New upstream version 18.08
[deb_dpdk.git] / drivers / net / i40e / i40e_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26
27 #include "i40e_logs.h"
28 #include "base/i40e_prototype.h"
29 #include "base/i40e_type.h"
30 #include "i40e_ethdev.h"
31 #include "i40e_rxtx.h"
32
33 #define DEFAULT_TX_RS_THRESH   32
34 #define DEFAULT_TX_FREE_THRESH 32
35
36 #define I40E_TX_MAX_BURST  32
37
38 #define I40E_DMA_MEM_ALIGN 4096
39
40 /* Base address of the HW descriptor ring should be 128B aligned. */
41 #define I40E_RING_BASE_ALIGN    128
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45 #ifdef RTE_LIBRTE_IEEE1588
46 #define I40E_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
47 #else
48 #define I40E_TX_IEEE1588_TMST 0
49 #endif
50
51 #define I40E_TX_CKSUM_OFFLOAD_MASK (             \
52                 PKT_TX_IP_CKSUM |                \
53                 PKT_TX_L4_MASK |                 \
54                 PKT_TX_TCP_SEG |                 \
55                 PKT_TX_OUTER_IP_CKSUM)
56
57 #define I40E_TX_OFFLOAD_MASK (  \
58                 PKT_TX_IP_CKSUM |       \
59                 PKT_TX_L4_MASK |        \
60                 PKT_TX_OUTER_IP_CKSUM | \
61                 PKT_TX_TCP_SEG |        \
62                 PKT_TX_QINQ_PKT |       \
63                 PKT_TX_VLAN_PKT |       \
64                 PKT_TX_TUNNEL_MASK |    \
65                 I40E_TX_IEEE1588_TMST)
66
67 #define I40E_TX_OFFLOAD_NOTSUP_MASK \
68                 (PKT_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_MASK)
69
70 static inline void
71 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
72 {
73         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
74                 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
75                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
76                 mb->vlan_tci =
77                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
78                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
79                            rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
80         } else {
81                 mb->vlan_tci = 0;
82         }
83 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
84         if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
85                 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
86                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED;
87                 mb->vlan_tci_outer = mb->vlan_tci;
88                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
89                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
90                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
91                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
92         } else {
93                 mb->vlan_tci_outer = 0;
94         }
95 #endif
96         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
97                    mb->vlan_tci, mb->vlan_tci_outer);
98 }
99
100 /* Translate the rx descriptor status to pkt flags */
101 static inline uint64_t
102 i40e_rxd_status_to_pkt_flags(uint64_t qword)
103 {
104         uint64_t flags;
105
106         /* Check if RSS_HASH */
107         flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
108                                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
109                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
110
111         /* Check if FDIR Match */
112         flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
113                                                         PKT_RX_FDIR : 0);
114
115         return flags;
116 }
117
118 static inline uint64_t
119 i40e_rxd_error_to_pkt_flags(uint64_t qword)
120 {
121         uint64_t flags = 0;
122         uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
123
124 #define I40E_RX_ERR_BITS 0x3f
125         if (likely((error_bits & I40E_RX_ERR_BITS) == 0)) {
126                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
127                 return flags;
128         }
129
130         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
131                 flags |= PKT_RX_IP_CKSUM_BAD;
132         else
133                 flags |= PKT_RX_IP_CKSUM_GOOD;
134
135         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
136                 flags |= PKT_RX_L4_CKSUM_BAD;
137         else
138                 flags |= PKT_RX_L4_CKSUM_GOOD;
139
140         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
141                 flags |= PKT_RX_EIP_CKSUM_BAD;
142
143         return flags;
144 }
145
146 /* Function to check and set the ieee1588 timesync index and get the
147  * appropriate flags.
148  */
149 #ifdef RTE_LIBRTE_IEEE1588
150 static inline uint64_t
151 i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
152 {
153         uint64_t pkt_flags = 0;
154         uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
155                                   | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
156                                     >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
157
158         if ((mb->packet_type & RTE_PTYPE_L2_MASK)
159                         == RTE_PTYPE_L2_ETHER_TIMESYNC)
160                 pkt_flags = PKT_RX_IEEE1588_PTP;
161         if (tsyn & 0x04) {
162                 pkt_flags |= PKT_RX_IEEE1588_TMST;
163                 mb->timesync = tsyn & 0x03;
164         }
165
166         return pkt_flags;
167 }
168 #endif
169
170 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK   0x03
171 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID  0x01
172 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX   0x02
173 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK   0x03
174 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX   0x01
175
176 static inline uint64_t
177 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
178 {
179         uint64_t flags = 0;
180 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
181         uint16_t flexbh, flexbl;
182
183         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
184                 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
185                 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
186         flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
187                 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
188                 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
189
190
191         if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
192                 mb->hash.fdir.hi =
193                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
194                 flags |= PKT_RX_FDIR_ID;
195         } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
196                 mb->hash.fdir.hi =
197                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
198                 flags |= PKT_RX_FDIR_FLX;
199         }
200         if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
201                 mb->hash.fdir.lo =
202                         rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
203                 flags |= PKT_RX_FDIR_FLX;
204         }
205 #else
206         mb->hash.fdir.hi =
207                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
208         flags |= PKT_RX_FDIR_ID;
209 #endif
210         return flags;
211 }
212
213 static inline void
214 i40e_parse_tunneling_params(uint64_t ol_flags,
215                             union i40e_tx_offload tx_offload,
216                             uint32_t *cd_tunneling)
217 {
218         /* EIPT: External (outer) IP header type */
219         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
220                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
221         else if (ol_flags & PKT_TX_OUTER_IPV4)
222                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
223         else if (ol_flags & PKT_TX_OUTER_IPV6)
224                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
225
226         /* EIPLEN: External (outer) IP header length, in DWords */
227         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
228                 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
229
230         /* L4TUNT: L4 Tunneling Type */
231         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
232         case PKT_TX_TUNNEL_IPIP:
233                 /* for non UDP / GRE tunneling, set to 00b */
234                 break;
235         case PKT_TX_TUNNEL_VXLAN:
236         case PKT_TX_TUNNEL_GENEVE:
237                 *cd_tunneling |= I40E_TXD_CTX_UDP_TUNNELING;
238                 break;
239         case PKT_TX_TUNNEL_GRE:
240                 *cd_tunneling |= I40E_TXD_CTX_GRE_TUNNELING;
241                 break;
242         default:
243                 PMD_TX_LOG(ERR, "Tunnel type not supported");
244                 return;
245         }
246
247         /* L4TUNLEN: L4 Tunneling Length, in Words
248          *
249          * We depend on app to set rte_mbuf.l2_len correctly.
250          * For IP in GRE it should be set to the length of the GRE
251          * header;
252          * for MAC in GRE or MAC in UDP it should be set to the length
253          * of the GRE or UDP headers plus the inner MAC up to including
254          * its last Ethertype.
255          */
256         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
257                 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
258 }
259
260 static inline void
261 i40e_txd_enable_checksum(uint64_t ol_flags,
262                         uint32_t *td_cmd,
263                         uint32_t *td_offset,
264                         union i40e_tx_offload tx_offload)
265 {
266         /* Set MACLEN */
267         if (ol_flags & PKT_TX_TUNNEL_MASK)
268                 *td_offset |= (tx_offload.outer_l2_len >> 1)
269                                 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
270         else
271                 *td_offset |= (tx_offload.l2_len >> 1)
272                         << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
273
274         /* Enable L3 checksum offloads */
275         if (ol_flags & PKT_TX_IP_CKSUM) {
276                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
277                 *td_offset |= (tx_offload.l3_len >> 2)
278                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
279         } else if (ol_flags & PKT_TX_IPV4) {
280                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
281                 *td_offset |= (tx_offload.l3_len >> 2)
282                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
283         } else if (ol_flags & PKT_TX_IPV6) {
284                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
285                 *td_offset |= (tx_offload.l3_len >> 2)
286                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
287         }
288
289         if (ol_flags & PKT_TX_TCP_SEG) {
290                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
291                 *td_offset |= (tx_offload.l4_len >> 2)
292                         << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
293                 return;
294         }
295
296         /* Enable L4 checksum offloads */
297         switch (ol_flags & PKT_TX_L4_MASK) {
298         case PKT_TX_TCP_CKSUM:
299                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
300                 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
301                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
302                 break;
303         case PKT_TX_SCTP_CKSUM:
304                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
305                 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
306                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
307                 break;
308         case PKT_TX_UDP_CKSUM:
309                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
310                 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
311                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
312                 break;
313         default:
314                 break;
315         }
316 }
317
318 /* Construct the tx flags */
319 static inline uint64_t
320 i40e_build_ctob(uint32_t td_cmd,
321                 uint32_t td_offset,
322                 unsigned int size,
323                 uint32_t td_tag)
324 {
325         return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
326                         ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
327                         ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
328                         ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
329                         ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
330 }
331
332 static inline int
333 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
334 {
335         struct i40e_tx_entry *sw_ring = txq->sw_ring;
336         volatile struct i40e_tx_desc *txd = txq->tx_ring;
337         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
338         uint16_t nb_tx_desc = txq->nb_tx_desc;
339         uint16_t desc_to_clean_to;
340         uint16_t nb_tx_to_clean;
341
342         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
343         if (desc_to_clean_to >= nb_tx_desc)
344                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
345
346         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
347         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
348                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
349                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
350                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
351                         "(port=%d queue=%d)", desc_to_clean_to,
352                                 txq->port_id, txq->queue_id);
353                 return -1;
354         }
355
356         if (last_desc_cleaned > desc_to_clean_to)
357                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
358                                                         desc_to_clean_to);
359         else
360                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
361                                         last_desc_cleaned);
362
363         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
364
365         txq->last_desc_cleaned = desc_to_clean_to;
366         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
367
368         return 0;
369 }
370
371 static inline int
372 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
373 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
374 #else
375 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
376 #endif
377 {
378         int ret = 0;
379
380 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
381         if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
382                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
383                              "rxq->rx_free_thresh=%d, "
384                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
385                              rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
386                 ret = -EINVAL;
387         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
388                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
389                              "rxq->rx_free_thresh=%d, "
390                              "rxq->nb_rx_desc=%d",
391                              rxq->rx_free_thresh, rxq->nb_rx_desc);
392                 ret = -EINVAL;
393         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
394                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
395                              "rxq->nb_rx_desc=%d, "
396                              "rxq->rx_free_thresh=%d",
397                              rxq->nb_rx_desc, rxq->rx_free_thresh);
398                 ret = -EINVAL;
399         }
400 #else
401         ret = -EINVAL;
402 #endif
403
404         return ret;
405 }
406
407 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
408 #define I40E_LOOK_AHEAD 8
409 #if (I40E_LOOK_AHEAD != 8)
410 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
411 #endif
412 static inline int
413 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
414 {
415         volatile union i40e_rx_desc *rxdp;
416         struct i40e_rx_entry *rxep;
417         struct rte_mbuf *mb;
418         uint16_t pkt_len;
419         uint64_t qword1;
420         uint32_t rx_status;
421         int32_t s[I40E_LOOK_AHEAD], nb_dd;
422         int32_t i, j, nb_rx = 0;
423         uint64_t pkt_flags;
424         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
425
426         rxdp = &rxq->rx_ring[rxq->rx_tail];
427         rxep = &rxq->sw_ring[rxq->rx_tail];
428
429         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
430         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
431                                 I40E_RXD_QW1_STATUS_SHIFT;
432
433         /* Make sure there is at least 1 packet to receive */
434         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
435                 return 0;
436
437         /**
438          * Scan LOOK_AHEAD descriptors at a time to determine which
439          * descriptors reference packets that are ready to be received.
