeout drop the link */
3191         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3192                 mac->get_link_status = TRUE;
3193
3194         if (!mac->get_link_status)
3195                 goto out;
3196
3197         /* if link status is down no point in checking to see if pf is up */
3198         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3199                 goto out;
3200
3201         /* if we passed all the tests above then the link is up and we no
3202          * longer need to check for link */
3203         mac->get_link_status = FALSE;
3204
3205 out:
3206         return ret_val;
3207 }
3208
3209
3210 static int
3211 igbvf_dev_configure(struct rte_eth_dev *dev)
3212 {
3213         struct rte_eth_conf* conf = &dev->data->dev_conf;
3214
3215         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3216                      dev->data->port_id);
3217
3218         /*
3219          * VF has no ability to enable/disable HW CRC
3220          * Keep the persistent behavior the same as Host PF
3221          */
3222 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3223         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3224                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3225                 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3226         }
3227 #else
3228         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3229                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3230                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3231         }
3232 #endif
3233
3234         return 0;
3235 }
3236
3237 static int
3238 igbvf_dev_start(struct rte_eth_dev *dev)
3239 {
3240         struct e1000_hw *hw =
3241                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3242         struct e1000_adapter *adapter =
3243                 E1000_DEV_PRIVATE(dev->data->dev_private);
3244         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3245         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3246         int ret;
3247         uint32_t intr_vector = 0;
3248
3249         PMD_INIT_FUNC_TRACE();
3250
3251         hw->mac.ops.reset_hw(hw);
3252         adapter->stopped = 0;
3253
3254         /* Set all vfta */
3255         igbvf_set_vfta_all(dev,1);
3256
3257         eth_igbvf_tx_init(dev);
3258
3259         /* This can fail when allocating mbufs for descriptor rings */
3260         ret = eth_igbvf_rx_init(dev);
3261         if (ret) {
3262                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3263                 igb_dev_clear_queues(dev);
3264                 return ret;
3265         }
3266
3267         /* check and configure queue intr-vector mapping */
3268         if (rte_intr_cap_multiple(intr_handle) &&
3269             dev->data->dev_conf.intr_conf.rxq) {
3270                 intr_vector = dev->data->nb_rx_queues;
3271                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3272                 if (ret)
3273                         return ret;
3274         }
3275
3276         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3277                 intr_handle->intr_vec =
3278                         rte_zmalloc("intr_vec",
3279                                     dev->data->nb_rx_queues * sizeof(int), 0);
3280                 if (!intr_handle->intr_vec) {
3281                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3282                                      " intr_vec", dev->data->nb_rx_queues);
3283                         return -ENOMEM;
3284                 }
3285         }
3286
3287         eth_igbvf_configure_msix_intr(dev);
3288
3289         /* enable uio/vfio intr/eventfd mapping */
3290         rte_intr_enable(intr_handle);
3291
3292         /* resume enabled intr since hw reset */
3293         igbvf_intr_enable(dev);
3294
3295         return 0;
3296 }
3297
3298 static void
3299 igbvf_dev_stop(struct rte_eth_dev *dev)
3300 {
3301         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3302         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3303
3304         PMD_INIT_FUNC_TRACE();
3305
3306         igbvf_stop_adapter(dev);
3307
3308         /*
3309           * Clear what we set, but we still keep shadow_vfta to
3310           * restore after device starts
3311           */
3312         igbvf_set_vfta_all(dev,0);
3313
3314         igb_dev_clear_queues(dev);
3315
3316         /* disable intr eventfd mapping */
3317         rte_intr_disable(intr_handle);
3318
3319         /* Clean datapath event and queue/vec mapping */
3320         rte_intr_efd_disable(intr_handle);
3321         if (intr_handle->intr_vec) {
3322                 rte_free(intr_handle->intr_vec);
3323                 intr_handle->intr_vec = NULL;
3324         }
3325 }
3326
3327 static void
3328 igbvf_dev_close(struct rte_eth_dev *dev)
3329 {
3330         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3331         struct e1000_adapter *adapter =
3332                 E1000_DEV_PRIVATE(dev->data->dev_private);
3333         struct ether_addr addr;
3334
3335         PMD_INIT_FUNC_TRACE();
3336
3337         e1000_reset_hw(hw);
3338
3339         igbvf_dev_stop(dev);
3340         adapter->stopped = 1;
3341         igb_dev_free_queues(dev);
3342
3343         /**
3344          * reprogram the RAR with a zero mac address,
3345          * to ensure that the VF traffic goes to the PF
3346          * after stop, close and detach of the VF.
3347          **/
3348
3349         memset(&addr, 0, sizeof(addr));
3350         igbvf_default_mac_addr_set(dev, &addr);
3351 }
3352
3353 static void
3354 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3355 {
3356         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3357
3358         /* Set both unicast and multicast promisc */
3359         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3360 }
3361
3362 static void
3363 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3364 {
3365         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3366
3367         /* If in allmulticast mode leave multicast promisc */
3368         if (dev->data->all_multicast == 1)
3369                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3370         else
3371                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3372 }
3373
3374 static void
3375 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3376 {
3377         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3378
3379         /* In promiscuous mode multicast promisc already set */
3380         if (dev->data->promiscuous == 0)
3381                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3382 }
3383
3384 static void
3385 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3386 {
3387         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3388
3389         /* In promiscuous mode leave multicast promisc enabled */
3390         if (dev->data->promiscuous == 0)
3391                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3392 }
3393
3394 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3395 {
3396         struct e1000_mbx_info *mbx = &hw->mbx;
3397         uint32_t msgbuf[2];
3398         s32 err;
3399
3400         /* After set vlan, vlan strip will also be enabled in igb driver*/
3401         msgbuf[0] = E1000_VF_SET_VLAN;
3402         msgbuf[1] = vid;
3403         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3404         if (on)
3405                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3406
3407         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3408         if (err)
3409                 goto mbx_err;
3410
3411         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3412         if (err)
3413                 goto mbx_err;
3414
3415         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3416         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3417                 err = -EINVAL;
3418
3419 mbx_err:
3420         return err;
3421 }
3422
3423 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3424 {
3425         struct e1000_hw *hw =
3426                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3427         struct e1000_vfta * shadow_vfta =
3428                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3429         int i = 0, j = 0, vfta = 0, mask = 1;
3430
3431         for (i = 0; i < IGB_VFTA_SIZE; i++){
3432                 vfta = shadow_vfta->vfta[i];
3433                 if(vfta){
3434                         mask = 1;
3435                         for (j = 0; j < 32; j++){
3436                                 if(vfta & mask)
3437                                         igbvf_set_vfta(hw,
3438                                                 (uint16_t)((i<<5)+j), on);
3439                                 mask<<=1;
3440                         }
3441                 }
3442         }
3443
3444 }
3445
3446 static int
3447 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3448 {
3449         struct e1000_hw *hw =
3450                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3451         struct e1000_vfta * shadow_vfta =
3452                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3453         uint32_t vid_idx = 0;
3454         uint32_t vid_bit = 0;
3455         int ret = 0;
3456
3457         PMD_INIT_FUNC_TRACE();
3458
3459         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3460         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3461         if(ret){
3462                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3463                 return ret;
3464         }
3465         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3466         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3467
3468         /*Save what we set and retore it after device reset*/
3469         if (on)
3470                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3471         else
3472                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3473
3474         return 0;
3475 }
3476
3477 static int
3478 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr)
3479 {
3480         struct e1000_hw *hw =
3481                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3482
3483         /* index is not used by rar_set() */
3484         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3485         return 0;
3486 }
3487
3488
3489 static int
3490 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3491                         struct rte_eth_rss_reta_entry64 *reta_conf,
3492                         uint16_t reta_size)
3493 {
3494         uint8_t i, j, mask;
3495         uint32_t reta, r;
3496         uint16_t idx, shift;
3497         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3498
3499         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3500                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3501                         "(%d) doesn't match the number hardware can supported "
3502                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3503                 return -EINVAL;
3504         }
3505
3506         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3507                 idx = i / RTE_RETA_GROUP_SIZE;
3508                 shift = i % RTE_RETA_GROUP_SIZE;
3509                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3510                                                 IGB_4_BIT_MASK);
3511                 if (!mask)
3512                         continue;
3513                 if (mask == IGB_4_BIT_MASK)
3514                         r = 0;
3515                 else
3516                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3517                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3518                         if (mask & (0x1 << j))
3519                                 reta |= reta_conf[idx].reta[shift + j] <<
3520                                                         (CHAR_BIT * j);
3521                         else
3522                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3523                 }
3524                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3525         }
3526
3527         return 0;
3528 }
3529
3530 static int
3531 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3532                        struct rte_eth_rss_reta_entry64 *reta_conf,
3533                        uint16_t reta_size)
3534 {
3535         uint8_t i, j, mask;
3536         uint32_t reta;
3537         uint16_t idx, shift;
3538         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3539
3540         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3541                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3542                         "(%d) doesn't match the number hardware can supported "
3543                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3544                 return -EINVAL;
