New upstream version 18.08
[deb_dpdk.git] / drivers / net / e1000 / igb_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <errno.h>
11 #include <stdint.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14
15 #include <rte_interrupts.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_pci.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_memzone.h>
24 #include <rte_launch.h>
25 #include <rte_eal.h>
26 #include <rte_per_lcore.h>
27 #include <rte_lcore.h>
28 #include <rte_atomic.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_mempool.h>
31 #include <rte_malloc.h>
32 #include <rte_mbuf.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev_driver.h>
35 #include <rte_prefetch.h>
36 #include <rte_udp.h>
37 #include <rte_tcp.h>
38 #include <rte_sctp.h>
39 #include <rte_net.h>
40 #include <rte_string_fns.h>
41
42 #include "e1000_logs.h"
43 #include "base/e1000_api.h"
44 #include "e1000_ethdev.h"
45
46 #ifdef RTE_LIBRTE_IEEE1588
47 #define IGB_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
48 #else
49 #define IGB_TX_IEEE1588_TMST 0
50 #endif
51 /* Bit Mask to indicate what bits required for building TX context */
52 #define IGB_TX_OFFLOAD_MASK (                    \
53                 PKT_TX_VLAN_PKT |                \
54                 PKT_TX_IP_CKSUM |                \
55                 PKT_TX_L4_MASK |                 \
56                 PKT_TX_TCP_SEG |                 \
57                 IGB_TX_IEEE1588_TMST)
58
59 #define IGB_TX_OFFLOAD_NOTSUP_MASK \
60                 (PKT_TX_OFFLOAD_MASK ^ IGB_TX_OFFLOAD_MASK)
61
62 /**
63  * Structure associated with each descriptor of the RX ring of a RX queue.
64  */
65 struct igb_rx_entry {
66         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
67 };
68
69 /**
70  * Structure associated with each descriptor of the TX ring of a TX queue.
71  */
72 struct igb_tx_entry {
73         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
74         uint16_t next_id; /**< Index of next descriptor in ring. */
75         uint16_t last_id; /**< Index of last scattered descriptor. */
76 };
77
78 /**
79  * rx queue flags
80  */
81 enum igb_rxq_flags {
82         IGB_RXQ_FLAG_LB_BSWAP_VLAN = 0x01,
83 };
84
85 /**
86  * Structure associated with each RX queue.
87  */
88 struct igb_rx_queue {
89         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
90         volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
91         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
92         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
93         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
94         struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
95         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
96         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
97         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
98         uint16_t            rx_tail;    /**< current value of RDT register. */
99         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
100         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
101         uint16_t            queue_id;   /**< RX queue index. */
102         uint16_t            reg_idx;    /**< RX queue register index. */
103         uint16_t            port_id;    /**< Device port identifier. */
104         uint8_t             pthresh;    /**< Prefetch threshold register. */
105         uint8_t             hthresh;    /**< Host threshold register. */
106         uint8_t             wthresh;    /**< Write-back threshold register. */
107         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
108         uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
109         uint32_t            flags;      /**< RX flags. */
110         uint64_t            offloads;   /**< offloads of DEV_RX_OFFLOAD_* */
111 };
112
113 /**
114  * Hardware context number
115  */
116 enum igb_advctx_num {
117         IGB_CTX_0    = 0, /**< CTX0    */
118         IGB_CTX_1    = 1, /**< CTX1    */
119         IGB_CTX_NUM  = 2, /**< CTX_NUM */
120 };
121
122 /** Offload features */
123 union igb_tx_offload {
124         uint64_t data;
125         struct {
126                 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
127                 uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
128                 uint64_t vlan_tci:16;  /**< VLAN Tag Control Identifier(CPU order). */
129                 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
130                 uint64_t tso_segsz:16; /**< TCP TSO segment size. */
131
132                 /* uint64_t unused:8; */
133         };
134 };
135
136 /*
137  * Compare mask for igb_tx_offload.data,
138  * should be in sync with igb_tx_offload layout.
139  * */
140 #define TX_MACIP_LEN_CMP_MASK   0x000000000000FFFFULL /**< L2L3 header mask. */
141 #define TX_VLAN_CMP_MASK                0x00000000FFFF0000ULL /**< Vlan mask. */
142 #define TX_TCP_LEN_CMP_MASK             0x000000FF00000000ULL /**< TCP header mask. */
143 #define TX_TSO_MSS_CMP_MASK             0x00FFFF0000000000ULL /**< TSO segsz mask. */
144 /** Mac + IP + TCP + Mss mask. */
145 #define TX_TSO_CMP_MASK \
146         (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
147
148 /**
149  * Strucutre to check if new context need be built
150  */
151 struct igb_advctx_info {
152         uint64_t flags;           /**< ol_flags related to context build. */
153         /** tx offload: vlan, tso, l2-l3-l4 lengths. */
154         union igb_tx_offload tx_offload;
155         /** compare mask for tx offload. */
156         union igb_tx_offload tx_offload_mask;
157 };
158
159 /**
160  * Structure associated with each TX queue.
161  */
162 struct igb_tx_queue {
163         volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
164         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
165         struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
166         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
167         uint32_t               txd_type;      /**< Device-specific TXD type */
168         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
169         uint16_t               tx_tail; /**< Current value of TDT register. */
170         uint16_t               tx_head;
171         /**< Index of first used TX descriptor. */
172         uint16_t               queue_id; /**< TX queue index. */
173         uint16_t               reg_idx;  /**< TX queue register index. */
174         uint16_t               port_id;  /**< Device port identifier. */
175         uint8_t                pthresh;  /**< Prefetch threshold register. */
176         uint8_t                hthresh;  /**< Host threshold register. */
177         uint8_t                wthresh;  /**< Write-back threshold register. */
178         uint32_t               ctx_curr;
179         /**< Current used hardware descriptor. */
180         uint32_t               ctx_start;
181         /**< Start context position for transmit queue. */
182         struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
183         /**< Hardware context history.*/
184         uint64_t               offloads; /**< offloads of DEV_TX_OFFLOAD_* */
185 };
186
187 #if 1
188 #define RTE_PMD_USE_PREFETCH
189 #endif
190
191 #ifdef RTE_PMD_USE_PREFETCH
192 #define rte_igb_prefetch(p)     rte_prefetch0(p)
193 #else
194 #define rte_igb_prefetch(p)     do {} while(0)
195 #endif
196
197 #ifdef RTE_PMD_PACKET_PREFETCH
198 #define rte_packet_prefetch(p) rte_prefetch1(p)
199 #else
200 #define rte_packet_prefetch(p)  do {} while(0)
201 #endif
202
203 /*
204  * Macro for VMDq feature for 1 GbE NIC.
205  */
206 #define E1000_VMOLR_SIZE                        (8)
207 #define IGB_TSO_MAX_HDRLEN                      (512)
208 #define IGB_TSO_MAX_MSS                         (9216)
209
210 /*********************************************************************
211  *
212  *  TX function
213  *
214  **********************************************************************/
215
216 /*
217  *There're some limitations in hardware for TCP segmentation offload. We
218  *should check whether the parameters are valid.
219  */
220 static inline uint64_t
221 check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
222 {
223         if (!(ol_req & PKT_TX_TCP_SEG))
224                 return ol_req;
225         if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
226                         ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
227                 ol_req &= ~PKT_TX_TCP_SEG;
228                 ol_req |= PKT_TX_TCP_CKSUM;
229         }
230         return ol_req;
231 }
232
233 /*
234  * Advanced context descriptor are almost same between igb/ixgbe
235  * This is a separate function, looking for optimization opportunity here
236  * Rework required to go with the pre-defined values.
237  */
238
239 static inline void
240 igbe_set_xmit_ctx(struct igb_tx_queue* txq,
241                 volatile struct e1000_adv_tx_context_desc *ctx_txd,
242                 uint64_t ol_flags, union igb_tx_offload tx_offload)
243 {
244         uint32_t type_tucmd_mlhl;
245         uint32_t mss_l4len_idx;
246         uint32_t ctx_idx, ctx_curr;
247         uint32_t vlan_macip_lens;
248         union igb_tx_offload tx_offload_mask;
249
250         ctx_curr = txq->ctx_curr;
251         ctx_idx = ctx_curr + txq->ctx_start;
252
253         tx_offload_mask.data = 0;
254         type_tucmd_mlhl = 0;
255
256         /* Specify which HW CTX to upload. */
257         mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
258
259         if (ol_flags & PKT_TX_VLAN_PKT)
260                 tx_offload_mask.data |= TX_VLAN_CMP_MASK;
261
262         /* check if TCP segmentation required for this packet */
263         if (ol_flags & PKT_TX_TCP_SEG) {
264                 /* implies IP cksum in IPv4 */
265                 if (ol_flags & PKT_TX_IP_CKSUM)
266                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
267                                 E1000_ADVTXD_TUCMD_L4T_TCP |
268                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
269                 else
270                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
271                                 E1000_ADVTXD_TUCMD_L4T_TCP |
272                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
273
274                 tx_offload_mask.data |= TX_TSO_CMP_MASK;
275                 mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
276                 mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
277         } else { /* no TSO, check if hardware checksum is needed */
278                 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
279                         tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
280
281                 if (ol_flags & PKT_TX_IP_CKSUM)
282                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
283
284                 switch (ol_flags & PKT_TX_L4_MASK) {
285                 case PKT_TX_UDP_CKSUM:
286                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
287                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
288                         mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
289                         break;
290                 case PKT_TX_TCP_CKSUM:
291                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
292                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
293                         mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
294                         break;
295                 case PKT_TX_SCTP_CKSUM:
296                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
297                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
298                         mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
299                         break;
300                 default:
301                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
302                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
303                         break;
304                 }
305         }
306
307         txq->ctx_cache[ctx_curr].flags = ol_flags;
308         txq->ctx_cache[ctx_curr].tx_offload.data =
309                 tx_offload_mask.data & tx_offload.data;
310         txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
311
312         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
313         vlan_macip_lens = (uint32_t)tx_offload.data;
314         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
315         ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
316         ctx_txd->seqnum_seed = 0;
317 }
318
319 /*
320  * Check which hardware context can be used. Use the existing match
321  * or create a new context descriptor.
322  */
323 static inline uint32_t
324 what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
325                 union igb_tx_offload tx_offload)
326 {
327         /* If match with the current context */
328         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
329                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
330                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
331                         return txq->ctx_curr;
332         }
333
334         /* If match with the second context */
335         txq->ctx_curr ^= 1;
336         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
337                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
338                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
339                         return txq->ctx_curr;
340         }
341
342         /* Mismatch, use the previous context */
343         return IGB_CTX_NUM;
344 }
345
346 static inline uint32_t
347 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
348 {
349         static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
350         static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
351         uint32_t tmp;
352
353         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
354         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
355         tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
356         return tmp;
357 }
358
359 static inline uint32_t
360 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
361 {
362         uint32_t cmdtype;
363         static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
364         static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
365         cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
366         cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
367         return cmdtype;
368 }
369
370 uint16_t
371 eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
372                uint16_t nb_pkts)
373 {
374         struct igb_tx_queue *txq;
375         struct igb_tx_entry *sw_ring;
376         struct igb_tx_entry *txe, *txn;
377         volatile union e1000_adv_tx_desc *txr;
378         volatile union e1000_adv_tx_desc *txd;
379         struct rte_mbuf     *tx_pkt;
380         struct rte_mbuf     *m_seg;
381         uint64_t buf_dma_addr;
382         uint32_t olinfo_status;
383         uint32_t cmd_type_len;
384         uint32_t pkt_len;
385         uint16_t slen;
386         uint64_t ol_flags;
387         uint16_t tx_end;
388         uint16_t tx_id;
389         uint16_t tx_last;
390         uint16_t nb_tx;
391         uint64_t tx_ol_req;
392         uint32_t new_ctx = 0;
393         uint32_t ctx = 0;
394         union igb_tx_offload tx_offload = {0};
395
396         txq = tx_queue;
397         sw_ring = txq->sw_ring;
398         txr     = txq->tx_ring;
399         tx_id   = txq->tx_tail;
400         txe = &sw_ring[tx_id];
401
402         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
403                 tx_pkt = *tx_pkts++;
404                 pkt_len = tx_pkt->pkt_len;
405
406                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
407
408                 /*
409                  * The number of descriptors that must be allocated for a
410                  * packet is the number of segments of that packet, plus 1
411                  * Context Descriptor for the VLAN Tag Identifier, if any.
