New upstream version 17.11.1
[deb_dpdk.git] / drivers / net / i40e / i40e_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <errno.h>
38 #include <stdint.h>
39 #include <stdarg.h>
40 #include <unistd.h>
41 #include <inttypes.h>
42 #include <sys/queue.h>
43
44 #include <rte_string_fns.h>
45 #include <rte_memzone.h>
46 #include <rte_mbuf.h>
47 #include <rte_malloc.h>
48 #include <rte_ether.h>
49 #include <rte_ethdev.h>
50 #include <rte_tcp.h>
51 #include <rte_sctp.h>
52 #include <rte_udp.h>
53 #include <rte_ip.h>
54 #include <rte_net.h>
55
56 #include "i40e_logs.h"
57 #include "base/i40e_prototype.h"
58 #include "base/i40e_type.h"
59 #include "i40e_ethdev.h"
60 #include "i40e_rxtx.h"
61
62 #define DEFAULT_TX_RS_THRESH   32
63 #define DEFAULT_TX_FREE_THRESH 32
64
65 #define I40E_TX_MAX_BURST  32
66
67 #define I40E_DMA_MEM_ALIGN 4096
68
69 /* Base address of the HW descriptor ring should be 128B aligned. */
70 #define I40E_RING_BASE_ALIGN    128
71
72 #define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
73                                         ETH_TXQ_FLAGS_NOOFFLOADS)
74
75 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
76
77 #ifdef RTE_LIBRTE_IEEE1588
78 #define I40E_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
79 #else
80 #define I40E_TX_IEEE1588_TMST 0
81 #endif
82
83 #define I40E_TX_CKSUM_OFFLOAD_MASK (             \
84                 PKT_TX_IP_CKSUM |                \
85                 PKT_TX_L4_MASK |                 \
86                 PKT_TX_TCP_SEG |                 \
87                 PKT_TX_OUTER_IP_CKSUM)
88
89 #define I40E_TX_OFFLOAD_MASK (  \
90                 PKT_TX_IP_CKSUM |       \
91                 PKT_TX_L4_MASK |        \
92                 PKT_TX_OUTER_IP_CKSUM | \
93                 PKT_TX_TCP_SEG |        \
94                 PKT_TX_QINQ_PKT |       \
95                 PKT_TX_VLAN_PKT |       \
96                 PKT_TX_TUNNEL_MASK |    \
97                 I40E_TX_IEEE1588_TMST)
98
99 #define I40E_TX_OFFLOAD_NOTSUP_MASK \
100                 (PKT_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_MASK)
101
102 static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
103                                       struct rte_mbuf **tx_pkts,
104                                       uint16_t nb_pkts);
105
106 static inline void
107 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
108 {
109         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
110                 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
111                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
112                 mb->vlan_tci =
113                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
114                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
115                            rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
116         } else {
117                 mb->vlan_tci = 0;
118         }
119 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
120         if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
121                 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
122                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED;
123                 mb->vlan_tci_outer = mb->vlan_tci;
124                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
125                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
126                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
127                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
128         } else {
129                 mb->vlan_tci_outer = 0;
130         }
131 #endif
132         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
133                    mb->vlan_tci, mb->vlan_tci_outer);
134 }
135
136 /* Translate the rx descriptor status to pkt flags */
137 static inline uint64_t
138 i40e_rxd_status_to_pkt_flags(uint64_t qword)
139 {
140         uint64_t flags;
141
142         /* Check if RSS_HASH */
143         flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
144                                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
145                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
146
147         /* Check if FDIR Match */
148         flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
149                                                         PKT_RX_FDIR : 0);
150
151         return flags;
152 }
153
154 static inline uint64_t
155 i40e_rxd_error_to_pkt_flags(uint64_t qword)
156 {
157         uint64_t flags = 0;
158         uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
159
160 #define I40E_RX_ERR_BITS 0x3f
161         if (likely((error_bits & I40E_RX_ERR_BITS) == 0)) {
162                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
163                 return flags;
164         }
165
166         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
167                 flags |= PKT_RX_IP_CKSUM_BAD;
168         else
169                 flags |= PKT_RX_IP_CKSUM_GOOD;
170
171         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
172                 flags |= PKT_RX_L4_CKSUM_BAD;
173         else
174                 flags |= PKT_RX_L4_CKSUM_GOOD;
175
176         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
177                 flags |= PKT_RX_EIP_CKSUM_BAD;
178
179         return flags;
180 }
181
182 /* Function to check and set the ieee1588 timesync index and get the
183  * appropriate flags.
184  */
185 #ifdef RTE_LIBRTE_IEEE1588
186 static inline uint64_t
187 i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
188 {
189         uint64_t pkt_flags = 0;
190         uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
191                                   | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
192                                     >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
193
194         if ((mb->packet_type & RTE_PTYPE_L2_MASK)
195                         == RTE_PTYPE_L2_ETHER_TIMESYNC)
196                 pkt_flags = PKT_RX_IEEE1588_PTP;
197         if (tsyn & 0x04) {
198                 pkt_flags |= PKT_RX_IEEE1588_TMST;
199                 mb->timesync = tsyn & 0x03;
200         }
201
202         return pkt_flags;
203 }
204 #endif
205
206 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK   0x03
207 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID  0x01
208 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX   0x02
209 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK   0x03
210 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX   0x01
211
212 static inline uint64_t
213 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
214 {
215         uint64_t flags = 0;
216 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
217         uint16_t flexbh, flexbl;
218
219         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
220                 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
221                 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
222         flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
223                 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
224                 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
225
226
227         if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
228                 mb->hash.fdir.hi =
229                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
230                 flags |= PKT_RX_FDIR_ID;
231         } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
232                 mb->hash.fdir.hi =
233                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
234                 flags |= PKT_RX_FDIR_FLX;
235         }
236         if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
237                 mb->hash.fdir.lo =
238                         rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
239                 flags |= PKT_RX_FDIR_FLX;
240         }
241 #else
242         mb->hash.fdir.hi =
243                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
244         flags |= PKT_RX_FDIR_ID;
245 #endif
246         return flags;
247 }
248
249 static inline void
250 i40e_parse_tunneling_params(uint64_t ol_flags,
251                             union i40e_tx_offload tx_offload,
252                             uint32_t *cd_tunneling)
253 {
254         /* EIPT: External (outer) IP header type */
255         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
256                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
257         else if (ol_flags & PKT_TX_OUTER_IPV4)
258                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
259         else if (ol_flags & PKT_TX_OUTER_IPV6)
260                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
261
262         /* EIPLEN: External (outer) IP header length, in DWords */
263         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
264                 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
265
266         /* L4TUNT: L4 Tunneling Type */
267         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
268         case PKT_TX_TUNNEL_IPIP:
269                 /* for non UDP / GRE tunneling, set to 00b */
270                 break;
271         case PKT_TX_TUNNEL_VXLAN:
272         case PKT_TX_TUNNEL_GENEVE:
273                 *cd_tunneling |= I40E_TXD_CTX_UDP_TUNNELING;
274                 break;
275         case PKT_TX_TUNNEL_GRE:
276                 *cd_tunneling |= I40E_TXD_CTX_GRE_TUNNELING;
277                 break;
278         default:
279                 PMD_TX_LOG(ERR, "Tunnel type not supported");
280                 return;
281         }
282
283         /* L4TUNLEN: L4 Tunneling Length, in Words
284          *
285          * We depend on app to set rte_mbuf.l2_len correctly.
286          * For IP in GRE it should be set to the length of the GRE
287          * header;
288          * for MAC in GRE or MAC in UDP it should be set to the length
289          * of the GRE or UDP headers plus the inner MAC up to including
290          * its last Ethertype.
291          */
292         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
293                 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
294 }
295
296 static inline void
297 i40e_txd_enable_checksum(uint64_t ol_flags,
298                         uint32_t *td_cmd,
299                         uint32_t *td_offset,
300                         union i40e_tx_offload tx_offload)
301 {
302         /* Set MACLEN */
303         if (ol_flags & PKT_TX_TUNNEL_MASK)
304                 *td_offset |= (tx_offload.outer_l2_len >> 1)
305                                 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
306         else
307                 *td_offset |= (tx_offload.l2_len >> 1)
308                         << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
309
310         /* Enable L3 checksum offloads */
311         if (ol_flags & PKT_TX_IP_CKSUM) {
312                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
313                 *td_offset |= (tx_offload.l3_len >> 2)
314                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
315         } else if (ol_flags & PKT_TX_IPV4) {
316                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
317                 *td_offset |= (tx_offload.l3_len >> 2)
318                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
319         } else if (ol_flags & PKT_TX_IPV6) {
320                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
321                 *td_offset |= (tx_offload.l3_len >> 2)
322                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
323         }
324
325         if (ol_flags & PKT_TX_TCP_SEG) {
326                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
327                 *td_offset |= (tx_offload.l4_len >> 2)
328                         << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
329                 return;
330         }
331
332         /* Enable L4 checksum offloads */
333         switch (ol_flags & PKT_TX_L4_MASK) {
334         case PKT_TX_TCP_CKSUM:
335                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
336                 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
337                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
338                 break;
339         case PKT_TX_SCTP_CKSUM:
340                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
341                 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
342                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
343                 break;
344         case PKT_TX_UDP_CKSUM:
345                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
346                 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
347                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
348                 break;
349         default:
350                 break;
351         }
352 }
353
354 /* Construct the tx flags */
355 static inline uint64_t
356 i40e_build_ctob(uint32_t td_cmd,
357                 uint32_t td_offset,
358                 unsigned int size,
359                 uint32_t td_tag)
360 {
361         return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
362                         ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
363                         ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
364                         ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
365                         ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
366 }
367
368 static inline int
369 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
370 {
371         struct i40e_tx_entry *sw_ring = txq->sw_ring;
372         volatile struct i40e_tx_desc *txd = txq->tx_ring;
373         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
374         uint16_t nb_tx_desc = txq->nb_tx_desc;
375         uint16_t desc_to_clean_to;
376         uint16_t nb_tx_to_clean;
377
378         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
379         if (desc_to_clean_to >= nb_tx_desc)
380                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
381
382         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
383         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
384                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
385                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
386                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
387                         "(port=%d queue=%d)", desc_to_clean_to,
388                                 txq->port_id, txq->queue_id);
389                 return -1;
390         }
391
392         if (last_desc_cleaned > desc_to_clean_to)
393                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
394                                                         desc_to_clean_to);
395         else
396                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
397                                         last_desc_cleaned);
398
399         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
400
401         txq->last_desc_cleaned = desc_to_clean_to;
402         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
403
404         return 0;
405 }
406
407 static inline int
408 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
409 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
410 #else
411 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
412 #endif
413 {
414         int ret = 0;
415
416 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
417         if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
418                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
419                              "rxq->rx_free_thresh=%d, "
420                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
421                              rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
422                 ret = -EINVAL;
423         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
424                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
425                              "rxq->rx_free_thresh=%d, "
426                              "rxq->nb_rx_desc=%d",
427                              rxq->rx_free_thresh, rxq->nb_rx_desc);
428                 ret = -EINVAL;
429         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
430                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
431                              "rxq->nb_rx_desc=%d, "
432                              "rxq->rx_free_thresh=%d",
433                              rxq->nb_rx_desc, rxq->rx_free_thresh);
434                 ret = -EINVAL;
435         }
436 #else
437         ret = -EINVAL;
438 #endif
439
440         return ret;
441 }
442
443 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
444 #define I40E_LOOK_AHEAD 8
445 #if (I40E_LOOK_AHEAD != 8)
446 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
447 #endif
448 static inline int
449 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
450 {
451         volatile union i40e_rx_desc *rxdp;
452         struct i40e_rx_entry *rxep;
453         struct rte_mbuf *mb;
454         uint16_t pkt_len;
455         uint64_t qword1;
456         uint32_t rx_status;
457         int32_t s[I40E_LOOK_AHEAD], nb_dd;
458         int32_t i, j, nb_rx = 0;
459         uint64_t pkt_flags;
460         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
461
462         rxdp = &rxq->rx_ring[rxq->rx_tail];
463         rxep = &rxq->sw_ring[rxq->rx_tail];
464
465         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
466         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
467                                 I40E_RXD_QW1_STATUS_SHIFT;
468
469         /* Make sure there is at least 1 packet to receive */
470         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
471                 return 0;
472
473         /**
474          * Scan LOOK_AHEAD descriptors at a time to determine which
475          * descriptors reference packets that are ready to be received.