3545         }
3546
3547         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3548                 idx = i / RTE_RETA_GROUP_SIZE;
3549                 shift = i % RTE_RETA_GROUP_SIZE;
3550                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3551                                                 IGB_4_BIT_MASK);
3552                 if (!mask)
3553                         continue;
3554                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3555                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3556                         if (mask & (0x1 << j))
3557                                 reta_conf[idx].reta[shift + j] =
3558                                         ((reta >> (CHAR_BIT * j)) &
3559                                                 IGB_8_BIT_MASK);
3560                 }
3561         }
3562
3563         return 0;
3564 }
3565
3566 int
3567 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3568                         struct rte_eth_syn_filter *filter,
3569                         bool add)
3570 {
3571         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3572         struct e1000_filter_info *filter_info =
3573                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3574         uint32_t synqf, rfctl;
3575
3576         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3577                 return -EINVAL;
3578
3579         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3580
3581         if (add) {
3582                 if (synqf & E1000_SYN_FILTER_ENABLE)
3583                         return -EINVAL;
3584
3585                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3586                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3587
3588                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3589                 if (filter->hig_pri)
3590                         rfctl |= E1000_RFCTL_SYNQFP;
3591                 else
3592                         rfctl &= ~E1000_RFCTL_SYNQFP;
3593
3594                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3595         } else {
3596                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3597                         return -ENOENT;
3598                 synqf = 0;
3599         }
3600
3601         filter_info->syn_info = synqf;
3602         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3603         E1000_WRITE_FLUSH(hw);
3604         return 0;
3605 }
3606
3607 static int
3608 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
3609                         struct rte_eth_syn_filter *filter)
3610 {
3611         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3612         uint32_t synqf, rfctl;
3613
3614         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3615         if (synqf & E1000_SYN_FILTER_ENABLE) {
3616                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3617                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
3618                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
3619                                 E1000_SYN_FILTER_QUEUE_SHIFT);
3620                 return 0;
3621         }
3622
3623         return -ENOENT;
3624 }
3625
3626 static int
3627 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
3628                         enum rte_filter_op filter_op,
3629                         void *arg)
3630 {
3631         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3632         int ret;
3633
3634         MAC_TYPE_FILTER_SUP(hw->mac.type);
3635
3636         if (filter_op == RTE_ETH_FILTER_NOP)
3637                 return 0;
3638
3639         if (arg == NULL) {
3640                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3641                             filter_op);
3642                 return -EINVAL;
3643         }
3644
3645         switch (filter_op) {
3646         case RTE_ETH_FILTER_ADD:
3647                 ret = eth_igb_syn_filter_set(dev,
3648                                 (struct rte_eth_syn_filter *)arg,
3649                                 TRUE);
3650                 break;
3651         case RTE_ETH_FILTER_DELETE:
3652                 ret = eth_igb_syn_filter_set(dev,
3653                                 (struct rte_eth_syn_filter *)arg,
3654                                 FALSE);
3655                 break;
3656         case RTE_ETH_FILTER_GET:
3657                 ret = eth_igb_syn_filter_get(dev,
3658                                 (struct rte_eth_syn_filter *)arg);
3659                 break;
3660         default:
3661                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3662                 ret = -EINVAL;
3663                 break;
3664         }
3665
3666         return ret;
3667 }
3668
3669 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3670 static inline int
3671 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3672                         struct e1000_2tuple_filter_info *filter_info)
3673 {
3674         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3675                 return -EINVAL;
3676         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3677                 return -EINVAL;  /* filter index is out of range. */
3678         if (filter->tcp_flags > TCP_FLAG_ALL)
3679                 return -EINVAL;  /* flags is invalid. */
3680
3681         switch (filter->dst_port_mask) {
3682         case UINT16_MAX:
3683                 filter_info->dst_port_mask = 0;
3684                 filter_info->dst_port = filter->dst_port;
3685                 break;
3686         case 0:
3687                 filter_info->dst_port_mask = 1;
3688                 break;
3689         default:
3690                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3691                 return -EINVAL;
3692         }
3693
3694         switch (filter->proto_mask) {
3695         case UINT8_MAX:
3696                 filter_info->proto_mask = 0;
3697                 filter_info->proto = filter->proto;
3698                 break;
3699         case 0:
3700                 filter_info->proto_mask = 1;
3701                 break;
3702         default:
3703                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3704                 return -EINVAL;
3705         }
3706
3707         filter_info->priority = (uint8_t)filter->priority;
3708         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3709                 filter_info->tcp_flags = filter->tcp_flags;
3710         else
3711                 filter_info->tcp_flags = 0;
3712
3713         return 0;
3714 }
3715
3716 static inline struct e1000_2tuple_filter *
3717 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3718                         struct e1000_2tuple_filter_info *key)
3719 {
3720         struct e1000_2tuple_filter *it;
3721
3722         TAILQ_FOREACH(it, filter_list, entries) {
3723                 if (memcmp(key, &it->filter_info,
3724                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3725                         return it;
3726                 }
3727         }
3728         return NULL;
3729 }
3730
3731 /* inject a igb 2tuple filter to HW */
3732 static inline void
3733 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3734                            struct e1000_2tuple_filter *filter)
3735 {
3736         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3737         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3738         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3739         int i;
3740
3741         i = filter->index;
3742         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3743         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3744                 imir |= E1000_IMIR_PORT_BP;
3745         else
3746                 imir &= ~E1000_IMIR_PORT_BP;
3747
3748         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3749
3750         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3751         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3752         ttqf |= (uint32_t)(filter->filter_info.proto &
3753                                                 E1000_TTQF_PROTOCOL_MASK);
3754         if (filter->filter_info.proto_mask == 0)
3755                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3756
3757         /* tcp flags bits setting. */
3758         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
3759                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
3760                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3761                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
3762                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3763                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
3764                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3765                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
3766                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3767                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
3768                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3769                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
3770                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3771         } else {
3772                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3773         }
3774         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3775         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3776         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3777 }
3778
3779 /*
3780  * igb_add_2tuple_filter - add a 2tuple filter
3781  *
3782  * @param
3783  * dev: Pointer to struct rte_eth_dev.
3784  * ntuple_filter: ponter to the filter that will be added.
3785  *
3786  * @return
3787  *    - On success, zero.
3788  *    - On failure, a negative value.
3789  */
3790 static int
3791 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3792                         struct rte_eth_ntuple_filter *ntuple_filter)
3793 {
3794         struct e1000_filter_info *filter_info =
3795                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3796         struct e1000_2tuple_filter *filter;
3797         int i, ret;
3798
3799         filter = rte_zmalloc("e1000_2tuple_filter",
3800                         sizeof(struct e1000_2tuple_filter), 0);
3801         if (filter == NULL)
3802                 return -ENOMEM;
3803
3804         ret = ntuple_filter_to_2tuple(ntuple_filter,
3805                                       &filter->filter_info);
3806         if (ret < 0) {
3807                 rte_free(filter);
3808                 return ret;
3809         }
3810         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3811                                          &filter->filter_info) != NULL) {
3812                 PMD_DRV_LOG(ERR, "filter exists.");
3813                 rte_free(filter);
3814                 return -EEXIST;
3815         }
3816         filter->queue = ntuple_filter->queue;
3817
3818         /*
3819          * look for an unused 2tuple filter index,
3820          * and insert the filter to list.
3821          */
3822         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3823                 if (!(filter_info->twotuple_mask & (1 << i))) {
3824                         filter_info->twotuple_mask |= 1 << i;
3825                         filter->index = i;
3826                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3827                                           filter,
3828                                           entries);
3829                         break;
3830                 }
3831         }
3832         if (i >= E1000_MAX_TTQF_FILTERS) {
3833                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3834                 rte_free(filter);
3835                 return -ENOSYS;
3836         }
3837
3838         igb_inject_2uple_filter(dev, filter);
3839         return 0;
3840 }
3841
3842 int
3843 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3844                         struct e1000_2tuple_filter *filter)
3845 {
3846         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3847         struct e1000_filter_info *filter_info =
3848                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3849
3850         filter_info->twotuple_mask &= ~(1 << filter->index);
3851         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3852         rte_free(filter);
3853
3854         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3855         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3856         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3857         return 0;
3858 }
3859
3860 /*
3861  * igb_remove_2tuple_filter - remove a 2tuple filter
3862  *
3863  * @param
3864  * dev: Pointer to struct rte_eth_dev.
