New upstream version 18.11.2
[deb_dpdk.git] / drivers / net / fm10k / fm10k_rxtx_vec.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2013-2015 Intel Corporation
3  */
4
5 #include <inttypes.h>
6
7 #include <rte_ethdev_driver.h>
8 #include <rte_common.h>
9 #include "fm10k.h"
10 #include "base/fm10k_type.h"
11
12 #include <tmmintrin.h>
13
14 #ifndef __INTEL_COMPILER
15 #pragma GCC diagnostic ignored "-Wcast-qual"
16 #endif
17
18 static void
19 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq);
20
21 /* Handling the offload flags (olflags) field takes computation
22  * time when receiving packets. Therefore we provide a flag to disable
23  * the processing of the olflags field when they are not needed. This
24  * gives improved performance, at the cost of losing the offload info
25  * in the received packet
26  */
27 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
28
29 /* Vlan present flag shift */
30 #define VP_SHIFT     (2)
31 /* L3 type shift */
32 #define L3TYPE_SHIFT     (4)
33 /* L4 type shift */
34 #define L4TYPE_SHIFT     (7)
35 /* HBO flag shift */
36 #define HBOFLAG_SHIFT     (10)
37 /* RXE flag shift */
38 #define RXEFLAG_SHIFT     (13)
39 /* IPE/L4E flag shift */
40 #define L3L4EFLAG_SHIFT     (14)
41 /* shift PKT_RX_L4_CKSUM_GOOD into one byte by 1 bit */
42 #define CKSUM_SHIFT     (1)
43
44 static inline void
45 fm10k_desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
46 {
47         __m128i ptype0, ptype1, vtag0, vtag1, eflag0, eflag1, cksumflag;
48         union {
49                 uint16_t e[4];
50                 uint64_t dword;
51         } vol;
52
53         const __m128i pkttype_msk = _mm_set_epi16(
54                         0x0000, 0x0000, 0x0000, 0x0000,
55                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
56                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
57                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
58                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
59
60         /* mask everything except rss type */
61         const __m128i rsstype_msk = _mm_set_epi16(
62                         0x0000, 0x0000, 0x0000, 0x0000,
63                         0x000F, 0x000F, 0x000F, 0x000F);
64
65         /* mask for HBO and RXE flag flags */
66         const __m128i rxe_msk = _mm_set_epi16(
67                         0x0000, 0x0000, 0x0000, 0x0000,
68                         0x0001, 0x0001, 0x0001, 0x0001);
69
70         /* mask the lower byte of ol_flags */
71         const __m128i ol_flags_msk = _mm_set_epi16(
72                         0x0000, 0x0000, 0x0000, 0x0000,
73                         0x00FF, 0x00FF, 0x00FF, 0x00FF);
74
75         const __m128i l3l4cksum_flag = _mm_set_epi8(0, 0, 0, 0,
76                         0, 0, 0, 0,
77                         0, 0, 0, 0,
78                         (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
79                         (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT,
80                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
81                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT);
82
83         const __m128i rxe_flag = _mm_set_epi8(0, 0, 0, 0,
84                         0, 0, 0, 0,
85                         0, 0, 0, 0,
86                         0, 0, 0, 0);
87
88         /* map rss type to rss hash flag */
89         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
90                         0, 0, 0, PKT_RX_RSS_HASH,
91                         PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
92                         PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
93
94         /* Calculate RSS_hash and Vlan fields */
95         ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
96         ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
97         vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
98         vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
99
100         ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