412                  * Determine the last TX descriptor to allocate in the TX ring
413                  * for the packet, starting from the current position (tx_id)
414                  * in the ring.
415                  */
416                 tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
417
418                 ol_flags = tx_pkt->ol_flags;
419                 tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
420
421                 /* If a Context Descriptor need be built . */
422                 if (tx_ol_req) {
423                         tx_offload.l2_len = tx_pkt->l2_len;
424                         tx_offload.l3_len = tx_pkt->l3_len;
425                         tx_offload.l4_len = tx_pkt->l4_len;
426                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
427                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
428                         tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
429
430                         ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
431                         /* Only allocate context descriptor if required*/
432                         new_ctx = (ctx == IGB_CTX_NUM);
433                         ctx = txq->ctx_curr + txq->ctx_start;
434                         tx_last = (uint16_t) (tx_last + new_ctx);
435                 }
436                 if (tx_last >= txq->nb_tx_desc)
437                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
438
439                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
440                            " tx_first=%u tx_last=%u",
441                            (unsigned) txq->port_id,
442                            (unsigned) txq->queue_id,
443                            (unsigned) pkt_len,
444                            (unsigned) tx_id,
445                            (unsigned) tx_last);
446
447                 /*
448                  * Check if there are enough free descriptors in the TX ring
449                  * to transmit the next packet.
450                  * This operation is based on the two following rules:
451                  *
452                  *   1- Only check that the last needed TX descriptor can be
453                  *      allocated (by construction, if that descriptor is free,
454                  *      all intermediate ones are also free).
455                  *
456                  *      For this purpose, the index of the last TX descriptor
457                  *      used for a packet (the "last descriptor" of a packet)
458                  *      is recorded in the TX entries (the last one included)
459                  *      that are associated with all TX descriptors allocated
460                  *      for that packet.
461                  *
462                  *   2- Avoid to allocate the last free TX descriptor of the
463                  *      ring, in order to never set the TDT register with the
464                  *      same value stored in parallel by the NIC in the TDH
465                  *      register, which makes the TX engine of the NIC enter
466                  *      in a deadlock situation.
467                  *
468                  *      By extension, avoid to allocate a free descriptor that
469                  *      belongs to the last set of free descriptors allocated
470                  *      to the same packet previously transmitted.
471                  */
472
473                 /*
474                  * The "last descriptor" of the previously sent packet, if any,
475                  * which used the last descriptor to allocate.
476                  */
477                 tx_end = sw_ring[tx_last].last_id;
478
479                 /*
480                  * The next descriptor following that "last descriptor" in the
481                  * ring.
482                  */
483                 tx_end = sw_ring[tx_end].next_id;
484
485                 /*
486                  * The "last descriptor" associated with that next descriptor.
487                  */
488                 tx_end = sw_ring[tx_end].last_id;
489
490                 /*
491                  * Check that this descriptor is free.
492                  */
493                 if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
494                         if (nb_tx == 0)
495                                 return 0;
496                         goto end_of_tx;
497                 }
498
499                 /*
500                  * Set common flags of all TX Data Descriptors.
501                  *
502                  * The following bits must be set in all Data Descriptors:
503                  *   - E1000_ADVTXD_DTYP_DATA
504                  *   - E1000_ADVTXD_DCMD_DEXT
505                  *
506                  * The following bits must be set in the first Data Descriptor
507                  * and are ignored in the other ones:
508                  *   - E1000_ADVTXD_DCMD_IFCS
509                  *   - E1000_ADVTXD_MAC_1588
510                  *   - E1000_ADVTXD_DCMD_VLE
511                  *
512                  * The following bits must only be set in the last Data
513                  * Descriptor:
514                  *   - E1000_TXD_CMD_EOP
515                  *
516                  * The following bits can be set in any Data Descriptor, but
517                  * are only set in the last Data Descriptor:
518                  *   - E1000_TXD_CMD_RS
519                  */
520                 cmd_type_len = txq->txd_type |
521                         E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
522                 if (tx_ol_req & PKT_TX_TCP_SEG)
523                         pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
524                 olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
525 #if defined(RTE_LIBRTE_IEEE1588)
526                 if (ol_flags & PKT_TX_IEEE1588_TMST)
527                         cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
528 #endif
529                 if (tx_ol_req) {
530                         /* Setup TX Advanced context descriptor if required */
531                         if (new_ctx) {
532                                 volatile struct e1000_adv_tx_context_desc *
533                                     ctx_txd;
534
535                                 ctx_txd = (volatile struct
536                                     e1000_adv_tx_context_desc *)
537                                     &txr[tx_id];
538
539                                 txn = &sw_ring[txe->next_id];
540                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
541
542                                 if (txe->mbuf != NULL) {
543                                         rte_pktmbuf_free_seg(txe->mbuf);
544                                         txe->mbuf = NULL;
545                                 }
546
547                                 igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);
548
549                                 txe->last_id = tx_last;
550                                 tx_id = txe->next_id;
551                                 txe = txn;
552                         }
553
554                         /* Setup the TX Advanced Data Descriptor */
555                         cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
556                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
557                         olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
558                 }
559
560                 m_seg = tx_pkt;
561                 do {
562                         txn = &sw_ring[txe->next_id];
563                         txd = &txr[tx_id];
564
565                         if (txe->mbuf != NULL)
566                                 rte_pktmbuf_free_seg(txe->mbuf);
567                         txe->mbuf = m_seg;
568
569                         /*
570                          * Set up transmit descriptor.
571                          */
572                         slen = (uint16_t) m_seg->data_len;
573                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
574                         txd->read.buffer_addr =
575                                 rte_cpu_to_le_64(buf_dma_addr);
576                         txd->read.cmd_type_len =
577                                 rte_cpu_to_le_32(cmd_type_len | slen);
578                         txd->read.olinfo_status =
579                                 rte_cpu_to_le_32(olinfo_status);
580                         txe->last_id = tx_last;
581                         tx_id = txe->next_id;
582                         txe = txn;
583                         m_seg = m_seg->next;
584                 } while (m_seg != NULL);
585
586                 /*
587                  * The last packet data descriptor needs End Of Packet (EOP)
588                  * and Report Status (RS).
589                  */
590                 txd->read.cmd_type_len |=
591                         rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
592         }
593  end_of_tx:
594         rte_wmb();
595
596         /*
597          * Set the Transmit Descriptor Tail (TDT).
598          */
599         E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
600         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
601                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
602                    (unsigned) tx_id, (unsigned) nb_tx);
603         txq->tx_tail = tx_id;
604
605         return nb_tx;
606 }
607
608 /*********************************************************************
609  *
610  *  TX prep functions
611  *
612  **********************************************************************/
613 uint16_t
614 eth_igb_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
615                 uint16_t nb_pkts)
616 {
617         int i, ret;
618         struct rte_mbuf *m;
619
620         for (i = 0; i < nb_pkts; i++) {
621                 m = tx_pkts[i];
622
623                 /* Check some limitations for TSO in hardware */
624                 if (m->ol_flags & PKT_TX_TCP_SEG)
625                         if ((m->tso_segsz > IGB_TSO_MAX_MSS) ||
626                                         (m->l2_len + m->l3_len + m->l4_len >
627                                         IGB_TSO_MAX_HDRLEN)) {
628                                 rte_errno = -EINVAL;
629                                 return i;
630                         }
631
632                 if (m->ol_flags & IGB_TX_OFFLOAD_NOTSUP_MASK) {
633                         rte_errno = -ENOTSUP;
634                         return i;
635                 }
636
637 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
638                 ret = rte_validate_tx_offload(m);
639                 if (ret != 0) {
640                         rte_errno = ret;
641                         return i;
642                 }
643 #endif
644                 ret = rte_net_intel_cksum_prepare(m);
645                 if (ret != 0) {
646                         rte_errno = ret;
647                         return i;
648                 }
649         }
650
651         return i;
652 }
653
654 /*********************************************************************
655  *
656  *  RX functions
657  *
658  **********************************************************************/
659 #define IGB_PACKET_TYPE_IPV4              0X01
660 #define IGB_PACKET_TYPE_IPV4_TCP          0X11
661 #define IGB_PACKET_TYPE_IPV4_UDP          0X21
662 #define IGB_PACKET_TYPE_IPV4_SCTP         0X41
663 #define IGB_PACKET_TYPE_IPV4_EXT          0X03
664 #define IGB_PACKET_TYPE_IPV4_EXT_SCTP     0X43
665 #define IGB_PACKET_TYPE_IPV6              0X04
666 #define IGB_PACKET_TYPE_IPV6_TCP          0X14
667 #define IGB_PACKET_TYPE_IPV6_UDP          0X24
668 #define IGB_PACKET_TYPE_IPV6_EXT          0X0C
669 #define IGB_PACKET_TYPE_IPV6_EXT_TCP      0X1C
670 #define IGB_PACKET_TYPE_IPV6_EXT_UDP      0X2C
671 #define IGB_PACKET_TYPE_IPV4_IPV6         0X05
672 #define IGB_PACKET_TYPE_IPV4_IPV6_TCP     0X15
673 #define IGB_PACKET_TYPE_IPV4_IPV6_UDP     0X25
674 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
675 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
676 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
677 #define IGB_PACKET_TYPE_MAX               0X80
678 #define IGB_PACKET_TYPE_MASK              0X7F
679 #define IGB_PACKET_TYPE_SHIFT             0X04
680 static inline uint32_t
681 igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
682 {
683         static const uint32_t
684                 ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
685                 [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
686                         RTE_PTYPE_L3_IPV4,
687                 [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
688                         RTE_PTYPE_L3_IPV4_EXT,
689                 [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
690                         RTE_PTYPE_L3_IPV6,
691                 [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
692                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
693                         RTE_PTYPE_INNER_L3_IPV6,
694                 [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
695                         RTE_PTYPE_L3_IPV6_EXT,
696                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
697                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
698                         RTE_PTYPE_INNER_L3_IPV6_EXT,
699                 [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
700                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
701                 [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
702                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
703                 [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
704                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
705                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
706                 [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
707                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
708                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
709                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
710                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
711                 [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
712                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
713                 [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
714                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
715                 [IGB_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
716                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
717                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
718                 [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
719                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
720                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
721                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
722                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
723                 [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
724                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
725                 [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
726                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
727         };
728         if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
729                 return RTE_PTYPE_UNKNOWN;
730
731         pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
732
733         return ptype_table[pkt_info];
734 }
735
736 static inline uint64_t
737 rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
738 {
739         uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH;
740
741 #if defined(RTE_LIBRTE_IEEE1588)
742         static uint32_t ip_pkt_etqf_map[8] = {
743                 0, 0, 0, PKT_RX_IEEE1588_PTP,
744                 0, 0, 0, 0,
745         };
746
747         struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
748         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);
749
750         /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
751         if (hw->mac.type == e1000_i210)
752                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
753         else
754                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
755 #else
756         RTE_SET_USED(rxq);
757 #endif
758
759         return pkt_flags;
760 }
761
762 static inline uint64_t
763 rx_desc_status_to_pkt_flags(uint32_t rx_status)
764 {
765         uint64_t pkt_flags;
766
767         /* Check if VLAN present */
768         pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
769                 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);
770
771 #if defined(RTE_LIBRTE_IEEE1588)
772         if (rx_status & E1000_RXD_STAT_TMST)
773                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
774 #endif
775         return pkt_flags;
776 }
777
778 static inline uint64_t
779 rx_desc_error_to_pkt_flags(uint32_t rx_status)
780 {
781         /*
782          * Bit 30: IPE, IPv4 checksum error
783          * Bit 29: L4I, L4I integrity error
784          */
785
786         static uint64_t error_to_pkt_flags_map[4] = {
787                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
788                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
789                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
790                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
791         };
792         return error_to_pkt_flags_map[(rx_status >>
793                 E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
794 }
795
796 uint16_t
797 eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
798                uint16_t nb_pkts)
799 {
800         struct igb_rx_queue *rxq;
801         volatile union e1000_adv_rx_desc *rx_ring;
802         volatile union e1000_adv_rx_desc *rxdp;
803         struct igb_rx_entry *sw_ring;
804         struct igb_rx_entry *rxe;
805         struct rte_mbuf *rxm;
806         struct rte_mbuf *nmb;
807         union e1000_adv_rx_desc rxd;
808         uint64_t dma_addr;
809         uint32_t staterr;
810         uint32_t hlen_type_rss;
811         uint16_t pkt_len;
812         uint16_t rx_id;
813         uint16_t nb_rx;
814         uint16_t nb_hold;
815         uint64_t pkt_flags;
816
817         nb_rx = 0;
818         nb_hold = 0;
819         rxq = rx_queue;
820         rx_id = rxq->rx_tail;
821         rx_ring = rxq->rx_ring;
822         sw_ring = rxq->sw_ring;
823         while (nb_rx < nb_pkts) {
824                 /*
825                  * The order of operations here is important as the DD status
826                  * bit must not be read after any other descriptor fields.