3865  * ntuple_filter: ponter to the filter that will be removed.
3866  *
3867  * @return
3868  *    - On success, zero.
3869  *    - On failure, a negative value.
3870  */
3871 static int
3872 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3873                         struct rte_eth_ntuple_filter *ntuple_filter)
3874 {
3875         struct e1000_filter_info *filter_info =
3876                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3877         struct e1000_2tuple_filter_info filter_2tuple;
3878         struct e1000_2tuple_filter *filter;
3879         int ret;
3880
3881         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3882         ret = ntuple_filter_to_2tuple(ntuple_filter,
3883                                       &filter_2tuple);
3884         if (ret < 0)
3885                 return ret;
3886
3887         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3888                                          &filter_2tuple);
3889         if (filter == NULL) {
3890                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3891                 return -ENOENT;
3892         }
3893
3894         igb_delete_2tuple_filter(dev, filter);
3895
3896         return 0;
3897 }
3898
3899 /* inject a igb flex filter to HW */
3900 static inline void
3901 igb_inject_flex_filter(struct rte_eth_dev *dev,
3902                            struct e1000_flex_filter *filter)
3903 {
3904         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3905         uint32_t wufc, queueing;
3906         uint32_t reg_off;
3907         uint8_t i, j = 0;
3908
3909         wufc = E1000_READ_REG(hw, E1000_WUFC);
3910         if (filter->index < E1000_MAX_FHFT)
3911                 reg_off = E1000_FHFT(filter->index);
3912         else
3913                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3914
3915         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3916                         (E1000_WUFC_FLX0 << filter->index));
3917         queueing = filter->filter_info.len |
3918                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3919                 (filter->filter_info.priority <<
3920                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3921         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3922                         queueing);
3923
3924         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3925                 E1000_WRITE_REG(hw, reg_off,
3926                                 filter->filter_info.dwords[j]);
3927                 reg_off += sizeof(uint32_t);
3928                 E1000_WRITE_REG(hw, reg_off,
3929                                 filter->filter_info.dwords[++j]);
3930                 reg_off += sizeof(uint32_t);
3931                 E1000_WRITE_REG(hw, reg_off,
3932                         (uint32_t)filter->filter_info.mask[i]);
3933                 reg_off += sizeof(uint32_t) * 2;
3934                 ++j;
3935         }
3936 }
3937
3938 static inline struct e1000_flex_filter *
3939 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3940                         struct e1000_flex_filter_info *key)
3941 {
3942         struct e1000_flex_filter *it;
3943
3944         TAILQ_FOREACH(it, filter_list, entries) {
3945                 if (memcmp(key, &it->filter_info,
3946                         sizeof(struct e1000_flex_filter_info)) == 0)
3947                         return it;
3948         }
3949
3950         return NULL;
3951 }
3952
3953 /* remove a flex byte filter
3954  * @param
3955  * dev: Pointer to struct rte_eth_dev.
3956  * filter: the pointer of the filter will be removed.
3957  */
3958 void
3959 igb_remove_flex_filter(struct rte_eth_dev *dev,
3960                         struct e1000_flex_filter *filter)
3961 {
3962         struct e1000_filter_info *filter_info =
3963                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3964         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3965         uint32_t wufc, i;
3966         uint32_t reg_off;
3967
3968         wufc = E1000_READ_REG(hw, E1000_WUFC);
3969         if (filter->index < E1000_MAX_FHFT)
3970                 reg_off = E1000_FHFT(filter->index);
3971         else
3972                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3973
3974         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
3975                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
3976
3977         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
3978                 (~(E1000_WUFC_FLX0 << filter->index)));
3979
3980         filter_info->flex_mask &= ~(1 << filter->index);
3981         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
3982         rte_free(filter);
3983 }
3984
3985 int
3986 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
3987                         struct rte_eth_flex_filter *filter,
3988                         bool add)
3989 {
3990         struct e1000_filter_info *filter_info =
3991                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3992         struct e1000_flex_filter *flex_filter, *it;
3993         uint32_t mask;
3994         uint8_t shift, i;
3995
3996         flex_filter = rte_zmalloc("e1000_flex_filter",
3997                         sizeof(struct e1000_flex_filter), 0);
3998         if (flex_filter == NULL)
3999                 return -ENOMEM;
4000
4001         flex_filter->filter_info.len = filter->len;
4002         flex_filter->filter_info.priority = filter->priority;
4003         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4004         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4005                 mask = 0;
4006                 /* reverse bits in flex filter's mask*/
4007                 for (shift = 0; shift < CHAR_BIT; shift++) {
4008                         if (filter->mask[i] & (0x01 << shift))
4009                                 mask |= (0x80 >> shift);
4010                 }
4011                 flex_filter->filter_info.mask[i] = mask;
4012         }
4013
4014         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4015                                 &flex_filter->filter_info);
4016         if (it == NULL && !add) {
4017                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4018                 rte_free(flex_filter);
4019                 return -ENOENT;
4020         }
4021         if (it != NULL && add) {
4022                 PMD_DRV_LOG(ERR, "filter exists.");
4023                 rte_free(flex_filter);
4024                 return -EEXIST;
4025         }
4026
4027         if (add) {
4028                 flex_filter->queue = filter->queue;
4029                 /*
4030                  * look for an unused flex filter index
4031                  * and insert the filter into the list.
4032                  */
4033                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4034                         if (!(filter_info->flex_mask & (1 << i))) {
4035                                 filter_info->flex_mask |= 1 << i;
4036                                 flex_filter->index = i;
4037                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4038                                         flex_filter,
4039                                         entries);
4040                                 break;
4041                         }
4042                 }
4043                 if (i >= E1000_MAX_FLEX_FILTERS) {
4044                         PMD_DRV_LOG(ERR, "flex filters are full.");
4045                         rte_free(flex_filter);
4046                         return -ENOSYS;
4047                 }
4048
4049                 igb_inject_flex_filter(dev, flex_filter);
4050
4051         } else {
4052                 igb_remove_flex_filter(dev, it);
4053                 rte_free(flex_filter);
4054         }
4055
4056         return 0;
4057 }
4058
4059 static int
4060 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
4061                         struct rte_eth_flex_filter *filter)
4062 {
4063         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4064         struct e1000_filter_info *filter_info =
4065                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4066         struct e1000_flex_filter flex_filter, *it;
4067         uint32_t wufc, queueing, wufc_en = 0;
4068
4069         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
4070         flex_filter.filter_info.len = filter->len;
4071         flex_filter.filter_info.priority = filter->priority;
4072         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
4073         memcpy(flex_filter.filter_info.mask, filter->mask,
4074                         RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT);
4075
4076         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4077                                 &flex_filter.filter_info);
4078         if (it == NULL) {
4079                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4080                 return -ENOENT;
4081         }
4082
4083         wufc = E1000_READ_REG(hw, E1000_WUFC);
4084         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
4085
4086         if ((wufc & wufc_en) == wufc_en) {
4087                 uint32_t reg_off = 0;
4088                 if (it->index < E1000_MAX_FHFT)
4089                         reg_off = E1000_FHFT(it->index);
4090                 else
4091                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
4092
4093                 queueing = E1000_READ_REG(hw,
4094                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
4095                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
4096                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
4097                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
4098                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
4099                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
4100                 return 0;
4101         }
4102         return -ENOENT;
4103 }
4104
4105 static int
4106 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
4107                         enum rte_filter_op filter_op,
4108                         void *arg)
4109 {
4110         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4111         struct rte_eth_flex_filter *filter;
4112         int ret = 0;
4113
4114         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
4115
4116         if (filter_op == RTE_ETH_FILTER_NOP)
4117                 return ret;
4118
4119         if (arg == NULL) {
4120                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
4121                             filter_op);
4122                 return -EINVAL;
4123         }
4124
4125         filter = (struct rte_eth_flex_filter *)arg;
4126         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
4127             || filter->len % sizeof(uint64_t) != 0) {
4128                 PMD_DRV_LOG(ERR, "filter's length is out of range");
4129                 return -EINVAL;
4130         }
4131         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
4132                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
4133                 return -EINVAL;
4134         }
4135
4136         switch (filter_op) {
4137         case RTE_ETH_FILTER_ADD:
4138                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
4139                 break;
4140         case RTE_ETH_FILTER_DELETE:
4141                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
4142                 break;
4143         case RTE_ETH_FILTER_GET:
4144                 ret = eth_igb_get_flex_filter(dev, filter);
4145                 break;
4146         default:
4147                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
4148                 ret = -EINVAL;
4149                 break;
4150         }
4151
4152         return ret;
4153 }
4154
4155 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4156 static inline int
4157 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4158                         struct e1000_5tuple_filter_info *filter_info)
4159 {
4160         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4161                 return -EINVAL;
4162         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4163                 return -EINVAL;  /* filter index is out of range. */
4164         if (filter->tcp_flags > TCP_FLAG_ALL)
4165                 return -EINVAL;  /* flags is invalid. */
4166
4167         switch (filter->dst_ip_mask) {
4168         case UINT32_MAX:
4169                 filter_info->dst_ip_mask = 0;
4170                 filter_info->dst_ip = filter->dst_ip;
4171                 break;
4172         case 0:
4173                 filter_info->dst_ip_mask = 1;
4174                 break;
4175         default:
4176                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4177                 return -EINVAL;