101         ptype0 = _mm_and_si128(ptype0, rsstype_msk);
102         ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
103
104         vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
105         eflag0 = vtag1;
106         cksumflag = vtag1;
107         vtag1 = _mm_srli_epi16(vtag1, VP_SHIFT);
108         vtag1 = _mm_and_si128(vtag1, pkttype_msk);
109
110         vtag1 = _mm_or_si128(ptype0, vtag1);
111
112         /* Process err flags, simply set RECIP_ERR bit if HBO/IXE is set */
113         eflag1 = _mm_srli_epi16(eflag0, RXEFLAG_SHIFT);
114         eflag0 = _mm_srli_epi16(eflag0, HBOFLAG_SHIFT);
115         eflag0 = _mm_or_si128(eflag0, eflag1);
116         eflag0 = _mm_and_si128(eflag0, rxe_msk);
117         eflag0 = _mm_shuffle_epi8(rxe_flag, eflag0);
118
119         vtag1 = _mm_or_si128(eflag0, vtag1);
120
121         /* Process L4/L3 checksum error flags */
122         cksumflag = _mm_srli_epi16(cksumflag, L3L4EFLAG_SHIFT);
123         cksumflag = _mm_shuffle_epi8(l3l4cksum_flag, cksumflag);
124
125         /* clean the higher byte and shift back the flag bits */
126         cksumflag = _mm_and_si128(cksumflag, ol_flags_msk);
127         cksumflag = _mm_slli_epi16(cksumflag, CKSUM_SHIFT);
128         vtag1 = _mm_or_si128(cksumflag, vtag1);
129
130         vol.dword = _mm_cvtsi128_si64(vtag1);
131
132         rx_pkts[0]->ol_flags = vol.e[0];
133         rx_pkts[1]->ol_flags = vol.e[1];
134         rx_pkts[2]->ol_flags = vol.e[2];
135         rx_pkts[3]->ol_flags = vol.e[3];
136 }
137
138 /* @note: When this function is changed, make corresponding change to
139  * fm10k_dev_supported_ptypes_get().
140  */
141 static inline void
142 fm10k_desc_to_pktype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
143 {
144         __m128i l3l4type0, l3l4type1, l3type, l4type;
145         union {
146                 uint16_t e[4];
147                 uint64_t dword;
148         } vol;
149
150         /* L3 pkt type mask  Bit4 to Bit6 */
151         const __m128i l3type_msk = _mm_set_epi16(
152                         0x0000, 0x0000, 0x0000, 0x0000,
153                         0x0070, 0x0070, 0x0070, 0x0070);
154
155         /* L4 pkt type mask  Bit7 to Bit9 */
156         const __m128i l4type_msk = _mm_set_epi16(
157                         0x0000, 0x0000, 0x0000, 0x0000,
158                         0x0380, 0x0380, 0x0380, 0x0380);
159
160         /* convert RRC l3 type to mbuf format */
161         const __m128i l3type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
162                         0, 0, 0, RTE_PTYPE_L3_IPV6_EXT,
163                         RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV4_EXT,
164                         RTE_PTYPE_L3_IPV4, 0);
165
166         /* Convert RRC l4 type to mbuf format l4type_flags shift-left 8 bits
167          * to fill into8 bits length.
168          */
169         const __m128i l4type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
170                         RTE_PTYPE_TUNNEL_GENEVE >> 8,
171                         RTE_PTYPE_TUNNEL_NVGRE >> 8,
172                         RTE_PTYPE_TUNNEL_VXLAN >> 8,
173                         RTE_PTYPE_TUNNEL_GRE >> 8,
174                         RTE_PTYPE_L4_UDP >> 8,
175                         RTE_PTYPE_L4_TCP >> 8,
176                         0);
177
178         l3l4type0 = _mm_unpacklo_epi16(descs[0], descs[1]);
179         l3l4type1 = _mm_unpacklo_epi16(descs[2], descs[3]);
180         l3l4type0 = _mm_unpacklo_epi32(l3l4type0, l3l4type1);
181
182         l3type = _mm_and_si128(l3l4type0, l3type_msk);
183         l4type = _mm_and_si128(l3l4type0, l4type_msk);
184
185         l3type = _mm_srli_epi16(l3type, L3TYPE_SHIFT);
186         l4type = _mm_srli_epi16(l4type, L4TYPE_SHIFT);
187
188         l3type = _mm_shuffle_epi8(l3type_flags, l3type);
189         /* l4type_flags shift-left for 8 bits, need shift-right back */
190         l4type = _mm_shuffle_epi8(l4type_flags, l4type);
191
192         l4type = _mm_slli_epi16(l4type, 8);
193         l3l4type0 = _mm_or_si128(l3type, l4type);