476          */
477         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
478                         rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
479                 /* Read desc statuses backwards to avoid race condition */
480                 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
481                         qword1 = rte_le_to_cpu_64(\
482                                 rxdp[j].wb.qword1.status_error_len);
483                         s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
484                                         I40E_RXD_QW1_STATUS_SHIFT;
485                 }
486
487                 rte_smp_rmb();
488
489                 /* Compute how many status bits were set */
490                 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
491                         nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
492
493                 nb_rx += nb_dd;
494
495                 /* Translate descriptor info to mbuf parameters */
496                 for (j = 0; j < nb_dd; j++) {
497                         mb = rxep[j].mbuf;
498                         qword1 = rte_le_to_cpu_64(\
499                                 rxdp[j].wb.qword1.status_error_len);
500                         pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
501                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
502                         mb->data_len = pkt_len;
503                         mb->pkt_len = pkt_len;
504                         mb->ol_flags = 0;
505                         i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
506                         pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
507                         pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
508                         mb->packet_type =
509                                 ptype_tbl[(uint8_t)((qword1 &
510                                 I40E_RXD_QW1_PTYPE_MASK) >>
511                                 I40E_RXD_QW1_PTYPE_SHIFT)];
512                         if (pkt_flags & PKT_RX_RSS_HASH)
513                                 mb->hash.rss = rte_le_to_cpu_32(\
514                                         rxdp[j].wb.qword0.hi_dword.rss);
515                         if (pkt_flags & PKT_RX_FDIR)
516                                 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
517
518 #ifdef RTE_LIBRTE_IEEE1588
519                         pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
520 #endif
521                         mb->ol_flags |= pkt_flags;
522
523                 }
524
525                 for (j = 0; j < I40E_LOOK_AHEAD; j++)
526                         rxq->rx_stage[i + j] = rxep[j].mbuf;
527
528                 if (nb_dd != I40E_LOOK_AHEAD)
529                         break;
530         }
531
532         /* Clear software ring entries */
533         for (i = 0; i < nb_rx; i++)
534                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
535
536         return nb_rx;
537 }
538
539 static inline uint16_t
540 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
541                         struct rte_mbuf **rx_pkts,
542                         uint16_t nb_pkts)
543 {
544         uint16_t i;
545         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
546
547         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
548
549         for (i = 0; i < nb_pkts; i++)
550                 rx_pkts[i] = stage[i];
551
552         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
553         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
554
555         return nb_pkts;
556 }
557
558 static inline int
559 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
560 {
561         volatile union i40e_rx_desc *rxdp;
562         struct i40e_rx_entry *rxep;
563         struct rte_mbuf *mb;
564         uint16_t alloc_idx, i;
565         uint64_t dma_addr;
566         int diag;
567
568         /* Allocate buffers in bulk */
569         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
570                                 (rxq->rx_free_thresh - 1));
571         rxep = &(rxq->sw_ring[alloc_idx]);
572         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
573                                         rxq->rx_free_thresh);
574         if (unlikely(diag != 0)) {
575                 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
576                 return -ENOMEM;
577         }
578
579         rxdp = &rxq->rx_ring[alloc_idx];
580         for (i = 0; i < rxq->rx_free_thresh; i++) {
581                 if (likely(i < (rxq->rx_free_thresh - 1)))
582                         /* Prefetch next mbuf */
583                         rte_prefetch0(rxep[i + 1].mbuf);
584
585                 mb = rxep[i].mbuf;
586                 rte_mbuf_refcnt_set(mb, 1);
587                 mb->next = NULL;
588                 mb->data_off = RTE_PKTMBUF_HEADROOM;
589                 mb->nb_segs = 1;
590                 mb->port = rxq->port_id;
591                 dma_addr = rte_cpu_to_le_64(\
592                         rte_mbuf_data_iova_default(mb));
593                 rxdp[i].read.hdr_addr = 0;
594                 rxdp[i].read.pkt_addr = dma_addr;
595         }
596
597         /* Update rx tail regsiter */
598         rte_wmb();
599         I40E_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
600
601         rxq->rx_free_trigger =
602                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
603         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
604                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
605
606         return 0;
607 }
608
609 static inline uint16_t
610 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
611 {
612         struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
613         struct rte_eth_dev *dev;
614         uint16_t nb_rx = 0;
615
616         if (!nb_pkts)
617                 return 0;
618
619         if (rxq->rx_nb_avail)
620                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
621
622         nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
623         rxq->rx_next_avail = 0;
624         rxq->rx_nb_avail = nb_rx;
625         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
626
627         if (rxq->rx_tail > rxq->rx_free_trigger) {
628                 if (i40e_rx_alloc_bufs(rxq) != 0) {
629                         uint16_t i, j;
630
631                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
632                         dev->data->rx_mbuf_alloc_failed +=
633                                 rxq->rx_free_thresh;
634
635                         rxq->rx_nb_avail = 0;
636                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
637                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
638                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
639
640                         return 0;
641                 }
642         }
643
644         if (rxq->rx_tail >= rxq->nb_rx_desc)
645                 rxq->rx_tail = 0;
646
647         if (rxq->rx_nb_avail)
648                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
649
650         return 0;
651 }
652
653 static uint16_t
654 i40e_recv_pkts_bulk_alloc(void *rx_queue,
655                           struct rte_mbuf **rx_pkts,
656                           uint16_t nb_pkts)
657 {
658         uint16_t nb_rx = 0, n, count;
659
660         if (unlikely(nb_pkts == 0))
661                 return 0;
662
663         if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
664                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
665
666         while (nb_pkts) {
667                 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
668                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
669                 nb_rx = (uint16_t)(nb_rx + count);
670                 nb_pkts = (uint16_t)(nb_pkts - count);
671                 if (count < n)
672                         break;
673         }
674
675         return nb_rx;
676 }
677 #else
678 static uint16_t
679 i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
680                           struct rte_mbuf __rte_unused **rx_pkts,
681                           uint16_t __rte_unused nb_pkts)
682 {
683         return 0;
684 }
685 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
686
687 uint16_t
688 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
689 {
690         struct i40e_rx_queue *rxq;
691         volatile union i40e_rx_desc *rx_ring;
692         volatile union i40e_rx_desc *rxdp;
693         union i40e_rx_desc rxd;
694         struct i40e_rx_entry *sw_ring;
695         struct i40e_rx_entry *rxe;
696         struct rte_eth_dev *dev;
697         struct rte_mbuf *rxm;
698         struct rte_mbuf *nmb;
699         uint16_t nb_rx;
700         uint32_t rx_status;
701         uint64_t qword1;
702         uint16_t rx_packet_len;
703         uint16_t rx_id, nb_hold;
704         uint64_t dma_addr;
705         uint64_t pkt_flags;
706         uint32_t *ptype_tbl;
707
708         nb_rx = 0;
709         nb_hold = 0;
710         rxq = rx_queue;
711         rx_id = rxq->rx_tail;
712         rx_ring = rxq->rx_ring;
713         sw_ring = rxq->sw_ring;
714         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
715
716         while (nb_rx < nb_pkts) {
717                 rxdp = &rx_ring[rx_id];
718                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
719                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
720                                 >> I40E_RXD_QW1_STATUS_SHIFT;
721
722                 /* Check the DD bit first */
723                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
724                         break;
725
726                 nmb = rte_mbuf_raw_alloc(rxq->mp);
727                 if (unlikely(!nmb)) {
728                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
729                         dev->data->rx_mbuf_alloc_failed++;
730                         break;
731                 }
732
733                 rxd = *rxdp;
734                 nb_hold++;
735                 rxe = &sw_ring[rx_id];
736                 rx_id++;
737                 if (unlikely(rx_id == rxq->nb_rx_desc))
738                         rx_id = 0;
739
740                 /* Prefetch next mbuf */
741                 rte_prefetch0(sw_ring[rx_id].mbuf);
742
743                 /**
744                  * When next RX descriptor is on a cache line boundary,
745                  * prefetch the next 4 RX descriptors and next 8 pointers
746                  * to mbufs.
747                  */
748                 if ((rx_id & 0x3) == 0) {
749                         rte_prefetch0(&rx_ring[rx_id]);
750                         rte_prefetch0(&sw_ring[rx_id]);
751                 }
752                 rxm = rxe->mbuf;
753                 rxe->mbuf = nmb;
754                 dma_addr =
755                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
756                 rxdp->read.hdr_addr = 0;
757                 rxdp->read.pkt_addr = dma_addr;
758
759                 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
760                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
761
762                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
763                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
764                 rxm->nb_segs = 1;
765                 rxm->next = NULL;
766                 rxm->pkt_len = rx_packet_len;
767                 rxm->data_len = rx_packet_len;
768                 rxm->port = rxq->port_id;
769                 rxm->ol_flags = 0;
770                 i40e_rxd_to_vlan_tci(rxm, &rxd);
771                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
772                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
773                 rxm->packet_type =
774                         ptype_tbl[(uint8_t)((qword1 &
775                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
776                 if (pkt_flags & PKT_RX_RSS_HASH)
777                         rxm->hash.rss =
778                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
779                 if (pkt_flags & PKT_RX_FDIR)
780                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
781
782 #ifdef RTE_LIBRTE_IEEE1588
783                 pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
784 #endif
785                 rxm->ol_flags |= pkt_flags;
786
787                 rx_pkts[nb_rx++] = rxm;
788         }
789         rxq->rx_tail = rx_id;
790
791         /**
792          * If the number of free RX descriptors is greater than the RX free
793          * threshold of the queue, advance the receive tail register of queue.
794          * Update that register with the value of the last processed RX
795          * descriptor minus 1.
796          */
797         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
798         if (nb_hold > rxq->rx_free_thresh) {
799                 rx_id = (uint16_t) ((rx_id == 0) ?