4178         }
4179
4180         switch (filter->src_ip_mask) {
4181         case UINT32_MAX:
4182                 filter_info->src_ip_mask = 0;
4183                 filter_info->src_ip = filter->src_ip;
4184                 break;
4185         case 0:
4186                 filter_info->src_ip_mask = 1;
4187                 break;
4188         default:
4189                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4190                 return -EINVAL;
4191         }
4192
4193         switch (filter->dst_port_mask) {
4194         case UINT16_MAX:
4195                 filter_info->dst_port_mask = 0;
4196                 filter_info->dst_port = filter->dst_port;
4197                 break;
4198         case 0:
4199                 filter_info->dst_port_mask = 1;
4200                 break;
4201         default:
4202                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4203                 return -EINVAL;
4204         }
4205
4206         switch (filter->src_port_mask) {
4207         case UINT16_MAX:
4208                 filter_info->src_port_mask = 0;
4209                 filter_info->src_port = filter->src_port;
4210                 break;
4211         case 0:
4212                 filter_info->src_port_mask = 1;
4213                 break;
4214         default:
4215                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4216                 return -EINVAL;
4217         }
4218
4219         switch (filter->proto_mask) {
4220         case UINT8_MAX:
4221                 filter_info->proto_mask = 0;
4222                 filter_info->proto = filter->proto;
4223                 break;
4224         case 0:
4225                 filter_info->proto_mask = 1;
4226                 break;
4227         default:
4228                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4229                 return -EINVAL;
4230         }
4231
4232         filter_info->priority = (uint8_t)filter->priority;
4233         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4234                 filter_info->tcp_flags = filter->tcp_flags;
4235         else
4236                 filter_info->tcp_flags = 0;
4237
4238         return 0;
4239 }
4240
4241 static inline struct e1000_5tuple_filter *
4242 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4243                         struct e1000_5tuple_filter_info *key)
4244 {
4245         struct e1000_5tuple_filter *it;
4246
4247         TAILQ_FOREACH(it, filter_list, entries) {
4248                 if (memcmp(key, &it->filter_info,
4249                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4250                         return it;
4251                 }
4252         }
4253         return NULL;
4254 }
4255
4256 /* inject a igb 5-tuple filter to HW */
4257 static inline void
4258 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4259                            struct e1000_5tuple_filter *filter)
4260 {
4261         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4262         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4263         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4264         uint8_t i;
4265
4266         i = filter->index;
4267         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4268         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4269                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4270         if (filter->filter_info.dst_ip_mask == 0)
4271                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4272         if (filter->filter_info.src_port_mask == 0)
4273                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4274         if (filter->filter_info.proto_mask == 0)
4275                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4276         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4277                 E1000_FTQF_QUEUE_MASK;
4278         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4279         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4280         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4281         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4282
4283         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4284         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4285
4286         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4287         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4288                 imir |= E1000_IMIR_PORT_BP;
4289         else
4290                 imir &= ~E1000_IMIR_PORT_BP;
4291         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4292
4293         /* tcp flags bits setting. */
4294         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
4295                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
4296                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4297                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
4298                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4299                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
4300                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4301                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
4302                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4303                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
4304                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4305                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
4306                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4307         } else {
4308                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4309         }
4310         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4311         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4312 }
4313
4314 /*
4315  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4316  *
4317  * @param
4318  * dev: Pointer to struct rte_eth_dev.
4319  * ntuple_filter: ponter to the filter that will be added.
4320  *
4321  * @return
4322  *    - On success, zero.
4323  *    - On failure, a negative value.
4324  */
4325 static int
4326 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4327                         struct rte_eth_ntuple_filter *ntuple_filter)
4328 {
4329         struct e1000_filter_info *filter_info =
4330                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4331         struct e1000_5tuple_filter *filter;
4332         uint8_t i;
4333         int ret;
4334
4335         filter = rte_zmalloc("e1000_5tuple_filter",
4336                         sizeof(struct e1000_5tuple_filter), 0);
4337         if (filter == NULL)
4338                 return -ENOMEM;
4339
4340         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4341                                             &filter->filter_info);
4342         if (ret < 0) {
4343                 rte_free(filter);
4344                 return ret;
4345         }
4346
4347         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4348                                          &filter->filter_info) != NULL) {
4349                 PMD_DRV_LOG(ERR, "filter exists.");
4350                 rte_free(filter);
4351                 return -EEXIST;
4352         }
4353         filter->queue = ntuple_filter->queue;
4354
4355         /*
4356          * look for an unused 5tuple filter index,
4357          * and insert the filter to list.
4358          */
4359         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4360                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4361                         filter_info->fivetuple_mask |= 1 << i;
4362                         filter->index = i;
4363                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4364                                           filter,
4365                                           entries);
4366                         break;
4367                 }
4368         }
4369         if (i >= E1000_MAX_FTQF_FILTERS) {
4370                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4371                 rte_free(filter);
4372                 return -ENOSYS;
4373         }
4374
4375         igb_inject_5tuple_filter_82576(dev, filter);
4376         return 0;
4377 }
4378
4379 int
4380 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4381                                 struct e1000_5tuple_filter *filter)
4382 {
4383         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4384         struct e1000_filter_info *filter_info =
4385                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4386
4387         filter_info->fivetuple_mask &= ~(1 << filter->index);
4388         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4389         rte_free(filter);
4390
4391         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4392                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4393         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4394         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4395         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4396         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4397         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4398         return 0;
4399 }
4400
4401 /*
4402  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4403  *
4404  * @param
4405  * dev: Pointer to struct rte_eth_dev.
4406  * ntuple_filter: ponter to the filter that will be removed.
4407  *
4408  * @return
4409  *    - On success, zero.
4410  *    - On failure, a negative value.
4411  */
4412 static int
4413 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4414                                 struct rte_eth_ntuple_filter *ntuple_filter)
4415 {
4416         struct e1000_filter_info *filter_info =
4417                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4418         struct e1000_5tuple_filter_info filter_5tuple;
4419         struct e1000_5tuple_filter *filter;
4420         int ret;
4421
4422         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4423         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4424                                             &filter_5tuple);
4425         if (ret < 0)
4426                 return ret;
4427
4428         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4429                                          &filter_5tuple);
4430         if (filter == NULL) {
4431                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4432                 return -ENOENT;
4433         }
4434
4435         igb_delete_5tuple_filter_82576(dev, filter);
4436
4437         return 0;
4438 }
4439
4440 static int
4441 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4442 {
4443         uint32_t rctl;
4444         struct e1000_hw *hw;
4445         struct rte_eth_dev_info dev_info;
4446         uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
4447                                      VLAN_TAG_SIZE);
4448
4449         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4450
4451 #ifdef RTE_LIBRTE_82571_SUPPORT
4452         /* XXX: not bigger than max_rx_pktlen */
4453         if (hw->mac.type == e1000_82571)
4454                 return -ENOTSUP;
4455 #endif
4456         eth_igb_infos_get(dev, &dev_info);
4457
4458         /* check that mtu is within the allowed range */
4459         if ((mtu < ETHER_MIN_MTU) ||
4460             (frame_size > dev_info.max_rx_pktlen))
4461                 return -EINVAL;
4462
4463         /* refuse mtu that requires the support of scattered packets when this
4464          * feature has not been enabled before. */
4465         if (!dev->data->scattered_rx &&
4466             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
4467                 return -EINVAL;
4468
4469         rctl = E1000_READ_REG(hw, E1000_RCTL);
4470
4471         /* switch to jumbo mode if needed */
4472         if (frame_size > ETHER_MAX_LEN) {
4473                 dev->data->dev_conf.rxmode.offloads |=
4474                         DEV_RX_OFFLOAD_JUMBO_FRAME;
4475                 rctl |= E1000_RCTL_LPE;
4476         } else {
4477                 dev->data->dev_conf.rxmode.offloads &=
4478                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
4479                 rctl &= ~E1000_RCTL_LPE;
4480         }
4481         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4482
4483         /* update max frame size */
4484         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4485
4486         E1000_WRITE_REG(hw, E1000_RLPML,
4487                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4488
4489         return 0;
4490 }
4491
4492 /*
4493  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4494  *
4495  * @param
4496  * dev: Pointer to struct rte_eth_dev.