194         vol.dword = _mm_cvtsi128_si64(l3l4type0);
195
196         rx_pkts[0]->packet_type = vol.e[0];
197         rx_pkts[1]->packet_type = vol.e[1];
198         rx_pkts[2]->packet_type = vol.e[2];
199         rx_pkts[3]->packet_type = vol.e[3];
200 }
201 #else
202 #define fm10k_desc_to_olflags_v(desc, rx_pkts) do {} while (0)
203 #define fm10k_desc_to_pktype_v(desc, rx_pkts) do {} while (0)
204 #endif
205
206 int __attribute__((cold))
207 fm10k_rx_vec_condition_check(struct rte_eth_dev *dev)
208 {
209 #ifndef RTE_LIBRTE_IEEE1588
210         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
211         struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
212
213 #ifndef RTE_FM10K_RX_OLFLAGS_ENABLE
214         /* whithout rx ol_flags, no VP flag report */
215         if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
216                 return -1;
217 #endif
218
219         /* no fdir support */
220         if (fconf->mode != RTE_FDIR_MODE_NONE)
221                 return -1;
222
223         /* no header split support */
224         if (rxmode->offloads & DEV_RX_OFFLOAD_HEADER_SPLIT)
225                 return -1;
226
227         return 0;
228 #else
229         RTE_SET_USED(dev);
230         return -1;
231 #endif
232 }
233
234 int __attribute__((cold))
235 fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq)
236 {
237         uintptr_t p;
238         struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
239
240         mb_def.nb_segs = 1;
241         /* data_off will be ajusted after new mbuf allocated for 512-byte
242          * alignment.
243          */
244         mb_def.data_off = RTE_PKTMBUF_HEADROOM;
245         mb_def.port = rxq->port_id;
246         rte_mbuf_refcnt_set(&mb_def, 1);
247
248         /* prevent compiler reordering: rearm_data covers previous fields */
249         rte_compiler_barrier();
250         p = (uintptr_t)&mb_def.rearm_data;
251         rxq->mbuf_initializer = *(uint64_t *)p;
252         return 0;
253 }
254
255 static inline void
256 fm10k_rxq_rearm(struct fm10k_rx_queue *rxq)
257 {
258         int i;
259         uint16_t rx_id;
260         volatile union fm10k_rx_desc *rxdp;
261         struct rte_mbuf **mb_alloc = &rxq->sw_ring[rxq->rxrearm_start];
262         struct rte_mbuf *mb0, *mb1;
263         __m128i head_off = _mm_set_epi64x(
264                         RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1,
265                         RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1);
266         __m128i dma_addr0, dma_addr1;
267         /* Rx buffer need to be aligned with 512 byte */
268         const __m128i hba_msk = _mm_set_epi64x(0,
269                                 UINT64_MAX - FM10K_RX_DATABUF_ALIGN + 1);
270
271         rxdp = rxq->hw_ring + rxq->rxrearm_start;
272
273         /* Pull 'n' more MBUFs into the software ring */
274         if (rte_mempool_get_bulk(rxq->mp,
275                                  (void *)mb_alloc,
276                                  RTE_FM10K_RXQ_REARM_THRESH) < 0) {
277                 dma_addr0 = _mm_setzero_si128();
278                 /* Clean up all the HW/SW ring content */
279                 for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i++) {
280                         mb_alloc[i] = &rxq->fake_mbuf;
281                         _mm_store_si128((__m128i *)&rxdp[i].q,
282                                                 dma_addr0);
283                 }
284
285                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
286                         RTE_FM10K_RXQ_REARM_THRESH;
287                 return;
288         }
289
290         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
291         for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i += 2, mb_alloc += 2) {
292                 __m128i vaddr0, vaddr1;
293                 uintptr_t p0, p1;
294
295                 mb0 = mb_alloc[0];
296                 mb1 = mb_alloc[1];
297
298                 /* Flush mbuf with pkt template.
299                  * Data to be rearmed is 6 bytes long.