800                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
801                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
802                 nb_hold = 0;
803         }
804         rxq->nb_rx_hold = nb_hold;
805
806         return nb_rx;
807 }
808
809 uint16_t
810 i40e_recv_scattered_pkts(void *rx_queue,
811                          struct rte_mbuf **rx_pkts,
812                          uint16_t nb_pkts)
813 {
814         struct i40e_rx_queue *rxq = rx_queue;
815         volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
816         volatile union i40e_rx_desc *rxdp;
817         union i40e_rx_desc rxd;
818         struct i40e_rx_entry *sw_ring = rxq->sw_ring;
819         struct i40e_rx_entry *rxe;
820         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
821         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
822         struct rte_mbuf *nmb, *rxm;
823         uint16_t rx_id = rxq->rx_tail;
824         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
825         struct rte_eth_dev *dev;
826         uint32_t rx_status;
827         uint64_t qword1;
828         uint64_t dma_addr;
829         uint64_t pkt_flags;
830         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
831
832         while (nb_rx < nb_pkts) {
833                 rxdp = &rx_ring[rx_id];
834                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
835                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
836                                         I40E_RXD_QW1_STATUS_SHIFT;
837
838                 /* Check the DD bit */
839                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
840                         break;
841
842                 nmb = rte_mbuf_raw_alloc(rxq->mp);
843                 if (unlikely(!nmb)) {
844                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
845                         dev->data->rx_mbuf_alloc_failed++;
846                         break;
847                 }
848
849                 rxd = *rxdp;
850                 nb_hold++;
851                 rxe = &sw_ring[rx_id];
852                 rx_id++;
853                 if (rx_id == rxq->nb_rx_desc)
854                         rx_id = 0;
855
856                 /* Prefetch next mbuf */
857                 rte_prefetch0(sw_ring[rx_id].mbuf);
858
859                 /**
860                  * When next RX descriptor is on a cache line boundary,
861                  * prefetch the next 4 RX descriptors and next 8 pointers
862                  * to mbufs.
863                  */
864                 if ((rx_id & 0x3) == 0) {
865                         rte_prefetch0(&rx_ring[rx_id]);
866                         rte_prefetch0(&sw_ring[rx_id]);
867                 }
868
869                 rxm = rxe->mbuf;
870                 rxe->mbuf = nmb;
871                 dma_addr =
872                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
873
874                 /* Set data buffer address and data length of the mbuf */
875                 rxdp->read.hdr_addr = 0;
876                 rxdp->read.pkt_addr = dma_addr;
877                 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
878                                         I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
879                 rxm->data_len = rx_packet_len;
880                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
881
882                 /**
883                  * If this is the first buffer of the received packet, set the
884                  * pointer to the first mbuf of the packet and initialize its
885                  * context. Otherwise, update the total length and the number
886                  * of segments of the current scattered packet, and update the
887                  * pointer to the last mbuf of the current packet.
888                  */
889                 if (!first_seg) {
890                         first_seg = rxm;
891                         first_seg->nb_segs = 1;
892                         first_seg->pkt_len = rx_packet_len;
893                 } else {
894                         first_seg->pkt_len =
895                                 (uint16_t)(first_seg->pkt_len +
896                                                 rx_packet_len);
897                         first_seg->nb_segs++;
898                         last_seg->next = rxm;
899                 }
900
901                 /**
902                  * If this is not the last buffer of the received packet,
903                  * update the pointer to the last mbuf of the current scattered
904                  * packet and continue to parse the RX ring.
905                  */
906                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
907                         last_seg = rxm;
908                         continue;
909                 }
910
911                 /**
912                  * This is the last buffer of the received packet. If the CRC
913                  * is not stripped by the hardware:
914                  *  - Subtract the CRC length from the total packet length.
915                  *  - If the last buffer only contains the whole CRC or a part
916                  *  of it, free the mbuf associated to the last buffer. If part
917                  *  of the CRC is also contained in the previous mbuf, subtract
918                  *  the length of that CRC part from the data length of the
919                  *  previous mbuf.
920                  */
921                 rxm->next = NULL;
922                 if (unlikely(rxq->crc_len > 0)) {
923                         first_seg->pkt_len -= ETHER_CRC_LEN;
924                         if (rx_packet_len <= ETHER_CRC_LEN) {
925                                 rte_pktmbuf_free_seg(rxm);
926                                 first_seg->nb_segs--;
927                                 last_seg->data_len =
928                                         (uint16_t)(last_seg->data_len -
929                                         (ETHER_CRC_LEN - rx_packet_len));
930                                 last_seg->next = NULL;
931                         } else
932                                 rxm->data_len = (uint16_t)(rx_packet_len -
933                                                                 ETHER_CRC_LEN);
934                 }
935
936                 first_seg->port = rxq->port_id;
937                 first_seg->ol_flags = 0;
938                 i40e_rxd_to_vlan_tci(first_seg, &rxd);
939                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
940                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
941                 first_seg->packet_type =
942                         ptype_tbl[(uint8_t)((qword1 &
943                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
944                 if (pkt_flags & PKT_RX_RSS_HASH)
945                         first_seg->hash.rss =
946                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
947                 if (pkt_flags & PKT_RX_FDIR)
948                         pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
949
950 #ifdef RTE_LIBRTE_IEEE1588
951                 pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
952 #endif
953                 first_seg->ol_flags |= pkt_flags;
954
955                 /* Prefetch data of first segment, if configured to do so. */
956                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
957                         first_seg->data_off));
958                 rx_pkts[nb_rx++] = first_seg;
959                 first_seg = NULL;
960         }
961
962         /* Record index of the next RX descriptor to probe. */
963         rxq->rx_tail = rx_id;
964         rxq->pkt_first_seg = first_seg;
965         rxq->pkt_last_seg = last_seg;
966
967         /**
968          * If the number of free RX descriptors is greater than the RX free
969          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
970          * register. Update the RDT with the value of the last processed RX
971          * descriptor minus 1, to guarantee that the RDT register is never
972          * equal to the RDH register, which creates a "full" ring situtation
973          * from the hardware point of view.
974          */
975         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
976         if (nb_hold > rxq->rx_free_thresh) {
977                 rx_id = (uint16_t)(rx_id == 0 ?
978                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
979                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
980                 nb_hold = 0;
981         }
982         rxq->nb_rx_hold = nb_hold;
983
984         return nb_rx;
985 }
986
987 /* Check if the context descriptor is needed for TX offloading */
988 static inline uint16_t
989 i40e_calc_context_desc(uint64_t flags)
990 {
991         static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
992                 PKT_TX_TCP_SEG |
993                 PKT_TX_QINQ_PKT |
994                 PKT_TX_TUNNEL_MASK;
995
996 #ifdef RTE_LIBRTE_IEEE1588
997         mask |= PKT_TX_IEEE1588_TMST;
998 #endif
999
1000         return (flags & mask) ? 1 : 0;
1001 }
1002
1003 /* set i40e TSO context descriptor */
1004 static inline uint64_t
1005 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
1006 {
1007         uint64_t ctx_desc = 0;
1008         uint32_t cd_cmd, hdr_len, cd_tso_len;
1009
1010         if (!tx_offload.l4_len) {
1011                 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
1012                 return ctx_desc;
1013         }
1014
1015         /**
1016          * in case of non tunneling packet, the outer_l2_len and
1017          * outer_l3_len must be 0.
1018          */
1019         hdr_len = tx_offload.outer_l2_len +
1020                 tx_offload.outer_l3_len +
1021                 tx_offload.l2_len +
1022                 tx_offload.l3_len +
1023                 tx_offload.l4_len;
1024
1025         cd_cmd = I40E_TX_CTX_DESC_TSO;
1026         cd_tso_len = mbuf->pkt_len - hdr_len;
1027         ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1028                 ((uint64_t)cd_tso_len <<
1029                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1030                 ((uint64_t)mbuf->tso_segsz <<
1031                  I40E_TXD_CTX_QW1_MSS_SHIFT);
1032
1033         return ctx_desc;
1034 }
1035
1036 uint16_t
1037 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1038 {
1039         struct i40e_tx_queue *txq;
1040         struct i40e_tx_entry *sw_ring;
1041         struct i40e_tx_entry *txe, *txn;
1042         volatile struct i40e_tx_desc *txd;
1043         volatile struct i40e_tx_desc *txr;
1044         struct rte_mbuf *tx_pkt;
1045         struct rte_mbuf *m_seg;
1046         uint32_t cd_tunneling_params;
1047         uint16_t tx_id;
1048         uint16_t nb_tx;
1049         uint32_t td_cmd;
1050         uint32_t td_offset;
1051         uint32_t td_tag;
1052         uint64_t ol_flags;
1053         uint16_t nb_used;
1054         uint16_t nb_ctx;
1055         uint16_t tx_last;
1056         uint16_t slen;
1057         uint64_t buf_dma_addr;
1058         union i40e_tx_offload tx_offload = {0};
1059
1060         txq = tx_queue;
1061         sw_ring = txq->sw_ring;
1062         txr = txq->tx_ring;
1063         tx_id = txq->tx_tail;
1064         txe = &sw_ring[tx_id];
1065
1066         /* Check if the descriptor ring needs to be cleaned. */
1067         if (txq->nb_tx_free < txq->tx_free_thresh)
1068                 i40e_xmit_cleanup(txq);
1069
1070         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1071                 td_cmd = 0;
1072                 td_tag = 0;
1073                 td_offset = 0;
1074
1075                 tx_pkt = *tx_pkts++;
1076                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1077
1078                 ol_flags = tx_pkt->ol_flags;
1079                 tx_offload.l2_len = tx_pkt->l2_len;
1080                 tx_offload.l3_len = tx_pkt->l3_len;
1081                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1082                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1083                 tx_offload.l4_len = tx_pkt->l4_len;
1084                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1085
1086                 /* Calculate the number of context descriptors needed. */
1087                 nb_ctx = i40e_calc_context_desc(ol_flags);
1088
1089                 /**
1090                  * The number of descriptors that must be allocated for
1091                  * a packet equals to the number of the segments of that
1092                  * packet plus 1 context descriptor if needed.