4497  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4498  * add: if true, add filter, if false, remove filter
4499  *
4500  * @return
4501  *    - On success, zero.
4502  *    - On failure, a negative value.
4503  */
4504 int
4505 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4506                         struct rte_eth_ntuple_filter *ntuple_filter,
4507                         bool add)
4508 {
4509         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4510         int ret;
4511
4512         switch (ntuple_filter->flags) {
4513         case RTE_5TUPLE_FLAGS:
4514         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4515                 if (hw->mac.type != e1000_82576)
4516                         return -ENOTSUP;
4517                 if (add)
4518                         ret = igb_add_5tuple_filter_82576(dev,
4519                                                           ntuple_filter);
4520                 else
4521                         ret = igb_remove_5tuple_filter_82576(dev,
4522                                                              ntuple_filter);
4523                 break;
4524         case RTE_2TUPLE_FLAGS:
4525         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4526                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4527                         hw->mac.type != e1000_i210 &&
4528                         hw->mac.type != e1000_i211)
4529                         return -ENOTSUP;
4530                 if (add)
4531                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4532                 else
4533                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4534                 break;
4535         default:
4536                 ret = -EINVAL;
4537                 break;
4538         }
4539
4540         return ret;
4541 }
4542
4543 /*
4544  * igb_get_ntuple_filter - get a ntuple filter
4545  *
4546  * @param
4547  * dev: Pointer to struct rte_eth_dev.
4548  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4549  *
4550  * @return
4551  *    - On success, zero.
4552  *    - On failure, a negative value.
4553  */
4554 static int
4555 igb_get_ntuple_filter(struct rte_eth_dev *dev,
4556                         struct rte_eth_ntuple_filter *ntuple_filter)
4557 {
4558         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4559         struct e1000_filter_info *filter_info =
4560                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4561         struct e1000_5tuple_filter_info filter_5tuple;
4562         struct e1000_2tuple_filter_info filter_2tuple;
4563         struct e1000_5tuple_filter *p_5tuple_filter;
4564         struct e1000_2tuple_filter *p_2tuple_filter;
4565         int ret;
4566
4567         switch (ntuple_filter->flags) {
4568         case RTE_5TUPLE_FLAGS:
4569         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4570                 if (hw->mac.type != e1000_82576)
4571                         return -ENOTSUP;
4572                 memset(&filter_5tuple,
4573                         0,
4574                         sizeof(struct e1000_5tuple_filter_info));
4575                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4576                                                     &filter_5tuple);
4577                 if (ret < 0)
4578                         return ret;
4579                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
4580                                         &filter_info->fivetuple_list,
4581                                         &filter_5tuple);
4582                 if (p_5tuple_filter == NULL) {
4583                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4584                         return -ENOENT;
4585                 }
4586                 ntuple_filter->queue = p_5tuple_filter->queue;
4587                 break;
4588         case RTE_2TUPLE_FLAGS:
4589         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4590                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
4591                         return -ENOTSUP;
4592                 memset(&filter_2tuple,
4593                         0,
4594                         sizeof(struct e1000_2tuple_filter_info));
4595                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
4596                 if (ret < 0)
4597                         return ret;
4598                 p_2tuple_filter = igb_2tuple_filter_lookup(
4599                                         &filter_info->twotuple_list,
4600                                         &filter_2tuple);
4601                 if (p_2tuple_filter == NULL) {
4602                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4603                         return -ENOENT;
4604                 }
4605                 ntuple_filter->queue = p_2tuple_filter->queue;
4606                 break;
4607         default:
4608                 ret = -EINVAL;
4609                 break;
4610         }
4611
4612         return 0;
4613 }
4614
4615 /*
4616  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
4617  * @dev: pointer to rte_eth_dev structure
4618  * @filter_op:operation will be taken.
4619  * @arg: a pointer to specific structure corresponding to the filter_op
4620  */
4621 static int
4622 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
4623                                 enum rte_filter_op filter_op,
4624                                 void *arg)
4625 {
4626         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4627         int ret;
4628
4629         MAC_TYPE_FILTER_SUP(hw->mac.type);
4630
4631         if (filter_op == RTE_ETH_FILTER_NOP)
4632                 return 0;
4633
4634         if (arg == NULL) {
4635                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4636                             filter_op);
4637                 return -EINVAL;
4638         }
4639
4640         switch (filter_op) {
4641         case RTE_ETH_FILTER_ADD:
4642                 ret = igb_add_del_ntuple_filter(dev,
4643                         (struct rte_eth_ntuple_filter *)arg,
4644                         TRUE);
4645                 break;
4646         case RTE_ETH_FILTER_DELETE:
4647                 ret = igb_add_del_ntuple_filter(dev,
4648                         (struct rte_eth_ntuple_filter *)arg,
4649                         FALSE);
4650                 break;
4651         case RTE_ETH_FILTER_GET:
4652                 ret = igb_get_ntuple_filter(dev,
4653                         (struct rte_eth_ntuple_filter *)arg);
4654                 break;
4655         default:
4656                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4657                 ret = -EINVAL;
4658                 break;
4659         }
4660         return ret;
4661 }
4662
4663 static inline int
4664 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4665                         uint16_t ethertype)
4666 {
4667         int i;
4668
4669         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4670                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4671                     (filter_info->ethertype_mask & (1 << i)))
4672                         return i;
4673         }
4674         return -1;
4675 }
4676
4677 static inline int
4678 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4679                         uint16_t ethertype, uint32_t etqf)
4680 {
4681         int i;
4682
4683         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4684                 if (!(filter_info->ethertype_mask & (1 << i))) {
4685                         filter_info->ethertype_mask |= 1 << i;
4686                         filter_info->ethertype_filters[i].ethertype = ethertype;
4687                         filter_info->ethertype_filters[i].etqf = etqf;
4688                         return i;
4689                 }
4690         }
4691         return -1;
4692 }
4693
4694 int
4695 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4696                         uint8_t idx)
4697 {
4698         if (idx >= E1000_MAX_ETQF_FILTERS)
4699                 return -1;
4700         filter_info->ethertype_mask &= ~(1 << idx);
4701         filter_info->ethertype_filters[idx].ethertype = 0;
4702         filter_info->ethertype_filters[idx].etqf = 0;
4703         return idx;
4704 }
4705
4706
4707 int
4708 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4709                         struct rte_eth_ethertype_filter *filter,
4710                         bool add)
4711 {
4712         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4713         struct e1000_filter_info *filter_info =
4714                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4715         uint32_t etqf = 0;
4716         int ret;
4717
4718         if (filter->ether_type == ETHER_TYPE_IPv4 ||
4719                 filter->ether_type == ETHER_TYPE_IPv6) {
4720                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4721                         " ethertype filter.", filter->ether_type);
4722                 return -EINVAL;
4723         }
4724
4725         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4726                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4727                 return -EINVAL;
4728         }
4729         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4730                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4731                 return -EINVAL;
4732         }
4733
4734         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4735         if (ret >= 0 && add) {
4736                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4737                             filter->ether_type);
4738                 return -EEXIST;
4739         }
4740         if (ret < 0 && !add) {
4741                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4742                             filter->ether_type);
4743                 return -ENOENT;
4744         }
4745
4746         if (add) {
4747                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4748                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4749                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4750                 ret = igb_ethertype_filter_insert(filter_info,
4751                                 filter->ether_type, etqf);
4752                 if (ret < 0) {
4753                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4754                         return -ENOSYS;
4755                 }
4756         } else {
4757                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4758                 if (ret < 0)
4759                         return -ENOSYS;
4760         }
4761         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4762         E1000_WRITE_FLUSH(hw);
4763
4764         return 0;
4765 }
4766
4767 static int
4768 igb_get_ethertype_filter(struct rte_eth_dev *dev,
4769                         struct rte_eth_ethertype_filter *filter)
4770 {
4771         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4772         struct e1000_filter_info *filter_info =
4773                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4774         uint32_t etqf;
4775         int ret;
4776
4777         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4778         if (ret < 0) {
4779                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4780                             filter->ether_type);
4781                 return -ENOENT;
4782         }
4783
4784         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
4785         if (etqf & E1000_ETQF_FILTER_ENABLE) {
4786                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
4787                 filter->flags = 0;
4788                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
4789                                 E1000_ETQF_QUEUE_SHIFT;
4790                 return 0;
4791         }
4792
4793         return -ENOENT;
4794 }
4795
4796 /*
4797  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
4798  * @dev: pointer to rte_eth_dev structure
4799  * @filter_op:operation will be taken.