827                  * rx_ring and rxdp are pointing to volatile data so the order
828                  * of accesses cannot be reordered by the compiler. If they were
829                  * not volatile, they could be reordered which could lead to
830                  * using invalid descriptor fields when read from rxd.
831                  */
832                 rxdp = &rx_ring[rx_id];
833                 staterr = rxdp->wb.upper.status_error;
834                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
835                         break;
836                 rxd = *rxdp;
837
838                 /*
839                  * End of packet.
840                  *
841                  * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
842                  * likely to be invalid and to be dropped by the various
843                  * validation checks performed by the network stack.
844                  *
845                  * Allocate a new mbuf to replenish the RX ring descriptor.
846                  * If the allocation fails:
847                  *    - arrange for that RX descriptor to be the first one
848                  *      being parsed the next time the receive function is
849                  *      invoked [on the same queue].
850                  *
851                  *    - Stop parsing the RX ring and return immediately.
852                  *
853                  * This policy do not drop the packet received in the RX
854                  * descriptor for which the allocation of a new mbuf failed.
855                  * Thus, it allows that packet to be later retrieved if
856                  * mbuf have been freed in the mean time.
857                  * As a side effect, holding RX descriptors instead of
858                  * systematically giving them back to the NIC may lead to
859                  * RX ring exhaustion situations.
860                  * However, the NIC can gracefully prevent such situations
861                  * to happen by sending specific "back-pressure" flow control
862                  * frames to its peer(s).
863                  */
864                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
865                            "staterr=0x%x pkt_len=%u",
866                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
867                            (unsigned) rx_id, (unsigned) staterr,
868                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
869
870                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
871                 if (nmb == NULL) {
872                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
873                                    "queue_id=%u", (unsigned) rxq->port_id,
874                                    (unsigned) rxq->queue_id);
875                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
876                         break;
877                 }
878
879                 nb_hold++;
880                 rxe = &sw_ring[rx_id];
881                 rx_id++;
882                 if (rx_id == rxq->nb_rx_desc)
883                         rx_id = 0;
884
885                 /* Prefetch next mbuf while processing current one. */
886                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
887
888                 /*
889                  * When next RX descriptor is on a cache-line boundary,
890                  * prefetch the next 4 RX descriptors and the next 8 pointers
891                  * to mbufs.
892                  */
893                 if ((rx_id & 0x3) == 0) {
894                         rte_igb_prefetch(&rx_ring[rx_id]);
895                         rte_igb_prefetch(&sw_ring[rx_id]);
896                 }
897
898                 rxm = rxe->mbuf;
899                 rxe->mbuf = nmb;
900                 dma_addr =
901                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
902                 rxdp->read.hdr_addr = 0;
903                 rxdp->read.pkt_addr = dma_addr;
904
905                 /*
906                  * Initialize the returned mbuf.
907                  * 1) setup generic mbuf fields:
908                  *    - number of segments,
909                  *    - next segment,
910                  *    - packet length,
911                  *    - RX port identifier.
912                  * 2) integrate hardware offload data, if any:
913                  *    - RSS flag & hash,
914                  *    - IP checksum flag,
915                  *    - VLAN TCI, if any,
916                  *    - error flags.
917                  */
918                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
919                                       rxq->crc_len);
920                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
921                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
922                 rxm->nb_segs = 1;
923                 rxm->next = NULL;
924                 rxm->pkt_len = pkt_len;
925                 rxm->data_len = pkt_len;
926                 rxm->port = rxq->port_id;
927
928                 rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
929                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
930
931                 /*
932                  * The vlan_tci field is only valid when PKT_RX_VLAN is
933                  * set in the pkt_flags field and must be in CPU byte order.
934                  */
935                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
936                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
937                         rxm->vlan_tci = rte_be_to_cpu_16(rxd.wb.upper.vlan);
938                 } else {
939                         rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
940                 }
941                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
942                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
943                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
944                 rxm->ol_flags = pkt_flags;
945                 rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
946                                                 lo_dword.hs_rss.pkt_info);
947
948                 /*
949                  * Store the mbuf address into the next entry of the array
950                  * of returned packets.
951                  */
952                 rx_pkts[nb_rx++] = rxm;
953         }
954         rxq->rx_tail = rx_id;
955
956         /*
957          * If the number of free RX descriptors is greater than the RX free
958          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
959          * register.
960          * Update the RDT with the value of the last processed RX descriptor
961          * minus 1, to guarantee that the RDT register is never equal to the
962          * RDH register, which creates a "full" ring situtation from the
963          * hardware point of view...
964          */
965         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
966         if (nb_hold > rxq->rx_free_thresh) {
967                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
968                            "nb_hold=%u nb_rx=%u",
969                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
970                            (unsigned) rx_id, (unsigned) nb_hold,
971                            (unsigned) nb_rx);
972                 rx_id = (uint16_t) ((rx_id == 0) ?
973                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
974                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
975                 nb_hold = 0;
976         }
977         rxq->nb_rx_hold = nb_hold;
978         return nb_rx;
979 }
980
981 uint16_t
982 eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
983                          uint16_t nb_pkts)
984 {
985         struct igb_rx_queue *rxq;
986         volatile union e1000_adv_rx_desc *rx_ring;
987         volatile union e1000_adv_rx_desc *rxdp;
988         struct igb_rx_entry *sw_ring;
989         struct igb_rx_entry *rxe;
990         struct rte_mbuf *first_seg;
991         struct rte_mbuf *last_seg;
992         struct rte_mbuf *rxm;
993         struct rte_mbuf *nmb;
994         union e1000_adv_rx_desc rxd;
995         uint64_t dma; /* Physical address of mbuf data buffer */
996         uint32_t staterr;
997         uint32_t hlen_type_rss;
998         uint16_t rx_id;
999         uint16_t nb_rx;
1000         uint16_t nb_hold;
1001         uint16_t data_len;
1002         uint64_t pkt_flags;
1003
1004         nb_rx = 0;
1005         nb_hold = 0;
1006         rxq = rx_queue;
1007         rx_id = rxq->rx_tail;
1008         rx_ring = rxq->rx_ring;
1009         sw_ring = rxq->sw_ring;
1010
1011         /*
1012          * Retrieve RX context of current packet, if any.
1013          */
1014         first_seg = rxq->pkt_first_seg;
1015         last_seg = rxq->pkt_last_seg;
1016
1017         while (nb_rx < nb_pkts) {
1018         next_desc:
1019                 /*
1020                  * The order of operations here is important as the DD status
1021                  * bit must not be read after any other descriptor fields.
1022                  * rx_ring and rxdp are pointing to volatile data so the order
1023                  * of accesses cannot be reordered by the compiler. If they were
1024                  * not volatile, they could be reordered which could lead to
1025                  * using invalid descriptor fields when read from rxd.
1026                  */
1027                 rxdp = &rx_ring[rx_id];
1028                 staterr = rxdp->wb.upper.status_error;
1029                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
1030                         break;
1031                 rxd = *rxdp;
1032
1033                 /*
1034                  * Descriptor done.
1035                  *
1036                  * Allocate a new mbuf to replenish the RX ring descriptor.
1037                  * If the allocation fails:
1038                  *    - arrange for that RX descriptor to be the first one
1039                  *      being parsed the next time the receive function is
1040                  *      invoked [on the same queue].
1041                  *
1042                  *    - Stop parsing the RX ring and return immediately.
1043                  *
1044                  * This policy does not drop the packet received in the RX
1045                  * descriptor for which the allocation of a new mbuf failed.
1046                  * Thus, it allows that packet to be later retrieved if
1047                  * mbuf have been freed in the mean time.
1048                  * As a side effect, holding RX descriptors instead of
1049                  * systematically giving them back to the NIC may lead to
1050                  * RX ring exhaustion situations.
1051                  * However, the NIC can gracefully prevent such situations
1052                  * to happen by sending specific "back-pressure" flow control
1053                  * frames to its peer(s).
1054                  */
1055                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1056                            "staterr=0x%x data_len=%u",
1057                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1058                            (unsigned) rx_id, (unsigned) staterr,
1059                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1060
1061                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1062                 if (nmb == NULL) {
1063                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1064                                    "queue_id=%u", (unsigned) rxq->port_id,
1065                                    (unsigned) rxq->queue_id);
1066                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1067                         break;
1068                 }
1069
1070                 nb_hold++;
1071                 rxe = &sw_ring[rx_id];
1072                 rx_id++;
1073                 if (rx_id == rxq->nb_rx_desc)
1074                         rx_id = 0;
1075
1076                 /* Prefetch next mbuf while processing current one. */
1077                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
1078
1079                 /*
1080                  * When next RX descriptor is on a cache-line boundary,
1081                  * prefetch the next 4 RX descriptors and the next 8 pointers
1082                  * to mbufs.
1083                  */
1084                 if ((rx_id & 0x3) == 0) {
1085                         rte_igb_prefetch(&rx_ring[rx_id]);
1086                         rte_igb_prefetch(&sw_ring[rx_id]);
1087                 }
1088
1089                 /*
1090                  * Update RX descriptor with the physical address of the new
1091                  * data buffer of the new allocated mbuf.
1092                  */
1093                 rxm = rxe->mbuf;
1094                 rxe->mbuf = nmb;
1095                 dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1096                 rxdp->read.pkt_addr = dma;
1097                 rxdp->read.hdr_addr = 0;
1098
1099                 /*
1100                  * Set data length & data buffer address of mbuf.
1101                  */
1102                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
1103                 rxm->data_len = data_len;
1104                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1105
1106                 /*
1107                  * If this is the first buffer of the received packet,
1108                  * set the pointer to the first mbuf of the packet and
1109                  * initialize its context.
1110                  * Otherwise, update the total length and the number of segments
1111                  * of the current scattered packet, and update the pointer to
1112                  * the last mbuf of the current packet.