1093                  */
1094                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1095                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1096
1097                 /* Circular ring */
1098                 if (tx_last >= txq->nb_tx_desc)
1099                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1100
1101                 if (nb_used > txq->nb_tx_free) {
1102                         if (i40e_xmit_cleanup(txq) != 0) {
1103                                 if (nb_tx == 0)
1104                                         return 0;
1105                                 goto end_of_tx;
1106                         }
1107                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
1108                                 while (nb_used > txq->nb_tx_free) {
1109                                         if (i40e_xmit_cleanup(txq) != 0) {
1110                                                 if (nb_tx == 0)
1111                                                         return 0;
1112                                                 goto end_of_tx;
1113                                         }
1114                                 }
1115                         }
1116                 }
1117
1118                 /* Descriptor based VLAN insertion */
1119                 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1120                         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1121                         td_tag = tx_pkt->vlan_tci;
1122                 }
1123
1124                 /* Always enable CRC offload insertion */
1125                 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1126
1127                 /* Fill in tunneling parameters if necessary */
1128                 cd_tunneling_params = 0;
1129                 if (ol_flags & PKT_TX_TUNNEL_MASK)
1130                         i40e_parse_tunneling_params(ol_flags, tx_offload,
1131                                                     &cd_tunneling_params);
1132                 /* Enable checksum offloading */
1133                 if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)
1134                         i40e_txd_enable_checksum(ol_flags, &td_cmd,
1135                                                  &td_offset, tx_offload);
1136
1137                 if (nb_ctx) {
1138                         /* Setup TX context descriptor if required */
1139                         volatile struct i40e_tx_context_desc *ctx_txd =
1140                                 (volatile struct i40e_tx_context_desc *)\
1141                                                         &txr[tx_id];
1142                         uint16_t cd_l2tag2 = 0;
1143                         uint64_t cd_type_cmd_tso_mss =
1144                                 I40E_TX_DESC_DTYPE_CONTEXT;
1145
1146                         txn = &sw_ring[txe->next_id];
1147                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1148                         if (txe->mbuf != NULL) {
1149                                 rte_pktmbuf_free_seg(txe->mbuf);
1150                                 txe->mbuf = NULL;
1151                         }
1152
1153                         /* TSO enabled means no timestamp */
1154                         if (ol_flags & PKT_TX_TCP_SEG)
1155                                 cd_type_cmd_tso_mss |=
1156                                         i40e_set_tso_ctx(tx_pkt, tx_offload);
1157                         else {
1158 #ifdef RTE_LIBRTE_IEEE1588
1159                                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1160                                         cd_type_cmd_tso_mss |=
1161                                                 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1162                                                  I40E_TXD_CTX_QW1_CMD_SHIFT);
1163 #endif
1164                         }
1165
1166                         ctx_txd->tunneling_params =
1167                                 rte_cpu_to_le_32(cd_tunneling_params);
1168                         if (ol_flags & PKT_TX_QINQ_PKT) {
1169                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1170                                 cd_type_cmd_tso_mss |=
1171                                         ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1172                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1173                         }
1174                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1175                         ctx_txd->type_cmd_tso_mss =
1176                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1177
1178                         PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1179                                 "tunneling_params: %#x;\n"
1180                                 "l2tag2: %#hx;\n"
1181                                 "rsvd: %#hx;\n"
1182                                 "type_cmd_tso_mss: %#"PRIx64";\n",
1183                                 tx_pkt, tx_id,
1184                                 ctx_txd->tunneling_params,
1185                                 ctx_txd->l2tag2,
1186                                 ctx_txd->rsvd,
1187                                 ctx_txd->type_cmd_tso_mss);
1188
1189                         txe->last_id = tx_last;
1190                         tx_id = txe->next_id;
1191                         txe = txn;
1192                 }
1193
1194                 m_seg = tx_pkt;
1195                 do {
1196                         txd = &txr[tx_id];
1197                         txn = &sw_ring[txe->next_id];
1198
1199                         if (txe->mbuf)
1200                                 rte_pktmbuf_free_seg(txe->mbuf);
1201                         txe->mbuf = m_seg;
1202
1203                         /* Setup TX Descriptor */
1204                         slen = m_seg->data_len;
1205                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
1206
1207                         PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1208                                 "buf_dma_addr: %#"PRIx64";\n"
1209                                 "td_cmd: %#x;\n"
1210                                 "td_offset: %#x;\n"
1211                                 "td_len: %u;\n"
1212                                 "td_tag: %#x;\n",
1213                                 tx_pkt, tx_id, buf_dma_addr,
1214                                 td_cmd, td_offset, slen, td_tag);
1215
1216                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1217                         txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1218                                                 td_offset, slen, td_tag);
1219                         txe->last_id = tx_last;
1220                         tx_id = txe->next_id;
1221                         txe = txn;
1222                         m_seg = m_seg->next;
1223                 } while (m_seg != NULL);
1224
1225                 /* The last packet data descriptor needs End Of Packet (EOP) */
1226                 td_cmd |= I40E_TX_DESC_CMD_EOP;
1227                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1228                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1229
1230                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1231                         PMD_TX_FREE_LOG(DEBUG,
1232                                         "Setting RS bit on TXD id="
1233                                         "%4u (port=%d queue=%d)",
1234                                         tx_last, txq->port_id, txq->queue_id);
1235
1236                         td_cmd |= I40E_TX_DESC_CMD_RS;
1237
1238                         /* Update txq RS bit counters */
1239                         txq->nb_tx_used = 0;
1240                 }
1241
1242                 txd->cmd_type_offset_bsz |=
1243                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1244                                         I40E_TXD_QW1_CMD_SHIFT);
1245         }
1246
1247 end_of_tx:
1248         rte_wmb();
1249
1250         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1251                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
1252                    (unsigned) tx_id, (unsigned) nb_tx);
1253
1254         I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
1255         txq->tx_tail = tx_id;
1256
1257         return nb_tx;
1258 }
1259
1260 static __rte_always_inline int
1261 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1262 {
1263         struct i40e_tx_entry *txep;
1264         uint16_t i;
1265
1266         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1267                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1268                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1269                 return 0;
1270
1271         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1272
1273         for (i = 0; i < txq->tx_rs_thresh; i++)
1274                 rte_prefetch0((txep + i)->mbuf);
1275
1276         if (txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT) {
1277                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1278                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1279                         txep->mbuf = NULL;
1280                 }
1281         } else {
1282                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1283                         rte_pktmbuf_free_seg(txep->mbuf);
1284                         txep->mbuf = NULL;
1285                 }
1286         }
1287
1288         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1289         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1290         if (txq->tx_next_dd >= txq->nb_tx_desc)
1291                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1292
1293         return txq->tx_rs_thresh;
1294 }
1295
1296 /* Populate 4 descriptors with data from 4 mbufs */
1297 static inline void
1298 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1299 {
1300         uint64_t dma_addr;
1301         uint32_t i;
1302
1303         for (i = 0; i < 4; i++, txdp++, pkts++) {
1304                 dma_addr = rte_mbuf_data_iova(*pkts);
1305                 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1306                 txdp->cmd_type_offset_bsz =
1307                         i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1308                                         (*pkts)->data_len, 0);
1309         }
1310 }
1311
1312 /* Populate 1 descriptor with data from 1 mbuf */
1313 static inline void
1314 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1315 {
1316         uint64_t dma_addr;
1317
1318         dma_addr = rte_mbuf_data_iova(*pkts);
1319         txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1320         txdp->cmd_type_offset_bsz =
1321                 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1322                                 (*pkts)->data_len, 0);
1323 }
1324
1325 /* Fill hardware descriptor ring with mbuf data */
1326 static inline void
1327 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1328                      struct rte_mbuf **pkts,
1329                      uint16_t nb_pkts)
1330 {
1331         volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1332         struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1333         const int N_PER_LOOP = 4;
1334         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1335         int mainpart, leftover;
1336         int i, j;
1337
1338         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1339         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1340         for (i = 0; i < mainpart; i += N_PER_LOOP) {
1341                 for (j = 0; j < N_PER_LOOP; ++j) {
1342                         (txep + i + j)->mbuf = *(pkts + i + j);
1343                 }
1344                 tx4(txdp + i, pkts + i);
1345         }
1346         if (unlikely(leftover > 0)) {
1347                 for (i = 0; i < leftover; ++i) {
1348                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1349                         tx1(txdp + mainpart + i, pkts + mainpart + i);
1350                 }
1351         }
1352 }
1353
1354 static inline uint16_t
1355 tx_xmit_pkts(struct i40e_tx_queue *txq,
1356              struct rte_mbuf **tx_pkts,
1357              uint16_t nb_pkts)
1358 {
1359         volatile struct i40e_tx_desc *txr = txq->tx_ring;
1360         uint16_t n = 0;
1361
1362         /**
1363          * Begin scanning the H/W ring for done descriptors when the number
1364          * of available descriptors drops below tx_free_thresh. For each done
1365          * descriptor, free the associated buffer.
1366          */
1367         if (txq->nb_tx_free < txq->tx_free_thresh)
1368                 i40e_tx_free_bufs(txq);
1369
1370         /* Use available descriptor only */
1371         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1372         if (unlikely(!nb_pkts))
1373                 return 0;
1374
1375         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1376         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1377                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1378                 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1379                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1380                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1381                                                 I40E_TXD_QW1_CMD_SHIFT);
1382                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1383                 txq->tx_tail = 0;
1384         }
1385
1386         /* Fill hardware descriptor ring with mbuf data */
1387         i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1388         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1389
1390         /* Determin if RS bit needs to be set */
1391         if (txq->tx_tail > txq->tx_next_rs) {
1392                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1393                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1394                                                 I40E_TXD_QW1_CMD_SHIFT);
1395                 txq->tx_next_rs =
1396                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1397                 if (txq->tx_next_rs >= txq->nb_tx_desc)
1398                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1399         }
1400
1401         if (txq->tx_tail >= txq->nb_tx_desc)
1402                 txq->tx_tail = 0;
1403
1404         /* Update the tx tail register */
1405         rte_wmb();
1406         I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, txq->tx_tail);
1407
1408         return nb_pkts;
1409 }
1410
1411 static uint16_t
1412 i40e_xmit_pkts_simple(void *tx_queue,
1413                       struct rte_mbuf **tx_pkts,
1414                       uint16_t nb_pkts)
1415 {
1416         uint16_t nb_tx = 0;
1417
1418         if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1419                 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1420                                                 tx_pkts, nb_pkts);
1421
1422         while (nb_pkts) {
1423                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1424                                                 I40E_TX_MAX_BURST);
1425
1426                 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1427                                                 &tx_pkts[nb_tx], num);
1428                 nb_tx = (uint16_t)(nb_tx + ret);
1429                 nb_pkts = (uint16_t)(nb_pkts - ret);
1430                 if (ret < num)
1431                         break;
1432         }
1433
1434         return nb_tx;
1435 }
1436
1437 static uint16_t
1438 i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1439                    uint16_t nb_pkts)
1440 {
1441         uint16_t nb_tx = 0;
1442         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
1443
1444         while (nb_pkts) {
1445                 uint16_t ret, num;
1446
1447                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1448                 ret = i40e_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
1449                                                 num);
1450                 nb_tx += ret;
1451                 nb_pkts -= ret;
1452                 if (ret < num)
1453                         break;
1454         }
1455
1456         return nb_tx;
1457 }
1458
1459 /*********************************************************************
1460  *
1461  *  TX prep functions
1462  *
1463  **********************************************************************/
1464 uint16_t
1465 i40e_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1466                 uint16_t nb_pkts)
1467 {
1468         int i, ret;
1469         uint64_t ol_flags;
1470         struct rte_mbuf *m;
1471
1472         for (i = 0; i < nb_pkts; i++) {
1473                 m = tx_pkts[i];
1474                 ol_flags = m->ol_flags;
1475
1476                 /* Check for m->nb_segs to not exceed the limits. */
1477                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
1478                         if (m->nb_segs > I40E_TX_MAX_SEG ||
1479                             m->nb_segs > I40E_TX_MAX_MTU_SEG) {
1480                                 rte_errno = -EINVAL;
1481                                 return i;
1482                         }
1483                 } else if ((m->tso_segsz < I40E_MIN_TSO_MSS) ||
1484                                 (m->tso_segsz > I40E_MAX_TSO_MSS)) {
1485                         /* MSS outside the range (256B - 9674B) are considered
1486                          * malicious
1487                          */
1488                         rte_errno = -EINVAL;
1489                         return i;
1490                 }
1491
1492                 if (ol_flags & I40E_TX_OFFLOAD_NOTSUP_MASK) {
1493                         rte_errno = -ENOTSUP;
1494                         return i;
1495                 }
1496
1497 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1498                 ret = rte_validate_tx_offload(m);
1499                 if (ret != 0) {
1500                         rte_errno = ret;
1501                         return i;
1502                 }
1503 #endif
1504                 ret = rte_net_intel_cksum_prepare(m);
1505                 if (ret != 0) {
1506                         rte_errno = ret;
1507                         return i;
1508                 }
1509         }
1510         return i;
1511 }
1512
1513 /*
1514  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1515  * application used, which assume having sequential ones. But from driver's
1516  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1517  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1518  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1519  * use queue_idx from 0 to 95 to access queues, while real queue would be
1520  * different. This function will do a queue mapping to find VSI the queue
1521  * belongs to.