4800  * @arg: a pointer to specific structure corresponding to the filter_op
4801  */
4802 static int
4803 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
4804                                 enum rte_filter_op filter_op,
4805                                 void *arg)
4806 {
4807         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4808         int ret;
4809
4810         MAC_TYPE_FILTER_SUP(hw->mac.type);
4811
4812         if (filter_op == RTE_ETH_FILTER_NOP)
4813                 return 0;
4814
4815         if (arg == NULL) {
4816                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4817                             filter_op);
4818                 return -EINVAL;
4819         }
4820
4821         switch (filter_op) {
4822         case RTE_ETH_FILTER_ADD:
4823                 ret = igb_add_del_ethertype_filter(dev,
4824                         (struct rte_eth_ethertype_filter *)arg,
4825                         TRUE);
4826                 break;
4827         case RTE_ETH_FILTER_DELETE:
4828                 ret = igb_add_del_ethertype_filter(dev,
4829                         (struct rte_eth_ethertype_filter *)arg,
4830                         FALSE);
4831                 break;
4832         case RTE_ETH_FILTER_GET:
4833                 ret = igb_get_ethertype_filter(dev,
4834                         (struct rte_eth_ethertype_filter *)arg);
4835                 break;
4836         default:
4837                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4838                 ret = -EINVAL;
4839                 break;
4840         }
4841         return ret;
4842 }
4843
4844 static int
4845 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
4846                      enum rte_filter_type filter_type,
4847                      enum rte_filter_op filter_op,
4848                      void *arg)
4849 {
4850         int ret = 0;
4851
4852         switch (filter_type) {
4853         case RTE_ETH_FILTER_NTUPLE:
4854                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
4855                 break;
4856         case RTE_ETH_FILTER_ETHERTYPE:
4857                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
4858                 break;
4859         case RTE_ETH_FILTER_SYN:
4860                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
4861                 break;
4862         case RTE_ETH_FILTER_FLEXIBLE:
4863                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
4864                 break;
4865         case RTE_ETH_FILTER_GENERIC:
4866                 if (filter_op != RTE_ETH_FILTER_GET)
4867                         return -EINVAL;
4868                 *(const void **)arg = &igb_flow_ops;
4869                 break;
4870         default:
4871                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4872                                                         filter_type);
4873                 break;
4874         }
4875
4876         return ret;
4877 }
4878
4879 static int
4880 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4881                          struct ether_addr *mc_addr_set,
4882                          uint32_t nb_mc_addr)
4883 {
4884         struct e1000_hw *hw;
4885
4886         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4887         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4888         return 0;
4889 }
4890
4891 static uint64_t
4892 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4893 {
4894         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4895         uint64_t systime_cycles;
4896
4897         switch (hw->mac.type) {
4898         case e1000_i210:
4899         case e1000_i211:
4900                 /*
4901                  * Need to read System Time Residue Register to be able
4902                  * to read the other two registers.
4903                  */
4904                 E1000_READ_REG(hw, E1000_SYSTIMR);
4905                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4906                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4907                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4908                                 * NSEC_PER_SEC;
4909                 break;
4910         case e1000_82580:
4911         case e1000_i350:
4912         case e1000_i354:
4913                 /*
4914                  * Need to read System Time Residue Register to be able
4915                  * to read the other two registers.
4916                  */
4917                 E1000_READ_REG(hw, E1000_SYSTIMR);
4918                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4919                 /* Only the 8 LSB are valid. */
4920                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4921                                 & 0xff) << 32;
4922                 break;
4923         default:
4924                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4925                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4926                                 << 32;
4927                 break;
4928         }
4929
4930         return systime_cycles;
4931 }
4932
4933 static uint64_t
4934 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4935 {
4936         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4937         uint64_t rx_tstamp_cycles;
4938
4939         switch (hw->mac.type) {
4940         case e1000_i210:
4941         case e1000_i211:
4942                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4943                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4944                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4945                                 * NSEC_PER_SEC;
4946                 break;
4947         case e1000_82580:
4948         case e1000_i350:
4949         case e1000_i354:
4950                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4951                 /* Only the 8 LSB are valid. */
4952                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4953                                 & 0xff) << 32;
4954                 break;
4955         default:
4956                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4957                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4958                                 << 32;
4959                 break;
4960         }
4961
4962         return rx_tstamp_cycles;
4963 }
4964
4965 static uint64_t
4966 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4967 {
4968         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4969         uint64_t tx_tstamp_cycles;
4970
4971         switch (hw->mac.type) {
4972         case e1000_i210:
4973         case e1000_i211:
4974                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4975                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4976                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4977                                 * NSEC_PER_SEC;
4978                 break;
4979         case e1000_82580:
4980         case e1000_i350:
4981         case e1000_i354:
4982                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4983                 /* Only the 8 LSB are valid. */
4984                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
4985                                 & 0xff) << 32;
4986                 break;
4987         default:
4988                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4989                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4990                                 << 32;
4991                 break;
4992         }
4993
4994         return tx_tstamp_cycles;
4995 }
4996
4997 static void
4998 igb_start_timecounters(struct rte_eth_dev *dev)
4999 {
5000         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5001         struct e1000_adapter *adapter =
5002                 (struct e1000_adapter *)dev->data->dev_private;
5003         uint32_t incval = 1;
5004         uint32_t shift = 0;
5005         uint64_t mask = E1000_CYCLECOUNTER_MASK;
5006
5007         switch (hw->mac.type) {
5008         case e1000_82580:
5009         case e1000_i350:
5010         case e1000_i354:
5011                 /* 32 LSB bits + 8 MSB bits = 40 bits */
5012                 mask = (1ULL << 40) - 1;
5013                 /* fall-through */
5014         case e1000_i210:
5015         case e1000_i211:
5016                 /*
5017                  * Start incrementing the register
5018                  * used to timestamp PTP packets.