1113                  */
1114                 if (first_seg == NULL) {
1115                         first_seg = rxm;
1116                         first_seg->pkt_len = data_len;
1117                         first_seg->nb_segs = 1;
1118                 } else {
1119                         first_seg->pkt_len += data_len;
1120                         first_seg->nb_segs++;
1121                         last_seg->next = rxm;
1122                 }
1123
1124                 /*
1125                  * If this is not the last buffer of the received packet,
1126                  * update the pointer to the last mbuf of the current scattered
1127                  * packet and continue to parse the RX ring.
1128                  */
1129                 if (! (staterr & E1000_RXD_STAT_EOP)) {
1130                         last_seg = rxm;
1131                         goto next_desc;
1132                 }
1133
1134                 /*
1135                  * This is the last buffer of the received packet.
1136                  * If the CRC is not stripped by the hardware:
1137                  *   - Subtract the CRC length from the total packet length.
1138                  *   - If the last buffer only contains the whole CRC or a part
1139                  *     of it, free the mbuf associated to the last buffer.
1140                  *     If part of the CRC is also contained in the previous
1141                  *     mbuf, subtract the length of that CRC part from the
1142                  *     data length of the previous mbuf.
1143                  */
1144                 rxm->next = NULL;
1145                 if (unlikely(rxq->crc_len > 0)) {
1146                         first_seg->pkt_len -= ETHER_CRC_LEN;
1147                         if (data_len <= ETHER_CRC_LEN) {
1148                                 rte_pktmbuf_free_seg(rxm);
1149                                 first_seg->nb_segs--;
1150                                 last_seg->data_len = (uint16_t)
1151                                         (last_seg->data_len -
1152                                          (ETHER_CRC_LEN - data_len));
1153                                 last_seg->next = NULL;
1154                         } else
1155                                 rxm->data_len =
1156                                         (uint16_t) (data_len - ETHER_CRC_LEN);
1157                 }
1158
1159                 /*
1160                  * Initialize the first mbuf of the returned packet:
1161                  *    - RX port identifier,
1162                  *    - hardware offload data, if any:
1163                  *      - RSS flag & hash,
1164                  *      - IP checksum flag,
1165                  *      - VLAN TCI, if any,
1166                  *      - error flags.
1167                  */
1168                 first_seg->port = rxq->port_id;
1169                 first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
1170
1171                 /*
1172                  * The vlan_tci field is only valid when PKT_RX_VLAN is
1173                  * set in the pkt_flags field and must be in CPU byte order.
1174                  */
1175                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
1176                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
1177                         first_seg->vlan_tci =
1178                                 rte_be_to_cpu_16(rxd.wb.upper.vlan);
1179                 } else {
1180                         first_seg->vlan_tci =
1181                                 rte_le_to_cpu_16(rxd.wb.upper.vlan);
1182                 }
1183                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1184                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
1185                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
1186                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1187                 first_seg->ol_flags = pkt_flags;
1188                 first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
1189                                         lower.lo_dword.hs_rss.pkt_info);
1190
1191                 /* Prefetch data of first segment, if configured to do so. */
1192                 rte_packet_prefetch((char *)first_seg->buf_addr +
1193                         first_seg->data_off);
1194
1195                 /*
1196                  * Store the mbuf address into the next entry of the array
1197                  * of returned packets.
1198                  */
1199                 rx_pkts[nb_rx++] = first_seg;
1200
1201                 /*
1202                  * Setup receipt context for a new packet.
1203                  */
1204                 first_seg = NULL;
1205         }
1206
1207         /*
1208          * Record index of the next RX descriptor to probe.
1209          */
1210         rxq->rx_tail = rx_id;
1211
1212         /*
1213          * Save receive context.
1214          */
1215         rxq->pkt_first_seg = first_seg;
1216         rxq->pkt_last_seg = last_seg;
1217
1218         /*
1219          * If the number of free RX descriptors is greater than the RX free
1220          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1221          * register.
1222          * Update the RDT with the value of the last processed RX descriptor
1223          * minus 1, to guarantee that the RDT register is never equal to the
1224          * RDH register, which creates a "full" ring situtation from the
1225          * hardware point of view...
1226          */
1227         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1228         if (nb_hold > rxq->rx_free_thresh) {
1229                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1230                            "nb_hold=%u nb_rx=%u",
1231                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1232                            (unsigned) rx_id, (unsigned) nb_hold,
1233                            (unsigned) nb_rx);
1234                 rx_id = (uint16_t) ((rx_id == 0) ?
1235                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1236                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1237                 nb_hold = 0;
1238         }
1239         rxq->nb_rx_hold = nb_hold;
1240         return nb_rx;
1241 }
1242
1243 /*
1244  * Maximum number of Ring Descriptors.
1245  *
1246  * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
1247  * desscriptors should meet the following condition:
1248  *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
1249  */
1250
1251 static void
1252 igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
1253 {
1254         unsigned i;
1255
1256         if (txq->sw_ring != NULL) {
1257                 for (i = 0; i < txq->nb_tx_desc; i++) {
1258                         if (txq->sw_ring[i].mbuf != NULL) {
1259                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1260                                 txq->sw_ring[i].mbuf = NULL;
1261                         }
1262                 }
1263         }
1264 }
1265
1266 static void
1267 igb_tx_queue_release(struct igb_tx_queue *txq)
1268 {
1269         if (txq != NULL) {
1270                 igb_tx_queue_release_mbufs(txq);
1271                 rte_free(txq->sw_ring);
1272                 rte_free(txq);
1273         }
1274 }
1275
1276 void
1277 eth_igb_tx_queue_release(void *txq)
1278 {
1279         igb_tx_queue_release(txq);
1280 }
1281
1282 static int
1283 igb_tx_done_cleanup(struct igb_tx_queue *txq, uint32_t free_cnt)
1284 {
1285         struct igb_tx_entry *sw_ring;
1286         volatile union e1000_adv_tx_desc *txr;
1287         uint16_t tx_first; /* First segment analyzed. */
1288         uint16_t tx_id;    /* Current segment being processed. */
1289         uint16_t tx_last;  /* Last segment in the current packet. */
1290         uint16_t tx_next;  /* First segment of the next packet. */
1291         int count;
1292
1293         if (txq != NULL) {
1294                 count = 0;
1295                 sw_ring = txq->sw_ring;
1296                 txr = txq->tx_ring;
1297
1298                 /*
1299                  * tx_tail is the last sent packet on the sw_ring. Goto the end
1300                  * of that packet (the last segment in the packet chain) and
1301                  * then the next segment will be the start of the oldest segment
1302                  * in the sw_ring. This is the first packet that will be
1303                  * attempted to be freed.
1304                  */
1305
1306                 /* Get last segment in most recently added packet. */
1307                 tx_first = sw_ring[txq->tx_tail].last_id;
1308
1309                 /* Get the next segment, which is the oldest segment in ring. */
1310                 tx_first = sw_ring[tx_first].next_id;
1311
1312                 /* Set the current index to the first. */
1313                 tx_id = tx_first;
1314
1315                 /*
1316                  * Loop through each packet. For each packet, verify that an
1317                  * mbuf exists and that the last segment is free. If so, free
1318                  * it and move on.
1319                  */
1320                 while (1) {
1321                         tx_last = sw_ring[tx_id].last_id;
1322
1323                         if (sw_ring[tx_last].mbuf) {
1324                                 if (txr[tx_last].wb.status &
1325                                                 E1000_TXD_STAT_DD) {
1326                                         /*
1327                                          * Increment the number of packets
1328                                          * freed.
1329                                          */
1330                                         count++;
1331
1332                                         /* Get the start of the next packet. */
1333                                         tx_next = sw_ring[tx_last].next_id;
1334
1335                                         /*
1336                                          * Loop through all segments in a
1337                                          * packet.
1338                                          */
1339                                         do {
1340                                                 rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf);
1341                                                 sw_ring[tx_id].mbuf = NULL;
1342                                                 sw_ring[tx_id].last_id = tx_id;
1343
1344                                                 /* Move to next segemnt. */
1345                                                 tx_id = sw_ring[tx_id].next_id;
1346
1347                                         } while (tx_id != tx_next);
1348
1349                                         if (unlikely(count == (int)free_cnt))
1350                                                 break;
1351                                 } else
1352                                         /*
1353                                          * mbuf still in use, nothing left to
1354                                          * free.
1355                                          */
1356                                         break;
1357                         } else {
1358                                 /*
1359                                  * There are multiple reasons to be here:
1360                                  * 1) All the packets on the ring have been
1361                                  *    freed - tx_id is equal to tx_first
1362                                  *    and some packets have been freed.
1363                                  *    - Done, exit
1364                                  * 2) Interfaces has not sent a rings worth of
1365                                  *    packets yet, so the segment after tail is
1366                                  *    still empty. Or a previous call to this
1367                                  *    function freed some of the segments but
1368                                  *    not all so there is a hole in the list.
1369                                  *    Hopefully this is a rare case.
1370                                  *    - Walk the list and find the next mbuf. If
1371                                  *      there isn't one, then done.
1372                                  */
1373                                 if (likely((tx_id == tx_first) && (count != 0)))
1374                                         break;
1375
1376                                 /*
1377                                  * Walk the list and find the next mbuf, if any.
1378                                  */
1379                                 do {
1380                                         /* Move to next segemnt. */
1381                                         tx_id = sw_ring[tx_id].next_id;
1382
1383                                         if (sw_ring[tx_id].mbuf)
1384                                                 break;
1385
1386                                 } while (tx_id != tx_first);
1387
1388                                 /*
1389                                  * Determine why previous loop bailed. If there
1390                                  * is not an mbuf, done.
1391                                  */
1392                                 if (sw_ring[tx_id].mbuf == NULL)
1393                                         break;
1394                         }
1395                 }
1396         } else
1397                 count = -ENODEV;
1398
1399         return count;
1400 }
1401
1402 int
1403 eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt)
1404 {
1405         return igb_tx_done_cleanup(txq, free_cnt);
1406 }
1407
1408 static void
1409 igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
1410 {
1411         txq->tx_head = 0;
1412         txq->tx_tail = 0;
1413         txq->ctx_curr = 0;
1414         memset((void*)&txq->ctx_cache, 0,
1415                 IGB_CTX_NUM * sizeof(struct igb_advctx_info));
1416 }
1417
1418 static void
1419 igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
1420 {
1421         static const union e1000_adv_tx_desc zeroed_desc = {{0}};
1422         struct igb_tx_entry *txe = txq->sw_ring;
1423         uint16_t i, prev;
1424         struct e1000_hw *hw;
1425
1426         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1427         /* Zero out HW ring memory */
1428         for (i = 0; i < txq->nb_tx_desc; i++) {
1429                 txq->tx_ring[i] = zeroed_desc;
1430         }
1431
1432         /* Initialize ring entries */
1433         prev = (uint16_t)(txq->nb_tx_desc - 1);
1434         for (i = 0; i < txq->nb_tx_desc; i++) {
1435                 volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
1436
1437                 txd->wb.status = E1000_TXD_STAT_DD;
1438                 txe[i].mbuf = NULL;
1439                 txe[i].last_id = i;
1440                 txe[prev].next_id = i;
1441                 prev = i;
1442         }
1443
1444         txq->txd_type = E1000_ADVTXD_DTYP_DATA;
1445         /* 82575 specific, each tx queue will use 2 hw contexts */
1446         if (hw->mac.type == e1000_82575)
1447                 txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
1448
1449         igb_reset_tx_queue_stat(txq);
1450 }
1451
1452 uint64_t
1453 igb_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
1454 {
1455         uint64_t rx_offload_capa;
1456
1457         RTE_SET_USED(dev);
1458         rx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
1459                           DEV_TX_OFFLOAD_IPV4_CKSUM  |
1460                           DEV_TX_OFFLOAD_UDP_CKSUM   |
1461                           DEV_TX_OFFLOAD_TCP_CKSUM   |
1462                           DEV_TX_OFFLOAD_SCTP_CKSUM  |
1463                           DEV_TX_OFFLOAD_TCP_TSO     |
1464                           DEV_TX_OFFLOAD_MULTI_SEGS;
1465
1466         return rx_offload_capa;
1467 }
1468
1469 uint64_t
1470 igb_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
1471 {
1472         uint64_t rx_queue_offload_capa;
1473
1474         rx_queue_offload_capa = igb_get_tx_port_offloads_capa(dev);
1475
1476         return rx_queue_offload_capa;
1477 }
1478
1479 int
1480 eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
1481                          uint16_t queue_idx,
1482                          uint16_t nb_desc,
1483                          unsigned int socket_id,
1484                          const struct rte_eth_txconf *tx_conf)
1485 {
1486         const struct rte_memzone *tz;
1487         struct igb_tx_queue *txq;
1488         struct e1000_hw     *hw;
1489         uint32_t size;
1490         uint64_t offloads;
1491
1492         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1493
1494         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1495
1496         /*
1497          * Validate number of transmit descriptors.