1522  */
1523 static struct i40e_vsi*
1524 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1525 {
1526         /* the queue in MAIN VSI range */
1527         if (queue_idx < pf->main_vsi->nb_qps)
1528                 return pf->main_vsi;
1529
1530         queue_idx -= pf->main_vsi->nb_qps;
1531
1532         /* queue_idx is greater than VMDQ VSIs range */
1533         if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1534                 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1535                 return NULL;
1536         }
1537
1538         return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1539 }
1540
1541 static uint16_t
1542 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1543 {
1544         /* the queue in MAIN VSI range */
1545         if (queue_idx < pf->main_vsi->nb_qps)
1546                 return queue_idx;
1547
1548         /* It's VMDQ queues */
1549         queue_idx -= pf->main_vsi->nb_qps;
1550
1551         if (pf->nb_cfg_vmdq_vsi)
1552                 return queue_idx % pf->vmdq_nb_qps;
1553         else {
1554                 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1555                 return (uint16_t)(-1);
1556         }
1557 }
1558
1559 int
1560 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1561 {
1562         struct i40e_rx_queue *rxq;
1563         int err = -1;
1564         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1565
1566         PMD_INIT_FUNC_TRACE();
1567
1568         if (rx_queue_id < dev->data->nb_rx_queues) {
1569                 rxq = dev->data->rx_queues[rx_queue_id];
1570
1571                 err = i40e_alloc_rx_queue_mbufs(rxq);
1572                 if (err) {
1573                         PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1574                         return err;
1575                 }
1576
1577                 rte_wmb();
1578
1579                 /* Init the RX tail regieter. */
1580                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1581
1582                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1583
1584                 if (err) {
1585                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1586                                     rx_queue_id);
1587
1588                         i40e_rx_queue_release_mbufs(rxq);
1589                         i40e_reset_rx_queue(rxq);
1590                 } else
1591                         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1592         }
1593
1594         return err;
1595 }
1596
1597 int
1598 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1599 {
1600         struct i40e_rx_queue *rxq;
1601         int err;
1602         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1603
1604         if (rx_queue_id < dev->data->nb_rx_queues) {
1605                 rxq = dev->data->rx_queues[rx_queue_id];
1606
1607                 /*
1608                 * rx_queue_id is queue id application refers to, while
1609                 * rxq->reg_idx is the real queue index.
1610                 */
1611                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1612
1613                 if (err) {
1614                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1615                                     rx_queue_id);
1616                         return err;
1617                 }
1618                 i40e_rx_queue_release_mbufs(rxq);
1619                 i40e_reset_rx_queue(rxq);
1620                 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1621         }
1622
1623         return 0;
1624 }
1625
1626 int
1627 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1628 {
1629         int err = -1;
1630         struct i40e_tx_queue *txq;
1631         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1632
1633         PMD_INIT_FUNC_TRACE();
1634
1635         if (tx_queue_id < dev->data->nb_tx_queues) {
1636                 txq = dev->data->tx_queues[tx_queue_id];
1637
1638                 /*
1639                 * tx_queue_id is queue id application refers to, while
1640                 * rxq->reg_idx is the real queue index.
1641                 */
1642                 err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1643                 if (err)
1644                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1645                                     tx_queue_id);
1646                 else
1647                         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1648         }
1649
1650         return err;
1651 }
1652
1653 int
1654 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1655 {
1656         struct i40e_tx_queue *txq;
1657         int err;
1658         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1659
1660         if (tx_queue_id < dev->data->nb_tx_queues) {
1661                 txq = dev->data->tx_queues[tx_queue_id];
1662
1663                 /*
1664                 * tx_queue_id is queue id application refers to, while
1665                 * txq->reg_idx is the real queue index.
1666                 */
1667                 err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1668
1669                 if (err) {
1670                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1671                                     tx_queue_id);
1672                         return err;
1673                 }
1674
1675                 i40e_tx_queue_release_mbufs(txq);
1676                 i40e_reset_tx_queue(txq);
1677                 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1678         }
1679
1680         return 0;
1681 }
1682
1683 const uint32_t *
1684 i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1685 {
1686         static const uint32_t ptypes[] = {
1687                 /* refers to i40e_rxd_pkt_type_mapping() */
1688                 RTE_PTYPE_L2_ETHER,
1689                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1690                 RTE_PTYPE_L2_ETHER_LLDP,
1691                 RTE_PTYPE_L2_ETHER_ARP,
1692                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1693                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1694                 RTE_PTYPE_L4_FRAG,
1695                 RTE_PTYPE_L4_ICMP,
1696                 RTE_PTYPE_L4_NONFRAG,
1697                 RTE_PTYPE_L4_SCTP,
1698                 RTE_PTYPE_L4_TCP,
1699                 RTE_PTYPE_L4_UDP,
1700                 RTE_PTYPE_TUNNEL_GRENAT,
1701                 RTE_PTYPE_TUNNEL_IP,
1702                 RTE_PTYPE_INNER_L2_ETHER,
1703                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1704                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1705                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1706                 RTE_PTYPE_INNER_L4_FRAG,
1707                 RTE_PTYPE_INNER_L4_ICMP,
1708                 RTE_PTYPE_INNER_L4_NONFRAG,
1709                 RTE_PTYPE_INNER_L4_SCTP,
1710                 RTE_PTYPE_INNER_L4_TCP,
1711                 RTE_PTYPE_INNER_L4_UDP,
1712                 RTE_PTYPE_UNKNOWN
1713         };
1714
1715         if (dev->rx_pkt_burst == i40e_recv_pkts ||
1716 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1717             dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
1718 #endif
1719             dev->rx_pkt_burst == i40e_recv_scattered_pkts ||
1720             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
1721             dev->rx_pkt_burst == i40e_recv_pkts_vec)
1722                 return ptypes;
1723         return NULL;
1724 }
1725
1726 int
1727 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1728                         uint16_t queue_idx,
1729                         uint16_t nb_desc,
1730                         unsigned int socket_id,
1731                         const struct rte_eth_rxconf *rx_conf,
1732                         struct rte_mempool *mp)
1733 {
1734         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1735         struct i40e_adapter *ad =
1736                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1737         struct i40e_vsi *vsi;
1738         struct i40e_pf *pf = NULL;
1739         struct i40e_vf *vf = NULL;
1740         struct i40e_rx_queue *rxq;
1741         const struct rte_memzone *rz;
1742         uint32_t ring_size;
1743         uint16_t len, i;
1744         uint16_t reg_idx, base, bsf, tc_mapping;
1745         int q_offset, use_def_burst_func = 1;
1746
1747         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
1748                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1749                 vsi = &vf->vsi;
1750                 if (!vsi)
1751                         return -EINVAL;
1752                 reg_idx = queue_idx;
1753         } else {
1754                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1755                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1756                 if (!vsi)
1757                         return -EINVAL;
1758                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
1759                 if (q_offset < 0)
1760                         return -EINVAL;
1761                 reg_idx = vsi->base_queue + q_offset;
1762         }
1763
1764         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1765             (nb_desc > I40E_MAX_RING_DESC) ||
1766             (nb_desc < I40E_MIN_RING_DESC)) {
1767                 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1768                             "invalid", nb_desc);
1769                 return -EINVAL;
1770         }
1771
1772         /* Free memory if needed */
1773         if (dev->data->rx_queues[queue_idx]) {
1774                 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
1775                 dev->data->rx_queues[queue_idx] = NULL;
1776         }
1777
1778         /* Allocate the rx queue data structure */
1779         rxq = rte_zmalloc_socket("i40e rx queue",
1780                                  sizeof(struct i40e_rx_queue),
1781                                  RTE_CACHE_LINE_SIZE,
1782                                  socket_id);
1783         if (!rxq) {
1784                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
1785                             "rx queue data structure");
1786                 return -ENOMEM;
1787         }
1788         rxq->mp = mp;
1789         rxq->nb_rx_desc = nb_desc;
1790         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1791         rxq->queue_id = queue_idx;
1792         rxq->reg_idx = reg_idx;
1793         rxq->port_id = dev->data->port_id;
1794         rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
1795                                                         0 : ETHER_CRC_LEN);
1796         rxq->drop_en = rx_conf->rx_drop_en;
1797         rxq->vsi = vsi;
1798         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1799
1800         /* Allocate the maximun number of RX ring hardware descriptor. */
1801         len = I40E_MAX_RING_DESC;
1802
1803         /**
1804          * Allocating a little more memory because vectorized/bulk_alloc Rx
1805          * functions doesn't check boundaries each time.
1806          */
1807         len += RTE_PMD_I40E_RX_MAX_BURST;
1808
1809         ring_size = RTE_ALIGN(len * sizeof(union i40e_rx_desc),
1810                               I40E_DMA_MEM_ALIGN);
1811
1812         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1813                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
1814         if (!rz) {
1815                 i40e_dev_rx_queue_release(rxq);
1816                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
1817                 return -ENOMEM;
1818         }
1819
1820         /* Zero all the descriptors in the ring. */
1821         memset(rz->addr, 0, ring_size);
1822
1823         rxq->rx_ring_phys_addr = rz->iova;
1824         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
1825
1826         len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
1827
1828         /* Allocate the software ring. */
1829         rxq->sw_ring =
1830                 rte_zmalloc_socket("i40e rx sw ring",
1831                                    sizeof(struct i40e_rx_entry) * len,
1832                                    RTE_CACHE_LINE_SIZE,
1833                                    socket_id);
1834         if (!rxq->sw_ring) {
1835                 i40e_dev_rx_queue_release(rxq);
1836                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
1837                 return -ENOMEM;
1838         }
1839
1840         i40e_reset_rx_queue(rxq);
1841         rxq->q_set = TRUE;
1842         dev->data->rx_queues[queue_idx] = rxq;
1843
1844         use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
1845
1846         if (!use_def_burst_func) {
1847 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1848                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1849                              "satisfied. Rx Burst Bulk Alloc function will be "
1850                              "used on port=%d, queue=%d.",
1851                              rxq->port_id, rxq->queue_id);
1852 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
1853         } else {
1854                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1855                              "not satisfied, Scattered Rx is requested, "
1856                              "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
1857                              "not enabled on port=%d, queue=%d.",
1858                              rxq->port_id, rxq->queue_id);
1859                 ad->rx_bulk_alloc_allowed = false;
1860         }
1861
1862         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1863                 if (!(vsi->enabled_tc & (1 << i)))
1864                         continue;
1865                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
1866                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
1867                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
1868                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
1869                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
1870
1871                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
1872                         rxq->dcb_tc = i;
1873         }
1874
1875         return 0;
1876 }
1877
1878 void
1879 i40e_dev_rx_queue_release(void *rxq)
1880 {
1881         struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
1882
1883         if (!q) {
1884                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1885                 return;
1886         }
1887
1888         i40e_rx_queue_release_mbufs(q);
1889         rte_free(q->sw_ring);
1890         rte_free(q);
1891 }
1892
1893 uint32_t
1894 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1895 {
1896 #define I40E_RXQ_SCAN_INTERVAL 4
1897         volatile union i40e_rx_desc *rxdp;
1898         struct i40e_rx_queue *rxq;
1899         uint16_t desc = 0;
1900
1901         rxq = dev->data->rx_queues[rx_queue_id];
1902         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1903         while ((desc < rxq->nb_rx_desc) &&
1904                 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1905                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1906                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1907                 /**
1908                  * Check the DD bit of a rx descriptor of each 4 in a group,
1909                  * to avoid checking too frequently and downgrading performance
1910                  * too much.