300                  */
301                 p0 = (uintptr_t)&mb0->rearm_data;
302                 *(uint64_t *)p0 = rxq->mbuf_initializer;
303                 p1 = (uintptr_t)&mb1->rearm_data;
304                 *(uint64_t *)p1 = rxq->mbuf_initializer;
305
306                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
307                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
308                                 offsetof(struct rte_mbuf, buf_addr) + 8);
309                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
310                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
311
312                 /* convert pa to dma_addr hdr/data */
313                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
314                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
315
316                 /* add headroom to pa values */
317                 dma_addr0 = _mm_add_epi64(dma_addr0, head_off);
318                 dma_addr1 = _mm_add_epi64(dma_addr1, head_off);
319
320                 /* Do 512 byte alignment to satisfy HW requirement, in the
321                  * meanwhile, set Header Buffer Address to zero.
322                  */
323                 dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
324                 dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
325
326                 /* flush desc with pa dma_addr */
327                 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr0);
328                 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr1);
329
330                 /* enforce 512B alignment on default Rx virtual addresses */
331                 mb0->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb0->buf_addr
332                                 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
333                                 - (char *)mb0->buf_addr);
334                 mb1->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb1->buf_addr
335                                 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
336                                 - (char *)mb1->buf_addr);
337         }
338
339         rxq->rxrearm_start += RTE_FM10K_RXQ_REARM_THRESH;
340         if (rxq->rxrearm_start >= rxq->nb_desc)
341                 rxq->rxrearm_start = 0;
342
343         rxq->rxrearm_nb -= RTE_FM10K_RXQ_REARM_THRESH;
344
345         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
346                         (rxq->nb_desc - 1) : (rxq->rxrearm_start - 1));
347
348         /* Update the tail pointer on the NIC */
349         FM10K_PCI_REG_WRITE(rxq->tail_ptr, rx_id);
350 }
351
352 void __attribute__((cold))
353 fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue *rxq)
354 {
355         const unsigned mask = rxq->nb_desc - 1;
356         unsigned i;
357
358         if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_desc)
359                 return;
360
361         /* free all mbufs that are valid in the ring */
362         for (i = rxq->next_dd; i != rxq->rxrearm_start; i = (i + 1) & mask)
363                 rte_pktmbuf_free_seg(rxq->sw_ring[i]);
364         rxq->rxrearm_nb = rxq->nb_desc;
365
366         /* set all entries to NULL */
367         memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_desc);
368 }
369
370 static inline uint16_t
371 fm10k_recv_raw_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
372                 uint16_t nb_pkts, uint8_t *split_packet)
373 {
374         volatile union fm10k_rx_desc *rxdp;
375         struct rte_mbuf **mbufp;
376         uint16_t nb_pkts_recd;
377         int pos;
378         struct fm10k_rx_queue *rxq = rx_queue;
379         uint64_t var;
380         __m128i shuf_msk;
381         __m128i dd_check, eop_check;
382         uint16_t next_dd;
383
384         next_dd = rxq->next_dd;
385
386         /* Just the act of getting into the function from the application is
387          * going to cost about 7 cycles
388          */
389         rxdp = rxq->hw_ring + next_dd;
390
391         rte_prefetch0(rxdp);
392
393         /* See if we need to rearm the RX queue - gives the prefetch a bit
394          * of time to act
395          */
396         if (rxq->rxrearm_nb > RTE_FM10K_RXQ_REARM_THRESH)
397                 fm10k_rxq_rearm(rxq);
398
399         /* Before we start moving massive data around, check to see if
400          * there is actually a packet available
401          */
402         if (!(rxdp->d.staterr & FM10K_RXD_STATUS_DD))
403                 return 0;
404
405         /* Vecotr RX will process 4 packets at a time, strip the unaligned
406          * tails in case it's not multiple of 4.