1498          * It must not exceed hardware maximum, and must be multiple
1499          * of E1000_ALIGN.
1500          */
1501         if (nb_desc % IGB_TXD_ALIGN != 0 ||
1502                         (nb_desc > E1000_MAX_RING_DESC) ||
1503                         (nb_desc < E1000_MIN_RING_DESC)) {
1504                 return -EINVAL;
1505         }
1506
1507         /*
1508          * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
1509          * driver.
1510          */
1511         if (tx_conf->tx_free_thresh != 0)
1512                 PMD_INIT_LOG(INFO, "The tx_free_thresh parameter is not "
1513                              "used for the 1G driver.");
1514         if (tx_conf->tx_rs_thresh != 0)
1515                 PMD_INIT_LOG(INFO, "The tx_rs_thresh parameter is not "
1516                              "used for the 1G driver.");
1517         if (tx_conf->tx_thresh.wthresh == 0 && hw->mac.type != e1000_82576)
1518                 PMD_INIT_LOG(INFO, "To improve 1G driver performance, "
1519                              "consider setting the TX WTHRESH value to 4, 8, "
1520                              "or 16.");
1521
1522         /* Free memory prior to re-allocation if needed */
1523         if (dev->data->tx_queues[queue_idx] != NULL) {
1524                 igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
1525                 dev->data->tx_queues[queue_idx] = NULL;
1526         }
1527
1528         /* First allocate the tx queue data structure */
1529         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
1530                                                         RTE_CACHE_LINE_SIZE);
1531         if (txq == NULL)
1532                 return -ENOMEM;
1533
1534         /*
1535          * Allocate TX ring hardware descriptors. A memzone large enough to
1536          * handle the maximum ring size is allocated in order to allow for
1537          * resizing in later calls to the queue setup function.
1538          */
1539         size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC;
1540         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
1541                                       E1000_ALIGN, socket_id);
1542         if (tz == NULL) {
1543                 igb_tx_queue_release(txq);
1544                 return -ENOMEM;
1545         }
1546
1547         txq->nb_tx_desc = nb_desc;
1548         txq->pthresh = tx_conf->tx_thresh.pthresh;
1549         txq->hthresh = tx_conf->tx_thresh.hthresh;
1550         txq->wthresh = tx_conf->tx_thresh.wthresh;
1551         if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
1552                 txq->wthresh = 1;
1553         txq->queue_id = queue_idx;
1554         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1555                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1556         txq->port_id = dev->data->port_id;
1557
1558         txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
1559         txq->tx_ring_phys_addr = tz->iova;
1560
1561         txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
1562         /* Allocate software ring */
1563         txq->sw_ring = rte_zmalloc("txq->sw_ring",
1564                                    sizeof(struct igb_tx_entry) * nb_desc,
1565                                    RTE_CACHE_LINE_SIZE);
1566         if (txq->sw_ring == NULL) {
1567                 igb_tx_queue_release(txq);
1568                 return -ENOMEM;
1569         }
1570         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1571                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1572
1573         igb_reset_tx_queue(txq, dev);
1574         dev->tx_pkt_burst = eth_igb_xmit_pkts;
1575         dev->tx_pkt_prepare = &eth_igb_prep_pkts;
1576         dev->data->tx_queues[queue_idx] = txq;
1577         txq->offloads = offloads;
1578
1579         return 0;
1580 }
1581
1582 static void
1583 igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
1584 {
1585         unsigned i;
1586
1587         if (rxq->sw_ring != NULL) {
1588                 for (i = 0; i < rxq->nb_rx_desc; i++) {
1589                         if (rxq->sw_ring[i].mbuf != NULL) {
1590                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1591                                 rxq->sw_ring[i].mbuf = NULL;
1592                         }
1593                 }
1594         }
1595 }
1596
1597 static void
1598 igb_rx_queue_release(struct igb_rx_queue *rxq)
1599 {
1600         if (rxq != NULL) {
1601                 igb_rx_queue_release_mbufs(rxq);
1602                 rte_free(rxq->sw_ring);
1603                 rte_free(rxq);
1604         }
1605 }
1606
1607 void
1608 eth_igb_rx_queue_release(void *rxq)
1609 {
1610         igb_rx_queue_release(rxq);
1611 }
1612
1613 static void
1614 igb_reset_rx_queue(struct igb_rx_queue *rxq)
1615 {
1616         static const union e1000_adv_rx_desc zeroed_desc = {{0}};
1617         unsigned i;
1618
1619         /* Zero out HW ring memory */
1620         for (i = 0; i < rxq->nb_rx_desc; i++) {
1621                 rxq->rx_ring[i] = zeroed_desc;
1622         }
1623
1624         rxq->rx_tail = 0;
1625         rxq->pkt_first_seg = NULL;
1626         rxq->pkt_last_seg = NULL;
1627 }
1628
1629 uint64_t
1630 igb_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
1631 {
1632         uint64_t rx_offload_capa;
1633
1634         RTE_SET_USED(dev);
1635         rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP  |
1636                           DEV_RX_OFFLOAD_VLAN_FILTER |
1637                           DEV_RX_OFFLOAD_IPV4_CKSUM  |
1638                           DEV_RX_OFFLOAD_UDP_CKSUM   |
1639                           DEV_RX_OFFLOAD_TCP_CKSUM   |
1640                           DEV_RX_OFFLOAD_JUMBO_FRAME |
1641                           DEV_RX_OFFLOAD_CRC_STRIP   |
1642                           DEV_RX_OFFLOAD_KEEP_CRC    |
1643                           DEV_RX_OFFLOAD_SCATTER;
1644
1645         return rx_offload_capa;
1646 }
1647
1648 uint64_t
1649 igb_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
1650 {
1651         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1652         uint64_t rx_queue_offload_capa;
1653
1654         switch (hw->mac.type) {
1655         case e1000_vfadapt_i350:
1656                 /*
1657                  * As only one Rx queue can be used, let per queue offloading
1658                  * capability be same to per port queue offloading capability
1659                  * for better convenience.
1660                  */
1661                 rx_queue_offload_capa = igb_get_rx_port_offloads_capa(dev);
1662                 break;
1663         default:
1664                 rx_queue_offload_capa = 0;
1665         }
1666         return rx_queue_offload_capa;
1667 }
1668
1669 int
1670 eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
1671                          uint16_t queue_idx,
1672                          uint16_t nb_desc,
1673                          unsigned int socket_id,
1674                          const struct rte_eth_rxconf *rx_conf,
1675                          struct rte_mempool *mp)
1676 {
1677         const struct rte_memzone *rz;
1678         struct igb_rx_queue *rxq;
1679         struct e1000_hw     *hw;
1680         unsigned int size;
1681         uint64_t offloads;
1682
1683         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1684
1685         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1686
1687         /*
1688          * Validate number of receive descriptors.
1689          * It must not exceed hardware maximum, and must be multiple
1690          * of E1000_ALIGN.
1691          */
1692         if (nb_desc % IGB_RXD_ALIGN != 0 ||
1693                         (nb_desc > E1000_MAX_RING_DESC) ||
1694                         (nb_desc < E1000_MIN_RING_DESC)) {
1695                 return -EINVAL;
1696         }
1697
1698         /* Free memory prior to re-allocation if needed */
1699         if (dev->data->rx_queues[queue_idx] != NULL) {
1700                 igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
1701                 dev->data->rx_queues[queue_idx] = NULL;
1702         }
1703
1704         /* First allocate the RX queue data structure. */
1705         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
1706                           RTE_CACHE_LINE_SIZE);
1707         if (rxq == NULL)
1708                 return -ENOMEM;
1709         rxq->offloads = offloads;
1710         rxq->mb_pool = mp;
1711         rxq->nb_rx_desc = nb_desc;
1712         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1713         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1714         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1715         if (rxq->wthresh > 0 &&
1716             (hw->mac.type == e1000_82576 || hw->mac.type == e1000_vfadapt_i350))
1717                 rxq->wthresh = 1;
1718         rxq->drop_en = rx_conf->rx_drop_en;
1719         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1720         rxq->queue_id = queue_idx;
1721         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1722                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1723         rxq->port_id = dev->data->port_id;
1724         if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads))
1725                 rxq->crc_len = ETHER_CRC_LEN;
1726         else
1727                 rxq->crc_len = 0;
1728
1729         /*
1730          *  Allocate RX ring hardware descriptors. A memzone large enough to
1731          *  handle the maximum ring size is allocated in order to allow for
1732          *  resizing in later calls to the queue setup function.