440          */
441         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
442                         rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
443                 /* Read desc statuses backwards to avoid race condition */
444                 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
445                         qword1 = rte_le_to_cpu_64(\
446                                 rxdp[j].wb.qword1.status_error_len);
447                         s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
448                                         I40E_RXD_QW1_STATUS_SHIFT;
449                 }
450
451                 rte_smp_rmb();
452
453                 /* Compute how many status bits were set */
454                 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
455                         nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
456
457                 nb_rx += nb_dd;
458
459                 /* Translate descriptor info to mbuf parameters */
460                 for (j = 0; j < nb_dd; j++) {
461                         mb = rxep[j].mbuf;
462                         qword1 = rte_le_to_cpu_64(\
463                                 rxdp[j].wb.qword1.status_error_len);
464                         pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
465                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
466                         mb->data_len = pkt_len;
467                         mb->pkt_len = pkt_len;
468                         mb->ol_flags = 0;
469                         i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
470                         pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
471                         pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
472                         mb->packet_type =
473                                 ptype_tbl[(uint8_t)((qword1 &
474                                 I40E_RXD_QW1_PTYPE_MASK) >>
475                                 I40E_RXD_QW1_PTYPE_SHIFT)];
476                         if (pkt_flags & PKT_RX_RSS_HASH)
477                                 mb->hash.rss = rte_le_to_cpu_32(\
478                                         rxdp[j].wb.qword0.hi_dword.rss);
479                         if (pkt_flags & PKT_RX_FDIR)
480                                 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
481
482 #ifdef RTE_LIBRTE_IEEE1588
483                         pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
484 #endif
485                         mb->ol_flags |= pkt_flags;
486
487                 }
488
489                 for (j = 0; j < I40E_LOOK_AHEAD; j++)
490                         rxq->rx_stage[i + j] = rxep[j].mbuf;
491
492                 if (nb_dd != I40E_LOOK_AHEAD)
493                         break;
494         }
495
496         /* Clear software ring entries */
497         for (i = 0; i < nb_rx; i++)
498                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
499
500         return nb_rx;
501 }
502
503 static inline uint16_t
504 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
505                         struct rte_mbuf **rx_pkts,
506                         uint16_t nb_pkts)
507 {
508         uint16_t i;
509         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
510
511         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
512
513         for (i = 0; i < nb_pkts; i++)
514                 rx_pkts[i] = stage[i];
515
516         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
517         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
518
519         return nb_pkts;
520 }
521
522 static inline int
523 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
524 {
525         volatile union i40e_rx_desc *rxdp;
526         struct i40e_rx_entry *rxep;
527         struct rte_mbuf *mb;
528         uint16_t alloc_idx, i;
529         uint64_t dma_addr;
530         int diag;
531
532         /* Allocate buffers in bulk */
533         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
534                                 (rxq->rx_free_thresh - 1));
535         rxep = &(rxq->sw_ring[alloc_idx]);
536         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
537                                         rxq->rx_free_thresh);
538         if (unlikely(diag != 0)) {
539                 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
540                 return -ENOMEM;
541         }
542
543         rxdp = &rxq->rx_ring[alloc_idx];
544         for (i = 0; i < rxq->rx_free_thresh; i++) {
545                 if (likely(i < (rxq->rx_free_thresh - 1)))
546                         /* Prefetch next mbuf */
547                         rte_prefetch0(rxep[i + 1].mbuf);
548
549                 mb = rxep[i].mbuf;
550                 rte_mbuf_refcnt_set(mb, 1);
551                 mb->next = NULL;
552                 mb->data_off = RTE_PKTMBUF_HEADROOM;
553                 mb->nb_segs = 1;
554                 mb->port = rxq->port_id;
555                 dma_addr = rte_cpu_to_le_64(\
556                         rte_mbuf_data_iova_default(mb));
557                 rxdp[i].read.hdr_addr = 0;
558                 rxdp[i].read.pkt_addr = dma_addr;
559         }
560
561         /* Update rx tail regsiter */
562         rte_wmb();
563         I40E_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
564
565         rxq->rx_free_trigger =
566                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
567         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
568                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
569
570         return 0;
571 }
572
573 static inline uint16_t
574 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
575 {
576         struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
577         struct rte_eth_dev *dev;
578         uint16_t nb_rx = 0;
579
580         if (!nb_pkts)
581                 return 0;
582
583         if (rxq->rx_nb_avail)
584                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
585
586         nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
587         rxq->rx_next_avail = 0;
588         rxq->rx_nb_avail = nb_rx;
589         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
590
591         if (rxq->rx_tail > rxq->rx_free_trigger) {
592                 if (i40e_rx_alloc_bufs(rxq) != 0) {
593                         uint16_t i, j;
594
595                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
596                         dev->data->rx_mbuf_alloc_failed +=
597                                 rxq->rx_free_thresh;
598
599                         rxq->rx_nb_avail = 0;
600                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
601                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
602                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
603
604                         return 0;
605                 }
606         }
607
608         if (rxq->rx_tail >= rxq->nb_rx_desc)
609                 rxq->rx_tail = 0;
610
611         if (rxq->rx_nb_avail)
612                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
613
614         return 0;
615 }
616
617 static uint16_t
618 i40e_recv_pkts_bulk_alloc(void *rx_queue,
619                           struct rte_mbuf **rx_pkts,
620                           uint16_t nb_pkts)
621 {
622         uint16_t nb_rx = 0, n, count;
623
624         if (unlikely(nb_pkts == 0))
625                 return 0;
626
627         if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
628                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
629
630         while (nb_pkts) {
631                 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
632                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
633                 nb_rx = (uint16_t)(nb_rx + count);
634                 nb_pkts = (uint16_t)(nb_pkts - count);
635                 if (count < n)
636                         break;
637         }
638
639         return nb_rx;
640 }
641 #else
642 static uint16_t
643 i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
644                           struct rte_mbuf __rte_unused **rx_pkts,
645                           uint16_t __rte_unused nb_pkts)
646 {
647         return 0;
648 }
649 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
650
651 uint16_t
652 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
653 {
654         struct i40e_rx_queue *rxq;
655         volatile union i40e_rx_desc *rx_ring;
656         volatile union i40e_rx_desc *rxdp;
657         union i40e_rx_desc rxd;
658         struct i40e_rx_entry *sw_ring;
659         struct i40e_rx_entry *rxe;
660         struct rte_eth_dev *dev;
661         struct rte_mbuf *rxm;
662         struct rte_mbuf *nmb;
663         uint16_t nb_rx;
664         uint32_t rx_status;
665         uint64_t qword1;
666         uint16_t rx_packet_len;
667         uint16_t rx_id, nb_hold;
668         uint64_t dma_addr;
669         uint64_t pkt_flags;
670         uint32_t *ptype_tbl;
671
672         nb_rx = 0;
673         nb_hold = 0;
674         rxq = rx_queue;
675         rx_id = rxq->rx_tail;
676         rx_ring = rxq->rx_ring;
677         sw_ring = rxq->sw_ring;
678         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
679
680         while (nb_rx < nb_pkts) {
681                 rxdp = &rx_ring[rx_id];
682                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
683                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
684                                 >> I40E_RXD_QW1_STATUS_SHIFT;
685
686                 /* Check the DD bit first */
687                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
688                         break;
689
690                 nmb = rte_mbuf_raw_alloc(rxq->mp);
691                 if (unlikely(!nmb)) {
692                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
693                         dev->data->rx_mbuf_alloc_failed++;
694                         break;
695                 }
696
697                 rxd = *rxdp;
698                 nb_hold++;
699                 rxe = &sw_ring[rx_id];
700                 rx_id++;
701                 if (unlikely(rx_id == rxq->nb_rx_desc))
702                         rx_id = 0;
703
704                 /* Prefetch next mbuf */
705                 rte_prefetch0(sw_ring[rx_id].mbuf);
706
707                 /**
708                  * When next RX descriptor is on a cache line boundary,
709                  * prefetch the next 4 RX descriptors and next 8 pointers
710                  * to mbufs.
711                  */
712                 if ((rx_id & 0x3) == 0) {
713                         rte_prefetch0(&rx_ring[rx_id]);
714                         rte_prefetch0(&sw_ring[rx_id]);
715                 }
716                 rxm = rxe->mbuf;
717                 rxe->mbuf = nmb;
718                 dma_addr =
719                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
720                 rxdp->read.hdr_addr = 0;
721                 rxdp->read.pkt_addr = dma_addr;
722
723                 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
724                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
725
726                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
727                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
728                 rxm->nb_segs = 1;
729                 rxm->next = NULL;
730                 rxm->pkt_len = rx_packet_len;
731                 rxm->data_len = rx_packet_len;
732                 rxm->port = rxq->port_id;
733                 rxm->ol_flags = 0;
734                 i40e_rxd_to_vlan_tci(rxm, &rxd);
735                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
736                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
737                 rxm->packet_type =
738                         ptype_tbl[(uint8_t)((qword1 &
739                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
740                 if (pkt_flags & PKT_RX_RSS_HASH)
741                         rxm->hash.rss =
742                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
743                 if (pkt_flags & PKT_RX_FDIR)
744                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
745
746 #ifdef RTE_LIBRTE_IEEE1588
747                 pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
748 #endif
749                 rxm->ol_flags |= pkt_flags;
750
751                 rx_pkts[nb_rx++] = rxm;
752         }
753         rxq->rx_tail = rx_id;
754
755         /**
756          * If the number of free RX descriptors is greater than the RX free
757          * threshold of the queue, advance the receive tail register of queue.
758          * Update that register with the value of the last processed RX
759          * descriptor minus 1.
760          */
761         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
762         if (nb_hold > rxq->rx_free_thresh) {
763                 rx_id = (uint16_t) ((rx_id == 0) ?