407          */
408         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_FM10K_DESCS_PER_LOOP);
409
410         /* 4 packets DD mask */
411         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
412
413         /* 4 packets EOP mask */
414         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
415
416         /* mask to shuffle from desc. to mbuf */
417         shuf_msk = _mm_set_epi8(
418                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
419                 15, 14,      /* octet 14~15, low 16 bits vlan_macip */
420                 13, 12,      /* octet 12~13, 16 bits data_len */
421                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
422                 13, 12,      /* octet 12~13, low 16 bits pkt_len */
423                 0xFF, 0xFF,  /* skip high 16 bits pkt_type */
424                 0xFF, 0xFF   /* Skip pkt_type field in shuffle operation */
425                 );
426         /*
427          * Compile-time verify the shuffle mask
428          * NOTE: some field positions already verified above, but duplicated
429          * here for completeness in case of future modifications.
430          */
431         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
432                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
433         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
434                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
435         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
436                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
437         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
438                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
439
440         /* Cache is empty -> need to scan the buffer rings, but first move
441          * the next 'n' mbufs into the cache
442          */
443         mbufp = &rxq->sw_ring[next_dd];
444
445         /* A. load 4 packet in one loop
446          * [A*. mask out 4 unused dirty field in desc]
447          * B. copy 4 mbuf point from swring to rx_pkts
448          * C. calc the number of DD bits among the 4 packets
449          * [C*. extract the end-of-packet bit, if requested]
450          * D. fill info. from desc to mbuf
451          */
452         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
453                         pos += RTE_FM10K_DESCS_PER_LOOP,
454                         rxdp += RTE_FM10K_DESCS_PER_LOOP) {
455                 __m128i descs0[RTE_FM10K_DESCS_PER_LOOP];
456                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
457                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
458                 __m128i mbp1;
459                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
460 #if defined(RTE_ARCH_X86_64)
461                 __m128i mbp2;
462 #endif
463
464                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
465                 mbp1 = _mm_loadu_si128((__m128i *)&mbufp[pos]);
466
467                 /* Read desc statuses backwards to avoid race condition */
468                 /* A.1 load 4 pkts desc */
469                 descs0[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
470                 rte_compiler_barrier();
471
472                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
473                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
474
475 #if defined(RTE_ARCH_X86_64)
476                 /* B.1 load 2 64 bit mbuf poitns */
477                 mbp2 = _mm_loadu_si128((__m128i *)&mbufp[pos+2]);
478 #endif
479
480                 descs0[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
481                 rte_compiler_barrier();
482                 /* B.1 load 2 mbuf point */
483                 descs0[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
484                 rte_compiler_barrier();
485                 descs0[0] = _mm_loadu_si128((__m128i *)(rxdp));
486
487 #if defined(RTE_ARCH_X86_64)
488                 /* B.2 copy 2 mbuf point into rx_pkts  */
489                 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
490 #endif
491
492                 /* avoid compiler reorder optimization */
493                 rte_compiler_barrier();
494
495                 if (split_packet) {
496                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
497                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
498                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
499                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
500                 }
501
502                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
503                 pkt_mb4 = _mm_shuffle_epi8(descs0[3], shuf_msk);
504                 pkt_mb3 = _mm_shuffle_epi8(descs0[2], shuf_msk);
505
506                 /* C.1 4=>2 filter staterr info only */
507                 sterr_tmp2 = _mm_unpackhi_epi32(descs0[3], descs0[2]);