1733          */
1734         size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC;
1735         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
1736                                       E1000_ALIGN, socket_id);
1737         if (rz == NULL) {
1738                 igb_rx_queue_release(rxq);
1739                 return -ENOMEM;
1740         }
1741         rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
1742         rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
1743         rxq->rx_ring_phys_addr = rz->iova;
1744         rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
1745
1746         /* Allocate software ring. */
1747         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1748                                    sizeof(struct igb_rx_entry) * nb_desc,
1749                                    RTE_CACHE_LINE_SIZE);
1750         if (rxq->sw_ring == NULL) {
1751                 igb_rx_queue_release(rxq);
1752                 return -ENOMEM;
1753         }
1754         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1755                      rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1756
1757         dev->data->rx_queues[queue_idx] = rxq;
1758         igb_reset_rx_queue(rxq);
1759
1760         return 0;
1761 }
1762
1763 uint32_t
1764 eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1765 {
1766 #define IGB_RXQ_SCAN_INTERVAL 4
1767         volatile union e1000_adv_rx_desc *rxdp;
1768         struct igb_rx_queue *rxq;
1769         uint32_t desc = 0;
1770
1771         rxq = dev->data->rx_queues[rx_queue_id];
1772         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1773
1774         while ((desc < rxq->nb_rx_desc) &&
1775                 (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
1776                 desc += IGB_RXQ_SCAN_INTERVAL;
1777                 rxdp += IGB_RXQ_SCAN_INTERVAL;
1778                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1779                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1780                                 desc - rxq->nb_rx_desc]);
1781         }
1782
1783         return desc;
1784 }
1785
1786 int
1787 eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
1788 {
1789         volatile union e1000_adv_rx_desc *rxdp;
1790         struct igb_rx_queue *rxq = rx_queue;
1791         uint32_t desc;
1792
1793         if (unlikely(offset >= rxq->nb_rx_desc))
1794                 return 0;
1795         desc = rxq->rx_tail + offset;
1796         if (desc >= rxq->nb_rx_desc)
1797                 desc -= rxq->nb_rx_desc;
1798
1799         rxdp = &rxq->rx_ring[desc];
1800         return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
1801 }
1802
1803 int
1804 eth_igb_rx_descriptor_status(void *rx_queue, uint16_t offset)
1805 {
1806         struct igb_rx_queue *rxq = rx_queue;
1807         volatile uint32_t *status;
1808         uint32_t desc;
1809
1810         if (unlikely(offset >= rxq->nb_rx_desc))
1811                 return -EINVAL;
1812
1813         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1814                 return RTE_ETH_RX_DESC_UNAVAIL;
1815
1816         desc = rxq->rx_tail + offset;
1817         if (desc >= rxq->nb_rx_desc)
1818                 desc -= rxq->nb_rx_desc;
1819
1820         status = &rxq->rx_ring[desc].wb.upper.status_error;
1821         if (*status & rte_cpu_to_le_32(E1000_RXD_STAT_DD))
1822                 return RTE_ETH_RX_DESC_DONE;
1823
1824         return RTE_ETH_RX_DESC_AVAIL;
1825 }
1826
1827 int
1828 eth_igb_tx_descriptor_status(void *tx_queue, uint16_t offset)
1829 {
1830         struct igb_tx_queue *txq = tx_queue;
1831         volatile uint32_t *status;
1832         uint32_t desc;
1833
1834         if (unlikely(offset >= txq->nb_tx_desc))
1835                 return -EINVAL;
1836
1837         desc = txq->tx_tail + offset;
1838         if (desc >= txq->nb_tx_desc)
1839                 desc -= txq->nb_tx_desc;
1840
1841         status = &txq->tx_ring[desc].wb.status;
1842         if (*status & rte_cpu_to_le_32(E1000_TXD_STAT_DD))
1843                 return RTE_ETH_TX_DESC_DONE;
1844
1845         return RTE_ETH_TX_DESC_FULL;
1846 }
1847
1848 void
1849 igb_dev_clear_queues(struct rte_eth_dev *dev)
1850 {
1851         uint16_t i;
1852         struct igb_tx_queue *txq;
1853         struct igb_rx_queue *rxq;
1854
1855         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1856                 txq = dev->data->tx_queues[i];
1857                 if (txq != NULL) {
1858                         igb_tx_queue_release_mbufs(txq);
1859                         igb_reset_tx_queue(txq, dev);
1860                 }
1861         }
1862
1863         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1864                 rxq = dev->data->rx_queues[i];
1865                 if (rxq != NULL) {
1866                         igb_rx_queue_release_mbufs(rxq);
1867                         igb_reset_rx_queue(rxq);
1868                 }
1869         }
1870 }
1871
1872 void
1873 igb_dev_free_queues(struct rte_eth_dev *dev)
1874 {
1875         uint16_t i;
1876
1877         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1878                 eth_igb_rx_queue_release(dev->data->rx_queues[i]);
1879                 dev->data->rx_queues[i] = NULL;
1880         }
1881         dev->data->nb_rx_queues = 0;
1882
1883         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1884                 eth_igb_tx_queue_release(dev->data->tx_queues[i]);
1885                 dev->data->tx_queues[i] = NULL;
1886         }
1887         dev->data->nb_tx_queues = 0;
1888 }
1889
1890 /**
1891  * Receive Side Scaling (RSS).
1892  * See section 7.1.1.7 in the following document:
1893  *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
1894  *
1895  * Principles:
1896  * The source and destination IP addresses of the IP header and the source and
1897  * destination ports of TCP/UDP headers, if any, of received packets are hashed
1898  * against a configurable random key to compute a 32-bit RSS hash result.
1899  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
1900  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
1901  * RSS output index which is used as the RX queue index where to store the
1902  * received packets.
1903  * The following output is supplied in the RX write-back descriptor:
1904  *     - 32-bit result of the Microsoft RSS hash function,
1905  *     - 4-bit RSS type field.
1906  */
1907
1908 /*
1909  * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
1910  * Used as the default key.
1911  */
1912 static uint8_t rss_intel_key[40] = {
1913         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
1914         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
1915         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
1916         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
1917         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
1918 };
1919
1920 static void
1921 igb_rss_disable(struct rte_eth_dev *dev)
1922 {
1923         struct e1000_hw *hw;
1924         uint32_t mrqc;
1925
1926         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1927         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1928         mrqc &= ~E1000_MRQC_ENABLE_MASK;
1929         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1930 }
1931
1932 static void
1933 igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
1934 {
1935         uint8_t  *hash_key;
1936         uint32_t rss_key;
1937         uint32_t mrqc;
1938         uint64_t rss_hf;
1939         uint16_t i;
1940
1941         hash_key = rss_conf->rss_key;
1942         if (hash_key != NULL) {
1943                 /* Fill in RSS hash key */
1944                 for (i = 0; i < 10; i++) {
1945                         rss_key  = hash_key[(i * 4)];
1946                         rss_key |= hash_key[(i * 4) + 1] << 8;
1947                         rss_key |= hash_key[(i * 4) + 2] << 16;
1948                         rss_key |= hash_key[(i * 4) + 3] << 24;
1949                         E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
1950                 }
1951         }
1952
1953         /* Set configured hashing protocols in MRQC register */
1954         rss_hf = rss_conf->rss_hf;
1955         mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
1956         if (rss_hf & ETH_RSS_IPV4)
1957                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
1958         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1959                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
1960         if (rss_hf & ETH_RSS_IPV6)
1961                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
1962         if (rss_hf & ETH_RSS_IPV6_EX)
1963                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
1964         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1965                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
1966         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
1967                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
1968         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1969                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
1970         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1971                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
1972         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
1973                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
1974         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1975 }
1976
1977 int
1978 eth_igb_rss_hash_update(struct rte_eth_dev *dev,
1979                         struct rte_eth_rss_conf *rss_conf)
1980 {
1981         struct e1000_hw *hw;
1982         uint32_t mrqc;
1983         uint64_t rss_hf;
1984
1985         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1986
1987         /*
1988          * Before changing anything, first check that the update RSS operation
1989          * does not attempt to disable RSS, if RSS was enabled at
1990          * initialization time, or does not attempt to enable RSS, if RSS was
1991          * disabled at initialization time.
1992          */
1993         rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
1994         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1995         if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
1996                 if (rss_hf != 0) /* Enable RSS */
1997                         return -(EINVAL);
1998                 return 0; /* Nothing to do */
1999         }
2000         /* RSS enabled */
2001         if (rss_hf == 0) /* Disable RSS */
2002                 return -(EINVAL);
2003         igb_hw_rss_hash_set(hw, rss_conf);
2004         return 0;
2005 }
2006
2007 int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
2008                               struct rte_eth_rss_conf *rss_conf)
2009 {
2010         struct e1000_hw *hw;
2011         uint8_t *hash_key;
2012         uint32_t rss_key;
2013         uint32_t mrqc;
2014         uint64_t rss_hf;
2015         uint16_t i;
2016
2017         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2018         hash_key = rss_conf->rss_key;
2019         if (hash_key != NULL) {
2020                 /* Return RSS hash key */
2021                 for (i = 0; i < 10; i++) {
2022                         rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
2023                         hash_key[(i * 4)] = rss_key & 0x000000FF;
2024                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
2025                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
2026                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
2027                 }
2028         }
2029
2030         /* Get RSS functions configured in MRQC register */
2031         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2032         if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
2033                 rss_conf->rss_hf = 0;
2034                 return 0;
2035         }
2036         rss_hf = 0;
2037         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2038                 rss_hf |= ETH_RSS_IPV4;
2039         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2040                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
2041         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2042                 rss_hf |= ETH_RSS_IPV6;
2043         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
2044                 rss_hf |= ETH_RSS_IPV6_EX;
2045         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2046                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
2047         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
2048                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
2049         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
2050                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
2051         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
2052                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
2053         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
2054                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
2055         rss_conf->rss_hf = rss_hf;
2056         return 0;
2057 }
2058
2059 static void
2060 igb_rss_configure(struct rte_eth_dev *dev)
2061 {
2062         struct rte_eth_rss_conf rss_conf;
2063         struct e1000_hw *hw;
2064         uint32_t shift;
2065         uint16_t i;
2066
2067         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2068
2069         /* Fill in redirection table. */
2070         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2071         for (i = 0; i < 128; i++) {
2072                 union e1000_reta {
2073                         uint32_t dword;
2074                         uint8_t  bytes[4];
2075                 } reta;
2076                 uint8_t q_idx;
2077
2078                 q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
2079                                    i % dev->data->nb_rx_queues : 0);
2080                 reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
2081                 if ((i & 3) == 3)
2082                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2083         }
2084
2085         /*
2086          * Configure the RSS key and the RSS protocols used to compute
2087          * the RSS hash of input packets.
2088          */
2089         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
2090         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2091                 igb_rss_disable(dev);
2092                 return;
2093         }
2094         if (rss_conf.rss_key == NULL)
2095                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2096         igb_hw_rss_hash_set(hw, &rss_conf);
2097 }
2098
2099 /*
2100  * Check if the mac type support VMDq or not.
2101  * Return 1 if it supports, otherwise, return 0.
2102  */
2103 static int
2104 igb_is_vmdq_supported(const struct rte_eth_dev *dev)
2105 {
2106         const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2107
2108         switch (hw->mac.type) {
2109         case e1000_82576:
2110         case e1000_82580:
2111         case e1000_i350:
2112                 return 1;
2113         case e1000_82540:
2114         case e1000_82541:
2115         case e1000_82542:
2116         case e1000_82543:
2117         case e1000_82544:
2118         case e1000_82545:
2119         case e1000_82546:
2120         case e1000_82547:
2121         case e1000_82571:
2122         case e1000_82572:
2123         case e1000_82573:
2124         case e1000_82574:
2125         case e1000_82583:
2126         case e1000_i210:
2127         case e1000_i211:
2128         default:
2129                 PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
2130                 return 0;
2131         }
2132 }
2133
2134 static int
2135 igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
2136 {
2137         struct rte_eth_vmdq_rx_conf *cfg;
2138         struct e1000_hw *hw;
2139         uint32_t mrqc, vt_ctl, vmolr, rctl;
2140         int i;
2141
2142         PMD_INIT_FUNC_TRACE();
2143
2144         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2145         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
2146
2147         /* Check if mac type can support VMDq, return value of 0 means NOT support */
2148         if (igb_is_vmdq_supported(dev) == 0)
2149                 return -1;
2150
2151         igb_rss_disable(dev);
2152
2153         /* RCTL: eanble VLAN filter */
2154         rctl = E1000_READ_REG(hw, E1000_RCTL);
2155         rctl |= E1000_RCTL_VFE;
2156         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2157
2158         /* MRQC: enable vmdq */
2159         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2160         mrqc |= E1000_MRQC_ENABLE_VMDQ;
2161         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2162
2163         /* VTCTL:  pool selection according to VLAN tag */
2164         vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
2165         if (cfg->enable_default_pool)
2166                 vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
2167         vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
2168         E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
2169
2170         for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2171                 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2172                 vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
2173                         E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
2174                         E1000_VMOLR_MPME);
2175
2176                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
2177                         vmolr |= E1000_VMOLR_AUPE;
2178                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
2179                         vmolr |= E1000_VMOLR_ROMPE;
2180                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
2181                         vmolr |= E1000_VMOLR_ROPE;
2182                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
2183                         vmolr |= E1000_VMOLR_BAM;
2184                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
2185                         vmolr |= E1000_VMOLR_MPME;
2186
2187                 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2188         }
2189
2190         /*
2191          * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
2192          * Both 82576 and 82580 support it
2193          */
2194         if (hw->mac.type != e1000_i350) {
2195                 for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2196                         vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2197                         vmolr |= E1000_VMOLR_STRVLAN;
2198                         E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2199                 }
2200         }
2201
2202         /* VFTA - enable all vlan filters */
2203         for (i = 0; i < IGB_VFTA_SIZE; i++)
2204                 E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
2205
2206         /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
2207         if (hw->mac.type != e1000_82580)
2208                 E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
2209
2210         /*
2211          * RAH/RAL - allow pools to read specific mac addresses
2212          * In this case, all pools should be able to read from mac addr 0
2213          */
2214         E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
2215         E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
2216
2217         /* VLVF: set up filters for vlan tags as configured */
2218         for (i = 0; i < cfg->nb_pool_maps; i++) {
2219                 /* set vlan id in VF register and set the valid bit */
2220                 E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
2221                         (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
2222                         ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
2223                         E1000_VLVF_POOLSEL_MASK)));
2224         }
2225
2226         E1000_WRITE_FLUSH(hw);
2227
2228         return 0;
2229 }
2230
2231
2232 /*********************************************************************
2233  *
2234  *  Enable receive unit.