764                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
765                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
766                 nb_hold = 0;
767         }
768         rxq->nb_rx_hold = nb_hold;
769
770         return nb_rx;
771 }
772
773 uint16_t
774 i40e_recv_scattered_pkts(void *rx_queue,
775                          struct rte_mbuf **rx_pkts,
776                          uint16_t nb_pkts)
777 {
778         struct i40e_rx_queue *rxq = rx_queue;
779         volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
780         volatile union i40e_rx_desc *rxdp;
781         union i40e_rx_desc rxd;
782         struct i40e_rx_entry *sw_ring = rxq->sw_ring;
783         struct i40e_rx_entry *rxe;
784         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
785         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
786         struct rte_mbuf *nmb, *rxm;
787         uint16_t rx_id = rxq->rx_tail;
788         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
789         struct rte_eth_dev *dev;
790         uint32_t rx_status;
791         uint64_t qword1;
792         uint64_t dma_addr;
793         uint64_t pkt_flags;
794         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
795
796         while (nb_rx < nb_pkts) {
797                 rxdp = &rx_ring[rx_id];
798                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
799                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
800                                         I40E_RXD_QW1_STATUS_SHIFT;
801
802                 /* Check the DD bit */
803                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
804                         break;
805
806                 nmb = rte_mbuf_raw_alloc(rxq->mp);
807                 if (unlikely(!nmb)) {
808                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
809                         dev->data->rx_mbuf_alloc_failed++;
810                         break;
811                 }
812
813                 rxd = *rxdp;
814                 nb_hold++;
815                 rxe = &sw_ring[rx_id];
816                 rx_id++;
817                 if (rx_id == rxq->nb_rx_desc)
818                         rx_id = 0;
819
820                 /* Prefetch next mbuf */
821                 rte_prefetch0(sw_ring[rx_id].mbuf);
822
823                 /**
824                  * When next RX descriptor is on a cache line boundary,
825                  * prefetch the next 4 RX descriptors and next 8 pointers
826                  * to mbufs.
827                  */
828                 if ((rx_id & 0x3) == 0) {
829                         rte_prefetch0(&rx_ring[rx_id]);
830                         rte_prefetch0(&sw_ring[rx_id]);
831                 }
832
833                 rxm = rxe->mbuf;
834                 rxe->mbuf = nmb;
835                 dma_addr =
836                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
837
838                 /* Set data buffer address and data length of the mbuf */
839                 rxdp->read.hdr_addr = 0;
840                 rxdp->read.pkt_addr = dma_addr;
841                 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
842                                         I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
843                 rxm->data_len = rx_packet_len;
844                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
845
846                 /**
847                  * If this is the first buffer of the received packet, set the
848                  * pointer to the first mbuf of the packet and initialize its
849                  * context. Otherwise, update the total length and the number
850                  * of segments of the current scattered packet, and update the
851                  * pointer to the last mbuf of the current packet.
852                  */
853                 if (!first_seg) {
854                         first_seg = rxm;
855                         first_seg->nb_segs = 1;
856                         first_seg->pkt_len = rx_packet_len;
857                 } else {
858                         first_seg->pkt_len =
859                                 (uint16_t)(first_seg->pkt_len +
860                                                 rx_packet_len);
861                         first_seg->nb_segs++;
862                         last_seg->next = rxm;
863                 }
864
865                 /**
866                  * If this is not the last buffer of the received packet,
867                  * update the pointer to the last mbuf of the current scattered
868                  * packet and continue to parse the RX ring.
869                  */
870                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
871                         last_seg = rxm;
872                         continue;
873                 }
874
875                 /**
876                  * This is the last buffer of the received packet. If the CRC
877                  * is not stripped by the hardware:
878                  *  - Subtract the CRC length from the total packet length.
879                  *  - If the last buffer only contains the whole CRC or a part
880                  *  of it, free the mbuf associated to the last buffer. If part
881                  *  of the CRC is also contained in the previous mbuf, subtract
882                  *  the length of that CRC part from the data length of the
883                  *  previous mbuf.
884                  */
885                 rxm->next = NULL;
886                 if (unlikely(rxq->crc_len > 0)) {
887                         first_seg->pkt_len -= ETHER_CRC_LEN;
888                         if (rx_packet_len <= ETHER_CRC_LEN) {
889                                 rte_pktmbuf_free_seg(rxm);
890                                 first_seg->nb_segs--;
891                                 last_seg->data_len =
892                                         (uint16_t)(last_seg->data_len -
893                                         (ETHER_CRC_LEN - rx_packet_len));
894                                 last_seg->next = NULL;
895                         } else
896                                 rxm->data_len = (uint16_t)(rx_packet_len -
897                                                                 ETHER_CRC_LEN);
898                 }
899
900                 first_seg->port = rxq->port_id;
901                 first_seg->ol_flags = 0;
902                 i40e_rxd_to_vlan_tci(first_seg, &rxd);
903                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
904                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
905                 first_seg->packet_type =
906                         ptype_tbl[(uint8_t)((qword1 &
907                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
908                 if (pkt_flags & PKT_RX_RSS_HASH)
909                         first_seg->hash.rss =
910                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
911                 if (pkt_flags & PKT_RX_FDIR)
912                         pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
913
914 #ifdef RTE_LIBRTE_IEEE1588
915                 pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
916 #endif
917                 first_seg->ol_flags |= pkt_flags;
918
919                 /* Prefetch data of first segment, if configured to do so. */
920                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
921                         first_seg->data_off));
922                 rx_pkts[nb_rx++] = first_seg;
923                 first_seg = NULL;
924         }
925
926         /* Record index of the next RX descriptor to probe. */
927         rxq->rx_tail = rx_id;
928         rxq->pkt_first_seg = first_seg;
929         rxq->pkt_last_seg = last_seg;
930
931         /**
932          * If the number of free RX descriptors is greater than the RX free
933          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
934          * register. Update the RDT with the value of the last processed RX
935          * descriptor minus 1, to guarantee that the RDT register is never
936          * equal to the RDH register, which creates a "full" ring situtation
937          * from the hardware point of view.
938          */
939         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
940         if (nb_hold > rxq->rx_free_thresh) {
941                 rx_id = (uint16_t)(rx_id == 0 ?
942                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
943                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
944                 nb_hold = 0;
945         }
946         rxq->nb_rx_hold = nb_hold;
947
948         return nb_rx;
949 }
950
951 /* Check if the context descriptor is needed for TX offloading */
952 static inline uint16_t
953 i40e_calc_context_desc(uint64_t flags)
954 {
955         static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
956                 PKT_TX_TCP_SEG |
957                 PKT_TX_QINQ_PKT |
958                 PKT_TX_TUNNEL_MASK;
959
960 #ifdef RTE_LIBRTE_IEEE1588
961         mask |= PKT_TX_IEEE1588_TMST;
962 #endif
963
964         return (flags & mask) ? 1 : 0;
965 }
966
967 /* set i40e TSO context descriptor */
968 static inline uint64_t
969 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
970 {
971         uint64_t ctx_desc = 0;
972         uint32_t cd_cmd, hdr_len, cd_tso_len;
973
974         if (!tx_offload.l4_len) {
975                 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
976                 return ctx_desc;
977         }
978
979         /**
980          * in case of non tunneling packet, the outer_l2_len and
981          * outer_l3_len must be 0.
982          */
983         hdr_len = tx_offload.outer_l2_len +
984                 tx_offload.outer_l3_len +
985                 tx_offload.l2_len +
986                 tx_offload.l3_len +
987                 tx_offload.l4_len;
988
989         cd_cmd = I40E_TX_CTX_DESC_TSO;
990         cd_tso_len = mbuf->pkt_len - hdr_len;
991         ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
992                 ((uint64_t)cd_tso_len <<
993                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
994                 ((uint64_t)mbuf->tso_segsz <<
995                  I40E_TXD_CTX_QW1_MSS_SHIFT);
996
997         return ctx_desc;
998 }
999
1000 uint16_t
1001 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1002 {
1003         struct i40e_tx_queue *txq;
1004         struct i40e_tx_entry *sw_ring;
1005         struct i40e_tx_entry *txe, *txn;
1006         volatile struct i40e_tx_desc *txd;
1007         volatile struct i40e_tx_desc *txr;
1008         struct rte_mbuf *tx_pkt;
1009         struct rte_mbuf *m_seg;
1010         uint32_t cd_tunneling_params;
1011         uint16_t tx_id;
1012         uint16_t nb_tx;
1013         uint32_t td_cmd;
1014         uint32_t td_offset;
1015         uint32_t td_tag;
1016         uint64_t ol_flags;
1017         uint16_t nb_used;
1018         uint16_t nb_ctx;
1019         uint16_t tx_last;
1020         uint16_t slen;
1021         uint64_t buf_dma_addr;
1022         union i40e_tx_offload tx_offload = {0};
1023
1024         txq = tx_queue;
1025         sw_ring = txq->sw_ring;
1026         txr = txq->tx_ring;
1027         tx_id = txq->tx_tail;
1028         txe = &sw_ring[tx_id];
1029
1030         /* Check if the descriptor ring needs to be cleaned. */
1031         if (txq->nb_tx_free < txq->tx_free_thresh)
1032                 i40e_xmit_cleanup(txq);
1033
1034         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1035                 td_cmd = 0;
1036                 td_tag = 0;
1037                 td_offset = 0;
1038
1039                 tx_pkt = *tx_pkts++;
1040                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1041
1042                 ol_flags = tx_pkt->ol_flags;
1043                 tx_offload.l2_len = tx_pkt->l2_len;
1044                 tx_offload.l3_len = tx_pkt->l3_len;
1045                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1046                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1047                 tx_offload.l4_len = tx_pkt->l4_len;
1048                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1049
1050                 /* Calculate the number of context descriptors needed. */
1051                 nb_ctx = i40e_calc_context_desc(ol_flags);
1052
1053                 /**
1054                  * The number of descriptors that must be allocated for
1055                  * a packet equals to the number of the segments of that
1056                  * packet plus 1 context descriptor if needed.