5019                  */
5020                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
5021                 break;
5022         case e1000_82576:
5023                 incval = E1000_INCVALUE_82576;
5024                 shift = IGB_82576_TSYNC_SHIFT;
5025                 E1000_WRITE_REG(hw, E1000_TIMINCA,
5026                                 E1000_INCPERIOD_82576 | incval);
5027                 break;
5028         default:
5029                 /* Not supported */
5030                 return;
5031         }
5032
5033         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
5034         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5035         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5036
5037         adapter->systime_tc.cc_mask = mask;
5038         adapter->systime_tc.cc_shift = shift;
5039         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
5040
5041         adapter->rx_tstamp_tc.cc_mask = mask;
5042         adapter->rx_tstamp_tc.cc_shift = shift;
5043         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5044
5045         adapter->tx_tstamp_tc.cc_mask = mask;
5046         adapter->tx_tstamp_tc.cc_shift = shift;
5047         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5048 }
5049
5050 static int
5051 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
5052 {
5053         struct e1000_adapter *adapter =
5054                         (struct e1000_adapter *)dev->data->dev_private;
5055
5056         adapter->systime_tc.nsec += delta;
5057         adapter->rx_tstamp_tc.nsec += delta;
5058         adapter->tx_tstamp_tc.nsec += delta;
5059
5060         return 0;
5061 }
5062
5063 static int
5064 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
5065 {
5066         uint64_t ns;
5067         struct e1000_adapter *adapter =
5068                         (struct e1000_adapter *)dev->data->dev_private;
5069
5070         ns = rte_timespec_to_ns(ts);
5071
5072         /* Set the timecounters to a new value. */
5073         adapter->systime_tc.nsec = ns;
5074         adapter->rx_tstamp_tc.nsec = ns;
5075         adapter->tx_tstamp_tc.nsec = ns;
5076
5077         return 0;
5078 }
5079
5080 static int
5081 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
5082 {
5083         uint64_t ns, systime_cycles;
5084         struct e1000_adapter *adapter =
5085                         (struct e1000_adapter *)dev->data->dev_private;
5086
5087         systime_cycles = igb_read_systime_cyclecounter(dev);
5088         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
5089         *ts = rte_ns_to_timespec(ns);
5090
5091         return 0;
5092 }
5093
5094 static int
5095 igb_timesync_enable(struct rte_eth_dev *dev)
5096 {
5097         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5098         uint32_t tsync_ctl;
5099         uint32_t tsauxc;
5100
5101         /* Stop the timesync system time. */
5102         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
5103         /* Reset the timesync system time value. */
5104         switch (hw->mac.type) {
5105         case e1000_82580:
5106         case e1000_i350:
5107         case e1000_i354:
5108         case e1000_i210:
5109         case e1000_i211:
5110                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
5111                 /* fall-through */
5112         case e1000_82576:
5113                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
5114                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
5115                 break;
5116         default:
5117                 /* Not supported. */
5118                 return -ENOTSUP;
5119         }
5120
5121         /* Enable system time for it isn't on by default. */
5122         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
5123         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
5124         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
5125
5126         igb_start_timecounters(dev);
5127
5128         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5129         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
5130                         (ETHER_TYPE_1588 |
5131                          E1000_ETQF_FILTER_ENABLE |
5132                          E1000_ETQF_1588));
5133
5134         /* Enable timestamping of received PTP packets. */
5135         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5136         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
5137         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5138
5139         /* Enable Timestamping of transmitted PTP packets. */
5140         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5141         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
5142         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5143
5144         return 0;
5145 }
5146
5147 static int
5148 igb_timesync_disable(struct rte_eth_dev *dev)
5149 {
5150         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5151         uint32_t tsync_ctl;
5152
5153         /* Disable timestamping of transmitted PTP packets. */
5154         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5155         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
5156         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5157
5158         /* Disable timestamping of received PTP packets. */
5159         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5160         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
5161         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5162
5163         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5164         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
5165
5166         /* Stop incrementating the System Time registers. */
5167         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
5168
5169         return 0;
5170 }
5171
5172 static int
5173 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
5174                                struct timespec *timestamp,
5175                                uint32_t flags __rte_unused)
5176 {
5177         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5178         struct e1000_adapter *adapter =
5179                         (struct e1000_adapter *)dev->data->dev_private;
5180         uint32_t tsync_rxctl;
5181         uint64_t rx_tstamp_cycles;
5182         uint64_t ns;
5183
5184         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5185         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
5186                 return -EINVAL;
5187
5188         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
5189         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
5190         *timestamp = rte_ns_to_timespec(ns);
5191
5192         return  0;
5193 }
5194
5195 static int
5196 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
5197                                struct timespec *timestamp)
5198 {
5199         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5200         struct e1000_adapter *adapter =
5201                         (struct e1000_adapter *)dev->data->dev_private;
5202         uint32_t tsync_txctl;
5203         uint64_t tx_tstamp_cycles;
5204         uint64_t ns;
5205
5206         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5207         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
5208                 return -EINVAL;
5209
5210         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
5211         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
5212         *timestamp = rte_ns_to_timespec(ns);
5213
5214         return  0;
5215 }
5216
5217 static int
5218 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5219 {
5220         int count = 0;
5221         int g_ind = 0;
5222         const struct reg_info *reg_group;
5223
5224         while ((reg_group = igb_regs[g_ind++]))
5225                 count += igb_reg_group_count(reg_group);
5226
5227         return count;
5228 }
5229
5230 static int
5231 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5232 {
5233         int count = 0;
5234         int g_ind = 0;
5235         const struct reg_info *reg_group;
5236
5237         while ((reg_group = igbvf_regs[g_ind++]))
5238                 count += igb_reg_group_count(reg_group);
5239
5240         return count;
5241 }
5242
5243 static int
5244 eth_igb_get_regs(struct rte_eth_dev *dev,
5245         struct rte_dev_reg_info *regs)
5246 {
5247         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5248         uint32_t *data = regs->data;
5249         int g_ind = 0;
5250         int count = 0;
5251         const struct reg_info *reg_group;
5252
5253         if (data == NULL) {
5254                 regs->length = eth_igb_get_reg_length(dev);
5255                 regs->width = sizeof(uint32_t);
5256                 return 0;
5257         }
5258
5259         /* Support only full register dump */
5260         if ((regs->length == 0) ||
5261             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
5262                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5263                         hw->device_id;
5264                 while ((reg_group = igb_regs[g_ind++]))
5265                         count += igb_read_regs_group(dev, &data[count],
5266                                                         reg_group);
5267                 return 0;
5268         }
5269
5270         return -ENOTSUP;
5271 }
5272
5273 static int
5274 igbvf_get_regs(struct rte_eth_dev *dev,
5275         struct rte_dev_reg_info *regs)
5276 {
5277         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5278         uint32_t *data = regs->data;
5279         int g_ind = 0;
5280         int count = 0;
5281         const struct reg_info *reg_group;
5282
5283         if (data == NULL) {
5284                 regs->length = igbvf_get_reg_length(dev);
5285                 regs->width = sizeof(uint32_t);
5286                 return 0;
5287         }
5288
5289         /* Support only full register dump */
5290         if ((regs->length == 0) ||
5291             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
5292                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5293                         hw->device_id;
5294                 while ((reg_group = igbvf_regs[g_ind++]))
5295                         count += igb_read_regs_group(dev, &data[count],
5296                                                         reg_group);
5297                 return 0;
5298         }
5299
5300         return -ENOTSUP;
5301 }
5302
5303 static int
5304 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5305 {
5306         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5307
5308         /* Return unit is byte count */
5309         return hw->nvm.word_size * 2;
5310 }
5311
5312 static int
5313 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5314         struct rte_dev_eeprom_info *in_eeprom)
5315 {
5316         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5317         struct e1000_nvm_info *nvm = &hw->nvm;
5318         uint16_t *data = in_eeprom->data;
5319         int first, length;
5320
5321         first = in_eeprom->offset >> 1;
5322         length = in_eeprom->length >> 1;
5323         if ((first >= hw->nvm.word_size) ||
5324             ((first + length) >= hw->nvm.word_size))
5325                 return -EINVAL;
5326
5327         in_eeprom->magic = hw->vendor_id |
5328                 ((uint32_t)hw->device_id << 16);
5329
5330         if ((nvm->ops.read) == NULL)
5331                 return -ENOTSUP;
5332
5333         return nvm->ops.read(hw, first, length, data);
5334 }
5335
5336 static int
5337 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5338         struct rte_dev_eeprom_info *in_eeprom)
5339 {
5340         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5341         struct e1000_nvm_info *nvm = &hw->nvm;
5342         uint16_t *data = in_eeprom->data;
5343         int first, length;
5344
5345         first = in_eeprom->offset >> 1;
5346         length = in_eeprom->length >> 1;
5347         if ((first >= hw->nvm.word_size) ||
5348             ((first + length) >= hw->nvm.word_size))
5349                 return -EINVAL;
5350
5351         in_eeprom->magic = (uint32_t)hw->vendor_id |
5352                 ((uint32_t)hw->device_id << 16);
5353
5354         if ((nvm->ops.write) == NULL)
5355                 return -ENOTSUP;
5356         return nvm->ops.write(hw,  first, length, data);
5357 }
5358
5359 static int
5360 eth_igb_get_module_info(struct rte_eth_dev *dev,
5361                         struct rte_eth_dev_module_info *modinfo)
5362 {
5363         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5364
5365         uint32_t status = 0;
5366         uint16_t sff8472_rev, addr_mode;
5367         bool page_swap = false;
5368
5369         if (hw->phy.media_type == e1000_media_type_copper ||
5370             hw->phy.media_type == e1000_media_type_unknown)
5371                 return -EOPNOTSUPP;
5372
5373         /* Check whether we support SFF-8472 or not */
5374         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5375         if (status)
5376                 return -EIO;
5377
5378         /* addressing mode is not supported */
5379         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5380         if (status)
5381                 return -EIO;
5382