1911                  */
1912                 desc += I40E_RXQ_SCAN_INTERVAL;
1913                 rxdp += I40E_RXQ_SCAN_INTERVAL;
1914                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1915                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1916                                         desc - rxq->nb_rx_desc]);
1917         }
1918
1919         return desc;
1920 }
1921
1922 int
1923 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
1924 {
1925         volatile union i40e_rx_desc *rxdp;
1926         struct i40e_rx_queue *rxq = rx_queue;
1927         uint16_t desc;
1928         int ret;
1929
1930         if (unlikely(offset >= rxq->nb_rx_desc)) {
1931                 PMD_DRV_LOG(ERR, "Invalid RX descriptor id %u", offset);
1932                 return 0;
1933         }
1934
1935         desc = rxq->rx_tail + offset;
1936         if (desc >= rxq->nb_rx_desc)
1937                 desc -= rxq->nb_rx_desc;
1938
1939         rxdp = &(rxq->rx_ring[desc]);
1940
1941         ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1942                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1943                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
1944
1945         return ret;
1946 }
1947
1948 int
1949 i40e_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
1950 {
1951         struct i40e_rx_queue *rxq = rx_queue;
1952         volatile uint64_t *status;
1953         uint64_t mask;
1954         uint32_t desc;
1955
1956         if (unlikely(offset >= rxq->nb_rx_desc))
1957                 return -EINVAL;
1958
1959         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1960                 return RTE_ETH_RX_DESC_UNAVAIL;
1961
1962         desc = rxq->rx_tail + offset;
1963         if (desc >= rxq->nb_rx_desc)
1964                 desc -= rxq->nb_rx_desc;
1965
1966         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
1967         mask = rte_le_to_cpu_64((1ULL << I40E_RX_DESC_STATUS_DD_SHIFT)
1968                 << I40E_RXD_QW1_STATUS_SHIFT);
1969         if (*status & mask)
1970                 return RTE_ETH_RX_DESC_DONE;
1971
1972         return RTE_ETH_RX_DESC_AVAIL;
1973 }
1974
1975 int
1976 i40e_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
1977 {
1978         struct i40e_tx_queue *txq = tx_queue;
1979         volatile uint64_t *status;
1980         uint64_t mask, expect;
1981         uint32_t desc;
1982
1983         if (unlikely(offset >= txq->nb_tx_desc))
1984                 return -EINVAL;
1985
1986         desc = txq->tx_tail + offset;
1987         /* go to next desc that has the RS bit */
1988         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
1989                 txq->tx_rs_thresh;
1990         if (desc >= txq->nb_tx_desc) {
1991                 desc -= txq->nb_tx_desc;
1992                 if (desc >= txq->nb_tx_desc)
1993                         desc -= txq->nb_tx_desc;
1994         }
1995
1996         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
1997         mask = rte_le_to_cpu_64(I40E_TXD_QW1_DTYPE_MASK);
1998         expect = rte_cpu_to_le_64(
1999                 I40E_TX_DESC_DTYPE_DESC_DONE << I40E_TXD_QW1_DTYPE_SHIFT);
2000         if ((*status & mask) == expect)
2001                 return RTE_ETH_TX_DESC_DONE;
2002
2003         return RTE_ETH_TX_DESC_FULL;
2004 }
2005
2006 int
2007 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2008                         uint16_t queue_idx,
2009                         uint16_t nb_desc,
2010                         unsigned int socket_id,
2011                         const struct rte_eth_txconf *tx_conf)
2012 {
2013         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2014         struct i40e_vsi *vsi;
2015         struct i40e_pf *pf = NULL;
2016         struct i40e_vf *vf = NULL;
2017         struct i40e_tx_queue *txq;
2018         const struct rte_memzone *tz;
2019         uint32_t ring_size;
2020         uint16_t tx_rs_thresh, tx_free_thresh;
2021         uint16_t reg_idx, i, base, bsf, tc_mapping;
2022         int q_offset;
2023
2024         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
2025                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2026                 vsi = &vf->vsi;
2027                 if (!vsi)
2028                         return -EINVAL;
2029                 reg_idx = queue_idx;
2030         } else {
2031                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2032                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2033                 if (!vsi)
2034                         return -EINVAL;
2035                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
2036                 if (q_offset < 0)
2037                         return -EINVAL;
2038                 reg_idx = vsi->base_queue + q_offset;
2039         }
2040
2041         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2042             (nb_desc > I40E_MAX_RING_DESC) ||
2043             (nb_desc < I40E_MIN_RING_DESC)) {
2044                 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2045                             "invalid", nb_desc);
2046                 return -EINVAL;
2047         }
2048
2049         /**
2050          * The following two parameters control the setting of the RS bit on
2051          * transmit descriptors. TX descriptors will have their RS bit set
2052          * after txq->tx_rs_thresh descriptors have been used. The TX
2053          * descriptor ring will be cleaned after txq->tx_free_thresh
2054          * descriptors are used or if the number of descriptors required to
2055          * transmit a packet is greater than the number of free TX descriptors.
2056          *
2057          * The following constraints must be satisfied:
2058          *  - tx_rs_thresh must be greater than 0.
2059          *  - tx_rs_thresh must be less than the size of the ring minus 2.
2060          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
2061          *  - tx_rs_thresh must be a divisor of the ring size.
2062          *  - tx_free_thresh must be greater than 0.
2063          *  - tx_free_thresh must be less than the size of the ring minus 3.
2064          *
2065          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2066          * race condition, hence the maximum threshold constraints. When set
2067          * to zero use default values.
2068          */
2069         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2070                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2071         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2072                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2073         if (tx_rs_thresh >= (nb_desc - 2)) {
2074                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2075                              "number of TX descriptors minus 2. "
2076                              "(tx_rs_thresh=%u port=%d queue=%d)",
2077                              (unsigned int)tx_rs_thresh,
2078                              (int)dev->data->port_id,
2079                              (int)queue_idx);
2080                 return I40E_ERR_PARAM;
2081         }
2082         if (tx_free_thresh >= (nb_desc - 3)) {
2083                 PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
2084                              "number of TX descriptors minus 3. "
2085                              "(tx_free_thresh=%u port=%d queue=%d)",
2086                              (unsigned int)tx_free_thresh,
2087                              (int)dev->data->port_id,
2088                              (int)queue_idx);
2089                 return I40E_ERR_PARAM;
2090         }
2091         if (tx_rs_thresh > tx_free_thresh) {
2092                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2093                              "equal to tx_free_thresh. (tx_free_thresh=%u"
2094                              " tx_rs_thresh=%u port=%d queue=%d)",
2095                              (unsigned int)tx_free_thresh,
2096                              (unsigned int)tx_rs_thresh,
2097                              (int)dev->data->port_id,
2098                              (int)queue_idx);
2099                 return I40E_ERR_PARAM;
2100         }
2101         if ((nb_desc % tx_rs_thresh) != 0) {
2102                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2103                              "number of TX descriptors. (tx_rs_thresh=%u"
2104                              " port=%d queue=%d)",
2105                              (unsigned int)tx_rs_thresh,
2106                              (int)dev->data->port_id,
2107                              (int)queue_idx);
2108                 return I40E_ERR_PARAM;
2109         }
2110         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2111                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2112                              "tx_rs_thresh is greater than 1. "
2113                              "(tx_rs_thresh=%u port=%d queue=%d)",
2114                              (unsigned int)tx_rs_thresh,
2115                              (int)dev->data->port_id,
2116                              (int)queue_idx);
2117                 return I40E_ERR_PARAM;
2118         }
2119
2120         /* Free memory if needed. */
2121         if (dev->data->tx_queues[queue_idx]) {
2122                 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2123                 dev->data->tx_queues[queue_idx] = NULL;
2124         }
2125
2126         /* Allocate the TX queue data structure. */
2127         txq = rte_zmalloc_socket("i40e tx queue",
2128                                   sizeof(struct i40e_tx_queue),
2129                                   RTE_CACHE_LINE_SIZE,
2130                                   socket_id);
2131         if (!txq) {
2132                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2133                             "tx queue structure");
2134                 return -ENOMEM;
2135         }
2136
2137         /* Allocate TX hardware ring descriptors. */
2138         ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2139         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2140         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2141                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
2142         if (!tz) {
2143                 i40e_dev_tx_queue_release(txq);
2144                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2145                 return -ENOMEM;
2146         }
2147
2148         txq->nb_tx_desc = nb_desc;
2149         txq->tx_rs_thresh = tx_rs_thresh;
2150         txq->tx_free_thresh = tx_free_thresh;
2151         txq->pthresh = tx_conf->tx_thresh.pthresh;
2152         txq->hthresh = tx_conf->tx_thresh.hthresh;
2153         txq->wthresh = tx_conf->tx_thresh.wthresh;
2154         txq->queue_id = queue_idx;
2155         txq->reg_idx = reg_idx;
2156         txq->port_id = dev->data->port_id;
2157         txq->txq_flags = tx_conf->txq_flags;
2158         txq->vsi = vsi;
2159         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2160
2161         txq->tx_ring_phys_addr = tz->iova;
2162         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2163
2164         /* Allocate software ring */
2165         txq->sw_ring =
2166                 rte_zmalloc_socket("i40e tx sw ring",
2167                                    sizeof(struct i40e_tx_entry) * nb_desc,
2168                                    RTE_CACHE_LINE_SIZE,
2169                                    socket_id);
2170         if (!txq->sw_ring) {
2171                 i40e_dev_tx_queue_release(txq);
2172                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2173                 return -ENOMEM;
2174         }
2175
2176         i40e_reset_tx_queue(txq);
2177         txq->q_set = TRUE;
2178         dev->data->tx_queues[queue_idx] = txq;
2179
2180         /* Use a simple TX queue without offloads or multi segs if possible */
2181         i40e_set_tx_function_flag(dev, txq);
2182
2183         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2184                 if (!(vsi->enabled_tc & (1 << i)))
2185                         continue;
2186                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2187                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2188                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2189                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2190                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2191
2192                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2193                         txq->dcb_tc = i;
2194         }
2195
2196         return 0;
2197 }
2198
2199 void
2200 i40e_dev_tx_queue_release(void *txq)
2201 {
2202         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2203
2204         if (!q) {
2205                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2206                 return;
2207         }
2208
2209         i40e_tx_queue_release_mbufs(q);
2210         rte_free(q->sw_ring);
2211         rte_free(q);
2212 }
2213
2214 const struct rte_memzone *
2215 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2216 {
2217         const struct rte_memzone *mz;
2218
2219         mz = rte_memzone_lookup(name);
2220         if (mz)
2221                 return mz;
2222
2223         mz = rte_memzone_reserve_aligned(name, len,
2224                                          socket_id, 0, I40E_RING_BASE_ALIGN);
2225         return mz;
2226 }
2227
2228 void
2229 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2230 {
2231         uint16_t i;
2232
2233         /* SSE Vector driver has a different way of releasing mbufs. */
2234         if (rxq->rx_using_sse) {
2235                 i40e_rx_queue_release_mbufs_vec(rxq);
2236                 return;
2237         }
2238
2239         if (!rxq->sw_ring) {
2240                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
2241                 return;
2242         }
2243
2244         for (i = 0; i < rxq->nb_rx_desc; i++) {
2245                 if (rxq->sw_ring[i].mbuf) {
2246                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2247                         rxq->sw_ring[i].mbuf = NULL;
2248                 }
2249         }
2250 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2251         if (rxq->rx_nb_avail == 0)
2252                 return;
2253         for (i = 0; i < rxq->rx_nb_avail; i++) {
2254                 struct rte_mbuf *mbuf;
2255
2256                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2257                 rte_pktmbuf_free_seg(mbuf);
2258         }
2259         rxq->rx_nb_avail = 0;
2260 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2261 }
2262
2263 void
2264 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2265 {
2266         unsigned i;
2267         uint16_t len;
2268
2269         if (!rxq) {
2270                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2271                 return;
2272         }
2273
2274 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2275         if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2276                 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2277         else
2278 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2279                 len = rxq->nb_rx_desc;
2280
2281         for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2282                 ((volatile char *)rxq->rx_ring)[i] = 0;
2283
2284         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2285         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2286                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2287
2288 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2289         rxq->rx_nb_avail = 0;
2290         rxq->rx_next_avail = 0;
2291         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2292 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2293         rxq->rx_tail = 0;
2294         rxq->nb_rx_hold = 0;
2295         rxq->pkt_first_seg = NULL;
2296         rxq->pkt_last_seg = NULL;
2297
2298         rxq->rxrearm_start = 0;
2299         rxq->rxrearm_nb = 0;
2300 }
2301
2302 void
2303 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2304 {
2305         struct rte_eth_dev *dev;
2306         uint16_t i;
2307
2308         dev = &rte_eth_devices[txq->port_id];
2309
2310         if (!txq || !txq->sw_ring) {
2311                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2312                 return;
2313         }
2314
2315         /**
2316          *  vPMD tx will not set sw_ring's mbuf to NULL after free,
2317          *  so need to free remains more carefully.