1057                  */
1058                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1059                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1060
1061                 /* Circular ring */
1062                 if (tx_last >= txq->nb_tx_desc)
1063                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1064
1065                 if (nb_used > txq->nb_tx_free) {
1066                         if (i40e_xmit_cleanup(txq) != 0) {
1067                                 if (nb_tx == 0)
1068                                         return 0;
1069                                 goto end_of_tx;
1070                         }
1071                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
1072                                 while (nb_used > txq->nb_tx_free) {
1073                                         if (i40e_xmit_cleanup(txq) != 0) {
1074                                                 if (nb_tx == 0)
1075                                                         return 0;
1076                                                 goto end_of_tx;
1077                                         }
1078                                 }
1079                         }
1080                 }
1081
1082                 /* Descriptor based VLAN insertion */
1083                 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1084                         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1085                         td_tag = tx_pkt->vlan_tci;
1086                 }
1087
1088                 /* Always enable CRC offload insertion */
1089                 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1090
1091                 /* Fill in tunneling parameters if necessary */
1092                 cd_tunneling_params = 0;
1093                 if (ol_flags & PKT_TX_TUNNEL_MASK)
1094                         i40e_parse_tunneling_params(ol_flags, tx_offload,
1095                                                     &cd_tunneling_params);
1096                 /* Enable checksum offloading */
1097                 if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)
1098                         i40e_txd_enable_checksum(ol_flags, &td_cmd,
1099                                                  &td_offset, tx_offload);
1100
1101                 if (nb_ctx) {
1102                         /* Setup TX context descriptor if required */
1103                         volatile struct i40e_tx_context_desc *ctx_txd =
1104                                 (volatile struct i40e_tx_context_desc *)\
1105                                                         &txr[tx_id];
1106                         uint16_t cd_l2tag2 = 0;
1107                         uint64_t cd_type_cmd_tso_mss =
1108                                 I40E_TX_DESC_DTYPE_CONTEXT;
1109
1110                         txn = &sw_ring[txe->next_id];
1111                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1112                         if (txe->mbuf != NULL) {
1113                                 rte_pktmbuf_free_seg(txe->mbuf);
1114                                 txe->mbuf = NULL;
1115                         }
1116
1117                         /* TSO enabled means no timestamp */
1118                         if (ol_flags & PKT_TX_TCP_SEG)
1119                                 cd_type_cmd_tso_mss |=
1120                                         i40e_set_tso_ctx(tx_pkt, tx_offload);
1121                         else {
1122 #ifdef RTE_LIBRTE_IEEE1588
1123                                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1124                                         cd_type_cmd_tso_mss |=
1125                                                 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1126                                                  I40E_TXD_CTX_QW1_CMD_SHIFT);
1127 #endif
1128                         }
1129
1130                         ctx_txd->tunneling_params =
1131                                 rte_cpu_to_le_32(cd_tunneling_params);
1132                         if (ol_flags & PKT_TX_QINQ_PKT) {
1133                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1134                                 cd_type_cmd_tso_mss |=
1135                                         ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1136                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1137                         }
1138                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1139                         ctx_txd->type_cmd_tso_mss =
1140                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1141
1142                         PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1143                                 "tunneling_params: %#x;\n"
1144                                 "l2tag2: %#hx;\n"
1145                                 "rsvd: %#hx;\n"
1146                                 "type_cmd_tso_mss: %#"PRIx64";\n",
1147                                 tx_pkt, tx_id,
1148                                 ctx_txd->tunneling_params,
1149                                 ctx_txd->l2tag2,
1150                                 ctx_txd->rsvd,
1151                                 ctx_txd->type_cmd_tso_mss);
1152
1153                         txe->last_id = tx_last;
1154                         tx_id = txe->next_id;
1155                         txe = txn;
1156                 }
1157
1158                 m_seg = tx_pkt;
1159                 do {
1160                         txd = &txr[tx_id];
1161                         txn = &sw_ring[txe->next_id];
1162
1163                         if (txe->mbuf)
1164                                 rte_pktmbuf_free_seg(txe->mbuf);
1165                         txe->mbuf = m_seg;
1166
1167                         /* Setup TX Descriptor */
1168                         slen = m_seg->data_len;
1169                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
1170
1171                         PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1172                                 "buf_dma_addr: %#"PRIx64";\n"
1173                                 "td_cmd: %#x;\n"
1174                                 "td_offset: %#x;\n"
1175                                 "td_len: %u;\n"
1176                                 "td_tag: %#x;\n",
1177                                 tx_pkt, tx_id, buf_dma_addr,
1178                                 td_cmd, td_offset, slen, td_tag);
1179
1180                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1181                         txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1182                                                 td_offset, slen, td_tag);
1183                         txe->last_id = tx_last;
1184                         tx_id = txe->next_id;
1185                         txe = txn;
1186                         m_seg = m_seg->next;
1187                 } while (m_seg != NULL);
1188
1189                 /* The last packet data descriptor needs End Of Packet (EOP) */
1190                 td_cmd |= I40E_TX_DESC_CMD_EOP;
1191                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1192                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1193
1194                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1195                         PMD_TX_FREE_LOG(DEBUG,
1196                                         "Setting RS bit on TXD id="
1197                                         "%4u (port=%d queue=%d)",
1198                                         tx_last, txq->port_id, txq->queue_id);
1199
1200                         td_cmd |= I40E_TX_DESC_CMD_RS;
1201
1202                         /* Update txq RS bit counters */
1203                         txq->nb_tx_used = 0;
1204                 }
1205
1206                 txd->cmd_type_offset_bsz |=
1207                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1208                                         I40E_TXD_QW1_CMD_SHIFT);
1209         }
1210
1211 end_of_tx:
1212         rte_wmb();
1213
1214         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1215                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
1216                    (unsigned) tx_id, (unsigned) nb_tx);
1217
1218         I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
1219         txq->tx_tail = tx_id;
1220
1221         return nb_tx;
1222 }
1223
1224 static __rte_always_inline int
1225 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1226 {
1227         struct i40e_tx_entry *txep;
1228         uint16_t i;
1229
1230         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1231                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1232                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1233                 return 0;
1234
1235         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1236
1237         for (i = 0; i < txq->tx_rs_thresh; i++)
1238                 rte_prefetch0((txep + i)->mbuf);
1239
1240         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
1241                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1242                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1243                         txep->mbuf = NULL;
1244                 }
1245         } else {
1246                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1247                         rte_pktmbuf_free_seg(txep->mbuf);
1248                         txep->mbuf = NULL;
1249                 }
1250         }
1251
1252         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1253         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1254         if (txq->tx_next_dd >= txq->nb_tx_desc)
1255                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1256
1257         return txq->tx_rs_thresh;
1258 }
1259
1260 /* Populate 4 descriptors with data from 4 mbufs */
1261 static inline void
1262 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1263 {
1264         uint64_t dma_addr;
1265         uint32_t i;
1266
1267         for (i = 0; i < 4; i++, txdp++, pkts++) {
1268                 dma_addr = rte_mbuf_data_iova(*pkts);
1269                 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1270                 txdp->cmd_type_offset_bsz =
1271                         i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1272                                         (*pkts)->data_len, 0);
1273         }
1274 }
1275
1276 /* Populate 1 descriptor with data from 1 mbuf */
1277 static inline void
1278 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1279 {
1280         uint64_t dma_addr;
1281
1282         dma_addr = rte_mbuf_data_iova(*pkts);
1283         txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1284         txdp->cmd_type_offset_bsz =
1285                 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1286                                 (*pkts)->data_len, 0);
1287 }
1288
1289 /* Fill hardware descriptor ring with mbuf data */
1290 static inline void
1291 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1292                      struct rte_mbuf **pkts,
1293                      uint16_t nb_pkts)
1294 {
1295         volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1296         struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1297         const int N_PER_LOOP = 4;
1298         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1299         int mainpart, leftover;
1300         int i, j;
1301
1302         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1303         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1304         for (i = 0; i < mainpart; i += N_PER_LOOP) {
1305                 for (j = 0; j < N_PER_LOOP; ++j) {
1306                         (txep + i + j)->mbuf = *(pkts + i + j);
1307                 }
1308                 tx4(txdp + i, pkts + i);
1309         }
1310         if (unlikely(leftover > 0)) {
1311                 for (i = 0; i < leftover; ++i) {
1312                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1313                         tx1(txdp + mainpart + i, pkts + mainpart + i);
1314                 }
1315         }
1316 }
1317
1318 static inline uint16_t
1319 tx_xmit_pkts(struct i40e_tx_queue *txq,
1320              struct rte_mbuf **tx_pkts,
1321              uint16_t nb_pkts)
1322 {
1323         volatile struct i40e_tx_desc *txr = txq->tx_ring;
1324         uint16_t n = 0;
1325
1326         /**
1327          * Begin scanning the H/W ring for done descriptors when the number
1328          * of available descriptors drops below tx_free_thresh. For each done
1329          * descriptor, free the associated buffer.
1330          */
1331         if (txq->nb_tx_free < txq->tx_free_thresh)
1332                 i40e_tx_free_bufs(txq);
1333
1334         /* Use available descriptor only */
1335         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1336         if (unlikely(!nb_pkts))
1337                 return 0;
1338
1339         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1340         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1341                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1342                 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1343                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1344                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1345                                                 I40E_TXD_QW1_CMD_SHIFT);
1346                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1347                 txq->tx_tail = 0;
1348         }
1349
1350         /* Fill hardware descriptor ring with mbuf data */
1351         i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1352         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1353
1354         /* Determin if RS bit needs to be set */
1355         if (txq->tx_tail > txq->tx_next_rs) {
1356                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1357                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1358                                                 I40E_TXD_QW1_CMD_SHIFT);
1359                 txq->tx_next_rs =
1360                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1361                 if (txq->tx_next_rs >= txq->nb_tx_desc)
1362                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1363         }
1364
1365         if (txq->tx_tail >= txq->nb_tx_desc)
1366                 txq->tx_tail = 0;
1367
1368         /* Update the tx tail register */
1369         rte_wmb();
1370         I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, txq->tx_tail);
1371
1372         return nb_pkts;
1373 }
1374
1375 static uint16_t
1376 i40e_xmit_pkts_simple(void *tx_queue,
1377                       struct rte_mbuf **tx_pkts,
1378                       uint16_t nb_pkts)
1379 {
1380         uint16_t nb_tx = 0;
1381
1382         if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1383                 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1384                                                 tx_pkts, nb_pkts);
1385
1386         while (nb_pkts) {
1387                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1388                                                 I40E_TX_MAX_BURST);
1389
1390                 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1391                                                 &tx_pkts[nb_tx], num);
1392                 nb_tx = (uint16_t)(nb_tx + ret);
1393                 nb_pkts = (uint16_t)(nb_pkts - ret);
1394                 if (ret < num)
1395                         break;
1396         }
1397
1398         return nb_tx;
1399 }
1400
1401 static uint16_t
1402 i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1403                    uint16_t nb_pkts)
1404 {
1405         uint16_t nb_tx = 0;
1406         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
1407
1408         while (nb_pkts) {
1409                 uint16_t ret, num;
1410
1411                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1412                 ret = i40e_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
1413                                                 num);
1414                 nb_tx += ret;
1415                 nb_pkts -= ret;
1416                 if (ret < num)
1417                         break;
1418         }
1419
1420         return nb_tx;
1421 }
1422
1423 /*********************************************************************
1424  *
1425  *  TX prep functions
1426  *
1427  **********************************************************************/
1428 uint16_t
1429 i40e_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1430                 uint16_t nb_pkts)
1431 {
1432         int i, ret;
1433         uint64_t ol_flags;
1434         struct rte_mbuf *m;
1435
1436         for (i = 0; i < nb_pkts; i++) {
1437                 m = tx_pkts[i];
1438                 ol_flags = m->ol_flags;
1439
1440                 /* Check for m->nb_segs to not exceed the limits. */
1441                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
1442                         if (m->nb_segs > I40E_TX_MAX_MTU_SEG ||
1443                             m->pkt_len > I40E_FRAME_SIZE_MAX) {
1444                                 rte_errno = -EINVAL;
1445                                 return i;
1446                         }
1447                 } else if (m->nb_segs > I40E_TX_MAX_SEG ||
1448                            m->tso_segsz < I40E_MIN_TSO_MSS ||
1449                            m->tso_segsz > I40E_MAX_TSO_MSS ||
1450                            m->pkt_len > I40E_TSO_FRAME_SIZE_MAX) {
1451                         /* MSS outside the range (256B - 9674B) are considered
1452                          * malicious
1453                          */
1454                         rte_errno = -EINVAL;
1455                         return i;
1456                 }
1457
1458                 if (ol_flags & I40E_TX_OFFLOAD_NOTSUP_MASK) {
1459                         rte_errno = -ENOTSUP;
1460                         return i;
1461                 }
1462
1463                 /* check the size of packet */
1464                 if (m->pkt_len < I40E_TX_MIN_PKT_LEN) {
1465                         rte_errno = -EINVAL;
1466                         return i;
1467                 }
1468
1469 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1470                 ret = rte_validate_tx_offload(m);
1471                 if (ret != 0) {
1472                         rte_errno = ret;
1473                         return i;
1474                 }
1475 #endif
1476                 ret = rte_net_intel_cksum_prepare(m);
1477                 if (ret != 0) {
1478                         rte_errno = ret;
1479                         return i;
1480                 }
1481         }
1482         return i;
1483 }
1484
1485 /*
1486  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1487  * application used, which assume having sequential ones. But from driver's
1488  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1489  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1490  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1491  * use queue_idx from 0 to 95 to access queues, while real queue would be
1492  * different. This function will do a queue mapping to find VSI the queue
1493  * belongs to.