2235  *
2236  **********************************************************************/
2237
2238 static int
2239 igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
2240 {
2241         struct igb_rx_entry *rxe = rxq->sw_ring;
2242         uint64_t dma_addr;
2243         unsigned i;
2244
2245         /* Initialize software ring entries. */
2246         for (i = 0; i < rxq->nb_rx_desc; i++) {
2247                 volatile union e1000_adv_rx_desc *rxd;
2248                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
2249
2250                 if (mbuf == NULL) {
2251                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
2252                                      "queue_id=%hu", rxq->queue_id);
2253                         return -ENOMEM;
2254                 }
2255                 dma_addr =
2256                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2257                 rxd = &rxq->rx_ring[i];
2258                 rxd->read.hdr_addr = 0;
2259                 rxd->read.pkt_addr = dma_addr;
2260                 rxe[i].mbuf = mbuf;
2261         }
2262
2263         return 0;
2264 }
2265
2266 #define E1000_MRQC_DEF_Q_SHIFT               (3)
2267 static int
2268 igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
2269 {
2270         struct e1000_hw *hw =
2271                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2272         uint32_t mrqc;
2273
2274         if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
2275                 /*
2276                  * SRIOV active scheme
2277                  * FIXME if support RSS together with VMDq & SRIOV
2278                  */
2279                 mrqc = E1000_MRQC_ENABLE_VMDQ;
2280                 /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
2281                 mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
2282                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2283         } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
2284                 /*
2285                  * SRIOV inactive scheme
2286                  */
2287                 switch (dev->data->dev_conf.rxmode.mq_mode) {
2288                         case ETH_MQ_RX_RSS:
2289                                 igb_rss_configure(dev);
2290                                 break;
2291                         case ETH_MQ_RX_VMDQ_ONLY:
2292                                 /*Configure general VMDQ only RX parameters*/
2293                                 igb_vmdq_rx_hw_configure(dev);
2294                                 break;
2295                         case ETH_MQ_RX_NONE:
2296                                 /* if mq_mode is none, disable rss mode.*/
2297                         default:
2298                                 igb_rss_disable(dev);
2299                                 break;
2300                 }
2301         }
2302
2303         return 0;
2304 }
2305
2306 int
2307 eth_igb_rx_init(struct rte_eth_dev *dev)
2308 {
2309         struct rte_eth_rxmode *rxmode;
2310         struct e1000_hw     *hw;
2311         struct igb_rx_queue *rxq;
2312         uint32_t rctl;
2313         uint32_t rxcsum;
2314         uint32_t srrctl;
2315         uint16_t buf_size;
2316         uint16_t rctl_bsize;
2317         uint16_t i;
2318         int ret;
2319
2320         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2321         srrctl = 0;
2322
2323         /*
2324          * Make sure receives are disabled while setting
2325          * up the descriptor ring.
2326          */
2327         rctl = E1000_READ_REG(hw, E1000_RCTL);
2328         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2329
2330         rxmode = &dev->data->dev_conf.rxmode;
2331
2332         /*
2333          * Configure support of jumbo frames, if any.
2334          */
2335         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2336                 rctl |= E1000_RCTL_LPE;
2337
2338                 /*
2339                  * Set maximum packet length by default, and might be updated
2340                  * together with enabling/disabling dual VLAN.
2341                  */
2342                 E1000_WRITE_REG(hw, E1000_RLPML,
2343                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2344                                                 VLAN_TAG_SIZE);
2345         } else
2346                 rctl &= ~E1000_RCTL_LPE;
2347
2348         /* Configure and enable each RX queue. */
2349         rctl_bsize = 0;
2350         dev->rx_pkt_burst = eth_igb_recv_pkts;
2351         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2352                 uint64_t bus_addr;
2353                 uint32_t rxdctl;
2354
2355                 rxq = dev->data->rx_queues[i];
2356
2357                 rxq->flags = 0;
2358                 /*
2359                  * i350 and i354 vlan packets have vlan tags byte swapped.
2360                  */
2361                 if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i354) {
2362                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2363                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2364                 } else {
2365                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2366                 }
2367
2368                 /* Allocate buffers for descriptor rings and set up queue */
2369                 ret = igb_alloc_rx_queue_mbufs(rxq);
2370                 if (ret)
2371                         return ret;
2372
2373                 /*
2374                  * Reset crc_len in case it was changed after queue setup by a
2375                  *  call to configure
2376                  */
2377                 if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads))
2378                         rxq->crc_len = ETHER_CRC_LEN;
2379                 else
2380                         rxq->crc_len = 0;
2381
2382                 bus_addr = rxq->rx_ring_phys_addr;
2383                 E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
2384                                 rxq->nb_rx_desc *
2385                                 sizeof(union e1000_adv_rx_desc));
2386                 E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
2387                                 (uint32_t)(bus_addr >> 32));
2388                 E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
2389
2390                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2391
2392                 /*
2393                  * Configure RX buffer size.
2394                  */
2395                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2396                         RTE_PKTMBUF_HEADROOM);
2397                 if (buf_size >= 1024) {
2398                         /*
2399                          * Configure the BSIZEPACKET field of the SRRCTL
2400                          * register of the queue.
2401                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2402                          * If this field is equal to 0b, then RCTL.BSIZE
2403                          * determines the RX packet buffer size.
2404                          */
2405                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2406                                    E1000_SRRCTL_BSIZEPKT_MASK);
2407                         buf_size = (uint16_t) ((srrctl &
2408                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2409                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2410
2411                         /* It adds dual VLAN length for supporting dual VLAN */
2412                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2413                                                 2 * VLAN_TAG_SIZE) > buf_size){
2414                                 if (!dev->data->scattered_rx)
2415                                         PMD_INIT_LOG(DEBUG,
2416                                                      "forcing scatter mode");
2417                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2418                                 dev->data->scattered_rx = 1;
2419                         }
2420                 } else {
2421                         /*
2422                          * Use BSIZE field of the device RCTL register.
2423                          */
2424                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2425                                 rctl_bsize = buf_size;
2426                         if (!dev->data->scattered_rx)
2427                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2428                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2429                         dev->data->scattered_rx = 1;
2430                 }
2431
2432                 /* Set if packets are dropped when no descriptors available */
2433                 if (rxq->drop_en)
2434                         srrctl |= E1000_SRRCTL_DROP_EN;
2435
2436                 E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
2437
2438                 /* Enable this RX queue. */
2439                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
2440                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2441                 rxdctl &= 0xFFF00000;
2442                 rxdctl |= (rxq->pthresh & 0x1F);
2443                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2444                 rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2445                 E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
2446         }
2447
2448         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2449                 if (!dev->data->scattered_rx)
2450                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2451                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2452                 dev->data->scattered_rx = 1;
2453         }
2454
2455         /*
2456          * Setup BSIZE field of RCTL register, if needed.
2457          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
2458          * register, since the code above configures the SRRCTL register of
2459          * the RX queue in such a case.
2460          * All configurable sizes are:
2461          * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
2462          *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
2463          *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
2464          *  2048: rctl |= E1000_RCTL_SZ_2048;
2465          *  1024: rctl |= E1000_RCTL_SZ_1024;
2466          *   512: rctl |= E1000_RCTL_SZ_512;
2467          *   256: rctl |= E1000_RCTL_SZ_256;
2468          */
2469         if (rctl_bsize > 0) {
2470                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
2471                         rctl |= E1000_RCTL_SZ_512;
2472                 else /* 256 <= buf_size < 512 - use 256 */
2473                         rctl |= E1000_RCTL_SZ_256;
2474         }
2475
2476         /*
2477          * Configure RSS if device configured with multiple RX queues.
2478          */
2479         igb_dev_mq_rx_configure(dev);
2480
2481         /* Update the rctl since igb_dev_mq_rx_configure may change its value */
2482         rctl |= E1000_READ_REG(hw, E1000_RCTL);
2483
2484         /*
2485          * Setup the Checksum Register.
2486          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
2487          */
2488         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2489         rxcsum |= E1000_RXCSUM_PCSD;
2490
2491         /* Enable both L3/L4 rx checksum offload */
2492         if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM)
2493                 rxcsum |= E1000_RXCSUM_IPOFL;
2494         else
2495                 rxcsum &= ~E1000_RXCSUM_IPOFL;
2496         if (rxmode->offloads &
2497                 (DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM))
2498                 rxcsum |= E1000_RXCSUM_TUOFL;
2499         else
2500                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2501         if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
2502                 rxcsum |= E1000_RXCSUM_CRCOFL;
2503         else
2504                 rxcsum &= ~E1000_RXCSUM_CRCOFL;
2505
2506         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2507
2508         /* Setup the Receive Control Register. */
2509         if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads)) {
2510                 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
2511
2512                 /* clear STRCRC bit in all queues */
2513                 if (hw->mac.type == e1000_i350 ||
2514                     hw->mac.type == e1000_i210 ||
2515                     hw->mac.type == e1000_i211 ||
2516                     hw->mac.type == e1000_i354) {
2517                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2518                                 rxq = dev->data->rx_queues[i];
2519                                 uint32_t dvmolr = E1000_READ_REG(hw,
2520                                         E1000_DVMOLR(rxq->reg_idx));
2521                                 dvmolr &= ~E1000_DVMOLR_STRCRC;
2522                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2523                         }
2524                 }
2525         } else {
2526                 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
2527
2528                 /* set STRCRC bit in all queues */
2529                 if (hw->mac.type == e1000_i350 ||
2530                     hw->mac.type == e1000_i210 ||
2531                     hw->mac.type == e1000_i211 ||
2532                     hw->mac.type == e1000_i354) {
2533                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2534                                 rxq = dev->data->rx_queues[i];
2535                                 uint32_t dvmolr = E1000_READ_REG(hw,
2536                                         E1000_DVMOLR(rxq->reg_idx));
2537                                 dvmolr |= E1000_DVMOLR_STRCRC;
2538                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2539                         }
2540                 }
2541         }
2542
2543         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2544         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2545                 E1000_RCTL_RDMTS_HALF |
2546                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2547
2548         /* Make sure VLAN Filters are off. */
2549         if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
2550                 rctl &= ~E1000_RCTL_VFE;
2551         /* Don't store bad packets. */
2552         rctl &= ~E1000_RCTL_SBP;
2553
2554         /* Enable Receives. */
2555         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2556
2557         /*
2558          * Setup the HW Rx Head and Tail Descriptor Pointers.
2559          * This needs to be done after enable.
2560          */
2561         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2562                 rxq = dev->data->rx_queues[i];
2563                 E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
2564                 E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
2565         }
2566
2567         return 0;
2568 }
2569
2570 /*********************************************************************
2571  *
2572  *  Enable transmit unit.