2318          */
2319         if (dev->tx_pkt_burst == i40e_xmit_pkts_vec) {
2320                 i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
2321                 if (txq->tx_tail < i) {
2322                         for (; i < txq->nb_tx_desc; i++) {
2323                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2324                                 txq->sw_ring[i].mbuf = NULL;
2325                         }
2326                         i = 0;
2327                 }
2328                 for (; i < txq->tx_tail; i++) {
2329                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2330                         txq->sw_ring[i].mbuf = NULL;
2331                 }
2332         } else {
2333                 for (i = 0; i < txq->nb_tx_desc; i++) {
2334                         if (txq->sw_ring[i].mbuf) {
2335                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2336                                 txq->sw_ring[i].mbuf = NULL;
2337                         }
2338                 }
2339         }
2340 }
2341
2342 void
2343 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2344 {
2345         struct i40e_tx_entry *txe;
2346         uint16_t i, prev, size;
2347
2348         if (!txq) {
2349                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2350                 return;
2351         }
2352
2353         txe = txq->sw_ring;
2354         size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2355         for (i = 0; i < size; i++)
2356                 ((volatile char *)txq->tx_ring)[i] = 0;
2357
2358         prev = (uint16_t)(txq->nb_tx_desc - 1);
2359         for (i = 0; i < txq->nb_tx_desc; i++) {
2360                 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2361
2362                 txd->cmd_type_offset_bsz =
2363                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2364                 txe[i].mbuf =  NULL;
2365                 txe[i].last_id = i;
2366                 txe[prev].next_id = i;
2367                 prev = i;
2368         }
2369
2370         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2371         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2372
2373         txq->tx_tail = 0;
2374         txq->nb_tx_used = 0;
2375
2376         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2377         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2378 }
2379
2380 /* Init the TX queue in hardware */
2381 int
2382 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2383 {
2384         enum i40e_status_code err = I40E_SUCCESS;
2385         struct i40e_vsi *vsi = txq->vsi;
2386         struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2387         uint16_t pf_q = txq->reg_idx;
2388         struct i40e_hmc_obj_txq tx_ctx;
2389         uint32_t qtx_ctl;
2390
2391         /* clear the context structure first */
2392         memset(&tx_ctx, 0, sizeof(tx_ctx));
2393         tx_ctx.new_context = 1;
2394         tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2395         tx_ctx.qlen = txq->nb_tx_desc;
2396
2397 #ifdef RTE_LIBRTE_IEEE1588
2398         tx_ctx.timesync_ena = 1;
2399 #endif
2400         tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2401         if (vsi->type == I40E_VSI_FDIR)
2402                 tx_ctx.fd_ena = TRUE;
2403
2404         err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2405         if (err != I40E_SUCCESS) {
2406                 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2407                 return err;
2408         }
2409
2410         err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2411         if (err != I40E_SUCCESS) {
2412                 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2413                 return err;
2414         }
2415
2416         /* Now associate this queue with this PCI function */
2417         qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2418         qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2419                                         I40E_QTX_CTL_PF_INDX_MASK);
2420         I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2421         I40E_WRITE_FLUSH(hw);
2422
2423         txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2424
2425         return err;
2426 }
2427
2428 int
2429 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2430 {
2431         struct i40e_rx_entry *rxe = rxq->sw_ring;
2432         uint64_t dma_addr;
2433         uint16_t i;
2434
2435         for (i = 0; i < rxq->nb_rx_desc; i++) {
2436                 volatile union i40e_rx_desc *rxd;
2437                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
2438
2439                 if (unlikely(!mbuf)) {
2440                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2441                         return -ENOMEM;
2442                 }
2443
2444                 rte_mbuf_refcnt_set(mbuf, 1);
2445                 mbuf->next = NULL;
2446                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2447                 mbuf->nb_segs = 1;
2448                 mbuf->port = rxq->port_id;
2449
2450                 dma_addr =
2451                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2452
2453                 rxd = &rxq->rx_ring[i];
2454                 rxd->read.pkt_addr = dma_addr;
2455                 rxd->read.hdr_addr = 0;
2456 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2457                 rxd->read.rsvd1 = 0;
2458                 rxd->read.rsvd2 = 0;
2459 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2460
2461                 rxe[i].mbuf = mbuf;
2462         }
2463
2464         return 0;
2465 }
2466
2467 /*
2468  * Calculate the buffer length, and check the jumbo frame
2469  * and maximum packet length.
2470  */
2471 static int
2472 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2473 {
2474         struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2475         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2476         struct rte_eth_dev_data *data = pf->dev_data;
2477         uint16_t buf_size, len;
2478
2479         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2480                 RTE_PKTMBUF_HEADROOM);
2481
2482         switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2483                         I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2484         case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2485                 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2486                                 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2487                 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2488                                 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2489                 rxq->hs_mode = i40e_header_split_enabled;
2490                 break;
2491         case I40E_FLAG_HEADER_SPLIT_DISABLED:
2492         default:
2493                 rxq->rx_hdr_len = 0;
2494                 rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size,
2495                         (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2496                 rxq->hs_mode = i40e_header_split_none;
2497                 break;
2498         }
2499
2500         len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
2501         rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
2502         if (data->dev_conf.rxmode.jumbo_frame == 1) {
2503                 if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
2504                         rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2505                         PMD_DRV_LOG(ERR, "maximum packet length must "
2506                                     "be larger than %u and smaller than %u,"
2507                                     "as jumbo frame is enabled",
2508                                     (uint32_t)ETHER_MAX_LEN,
2509                                     (uint32_t)I40E_FRAME_SIZE_MAX);
2510                         return I40E_ERR_CONFIG;
2511                 }
2512         } else {
2513                 if (rxq->max_pkt_len < ETHER_MIN_LEN ||
2514                         rxq->max_pkt_len > ETHER_MAX_LEN) {
2515                         PMD_DRV_LOG(ERR, "maximum packet length must be "
2516                                     "larger than %u and smaller than %u, "
2517                                     "as jumbo frame is disabled",
2518                                     (uint32_t)ETHER_MIN_LEN,
2519                                     (uint32_t)ETHER_MAX_LEN);
2520                         return I40E_ERR_CONFIG;
2521                 }
2522         }
2523
2524         return 0;
2525 }
2526
2527 /* Init the RX queue in hardware */
2528 int
2529 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2530 {
2531         int err = I40E_SUCCESS;
2532         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2533         struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2534         uint16_t pf_q = rxq->reg_idx;
2535         uint16_t buf_size;
2536         struct i40e_hmc_obj_rxq rx_ctx;
2537
2538         err = i40e_rx_queue_config(rxq);
2539         if (err < 0) {
2540                 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2541                 return err;
2542         }
2543
2544         /* Clear the context structure first */
2545         memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2546         rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2547         rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2548
2549         rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2550         rx_ctx.qlen = rxq->nb_rx_desc;
2551 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2552         rx_ctx.dsize = 1;
2553 #endif
2554         rx_ctx.dtype = rxq->hs_mode;
2555         if (rxq->hs_mode)
2556                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2557         else
2558                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2559         rx_ctx.rxmax = rxq->max_pkt_len;
2560         rx_ctx.tphrdesc_ena = 1;
2561         rx_ctx.tphwdesc_ena = 1;
2562         rx_ctx.tphdata_ena = 1;
2563         rx_ctx.tphhead_ena = 1;
2564         rx_ctx.lrxqthresh = 2;
2565         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2566         rx_ctx.l2tsel = 1;
2567         /* showiv indicates if inner VLAN is stripped inside of tunnel
2568          * packet. When set it to 1, vlan information is stripped from
2569          * the inner header, but the hardware does not put it in the
2570          * descriptor. So set it zero by default.
2571          */
2572         rx_ctx.showiv = 0;
2573         rx_ctx.prefena = 1;
2574
2575         err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2576         if (err != I40E_SUCCESS) {
2577                 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2578                 return err;
2579         }
2580         err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2581         if (err != I40E_SUCCESS) {
2582                 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2583                 return err;
2584         }
2585
2586         rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2587
2588         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2589                 RTE_PKTMBUF_HEADROOM);
2590
2591         /* Check if scattered RX needs to be used. */
2592         if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
2593                 dev_data->scattered_rx = 1;
2594         }
2595
2596         /* Init the RX tail regieter. */
2597         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2598
2599         return 0;
2600 }
2601
2602 void
2603 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2604 {
2605         uint16_t i;
2606
2607         PMD_INIT_FUNC_TRACE();
2608
2609         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2610                 if (!dev->data->tx_queues[i])
2611                         continue;
2612                 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2613                 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2614         }
2615
2616         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2617                 if (!dev->data->rx_queues[i])
2618                         continue;
2619                 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2620                 i40e_reset_rx_queue(dev->data->rx_queues[i]);
2621         }
2622 }
2623
2624 void
2625 i40e_dev_free_queues(struct rte_eth_dev *dev)
2626 {
2627         uint16_t i;
2628
2629         PMD_INIT_FUNC_TRACE();
2630
2631         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2632                 if (!dev->data->rx_queues[i])
2633                         continue;
2634                 i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
2635                 dev->data->rx_queues[i] = NULL;
2636         }
2637         dev->data->nb_rx_queues = 0;
2638
2639         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2640                 if (!dev->data->tx_queues[i])
2641                         continue;
2642                 i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
2643                 dev->data->tx_queues[i] = NULL;
2644         }
2645         dev->data->nb_tx_queues = 0;
2646 }
2647
2648 #define I40E_FDIR_NUM_TX_DESC  I40E_MIN_RING_DESC
2649 #define I40E_FDIR_NUM_RX_DESC  I40E_MIN_RING_DESC
2650
2651 enum i40e_status_code
2652 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
2653 {
2654         struct i40e_tx_queue *txq;
2655         const struct rte_memzone *tz = NULL;
2656         uint32_t ring_size;
2657         struct rte_eth_dev *dev;
2658
2659         if (!pf) {
2660                 PMD_DRV_LOG(ERR, "PF is not available");
2661                 return I40E_ERR_BAD_PTR;
2662         }
2663
2664         dev = pf->adapter->eth_dev;
2665
2666         /* Allocate the TX queue data structure. */
2667         txq = rte_zmalloc_socket("i40e fdir tx queue",
2668                                   sizeof(struct i40e_tx_queue),
2669                                   RTE_CACHE_LINE_SIZE,
2670                                   SOCKET_ID_ANY);
2671         if (!txq) {
2672                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2673                                         "tx queue structure.");
2674                 return I40E_ERR_NO_MEMORY;
2675         }
2676
2677         /* Allocate TX hardware ring descriptors. */
2678         ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
2679         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2680
2681         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2682                                       I40E_FDIR_QUEUE_ID, ring_size,
2683                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2684         if (!tz) {
2685                 i40e_dev_tx_queue_release(txq);
2686                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2687                 return I40E_ERR_NO_MEMORY;
2688         }
2689
2690         txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
2691         txq->queue_id = I40E_FDIR_QUEUE_ID;
2692         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2693         txq->vsi = pf->fdir.fdir_vsi;
2694
2695         txq->tx_ring_phys_addr = tz->iova;
2696         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2697         /*
2698          * don't need to allocate software ring and reset for the fdir
2699          * program queue just set the queue has been configured.