1494  */
1495 static struct i40e_vsi*
1496 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1497 {
1498         /* the queue in MAIN VSI range */
1499         if (queue_idx < pf->main_vsi->nb_qps)
1500                 return pf->main_vsi;
1501
1502         queue_idx -= pf->main_vsi->nb_qps;
1503
1504         /* queue_idx is greater than VMDQ VSIs range */
1505         if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1506                 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1507                 return NULL;
1508         }
1509
1510         return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1511 }
1512
1513 static uint16_t
1514 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1515 {
1516         /* the queue in MAIN VSI range */
1517         if (queue_idx < pf->main_vsi->nb_qps)
1518                 return queue_idx;
1519
1520         /* It's VMDQ queues */
1521         queue_idx -= pf->main_vsi->nb_qps;
1522
1523         if (pf->nb_cfg_vmdq_vsi)
1524                 return queue_idx % pf->vmdq_nb_qps;
1525         else {
1526                 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1527                 return (uint16_t)(-1);
1528         }
1529 }
1530
1531 int
1532 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1533 {
1534         struct i40e_rx_queue *rxq;
1535         int err;
1536         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1537
1538         PMD_INIT_FUNC_TRACE();
1539
1540         rxq = dev->data->rx_queues[rx_queue_id];
1541
1542         err = i40e_alloc_rx_queue_mbufs(rxq);
1543         if (err) {
1544                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1545                 return err;
1546         }
1547
1548         rte_wmb();
1549
1550         /* Init the RX tail regieter. */
1551         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1552
1553         err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1554         if (err) {
1555                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1556                             rx_queue_id);
1557
1558                 i40e_rx_queue_release_mbufs(rxq);
1559                 i40e_reset_rx_queue(rxq);
1560                 return err;
1561         }
1562         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1563
1564         return 0;
1565 }
1566
1567 int
1568 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1569 {
1570         struct i40e_rx_queue *rxq;
1571         int err;
1572         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1573
1574         rxq = dev->data->rx_queues[rx_queue_id];
1575
1576         /*
1577          * rx_queue_id is queue id application refers to, while
1578          * rxq->reg_idx is the real queue index.
1579          */
1580         err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1581         if (err) {
1582                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1583                             rx_queue_id);
1584                 return err;
1585         }
1586         i40e_rx_queue_release_mbufs(rxq);
1587         i40e_reset_rx_queue(rxq);
1588         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1589
1590         return 0;
1591 }
1592
1593 int
1594 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1595 {
1596         int err;
1597         struct i40e_tx_queue *txq;
1598         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1599
1600         PMD_INIT_FUNC_TRACE();
1601
1602         txq = dev->data->tx_queues[tx_queue_id];
1603
1604         /*
1605          * tx_queue_id is queue id application refers to, while
1606          * rxq->reg_idx is the real queue index.
1607          */
1608         err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1609         if (err) {
1610                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1611                             tx_queue_id);
1612                 return err;
1613         }
1614         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1615
1616         return 0;
1617 }
1618
1619 int
1620 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1621 {
1622         struct i40e_tx_queue *txq;
1623         int err;
1624         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1625
1626         txq = dev->data->tx_queues[tx_queue_id];
1627
1628         /*
1629          * tx_queue_id is queue id application refers to, while
1630          * txq->reg_idx is the real queue index.
1631          */
1632         err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1633         if (err) {
1634                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1635                             tx_queue_id);
1636                 return err;
1637         }
1638
1639         i40e_tx_queue_release_mbufs(txq);
1640         i40e_reset_tx_queue(txq);
1641         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1642
1643         return 0;
1644 }
1645
1646 const uint32_t *
1647 i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1648 {
1649         static const uint32_t ptypes[] = {
1650                 /* refers to i40e_rxd_pkt_type_mapping() */
1651                 RTE_PTYPE_L2_ETHER,
1652                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1653                 RTE_PTYPE_L2_ETHER_LLDP,
1654                 RTE_PTYPE_L2_ETHER_ARP,
1655                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1656                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1657                 RTE_PTYPE_L4_FRAG,
1658                 RTE_PTYPE_L4_ICMP,
1659                 RTE_PTYPE_L4_NONFRAG,
1660                 RTE_PTYPE_L4_SCTP,
1661                 RTE_PTYPE_L4_TCP,
1662                 RTE_PTYPE_L4_UDP,
1663                 RTE_PTYPE_TUNNEL_GRENAT,
1664                 RTE_PTYPE_TUNNEL_IP,
1665                 RTE_PTYPE_INNER_L2_ETHER,
1666                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1667                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1668                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1669                 RTE_PTYPE_INNER_L4_FRAG,
1670                 RTE_PTYPE_INNER_L4_ICMP,
1671                 RTE_PTYPE_INNER_L4_NONFRAG,
1672                 RTE_PTYPE_INNER_L4_SCTP,
1673                 RTE_PTYPE_INNER_L4_TCP,
1674                 RTE_PTYPE_INNER_L4_UDP,
1675                 RTE_PTYPE_UNKNOWN
1676         };
1677
1678         if (dev->rx_pkt_burst == i40e_recv_pkts ||
1679 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1680             dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
1681 #endif
1682             dev->rx_pkt_burst == i40e_recv_scattered_pkts ||
1683             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
1684             dev->rx_pkt_burst == i40e_recv_pkts_vec ||
1685             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
1686             dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2)
1687                 return ptypes;
1688         return NULL;
1689 }
1690
1691 static int
1692 i40e_dev_first_queue(uint16_t idx, void **queues, int num)
1693 {
1694         uint16_t i;
1695
1696         for (i = 0; i < num; i++) {
1697                 if (i != idx && queues[i])
1698                         return 0;
1699         }
1700
1701         return 1;
1702 }
1703
1704 static int
1705 i40e_dev_rx_queue_setup_runtime(struct rte_eth_dev *dev,
1706                                 struct i40e_rx_queue *rxq)
1707 {
1708         struct i40e_adapter *ad =
1709                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1710         int use_def_burst_func =
1711                 check_rx_burst_bulk_alloc_preconditions(rxq);
1712         uint16_t buf_size =
1713                 (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
1714                            RTE_PKTMBUF_HEADROOM);
1715         int use_scattered_rx =
1716                 ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size);
1717
1718         if (i40e_rx_queue_init(rxq) != I40E_SUCCESS) {
1719                 PMD_DRV_LOG(ERR,
1720                             "Failed to do RX queue initialization");
1721                 return -EINVAL;
1722         }
1723
1724         if (i40e_dev_first_queue(rxq->queue_id,
1725                                  dev->data->rx_queues,
1726                                  dev->data->nb_rx_queues)) {
1727                 /**
1728                  * If it is the first queue to setup,
1729                  * set all flags to default and call
1730                  * i40e_set_rx_function.