2573  *
2574  **********************************************************************/
2575 void
2576 eth_igb_tx_init(struct rte_eth_dev *dev)
2577 {
2578         struct e1000_hw     *hw;
2579         struct igb_tx_queue *txq;
2580         uint32_t tctl;
2581         uint32_t txdctl;
2582         uint16_t i;
2583
2584         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2585
2586         /* Setup the Base and Length of the Tx Descriptor Rings. */
2587         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2588                 uint64_t bus_addr;
2589                 txq = dev->data->tx_queues[i];
2590                 bus_addr = txq->tx_ring_phys_addr;
2591
2592                 E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
2593                                 txq->nb_tx_desc *
2594                                 sizeof(union e1000_adv_tx_desc));
2595                 E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
2596                                 (uint32_t)(bus_addr >> 32));
2597                 E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
2598
2599                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2600                 E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
2601                 E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
2602
2603                 /* Setup Transmit threshold registers. */
2604                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
2605                 txdctl |= txq->pthresh & 0x1F;
2606                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2607                 txdctl |= ((txq->wthresh & 0x1F) << 16);
2608                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2609                 E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
2610         }
2611
2612         /* Program the Transmit Control Register. */
2613         tctl = E1000_READ_REG(hw, E1000_TCTL);
2614         tctl &= ~E1000_TCTL_CT;
2615         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2616                  (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2617
2618         e1000_config_collision_dist(hw);
2619
2620         /* This write will effectively turn on the transmit unit. */
2621         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2622 }
2623
2624 /*********************************************************************
2625  *
2626  *  Enable VF receive unit.
2627  *
2628  **********************************************************************/
2629 int
2630 eth_igbvf_rx_init(struct rte_eth_dev *dev)
2631 {
2632         struct e1000_hw     *hw;
2633         struct igb_rx_queue *rxq;
2634         uint32_t srrctl;
2635         uint16_t buf_size;
2636         uint16_t rctl_bsize;
2637         uint16_t i;
2638         int ret;
2639
2640         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2641
2642         /* setup MTU */
2643         e1000_rlpml_set_vf(hw,
2644                 (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
2645                 VLAN_TAG_SIZE));
2646
2647         /* Configure and enable each RX queue. */
2648         rctl_bsize = 0;
2649         dev->rx_pkt_burst = eth_igb_recv_pkts;
2650         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2651                 uint64_t bus_addr;
2652                 uint32_t rxdctl;
2653
2654                 rxq = dev->data->rx_queues[i];
2655
2656                 rxq->flags = 0;
2657                 /*
2658                  * i350VF LB vlan packets have vlan tags byte swapped.
2659                  */
2660                 if (hw->mac.type == e1000_vfadapt_i350) {
2661                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2662                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2663                 } else {
2664                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2665                 }
2666
2667                 /* Allocate buffers for descriptor rings and set up queue */
2668                 ret = igb_alloc_rx_queue_mbufs(rxq);
2669                 if (ret)
2670                         return ret;
2671
2672                 bus_addr = rxq->rx_ring_phys_addr;
2673                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2674                                 rxq->nb_rx_desc *
2675                                 sizeof(union e1000_adv_rx_desc));
2676                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2677                                 (uint32_t)(bus_addr >> 32));
2678                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
2679
2680                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2681
2682                 /*
2683                  * Configure RX buffer size.
2684                  */
2685                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2686                         RTE_PKTMBUF_HEADROOM);
2687                 if (buf_size >= 1024) {
2688                         /*
2689                          * Configure the BSIZEPACKET field of the SRRCTL
2690                          * register of the queue.
2691                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2692                          * If this field is equal to 0b, then RCTL.BSIZE
2693                          * determines the RX packet buffer size.
2694                          */
2695                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2696                                    E1000_SRRCTL_BSIZEPKT_MASK);
2697                         buf_size = (uint16_t) ((srrctl &
2698                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2699                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2700
2701                         /* It adds dual VLAN length for supporting dual VLAN */
2702                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2703                                                 2 * VLAN_TAG_SIZE) > buf_size){
2704                                 if (!dev->data->scattered_rx)
2705                                         PMD_INIT_LOG(DEBUG,
2706                                                      "forcing scatter mode");
2707                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2708                                 dev->data->scattered_rx = 1;
2709                         }
2710                 } else {
2711                         /*
2712                          * Use BSIZE field of the device RCTL register.
2713                          */
2714                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2715                                 rctl_bsize = buf_size;
2716                         if (!dev->data->scattered_rx)
2717                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2718                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2719                         dev->data->scattered_rx = 1;
2720                 }
2721
2722                 /* Set if packets are dropped when no descriptors available */
2723                 if (rxq->drop_en)
2724                         srrctl |= E1000_SRRCTL_DROP_EN;
2725
2726                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2727
2728                 /* Enable this RX queue. */
2729                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2730                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2731                 rxdctl &= 0xFFF00000;
2732                 rxdctl |= (rxq->pthresh & 0x1F);
2733                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2734                 if (hw->mac.type == e1000_vfadapt) {
2735                         /*
2736                          * Workaround of 82576 VF Erratum
2737                          * force set WTHRESH to 1
2738                          * to avoid Write-Back not triggered sometimes
2739                          */
2740                         rxdctl |= 0x10000;
2741                         PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
2742                 }
2743                 else
2744                         rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2745                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2746         }
2747
2748         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2749                 if (!dev->data->scattered_rx)
2750                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2751                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2752                 dev->data->scattered_rx = 1;
2753         }
2754
2755         /*
2756          * Setup the HW Rx Head and Tail Descriptor Pointers.
2757          * This needs to be done after enable.
2758          */
2759         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2760                 rxq = dev->data->rx_queues[i];
2761                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2762                 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
2763         }
2764
2765         return 0;
2766 }
2767
2768 /*********************************************************************
2769  *
2770  *  Enable VF transmit unit.
2771  *
2772  **********************************************************************/
2773 void
2774 eth_igbvf_tx_init(struct rte_eth_dev *dev)
2775 {
2776         struct e1000_hw     *hw;
2777         struct igb_tx_queue *txq;
2778         uint32_t txdctl;
2779         uint16_t i;
2780
2781         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2782
2783         /* Setup the Base and Length of the Tx Descriptor Rings. */
2784         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2785                 uint64_t bus_addr;
2786
2787                 txq = dev->data->tx_queues[i];
2788                 bus_addr = txq->tx_ring_phys_addr;
2789                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2790                                 txq->nb_tx_desc *
2791                                 sizeof(union e1000_adv_tx_desc));
2792                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2793                                 (uint32_t)(bus_addr >> 32));
2794                 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
2795
2796                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2797                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2798                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2799
2800                 /* Setup Transmit threshold registers. */
2801                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
2802                 txdctl |= txq->pthresh & 0x1F;
2803                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2804                 if (hw->mac.type == e1000_82576) {
2805                         /*
2806                          * Workaround of 82576 VF Erratum
2807                          * force set WTHRESH to 1
2808                          * to avoid Write-Back not triggered sometimes
2809                          */
2810                         txdctl |= 0x10000;
2811                         PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
2812                 }
2813                 else
2814                         txdctl |= ((txq->wthresh & 0x1F) << 16);
2815                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2816                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2817         }
2818
2819 }
2820
2821 void
2822 igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2823         struct rte_eth_rxq_info *qinfo)
2824 {
2825         struct igb_rx_queue *rxq;
2826
2827         rxq = dev->data->rx_queues[queue_id];
2828
2829         qinfo->mp = rxq->mb_pool;
2830         qinfo->scattered_rx = dev->data->scattered_rx;
2831         qinfo->nb_desc = rxq->nb_rx_desc;
2832
2833         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2834         qinfo->conf.rx_drop_en = rxq->drop_en;
2835         qinfo->conf.offloads = rxq->offloads;
2836 }
2837
2838 void
2839 igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2840         struct rte_eth_txq_info *qinfo)
2841 {
2842         struct igb_tx_queue *txq;
2843
2844         txq = dev->data->tx_queues[queue_id];
2845
2846         qinfo->nb_desc = txq->nb_tx_desc;
2847
2848         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2849         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2850         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2851         qinfo->conf.offloads = txq->offloads;
2852 }
2853
2854 int
2855 igb_rss_conf_init(struct igb_rte_flow_rss_conf *out,
2856                   const struct rte_flow_action_rss *in)
2857 {
2858         if (in->key_len > RTE_DIM(out->key) ||
2859             in->queue_num > RTE_DIM(out->queue))
2860                 return -EINVAL;
2861         out->conf = (struct rte_flow_action_rss){
2862                 .func = in->func,
2863                 .level = in->level,
2864                 .types = in->types,
2865                 .key_len = in->key_len,
2866                 .queue_num = in->queue_num,
2867                 .key = memcpy(out->key, in->key, in->key_len),
2868                 .queue = memcpy(out->queue, in->queue,
2869                                 sizeof(*in->queue) * in->queue_num),
2870         };
2871         return 0;
2872 }
2873
2874 int
2875 igb_action_rss_same(const struct rte_flow_action_rss *comp,
2876                     const struct rte_flow_action_rss *with)
2877 {
2878         return (comp->func == with->func &&
2879                 comp->level == with->level &&
2880                 comp->types == with->types &&
2881                 comp->key_len == with->key_len &&
2882                 comp->queue_num == with->queue_num &&
2883                 !memcmp(comp->key, with->key, with->key_len) &&
2884                 !memcmp(comp->queue, with->queue,
2885                         sizeof(*with->queue) * with->queue_num));
2886 }
2887
2888 int
2889 igb_config_rss_filter(struct rte_eth_dev *dev,
2890                 struct igb_rte_flow_rss_conf *conf, bool add)
2891 {
2892         uint32_t shift;
2893         uint16_t i, j;
2894         struct rte_eth_rss_conf rss_conf = {
2895                 .rss_key = conf->conf.key_len ?
2896                         (void *)(uintptr_t)conf->conf.key : NULL,
2897                 .rss_key_len = conf->conf.key_len,
2898                 .rss_hf = conf->conf.types,
2899         };
2900         struct e1000_filter_info *filter_info =
2901                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2902         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2903
2904         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2905
2906         if (!add) {
2907                 if (igb_action_rss_same(&filter_info->rss_info.conf,
2908                                         &conf->conf)) {
2909                         igb_rss_disable(dev);
2910                         memset(&filter_info->rss_info, 0,
2911                                 sizeof(struct igb_rte_flow_rss_conf));
2912                         return 0;
2913                 }
2914                 return -EINVAL;
2915         }
2916
2917         if (filter_info->rss_info.conf.queue_num)
2918                 return -EINVAL;
2919
2920         /* Fill in redirection table. */
2921         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2922         for (i = 0, j = 0; i < 128; i++, j++) {
2923                 union e1000_reta {
2924                         uint32_t dword;
2925                         uint8_t  bytes[4];
2926                 } reta;
2927                 uint8_t q_idx;
2928
2929                 if (j == conf->conf.queue_num)
2930                         j = 0;
2931                 q_idx = conf->conf.queue[j];
2932                 reta.bytes[i & 3] = (uint8_t)(q_idx << shift);
2933                 if ((i & 3) == 3)
2934                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2935         }
2936
2937         /* Configure the RSS key and the RSS protocols used to compute
2938          * the RSS hash of input packets.
2939          */
2940         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2941                 igb_rss_disable(dev);
2942                 return 0;
2943         }
2944         if (rss_conf.rss_key == NULL)
2945                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2946         igb_hw_rss_hash_set(hw, &rss_conf);
2947
2948         if (igb_rss_conf_init(&filter_info->rss_info, &conf->conf))
2949                 return -EINVAL;
2950
2951         return 0;
2952 }