508                 /* C.1 4=>2 filter staterr info only */
509                 sterr_tmp1 = _mm_unpackhi_epi32(descs0[1], descs0[0]);
510
511                 /* set ol_flags with vlan packet type */
512                 fm10k_desc_to_olflags_v(descs0, &rx_pkts[pos]);
513
514                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
515                 pkt_mb2 = _mm_shuffle_epi8(descs0[1], shuf_msk);
516                 pkt_mb1 = _mm_shuffle_epi8(descs0[0], shuf_msk);
517
518                 /* C.2 get 4 pkts staterr value  */
519                 zero = _mm_xor_si128(dd_check, dd_check);
520                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
521
522                 /* D.3 copy final 3,4 data to rx_pkts */
523                 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
524                                 pkt_mb4);
525                 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
526                                 pkt_mb3);
527
528                 /* C* extract and record EOP bit */
529                 if (split_packet) {
530                         __m128i eop_shuf_mask = _mm_set_epi8(
531                                         0xFF, 0xFF, 0xFF, 0xFF,
532                                         0xFF, 0xFF, 0xFF, 0xFF,
533                                         0xFF, 0xFF, 0xFF, 0xFF,
534                                         0x04, 0x0C, 0x00, 0x08
535                                         );
536
537                         /* and with mask to extract bits, flipping 1-0 */
538                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
539                         /* the staterr values are not in order, as the count
540                          * count of dd bits doesn't care. However, for end of
541                          * packet tracking, we do care, so shuffle. This also
542                          * compresses the 32-bit values to 8-bit
543                          */
544                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
545                         /* store the resulting 32-bit value */
546                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
547                         split_packet += RTE_FM10K_DESCS_PER_LOOP;
548
549                         /* zero-out next pointers */
550                         rx_pkts[pos]->next = NULL;
551                         rx_pkts[pos + 1]->next = NULL;
552                         rx_pkts[pos + 2]->next = NULL;
553                         rx_pkts[pos + 3]->next = NULL;
554                 }
555
556                 /* C.3 calc available number of desc */
557                 staterr = _mm_and_si128(staterr, dd_check);
558                 staterr = _mm_packs_epi32(staterr, zero);
559
560                 /* D.3 copy final 1,2 data to rx_pkts */
561                 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
562                                 pkt_mb2);
563                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
564                                 pkt_mb1);
565
566                 fm10k_desc_to_pktype_v(descs0, &rx_pkts[pos]);
567
568                 /* C.4 calc avaialbe number of desc */
569                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
570                 nb_pkts_recd += var;
571                 if (likely(var != RTE_FM10K_DESCS_PER_LOOP))
572                         break;
573         }
574
575         /* Update our internal tail pointer */
576         rxq->next_dd = (uint16_t)(rxq->next_dd + nb_pkts_recd);
577         rxq->next_dd = (uint16_t)(rxq->next_dd & (rxq->nb_desc - 1));
578         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
579
580         return nb_pkts_recd;
581 }
582
583 /* vPMD receive routine
584  *
585  * Notice:
586  * - don't support ol_flags for rss and csum err
587  */
588 uint16_t
589 fm10k_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
590                 uint16_t nb_pkts)
591 {
592         return fm10k_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
593 }
594
595 static inline uint16_t
596 fm10k_reassemble_packets(struct fm10k_rx_queue *rxq,
597                 struct rte_mbuf **rx_bufs,
598                 uint16_t nb_bufs, uint8_t *split_flags)
599 {
600         struct rte_mbuf *pkts[RTE_FM10K_MAX_RX_BURST]; /*finished pkts*/
601         struct rte_mbuf *start = rxq->pkt_first_seg;
602         struct rte_mbuf *end =  rxq->pkt_last_seg;
603         unsigned pkt_idx, buf_idx;
604
605         for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
606                 if (end != NULL) {
607                         /* processing a split packet */
608                         end->next = rx_bufs[buf_idx];
609                         start->nb_segs++;
610                         start->pkt_len += rx_bufs[buf_idx]->data_len;
611                         end = end->next;
612
613                         if (!split_flags[buf_idx]) {
614                                 /* it's the last packet of the set */