1731                  */
1732                 ad->rx_bulk_alloc_allowed = true;
1733                 ad->rx_vec_allowed = true;
1734                 dev->data->scattered_rx = use_scattered_rx;
1735                 if (use_def_burst_func)
1736                         ad->rx_bulk_alloc_allowed = false;
1737                 i40e_set_rx_function(dev);
1738                 return 0;
1739         }
1740
1741         /* check bulk alloc conflict */
1742         if (ad->rx_bulk_alloc_allowed && use_def_burst_func) {
1743                 PMD_DRV_LOG(ERR, "Can't use default burst.");
1744                 return -EINVAL;
1745         }
1746         /* check scatterred conflict */
1747         if (!dev->data->scattered_rx && use_scattered_rx) {
1748                 PMD_DRV_LOG(ERR, "Scattered rx is required.");
1749                 return -EINVAL;
1750         }
1751         /* check vector conflict */
1752         if (ad->rx_vec_allowed && i40e_rxq_vec_setup(rxq)) {
1753                 PMD_DRV_LOG(ERR, "Failed vector rx setup.");
1754                 return -EINVAL;
1755         }
1756
1757         return 0;
1758 }
1759
1760 int
1761 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1762                         uint16_t queue_idx,
1763                         uint16_t nb_desc,
1764                         unsigned int socket_id,
1765                         const struct rte_eth_rxconf *rx_conf,
1766                         struct rte_mempool *mp)
1767 {
1768         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1769         struct i40e_adapter *ad =
1770                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1771         struct i40e_vsi *vsi;
1772         struct i40e_pf *pf = NULL;
1773         struct i40e_vf *vf = NULL;
1774         struct i40e_rx_queue *rxq;
1775         const struct rte_memzone *rz;
1776         uint32_t ring_size;
1777         uint16_t len, i;
1778         uint16_t reg_idx, base, bsf, tc_mapping;
1779         int q_offset, use_def_burst_func = 1;
1780         uint64_t offloads;
1781
1782         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1783
1784         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
1785                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1786                 vsi = &vf->vsi;
1787                 if (!vsi)
1788                         return -EINVAL;
1789                 reg_idx = queue_idx;
1790         } else {
1791                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1792                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1793                 if (!vsi)
1794                         return -EINVAL;
1795                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
1796                 if (q_offset < 0)
1797                         return -EINVAL;
1798                 reg_idx = vsi->base_queue + q_offset;
1799         }
1800
1801         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1802             (nb_desc > I40E_MAX_RING_DESC) ||
1803             (nb_desc < I40E_MIN_RING_DESC)) {
1804                 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1805                             "invalid", nb_desc);
1806                 return -EINVAL;
1807         }
1808
1809         /* Free memory if needed */
1810         if (dev->data->rx_queues[queue_idx]) {
1811                 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
1812                 dev->data->rx_queues[queue_idx] = NULL;
1813         }
1814
1815         /* Allocate the rx queue data structure */
1816         rxq = rte_zmalloc_socket("i40e rx queue",
1817                                  sizeof(struct i40e_rx_queue),
1818                                  RTE_CACHE_LINE_SIZE,
1819                                  socket_id);
1820         if (!rxq) {
1821                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
1822                             "rx queue data structure");
1823                 return -ENOMEM;
1824         }
1825         rxq->mp = mp;
1826         rxq->nb_rx_desc = nb_desc;
1827         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1828         rxq->queue_id = queue_idx;
1829         rxq->reg_idx = reg_idx;
1830         rxq->port_id = dev->data->port_id;
1831         if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads))
1832                 rxq->crc_len = ETHER_CRC_LEN;
1833         else
1834                 rxq->crc_len = 0;
1835         rxq->drop_en = rx_conf->rx_drop_en;
1836         rxq->vsi = vsi;
1837         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1838         rxq->offloads = offloads;
1839
1840         /* Allocate the maximun number of RX ring hardware descriptor. */
1841         len = I40E_MAX_RING_DESC;
1842
1843         /**
1844          * Allocating a little more memory because vectorized/bulk_alloc Rx
1845          * functions doesn't check boundaries each time.
1846          */
1847         len += RTE_PMD_I40E_RX_MAX_BURST;
1848
1849         ring_size = RTE_ALIGN(len * sizeof(union i40e_rx_desc),
1850                               I40E_DMA_MEM_ALIGN);
1851
1852         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1853                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
1854         if (!rz) {
1855                 i40e_dev_rx_queue_release(rxq);
1856                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
1857                 return -ENOMEM;
1858         }
1859
1860         /* Zero all the descriptors in the ring. */
1861         memset(rz->addr, 0, ring_size);
1862
1863         rxq->rx_ring_phys_addr = rz->iova;
1864         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
1865
1866         len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
1867
1868         /* Allocate the software ring. */
1869         rxq->sw_ring =
1870                 rte_zmalloc_socket("i40e rx sw ring",
1871                                    sizeof(struct i40e_rx_entry) * len,
1872                                    RTE_CACHE_LINE_SIZE,
1873                                    socket_id);
1874         if (!rxq->sw_ring) {
1875                 i40e_dev_rx_queue_release(rxq);
1876                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
1877                 return -ENOMEM;
1878         }
1879
1880         i40e_reset_rx_queue(rxq);
1881         rxq->q_set = TRUE;
1882
1883         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1884                 if (!(vsi->enabled_tc & (1 << i)))
1885                         continue;
1886                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
1887                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
1888                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
1889                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
1890                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
1891
1892                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
1893                         rxq->dcb_tc = i;
1894         }
1895
1896         if (dev->data->dev_started) {
1897                 if (i40e_dev_rx_queue_setup_runtime(dev, rxq)) {
1898                         i40e_dev_rx_queue_release(rxq);
1899                         return -EINVAL;
1900                 }
1901         } else {
1902                 use_def_burst_func =
1903                         check_rx_burst_bulk_alloc_preconditions(rxq);
1904                 if (!use_def_burst_func) {
1905 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1906                         PMD_INIT_LOG(DEBUG,
1907                           "Rx Burst Bulk Alloc Preconditions are "
1908                           "satisfied. Rx Burst Bulk Alloc function will be "
1909                           "used on port=%d, queue=%d.",
1910                           rxq->port_id, rxq->queue_id);
1911 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
1912                 } else {
1913                         PMD_INIT_LOG(DEBUG,
1914                           "Rx Burst Bulk Alloc Preconditions are "
1915                           "not satisfied, Scattered Rx is requested, "
1916                           "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
1917                           "not enabled on port=%d, queue=%d.",
1918                           rxq->port_id, rxq->queue_id);
1919                         ad->rx_bulk_alloc_allowed = false;
1920                 }
1921         }
1922
1923         dev->data->rx_queues[queue_idx] = rxq;
1924         return 0;
1925 }
1926
1927 void
1928 i40e_dev_rx_queue_release(void *rxq)
1929 {
1930         struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
1931
1932         if (!q) {
1933                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1934                 return;
1935         }
1936
1937         i40e_rx_queue_release_mbufs(q);
1938         rte_free(q->sw_ring);
1939         rte_free(q);
1940 }
1941
1942 uint32_t
1943 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1944 {
1945 #define I40E_RXQ_SCAN_INTERVAL 4
1946         volatile union i40e_rx_desc *rxdp;
1947         struct i40e_rx_queue *rxq;
1948         uint16_t desc = 0;
1949
1950         rxq = dev->data->rx_queues[rx_queue_id];
1951         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1952         while ((desc < rxq->nb_rx_desc) &&
1953                 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1954                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1955                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1956                 /**
1957                  * Check the DD bit of a rx descriptor of each 4 in a group,
1958                  * to avoid checking too frequently and downgrading performance
1959                  * too much.
1960                  */
1961                 desc += I40E_RXQ_SCAN_INTERVAL;
1962                 rxdp += I40E_RXQ_SCAN_INTERVAL;
1963                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1964                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1965                                         desc - rxq->nb_rx_desc]);
1966         }
1967
1968         return desc;
1969 }
1970
1971 int
1972 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
1973 {
1974         volatile union i40e_rx_desc *rxdp;
1975         struct i40e_rx_queue *rxq = rx_queue;
1976         uint16_t desc;
1977         int ret;
1978
1979         if (unlikely(offset >= rxq->nb_rx_desc)) {
1980                 PMD_DRV_LOG(ERR, "Invalid RX descriptor id %u", offset);
1981                 return 0;
1982         }
1983
1984         desc = rxq->rx_tail + offset;
1985         if (desc >= rxq->nb_rx_desc)
1986                 desc -= rxq->nb_rx_desc;
1987
1988         rxdp = &(rxq->rx_ring[desc]);
1989
1990         ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1991                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1992                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
1993
1994         return ret;
1995 }
1996
1997 int
1998 i40e_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
1999 {
2000         struct i40e_rx_queue *rxq = rx_queue;
2001         volatile uint64_t *status;
2002         uint64_t mask;
2003         uint32_t desc;
2004
2005         if (unlikely(offset >= rxq->nb_rx_desc))
2006                 return -EINVAL;
2007
2008         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2009                 return RTE_ETH_RX_DESC_UNAVAIL;
2010
2011         desc = rxq->rx_tail + offset;
2012         if (desc >= rxq->nb_rx_desc)
2013                 desc -= rxq->nb_rx_desc;
2014
2015         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2016         mask = rte_le_to_cpu_64((1ULL << I40E_RX_DESC_STATUS_DD_SHIFT)
2017                 << I40E_RXD_QW1_STATUS_SHIFT);
2018         if (*status & mask)
2019                 return RTE_ETH_RX_DESC_DONE;
2020
2021         return RTE_ETH_RX_DESC_AVAIL;
2022 }
2023
2024 int
2025 i40e_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
2026 {
2027         struct i40e_tx_queue *txq = tx_queue;
2028         volatile uint64_t *status;
2029         uint64_t mask, expect;
2030         uint32_t desc;
2031
2032         if (unlikely(offset >= txq->nb_tx_desc))
2033                 return -EINVAL;
2034
2035         desc = txq->tx_tail + offset;
2036         /* go to next desc that has the RS bit */
2037         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2038                 txq->tx_rs_thresh;
2039         if (desc >= txq->nb_tx_desc) {
2040                 desc -= txq->nb_tx_desc;
2041                 if (desc >= txq->nb_tx_desc)
2042                         desc -= txq->nb_tx_desc;
2043         }
2044
2045         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2046         mask = rte_le_to_cpu_64(I40E_TXD_QW1_DTYPE_MASK);
2047         expect = rte_cpu_to_le_64(
2048                 I40E_TX_DESC_DTYPE_DESC_DONE << I40E_TXD_QW1_DTYPE_SHIFT);
2049         if ((*status & mask) == expect)
2050                 return RTE_ETH_TX_DESC_DONE;
2051
2052         return RTE_ETH_TX_DESC_FULL;
2053 }
2054
2055 static int
2056 i40e_dev_tx_queue_setup_runtime(struct rte_eth_dev *dev,
2057                                 struct i40e_tx_queue *txq)
2058 {
2059         struct i40e_adapter *ad =
2060                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2061
2062         if (i40e_tx_queue_init(txq) != I40E_SUCCESS) {
2063                 PMD_DRV_LOG(ERR,
2064                             "Failed to do TX queue initialization");
2065                 return -EINVAL;
2066         }
2067
2068         if (i40e_dev_first_queue(txq->queue_id,
2069                                  dev->data->tx_queues,
2070                                  dev->data->nb_tx_queues)) {
2071                 /**
2072                  * If it is the first queue to setup,
2073                  * set all flags and call
2074                  * i40e_set_tx_function.