2700          */
2701         txq->q_set = TRUE;
2702         pf->fdir.txq = txq;
2703
2704         return I40E_SUCCESS;
2705 }
2706
2707 enum i40e_status_code
2708 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
2709 {
2710         struct i40e_rx_queue *rxq;
2711         const struct rte_memzone *rz = NULL;
2712         uint32_t ring_size;
2713         struct rte_eth_dev *dev;
2714
2715         if (!pf) {
2716                 PMD_DRV_LOG(ERR, "PF is not available");
2717                 return I40E_ERR_BAD_PTR;
2718         }
2719
2720         dev = pf->adapter->eth_dev;
2721
2722         /* Allocate the RX queue data structure. */
2723         rxq = rte_zmalloc_socket("i40e fdir rx queue",
2724                                   sizeof(struct i40e_rx_queue),
2725                                   RTE_CACHE_LINE_SIZE,
2726                                   SOCKET_ID_ANY);
2727         if (!rxq) {
2728                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2729                                         "rx queue structure.");
2730                 return I40E_ERR_NO_MEMORY;
2731         }
2732
2733         /* Allocate RX hardware ring descriptors. */
2734         ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
2735         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2736
2737         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2738                                       I40E_FDIR_QUEUE_ID, ring_size,
2739                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2740         if (!rz) {
2741                 i40e_dev_rx_queue_release(rxq);
2742                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2743                 return I40E_ERR_NO_MEMORY;
2744         }
2745
2746         rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
2747         rxq->queue_id = I40E_FDIR_QUEUE_ID;
2748         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2749         rxq->vsi = pf->fdir.fdir_vsi;
2750
2751         rxq->rx_ring_phys_addr = rz->iova;
2752         memset(rz->addr, 0, I40E_FDIR_NUM_RX_DESC * sizeof(union i40e_rx_desc));
2753         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2754
2755         /*
2756          * Don't need to allocate software ring and reset for the fdir
2757          * rx queue, just set the queue has been configured.
2758          */
2759         rxq->q_set = TRUE;
2760         pf->fdir.rxq = rxq;
2761
2762         return I40E_SUCCESS;
2763 }
2764
2765 void
2766 i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2767         struct rte_eth_rxq_info *qinfo)
2768 {
2769         struct i40e_rx_queue *rxq;
2770
2771         rxq = dev->data->rx_queues[queue_id];
2772
2773         qinfo->mp = rxq->mp;
2774         qinfo->scattered_rx = dev->data->scattered_rx;
2775         qinfo->nb_desc = rxq->nb_rx_desc;
2776
2777         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2778         qinfo->conf.rx_drop_en = rxq->drop_en;
2779         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2780 }
2781
2782 void
2783 i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2784         struct rte_eth_txq_info *qinfo)
2785 {
2786         struct i40e_tx_queue *txq;
2787
2788         txq = dev->data->tx_queues[queue_id];
2789
2790         qinfo->nb_desc = txq->nb_tx_desc;
2791
2792         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2793         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2794         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2795
2796         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2797         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
2798         qinfo->conf.txq_flags = txq->txq_flags;
2799         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2800 }
2801
2802 void __attribute__((cold))
2803 i40e_set_rx_function(struct rte_eth_dev *dev)
2804 {
2805         struct i40e_adapter *ad =
2806                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2807         uint16_t rx_using_sse, i;
2808         /* In order to allow Vector Rx there are a few configuration
2809          * conditions to be met and Rx Bulk Allocation should be allowed.
2810          */
2811         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2812                 if (i40e_rx_vec_dev_conf_condition_check(dev) ||
2813                     !ad->rx_bulk_alloc_allowed) {
2814                         PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
2815                                      " Vector Rx preconditions",
2816                                      dev->data->port_id);
2817
2818                         ad->rx_vec_allowed = false;
2819                 }
2820                 if (ad->rx_vec_allowed) {
2821                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2822                                 struct i40e_rx_queue *rxq =
2823                                         dev->data->rx_queues[i];
2824
2825                                 if (rxq && i40e_rxq_vec_setup(rxq)) {
2826                                         ad->rx_vec_allowed = false;
2827                                         break;
2828                                 }
2829                         }
2830                 }
2831         }
2832
2833         if (dev->data->scattered_rx) {
2834                 /* Set the non-LRO scattered callback: there are Vector and
2835                  * single allocation versions.
2836                  */
2837                 if (ad->rx_vec_allowed) {
2838                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
2839                                             "callback (port=%d).",
2840                                      dev->data->port_id);
2841
2842                         dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
2843                 } else {
2844                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
2845                                            "allocation callback (port=%d).",
2846                                      dev->data->port_id);
2847                         dev->rx_pkt_burst = i40e_recv_scattered_pkts;
2848                 }
2849         /* If parameters allow we are going to choose between the following
2850          * callbacks:
2851          *    - Vector
2852          *    - Bulk Allocation
2853          *    - Single buffer allocation (the simplest one)
2854          */
2855         } else if (ad->rx_vec_allowed) {
2856                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
2857                                     "burst size no less than %d (port=%d).",
2858                              RTE_I40E_DESCS_PER_LOOP,
2859                              dev->data->port_id);
2860
2861                 dev->rx_pkt_burst = i40e_recv_pkts_vec;
2862         } else if (ad->rx_bulk_alloc_allowed) {
2863                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2864                                     "satisfied. Rx Burst Bulk Alloc function "
2865                                     "will be used on port=%d.",
2866                              dev->data->port_id);
2867
2868                 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
2869         } else {
2870                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
2871                                     "satisfied, or Scattered Rx is requested "
2872                                     "(port=%d).",
2873                              dev->data->port_id);
2874
2875                 dev->rx_pkt_burst = i40e_recv_pkts;
2876         }
2877
2878         /* Propagate information about RX function choice through all queues. */
2879         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2880                 rx_using_sse =
2881                         (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
2882                          dev->rx_pkt_burst == i40e_recv_pkts_vec);
2883
2884                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2885                         struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
2886
2887                         if (rxq)
2888                                 rxq->rx_using_sse = rx_using_sse;
2889                 }
2890         }
2891 }
2892
2893 void __attribute__((cold))
2894 i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
2895 {
2896         struct i40e_adapter *ad =
2897                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2898
2899         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2900         if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS)
2901                         && (txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST)) {
2902                 if (txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ) {
2903                         PMD_INIT_LOG(DEBUG, "Vector tx"
2904                                      " can be enabled on this txq.");
2905
2906                 } else {
2907                         ad->tx_vec_allowed = false;
2908                 }
2909         } else {
2910                 ad->tx_simple_allowed = false;
2911         }
2912 }
2913
2914 void __attribute__((cold))
2915 i40e_set_tx_function(struct rte_eth_dev *dev)
2916 {
2917         struct i40e_adapter *ad =
2918                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2919         int i;
2920
2921         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2922                 if (ad->tx_vec_allowed) {
2923                         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2924                                 struct i40e_tx_queue *txq =
2925                                         dev->data->tx_queues[i];
2926
2927                                 if (txq && i40e_txq_vec_setup(txq)) {
2928                                         ad->tx_vec_allowed = false;
2929                                         break;
2930                                 }
2931                         }
2932                 }
2933         }
2934
2935         if (ad->tx_simple_allowed) {
2936                 if (ad->tx_vec_allowed) {
2937                         PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
2938                         dev->tx_pkt_burst = i40e_xmit_pkts_vec;
2939                 } else {
2940                         PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
2941                         dev->tx_pkt_burst = i40e_xmit_pkts_simple;
2942                 }
2943                 dev->tx_pkt_prepare = NULL;
2944         } else {
2945                 PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
2946                 dev->tx_pkt_burst = i40e_xmit_pkts;
2947                 dev->tx_pkt_prepare = i40e_prep_pkts;
2948         }
2949 }
2950
2951 void __attribute__((cold))
2952 i40e_set_default_ptype_table(struct rte_eth_dev *dev)
2953 {
2954         struct i40e_adapter *ad =
2955                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2956         int i;
2957
2958         for (i = 0; i < I40E_MAX_PKT_TYPE; i++)
2959                 ad->ptype_tbl[i] = i40e_get_default_pkt_type(i);
2960 }
2961
2962 void __attribute__((cold))
2963 i40e_set_default_pctype_table(struct rte_eth_dev *dev)
2964 {
2965         struct i40e_adapter *ad =
2966                         I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2967         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2968         int i;
2969
2970         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++)
2971                 ad->pctypes_tbl[i] = 0ULL;
2972         ad->flow_types_mask = 0ULL;
2973         ad->pctypes_mask = 0ULL;
2974
2975         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV4] =
2976                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4);
2977         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] =
2978                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
2979         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] =
2980                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
2981         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] =
2982                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
2983         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] =
2984                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER);
2985         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV6] =
2986                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6);
2987         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] =
2988                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
2989         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] =
2990                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
2991         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] =
2992                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
2993         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] =
2994                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER);
2995         ad->pctypes_tbl[RTE_ETH_FLOW_L2_PAYLOAD] =
2996                                 (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
2997
2998         if (hw->mac.type == I40E_MAC_X722) {
2999                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3000                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP);
3001                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3002                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP);
3003                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] |=
3004                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK);
3005                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3006                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP);
3007                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3008                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP);
3009                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] |=
3010                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
3011         }
3012
3013         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++) {
3014                 if (ad->pctypes_tbl[i])
3015                         ad->flow_types_mask |= (1ULL << i);
3016                 ad->pctypes_mask |= ad->pctypes_tbl[i];
3017         }
3018 }
3019
3020 /* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */
3021 int __attribute__((weak))
3022 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
3023 {
3024         return -1;
3025 }
3026
3027 uint16_t __attribute__((weak))
3028 i40e_recv_pkts_vec(
3029         void __rte_unused *rx_queue,
3030         struct rte_mbuf __rte_unused **rx_pkts,
3031         uint16_t __rte_unused nb_pkts)
3032 {
3033         return 0;
3034 }
3035
3036 uint16_t __attribute__((weak))
3037 i40e_recv_scattered_pkts_vec(
3038         void __rte_unused *rx_queue,
3039         struct rte_mbuf __rte_unused **rx_pkts,
3040         uint16_t __rte_unused nb_pkts)
3041 {
3042         return 0;
3043 }
3044
3045 int __attribute__((weak))
3046 i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
3047 {
3048         return -1;
3049 }
3050
3051 int __attribute__((weak))
3052 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
3053 {
3054         return -1;
3055 }
3056
3057 void __attribute__((weak))
3058 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
3059 {
3060         return;
3061 }
3062
3063 uint16_t __attribute__((weak))
3064 i40e_xmit_fixed_burst_vec(void __rte_unused * tx_queue,
3065                           struct rte_mbuf __rte_unused **tx_pkts,
3066                           uint16_t __rte_unused nb_pkts)
3067 {
3068         return 0;
3069 }