615 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
616                                 start->hash = end->hash;
617                                 start->ol_flags = end->ol_flags;
618                                 start->packet_type = end->packet_type;
619 #endif
620                                 pkts[pkt_idx++] = start;
621                                 start = end = NULL;
622                         }
623                 } else {
624                         /* not processing a split packet */
625                         if (!split_flags[buf_idx]) {
626                                 /* not a split packet, save and skip */
627                                 pkts[pkt_idx++] = rx_bufs[buf_idx];
628                                 continue;
629                         }
630                         end = start = rx_bufs[buf_idx];
631                 }
632         }
633
634         /* save the partial packet for next time */
635         rxq->pkt_first_seg = start;
636         rxq->pkt_last_seg = end;
637         memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
638         return pkt_idx;
639 }
640
641 /*
642  * vPMD receive routine that reassembles scattered packets
643  *
644  * Notice:
645  * - don't support ol_flags for rss and csum err
646  * - nb_pkts > RTE_FM10K_MAX_RX_BURST, only scan RTE_FM10K_MAX_RX_BURST
647  *   numbers of DD bit
648  */
649 uint16_t
650 fm10k_recv_scattered_pkts_vec(void *rx_queue,
651                                 struct rte_mbuf **rx_pkts,
652                                 uint16_t nb_pkts)
653 {
654         struct fm10k_rx_queue *rxq = rx_queue;
655         uint8_t split_flags[RTE_FM10K_MAX_RX_BURST] = {0};
656         unsigned i = 0;
657
658         /* Split_flags only can support max of RTE_FM10K_MAX_RX_BURST */
659         nb_pkts = RTE_MIN(nb_pkts, RTE_FM10K_MAX_RX_BURST);
660         /* get some new buffers */
661         uint16_t nb_bufs = fm10k_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
662                         split_flags);
663         if (nb_bufs == 0)
664                 return 0;
665
666         /* happy day case, full burst + no packets to be joined */
667         const uint64_t *split_fl64 = (uint64_t *)split_flags;
668
669         if (rxq->pkt_first_seg == NULL &&
670                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
671                         split_fl64[2] == 0 && split_fl64[3] == 0)
672                 return nb_bufs;
673
674         /* reassemble any packets that need reassembly*/
675         if (rxq->pkt_first_seg == NULL) {
676                 /* find the first split flag, and only reassemble then*/
677                 while (i < nb_bufs && !split_flags[i])
678                         i++;
679                 if (i == nb_bufs)
680                         return nb_bufs;
681         }
682         return i + fm10k_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
683                 &split_flags[i]);
684 }
685
686 static const struct fm10k_txq_ops vec_txq_ops = {
687         .reset = fm10k_reset_tx_queue,
688 };
689
690 void __attribute__((cold))
691 fm10k_txq_vec_setup(struct fm10k_tx_queue *txq)
692 {
693         txq->ops = &vec_txq_ops;
694 }
695
696 int __attribute__((cold))
697 fm10k_tx_vec_condition_check(struct fm10k_tx_queue *txq)
698 {
699         /* Vector TX can't offload any features yet */
700         if (txq->offloads != 0)
701                 return -1;
702
703         if (txq->tx_ftag_en)
704                 return -1;
705
706         return 0;
707 }
708
709 static inline void
710 vtx1(volatile struct fm10k_tx_desc *txdp,
711                 struct rte_mbuf *pkt, uint64_t flags)
712 {
713         __m128i descriptor = _mm_set_epi64x(flags << 56 |
714                         pkt->vlan_tci << 16 | pkt->data_len,
715                         MBUF_DMA_ADDR(pkt));
716         _mm_store_si128((__m128i *)txdp, descriptor);
717 }
718
719 static inline void
720 vtx(volatile struct fm10k_tx_desc *txdp,
721                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
722 {
723         int i;
724
725         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
726                 vtx1(txdp, *pkt, flags);
727 }
728
729 static __rte_always_inline int
730 fm10k_tx_free_bufs(struct fm10k_tx_queue *txq)
731 {
732         struct rte_mbuf **txep;
733         uint8_t flags;
734         uint32_t n;
735         uint32_t i;
736         int nb_free = 0;
737         struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ];
738
739         /* check DD bit on threshold descriptor */
740         flags = txq->hw_ring[txq->next_dd].flags;
741         if (!(flags & FM10K_TXD_FLAG_DONE))
742                 return 0;
743
744         n = txq->rs_thresh;
745
746         /* First buffer to free from S/W ring is at index
747          * next_dd - (rs_thresh-1)
748          */
749         txep = &txq->sw_ring[txq->next_dd - (n - 1)];
750         m = rte_pktmbuf_prefree_seg(txep[0]);
751         if (likely(m != NULL)) {