2075                  */
2076                 i40e_set_tx_function_flag(dev, txq);
2077                 i40e_set_tx_function(dev);
2078                 return 0;
2079         }
2080
2081         /* check vector conflict */
2082         if (ad->tx_vec_allowed) {
2083                 if (txq->tx_rs_thresh > RTE_I40E_TX_MAX_FREE_BUF_SZ ||
2084                     i40e_txq_vec_setup(txq)) {
2085                         PMD_DRV_LOG(ERR, "Failed vector tx setup.");
2086                         return -EINVAL;
2087                 }
2088         }
2089         /* check simple tx conflict */
2090         if (ad->tx_simple_allowed) {
2091                 if ((txq->offloads & ~DEV_TX_OFFLOAD_MBUF_FAST_FREE) != 0 ||
2092                                 txq->tx_rs_thresh < RTE_PMD_I40E_TX_MAX_BURST) {
2093                         PMD_DRV_LOG(ERR, "No-simple tx is required.");
2094                         return -EINVAL;
2095                 }
2096         }
2097
2098         return 0;
2099 }
2100
2101 int
2102 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2103                         uint16_t queue_idx,
2104                         uint16_t nb_desc,
2105                         unsigned int socket_id,
2106                         const struct rte_eth_txconf *tx_conf)
2107 {
2108         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2109         struct i40e_vsi *vsi;
2110         struct i40e_pf *pf = NULL;
2111         struct i40e_vf *vf = NULL;
2112         struct i40e_tx_queue *txq;
2113         const struct rte_memzone *tz;
2114         uint32_t ring_size;
2115         uint16_t tx_rs_thresh, tx_free_thresh;
2116         uint16_t reg_idx, i, base, bsf, tc_mapping;
2117         int q_offset;
2118         uint64_t offloads;
2119
2120         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2121
2122         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
2123                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2124                 vsi = &vf->vsi;
2125                 if (!vsi)
2126                         return -EINVAL;
2127                 reg_idx = queue_idx;
2128         } else {
2129                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2130                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2131                 if (!vsi)
2132                         return -EINVAL;
2133                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
2134                 if (q_offset < 0)
2135                         return -EINVAL;
2136                 reg_idx = vsi->base_queue + q_offset;
2137         }
2138
2139         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2140             (nb_desc > I40E_MAX_RING_DESC) ||
2141             (nb_desc < I40E_MIN_RING_DESC)) {
2142                 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2143                             "invalid", nb_desc);
2144                 return -EINVAL;
2145         }
2146
2147         /**
2148          * The following two parameters control the setting of the RS bit on
2149          * transmit descriptors. TX descriptors will have their RS bit set
2150          * after txq->tx_rs_thresh descriptors have been used. The TX
2151          * descriptor ring will be cleaned after txq->tx_free_thresh
2152          * descriptors are used or if the number of descriptors required to
2153          * transmit a packet is greater than the number of free TX descriptors.
2154          *
2155          * The following constraints must be satisfied:
2156          *  - tx_rs_thresh must be greater than 0.
2157          *  - tx_rs_thresh must be less than the size of the ring minus 2.
2158          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
2159          *  - tx_rs_thresh must be a divisor of the ring size.
2160          *  - tx_free_thresh must be greater than 0.
2161          *  - tx_free_thresh must be less than the size of the ring minus 3.
2162          *
2163          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2164          * race condition, hence the maximum threshold constraints. When set
2165          * to zero use default values.
2166          */
2167         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2168                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2169         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2170                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2171         if (tx_rs_thresh >= (nb_desc - 2)) {
2172                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2173                              "number of TX descriptors minus 2. "
2174                              "(tx_rs_thresh=%u port=%d queue=%d)",
2175                              (unsigned int)tx_rs_thresh,
2176                              (int)dev->data->port_id,
2177                              (int)queue_idx);
2178                 return I40E_ERR_PARAM;
2179         }
2180         if (tx_free_thresh >= (nb_desc - 3)) {
2181                 PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
2182                              "number of TX descriptors minus 3. "
2183                              "(tx_free_thresh=%u port=%d queue=%d)",
2184                              (unsigned int)tx_free_thresh,
2185                              (int)dev->data->port_id,
2186                              (int)queue_idx);
2187                 return I40E_ERR_PARAM;
2188         }
2189         if (tx_rs_thresh > tx_free_thresh) {
2190                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2191                              "equal to tx_free_thresh. (tx_free_thresh=%u"
2192                              " tx_rs_thresh=%u port=%d queue=%d)",
2193                              (unsigned int)tx_free_thresh,
2194                              (unsigned int)tx_rs_thresh,
2195                              (int)dev->data->port_id,
2196                              (int)queue_idx);
2197                 return I40E_ERR_PARAM;
2198         }
2199         if ((nb_desc % tx_rs_thresh) != 0) {
2200                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2201                              "number of TX descriptors. (tx_rs_thresh=%u"
2202                              " port=%d queue=%d)",
2203                              (unsigned int)tx_rs_thresh,
2204                              (int)dev->data->port_id,
2205                              (int)queue_idx);
2206                 return I40E_ERR_PARAM;
2207         }
2208         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2209                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2210                              "tx_rs_thresh is greater than 1. "
2211                              "(tx_rs_thresh=%u port=%d queue=%d)",
2212                              (unsigned int)tx_rs_thresh,
2213                              (int)dev->data->port_id,
2214                              (int)queue_idx);
2215                 return I40E_ERR_PARAM;
2216         }
2217
2218         /* Free memory if needed. */
2219         if (dev->data->tx_queues[queue_idx]) {
2220                 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2221                 dev->data->tx_queues[queue_idx] = NULL;
2222         }
2223
2224         /* Allocate the TX queue data structure. */
2225         txq = rte_zmalloc_socket("i40e tx queue",
2226                                   sizeof(struct i40e_tx_queue),
2227                                   RTE_CACHE_LINE_SIZE,
2228                                   socket_id);
2229         if (!txq) {
2230                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2231                             "tx queue structure");
2232                 return -ENOMEM;
2233         }
2234
2235         /* Allocate TX hardware ring descriptors. */
2236         ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2237         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2238         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2239                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
2240         if (!tz) {
2241                 i40e_dev_tx_queue_release(txq);
2242                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2243                 return -ENOMEM;
2244         }
2245
2246         txq->nb_tx_desc = nb_desc;
2247         txq->tx_rs_thresh = tx_rs_thresh;
2248         txq->tx_free_thresh = tx_free_thresh;
2249         txq->pthresh = tx_conf->tx_thresh.pthresh;
2250         txq->hthresh = tx_conf->tx_thresh.hthresh;
2251         txq->wthresh = tx_conf->tx_thresh.wthresh;
2252         txq->queue_id = queue_idx;
2253         txq->reg_idx = reg_idx;
2254         txq->port_id = dev->data->port_id;
2255         txq->offloads = offloads;
2256         txq->vsi = vsi;
2257         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2258
2259         txq->tx_ring_phys_addr = tz->iova;
2260         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2261
2262         /* Allocate software ring */
2263         txq->sw_ring =
2264                 rte_zmalloc_socket("i40e tx sw ring",
2265                                    sizeof(struct i40e_tx_entry) * nb_desc,
2266                                    RTE_CACHE_LINE_SIZE,
2267                                    socket_id);
2268         if (!txq->sw_ring) {
2269                 i40e_dev_tx_queue_release(txq);
2270                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2271                 return -ENOMEM;
2272         }
2273
2274         i40e_reset_tx_queue(txq);
2275         txq->q_set = TRUE;
2276
2277         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2278                 if (!(vsi->enabled_tc & (1 << i)))
2279                         continue;
2280                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2281                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2282                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2283                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2284                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2285
2286                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2287                         txq->dcb_tc = i;
2288         }
2289
2290         if (dev->data->dev_started) {
2291                 if (i40e_dev_tx_queue_setup_runtime(dev, txq)) {
2292                         i40e_dev_tx_queue_release(txq);
2293                         return -EINVAL;
2294                 }
2295         } else {
2296                 /**
2297                  * Use a simple TX queue without offloads or
2298                  * multi segs if possible
2299                  */
2300                 i40e_set_tx_function_flag(dev, txq);
2301         }
2302         dev->data->tx_queues[queue_idx] = txq;
2303
2304         return 0;
2305 }
2306
2307 void
2308 i40e_dev_tx_queue_release(void *txq)
2309 {
2310         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2311
2312         if (!q) {
2313                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2314                 return;
2315         }
2316
2317         i40e_tx_queue_release_mbufs(q);
2318         rte_free(q->sw_ring);
2319         rte_free(q);
2320 }
2321
2322 const struct rte_memzone *
2323 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2324 {
2325         const struct rte_memzone *mz;
2326
2327         mz = rte_memzone_lookup(name);
2328         if (mz)
2329                 return mz;
2330
2331         mz = rte_memzone_reserve_aligned(name, len, socket_id,
2332                         RTE_MEMZONE_IOVA_CONTIG, I40E_RING_BASE_ALIGN);
2333         return mz;
2334 }
2335
2336 void
2337 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2338 {
2339         uint16_t i;
2340
2341         /* SSE Vector driver has a different way of releasing mbufs. */
2342         if (rxq->rx_using_sse) {
2343                 i40e_rx_queue_release_mbufs_vec(rxq);
2344                 return;
2345         }
2346
2347         if (!rxq->sw_ring) {
2348                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
2349                 return;
2350         }
2351
2352         for (i = 0; i < rxq->nb_rx_desc; i++) {
2353                 if (rxq->sw_ring[i].mbuf) {
2354                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2355                         rxq->sw_ring[i].mbuf = NULL;
2356                 }
2357         }
2358 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2359         if (rxq->rx_nb_avail == 0)
2360                 return;
2361         for (i = 0; i < rxq->rx_nb_avail; i++) {
2362                 struct rte_mbuf *mbuf;
2363
2364                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2365                 rte_pktmbuf_free_seg(mbuf);
2366         }
2367         rxq->rx_nb_avail = 0;
2368 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2369 }
2370
2371 void
2372 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2373 {
2374         unsigned i;
2375         uint16_t len;
2376
2377         if (!rxq) {
2378                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2379                 return;
2380         }
2381
2382 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2383         if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2384                 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2385         else
2386 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2387                 len = rxq->nb_rx_desc;
2388
2389         for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2390                 ((volatile char *)rxq->rx_ring)[i] = 0;
2391
2392         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2393         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2394                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2395
2396 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2397         rxq->rx_nb_avail = 0;
2398         rxq->rx_next_avail = 0;
2399         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2400 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2401         rxq->rx_tail = 0;
2402         rxq->nb_rx_hold = 0;
2403         rxq->pkt_first_seg = NULL;
2404         rxq->pkt_last_seg = NULL;
2405
2406         rxq->rxrearm_start = 0;
2407         rxq->rxrearm_nb = 0;
2408 }
2409
2410 void
2411 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2412 {
2413         struct rte_eth_dev *dev;
2414         uint16_t i;
2415
2416         dev = &rte_eth_devices[txq->port_id];
2417
2418         if (!txq || !txq->sw_ring) {
2419                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2420                 return;
2421         }
2422
2423         /**
2424          *  vPMD tx will not set sw_ring's mbuf to NULL after free,
2425          *  so need to free remains more carefully.