5383         /* addressing mode is not supported */
5384         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5385                 PMD_DRV_LOG(ERR,
5386                             "Address change required to access page 0xA2, "
5387                             "but not supported. Please report the module "
5388                             "type to the driver maintainers.\n");
5389                 page_swap = true;
5390         }
5391
5392         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5393                 /* We have an SFP, but it does not support SFF-8472 */
5394                 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5395                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5396         } else {
5397                 /* We have an SFP which supports a revision of SFF-8472 */
5398                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5399                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5400         }
5401
5402         return 0;
5403 }
5404
5405 static int
5406 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5407                           struct rte_dev_eeprom_info *info)
5408 {
5409         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5410
5411         uint32_t status = 0;
5412         uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5413         u16 first_word, last_word;
5414         int i = 0;
5415
5416         if (info->length == 0)
5417                 return -EINVAL;
5418
5419         first_word = info->offset >> 1;
5420         last_word = (info->offset + info->length - 1) >> 1;
5421
5422         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5423         for (i = 0; i < last_word - first_word + 1; i++) {
5424                 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5425                                                 &dataword[i]);
5426                 if (status) {
5427                         /* Error occurred while reading module */
5428                         return -EIO;
5429                 }
5430
5431                 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5432         }
5433
5434         memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5435
5436         return 0;
5437 }
5438
5439 static int
5440 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5441 {
5442         struct e1000_hw *hw =
5443                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5444         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5445         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5446         uint32_t vec = E1000_MISC_VEC_ID;
5447
5448         if (rte_intr_allow_others(intr_handle))
5449                 vec = E1000_RX_VEC_START;
5450
5451         uint32_t mask = 1 << (queue_id + vec);
5452
5453         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5454         E1000_WRITE_FLUSH(hw);
5455
5456         return 0;
5457 }
5458
5459 static int
5460 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5461 {
5462         struct e1000_hw *hw =
5463                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5464         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5465         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5466         uint32_t vec = E1000_MISC_VEC_ID;
5467
5468         if (rte_intr_allow_others(intr_handle))
5469                 vec = E1000_RX_VEC_START;
5470
5471         uint32_t mask = 1 << (queue_id + vec);
5472         uint32_t regval;
5473
5474         regval = E1000_READ_REG(hw, E1000_EIMS);
5475         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5476         E1000_WRITE_FLUSH(hw);
5477
5478         rte_intr_enable(intr_handle);
5479
5480         return 0;
5481 }
5482
5483 static void
5484 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5485                    uint8_t index, uint8_t offset)
5486 {
5487         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5488
5489         /* clear bits */
5490         val &= ~((uint32_t)0xFF << offset);
5491
5492         /* write vector and valid bit */
5493         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5494
5495         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5496 }
5497
5498 static void
5499 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5500                            uint8_t queue, uint8_t msix_vector)
5501 {
5502         uint32_t tmp = 0;
5503
5504         if (hw->mac.type == e1000_82575) {
5505                 if (direction == 0)
5506                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5507                 else if (direction == 1)
5508                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5509                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5510         } else if (hw->mac.type == e1000_82576) {
5511                 if ((direction == 0) || (direction == 1))
5512                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5513                                            ((queue & 0x8) << 1) +
5514                                            8 * direction);
5515         } else if ((hw->mac.type == e1000_82580) ||
5516                         (hw->mac.type == e1000_i350) ||
5517                         (hw->mac.type == e1000_i354) ||
5518                         (hw->mac.type == e1000_i210) ||
5519                         (hw->mac.type == e1000_i211)) {
5520                 if ((direction == 0) || (direction == 1))
5521                         eth_igb_write_ivar(hw, msix_vector,
5522                                            queue >> 1,
5523                                            ((queue & 0x1) << 4) +
5524                                            8 * direction);
5525         }
5526 }
5527
5528 /* Sets up the hardware to generate MSI-X interrupts properly
5529  * @hw
5530  *  board private structure
5531  */
5532 static void
5533 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5534 {
5535         int queue_id;
5536         uint32_t tmpval, regval, intr_mask;
5537         struct e1000_hw *hw =
5538                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5539         uint32_t vec = E1000_MISC_VEC_ID;
5540         uint32_t base = E1000_MISC_VEC_ID;
5541         uint32_t misc_shift = 0;
5542         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5543         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5544
5545         /* won't configure msix register if no mapping is done
5546          * between intr vector and event fd
5547          */
5548         if (!rte_intr_dp_is_en(intr_handle))
5549                 return;
5550
5551         if (rte_intr_allow_others(intr_handle)) {
5552                 vec = base = E1000_RX_VEC_START;
5553                 misc_shift = 1;
5554         }
5555
5556         /* set interrupt vector for other causes */
5557         if (hw->mac.type == e1000_82575) {
5558                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5559                 /* enable MSI-X PBA support */
5560                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5561
5562                 /* Auto-Mask interrupts upon ICR read */
5563                 tmpval |= E1000_CTRL_EXT_EIAME;
5564                 tmpval |= E1000_CTRL_EXT_IRCA;
5565
5566                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5567
5568                 /* enable msix_other interrupt */
5569                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5570                 regval = E1000_READ_REG(hw, E1000_EIAC);
5571                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5572                 regval = E1000_READ_REG(hw, E1000_EIAM);
5573                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5574         } else if ((hw->mac.type == e1000_82576) ||
5575                         (hw->mac.type == e1000_82580) ||
5576                         (hw->mac.type == e1000_i350) ||
5577                         (hw->mac.type == e1000_i354) ||
5578                         (hw->mac.type == e1000_i210) ||
5579                         (hw->mac.type == e1000_i211)) {
5580                 /* turn on MSI-X capability first */
5581                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5582                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5583                                         E1000_GPIE_NSICR);
5584                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5585                         misc_shift;
5586                 regval = E1000_READ_REG(hw, E1000_EIAC);
5587                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5588
5589                 /* enable msix_other interrupt */
5590                 regval = E1000_READ_REG(hw, E1000_EIMS);
5591                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5592                 tmpval = (dev->data->nb_rx_queues | E1000_IVAR_VALID) << 8;
5593                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5594         }
5595
5596         /* use EIAM to auto-mask when MSI-X interrupt
5597          * is asserted, this saves a register write for every interrupt
5598          */
5599         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5600                 misc_shift;
5601         regval = E1000_READ_REG(hw, E1000_EIAM);
5602         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5603
5604         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5605                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5606                 intr_handle->intr_vec[queue_id] = vec;
5607                 if (vec < base + intr_handle->nb_efd - 1)
5608                         vec++;
5609         }
5610
5611         E1000_WRITE_FLUSH(hw);
5612 }
5613
5614 /* restore n-tuple filter */
5615 static inline void
5616 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5617 {
5618         struct e1000_filter_info *filter_info =
5619                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5620         struct e1000_5tuple_filter *p_5tuple;
5621         struct e1000_2tuple_filter *p_2tuple;
5622
5623         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5624                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5625         }
5626
5627         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5628                 igb_inject_2uple_filter(dev, p_2tuple);
5629         }
5630 }
5631
5632 /* restore SYN filter */
5633 static inline void
5634 igb_syn_filter_restore(struct rte_eth_dev *dev)
5635 {
5636         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5637         struct e1000_filter_info *filter_info =
5638                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5639         uint32_t synqf;
5640
5641         synqf = filter_info->syn_info;
5642
5643         if (synqf & E1000_SYN_FILTER_ENABLE) {
5644                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5645                 E1000_WRITE_FLUSH(hw);
5646         }
5647 }
5648
5649 /* restore ethernet type filter */
5650 static inline void
5651 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5652 {
5653         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5654         struct e1000_filter_info *filter_info =
5655                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5656         int i;
5657
5658         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5659                 if (filter_info->ethertype_mask & (1 << i)) {
5660                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5661                                 filter_info->ethertype_filters[i].etqf);
5662                         E1000_WRITE_FLUSH(hw);
5663                 }
5664         }
5665 }
5666
5667 /* restore flex byte filter */
5668 static inline void
5669 igb_flex_filter_restore(struct rte_eth_dev *dev)
5670 {
5671         struct e1000_filter_info *filter_info =
5672                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5673         struct e1000_flex_filter *flex_filter;
5674
5675         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5676                 igb_inject_flex_filter(dev, flex_filter);
5677         }
5678 }
5679
5680 /* restore rss filter */
5681 static inline void
5682 igb_rss_filter_restore(struct rte_eth_dev *dev)
5683 {
5684         struct e1000_filter_info *filter_info =
5685                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5686
5687         if (filter_info->rss_info.conf.queue_num)
5688                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5689 }
5690
5691 /* restore all types filter */
5692 static int
5693 igb_filter_restore(struct rte_eth_dev *dev)
5694 {
5695         igb_ntuple_filter_restore(dev);
5696         igb_ethertype_filter_restore(dev);
5697         igb_syn_filter_restore(dev);
5698         igb_flex_filter_restore(dev);
5699         igb_rss_filter_restore(dev);
5700
5701         return 0;
5702 }
5703
5704 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5705 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5706 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5707 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5708 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5709 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");
5710
5711 /* see e1000_logs.c */
5712 RTE_INIT(e1000_init_log)
5713 {
5714         e1000_igb_init_log();
5715 }