752                 free[0] = m;
753                 nb_free = 1;
754                 for (i = 1; i < n; i++) {
755                         m = rte_pktmbuf_prefree_seg(txep[i]);
756                         if (likely(m != NULL)) {
757                                 if (likely(m->pool == free[0]->pool))
758                                         free[nb_free++] = m;
759                                 else {
760                                         rte_mempool_put_bulk(free[0]->pool,
761                                                         (void *)free, nb_free);
762                                         free[0] = m;
763                                         nb_free = 1;
764                                 }
765                         }
766                 }
767                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
768         } else {
769                 for (i = 1; i < n; i++) {
770                         m = rte_pktmbuf_prefree_seg(txep[i]);
771                         if (m != NULL)
772                                 rte_mempool_put(m->pool, m);
773                 }
774         }
775
776         /* buffers were freed, update counters */
777         txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
778         txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
779         if (txq->next_dd >= txq->nb_desc)
780                 txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
781
782         return txq->rs_thresh;
783 }
784
785 static __rte_always_inline void
786 tx_backlog_entry(struct rte_mbuf **txep,
787                  struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
788 {
789         int i;
790
791         for (i = 0; i < (int)nb_pkts; ++i)
792                 txep[i] = tx_pkts[i];
793 }
794
795 uint16_t
796 fm10k_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
797                            uint16_t nb_pkts)
798 {
799         struct fm10k_tx_queue *txq = (struct fm10k_tx_queue *)tx_queue;
800         volatile struct fm10k_tx_desc *txdp;
801         struct rte_mbuf **txep;
802         uint16_t n, nb_commit, tx_id;
803         uint64_t flags = FM10K_TXD_FLAG_LAST;
804         uint64_t rs = FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_LAST;
805         int i;
806
807         /* cross rx_thresh boundary is not allowed */
808         nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
809
810         if (txq->nb_free < txq->free_thresh)
811                 fm10k_tx_free_bufs(txq);
812
813         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
814         if (unlikely(nb_pkts == 0))
815                 return 0;
816
817         tx_id = txq->next_free;
818         txdp = &txq->hw_ring[tx_id];
819         txep = &txq->sw_ring[tx_id];
820
821         txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
822
823         n = (uint16_t)(txq->nb_desc - tx_id);
824         if (nb_commit >= n) {
825                 tx_backlog_entry(txep, tx_pkts, n);
826
827                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
828                         vtx1(txdp, *tx_pkts, flags);
829
830                 vtx1(txdp, *tx_pkts++, rs);
831
832                 nb_commit = (uint16_t)(nb_commit - n);
833
834                 tx_id = 0;
835                 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
836
837                 /* avoid reach the end of ring */
838                 txdp = &(txq->hw_ring[tx_id]);
839                 txep = &txq->sw_ring[tx_id];
840         }
841
842         tx_backlog_entry(txep, tx_pkts, nb_commit);
843
844         vtx(txdp, tx_pkts, nb_commit, flags);
845
846         tx_id = (uint16_t)(tx_id + nb_commit);
847         if (tx_id > txq->next_rs) {
848                 txq->hw_ring[txq->next_rs].flags |= FM10K_TXD_FLAG_RS;
849                 txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh);
850         }
851
852         txq->next_free = tx_id;
853
854         FM10K_PCI_REG_WRITE(txq->tail_ptr, txq->next_free);
855
856         return nb_pkts;
857 }
858
859 static void __attribute__((cold))
860 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq)
861 {
862         static const struct fm10k_tx_desc zeroed_desc = {0};
863         struct rte_mbuf **txe = txq->sw_ring;
864         uint16_t i;
865
866         /* Zero out HW ring memory */
867         for (i = 0; i < txq->nb_desc; i++)
868                 txq->hw_ring[i] = zeroed_desc;
869
870         /* Initialize SW ring entries */
871         for (i = 0; i < txq->nb_desc; i++)
872                 txe[i] = NULL;
873
874         txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
875         txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
876
877         txq->next_free = 0;
878         txq->nb_used = 0;
879         /* Always allow 1 descriptor to be un-allocated to avoid
880          * a H/W race condition
881          */
882         txq->nb_free = (uint16_t)(txq->nb_desc - 1);
883         FM10K_PCI_REG_WRITE(txq->tail_ptr, 0);
884 }