2426          */
2427         if (dev->tx_pkt_burst == i40e_xmit_pkts_vec_avx2 ||
2428                         dev->tx_pkt_burst == i40e_xmit_pkts_vec) {
2429                 i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
2430                 if (txq->tx_tail < i) {
2431                         for (; i < txq->nb_tx_desc; i++) {
2432                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2433                                 txq->sw_ring[i].mbuf = NULL;
2434                         }
2435                         i = 0;
2436                 }
2437                 for (; i < txq->tx_tail; i++) {
2438                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2439                         txq->sw_ring[i].mbuf = NULL;
2440                 }
2441         } else {
2442                 for (i = 0; i < txq->nb_tx_desc; i++) {
2443                         if (txq->sw_ring[i].mbuf) {
2444                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2445                                 txq->sw_ring[i].mbuf = NULL;
2446                         }
2447                 }
2448         }
2449 }
2450
2451 void
2452 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2453 {
2454         struct i40e_tx_entry *txe;
2455         uint16_t i, prev, size;
2456
2457         if (!txq) {
2458                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2459                 return;
2460         }
2461
2462         txe = txq->sw_ring;
2463         size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2464         for (i = 0; i < size; i++)
2465                 ((volatile char *)txq->tx_ring)[i] = 0;
2466
2467         prev = (uint16_t)(txq->nb_tx_desc - 1);
2468         for (i = 0; i < txq->nb_tx_desc; i++) {
2469                 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2470
2471                 txd->cmd_type_offset_bsz =
2472                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2473                 txe[i].mbuf =  NULL;
2474                 txe[i].last_id = i;
2475                 txe[prev].next_id = i;
2476                 prev = i;
2477         }
2478
2479         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2480         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2481
2482         txq->tx_tail = 0;
2483         txq->nb_tx_used = 0;
2484
2485         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2486         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2487 }
2488
2489 /* Init the TX queue in hardware */
2490 int
2491 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2492 {
2493         enum i40e_status_code err = I40E_SUCCESS;
2494         struct i40e_vsi *vsi = txq->vsi;
2495         struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2496         uint16_t pf_q = txq->reg_idx;
2497         struct i40e_hmc_obj_txq tx_ctx;
2498         uint32_t qtx_ctl;
2499
2500         /* clear the context structure first */
2501         memset(&tx_ctx, 0, sizeof(tx_ctx));
2502         tx_ctx.new_context = 1;
2503         tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2504         tx_ctx.qlen = txq->nb_tx_desc;
2505
2506 #ifdef RTE_LIBRTE_IEEE1588
2507         tx_ctx.timesync_ena = 1;
2508 #endif
2509         tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2510         if (vsi->type == I40E_VSI_FDIR)
2511                 tx_ctx.fd_ena = TRUE;
2512
2513         err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2514         if (err != I40E_SUCCESS) {
2515                 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2516                 return err;
2517         }
2518
2519         err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2520         if (err != I40E_SUCCESS) {
2521                 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2522                 return err;
2523         }
2524
2525         /* Now associate this queue with this PCI function */
2526         qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2527         qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2528                                         I40E_QTX_CTL_PF_INDX_MASK);
2529         I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2530         I40E_WRITE_FLUSH(hw);
2531
2532         txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2533
2534         return err;
2535 }
2536
2537 int
2538 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2539 {
2540         struct i40e_rx_entry *rxe = rxq->sw_ring;
2541         uint64_t dma_addr;
2542         uint16_t i;
2543
2544         for (i = 0; i < rxq->nb_rx_desc; i++) {
2545                 volatile union i40e_rx_desc *rxd;
2546                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
2547
2548                 if (unlikely(!mbuf)) {
2549                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2550                         return -ENOMEM;
2551                 }
2552
2553                 rte_mbuf_refcnt_set(mbuf, 1);
2554                 mbuf->next = NULL;
2555                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2556                 mbuf->nb_segs = 1;
2557                 mbuf->port = rxq->port_id;
2558
2559                 dma_addr =
2560                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2561
2562                 rxd = &rxq->rx_ring[i];
2563                 rxd->read.pkt_addr = dma_addr;
2564                 rxd->read.hdr_addr = 0;
2565 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2566                 rxd->read.rsvd1 = 0;
2567                 rxd->read.rsvd2 = 0;
2568 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2569
2570                 rxe[i].mbuf = mbuf;
2571         }
2572
2573         return 0;
2574 }
2575
2576 /*
2577  * Calculate the buffer length, and check the jumbo frame
2578  * and maximum packet length.
2579  */
2580 static int
2581 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2582 {
2583         struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2584         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2585         struct rte_eth_dev_data *data = pf->dev_data;
2586         uint16_t buf_size, len;
2587
2588         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2589                 RTE_PKTMBUF_HEADROOM);
2590
2591         switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2592                         I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2593         case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2594                 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2595                                 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2596                 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2597                                 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2598                 rxq->hs_mode = i40e_header_split_enabled;
2599                 break;
2600         case I40E_FLAG_HEADER_SPLIT_DISABLED:
2601         default:
2602                 rxq->rx_hdr_len = 0;
2603                 rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size,
2604                         (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2605                 rxq->hs_mode = i40e_header_split_none;
2606                 break;
2607         }
2608
2609         len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
2610         rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
2611         if (data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2612                 if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
2613                         rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2614                         PMD_DRV_LOG(ERR, "maximum packet length must "
2615                                     "be larger than %u and smaller than %u,"
2616                                     "as jumbo frame is enabled",
2617                                     (uint32_t)ETHER_MAX_LEN,
2618                                     (uint32_t)I40E_FRAME_SIZE_MAX);
2619                         return I40E_ERR_CONFIG;
2620                 }
2621         } else {
2622                 if (rxq->max_pkt_len < ETHER_MIN_LEN ||
2623                         rxq->max_pkt_len > ETHER_MAX_LEN) {
2624                         PMD_DRV_LOG(ERR, "maximum packet length must be "
2625                                     "larger than %u and smaller than %u, "
2626                                     "as jumbo frame is disabled",
2627                                     (uint32_t)ETHER_MIN_LEN,
2628                                     (uint32_t)ETHER_MAX_LEN);
2629                         return I40E_ERR_CONFIG;
2630                 }
2631         }
2632
2633         return 0;
2634 }
2635
2636 /* Init the RX queue in hardware */
2637 int
2638 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2639 {
2640         int err = I40E_SUCCESS;
2641         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2642         struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2643         uint16_t pf_q = rxq->reg_idx;
2644         uint16_t buf_size;
2645         struct i40e_hmc_obj_rxq rx_ctx;
2646
2647         err = i40e_rx_queue_config(rxq);
2648         if (err < 0) {
2649                 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2650                 return err;
2651         }
2652
2653         /* Clear the context structure first */
2654         memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2655         rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2656         rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2657
2658         rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2659         rx_ctx.qlen = rxq->nb_rx_desc;
2660 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2661         rx_ctx.dsize = 1;
2662 #endif
2663         rx_ctx.dtype = rxq->hs_mode;
2664         if (rxq->hs_mode)
2665                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2666         else
2667                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2668         rx_ctx.rxmax = rxq->max_pkt_len;
2669         rx_ctx.tphrdesc_ena = 1;
2670         rx_ctx.tphwdesc_ena = 1;
2671         rx_ctx.tphdata_ena = 1;
2672         rx_ctx.tphhead_ena = 1;
2673         rx_ctx.lrxqthresh = 2;
2674         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2675         rx_ctx.l2tsel = 1;
2676         /* showiv indicates if inner VLAN is stripped inside of tunnel
2677          * packet. When set it to 1, vlan information is stripped from
2678          * the inner header, but the hardware does not put it in the
2679          * descriptor. So set it zero by default.
2680          */
2681         rx_ctx.showiv = 0;
2682         rx_ctx.prefena = 1;
2683
2684         err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2685         if (err != I40E_SUCCESS) {
2686                 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2687                 return err;
2688         }
2689         err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2690         if (err != I40E_SUCCESS) {
2691                 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2692                 return err;
2693         }
2694
2695         rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2696
2697         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2698                 RTE_PKTMBUF_HEADROOM);
2699
2700         /* Check if scattered RX needs to be used. */
2701         if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
2702                 dev_data->scattered_rx = 1;
2703         }
2704
2705         /* Init the RX tail regieter. */
2706         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2707
2708         return 0;
2709 }
2710
2711 void
2712 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2713 {
2714         uint16_t i;
2715
2716         PMD_INIT_FUNC_TRACE();
2717
2718         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2719                 if (!dev->data->tx_queues[i])
2720                         continue;
2721                 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2722                 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2723         }
2724
2725         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2726                 if (!dev->data->rx_queues[i])
2727                         continue;
2728                 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2729                 i40e_reset_rx_queue(dev->data->rx_queues[i]);
2730         }
2731 }
2732
2733 void
2734 i40e_dev_free_queues(struct rte_eth_dev *dev)
2735 {
2736         uint16_t i;
2737
2738         PMD_INIT_FUNC_TRACE();
2739
2740         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2741                 if (!dev->data->rx_queues[i])
2742                         continue;
2743                 i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
2744                 dev->data->rx_queues[i] = NULL;
2745         }
2746         dev->data->nb_rx_queues = 0;
2747
2748         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2749                 if (!dev->data->tx_queues[i])
2750                         continue;
2751                 i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
2752                 dev->data->tx_queues[i] = NULL;
2753         }
2754         dev->data->nb_tx_queues = 0;
2755 }
2756
2757 #define I40E_FDIR_NUM_TX_DESC  I40E_MIN_RING_DESC
2758 #define I40E_FDIR_NUM_RX_DESC  I40E_MIN_RING_DESC
2759
2760 enum i40e_status_code
2761 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
2762 {
2763         struct i40e_tx_queue *txq;
2764         const struct rte_memzone *tz = NULL;
2765         uint32_t ring_size;
2766         struct rte_eth_dev *dev;
2767
2768         if (!pf) {
2769                 PMD_DRV_LOG(ERR, "PF is not available");
2770                 return I40E_ERR_BAD_PTR;
2771         }
2772
2773         dev = pf->adapter->eth_dev;
2774
2775         /* Allocate the TX queue data structure. */
2776         txq = rte_zmalloc_socket("i40e fdir tx queue",
2777                                   sizeof(struct i40e_tx_queue),
2778                                   RTE_CACHE_LINE_SIZE,
2779                                   SOCKET_ID_ANY);
2780         if (!txq) {
2781                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2782                                         "tx queue structure.");
2783                 return I40E_ERR_NO_MEMORY;
2784         }
2785
2786         /* Allocate TX hardware ring descriptors. */
2787         ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
2788         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2789
2790         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2791                                       I40E_FDIR_QUEUE_ID, ring_size,
2792                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2793         if (!tz) {
2794                 i40e_dev_tx_queue_release(txq);
2795                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2796                 return I40E_ERR_NO_MEMORY;
2797         }
2798
2799         txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
2800         txq->queue_id = I40E_FDIR_QUEUE_ID;
2801         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2802         txq->vsi = pf->fdir.fdir_vsi;
2803
2804         txq->tx_ring_phys_addr = tz->iova;
2805         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2806         /*
2807          * don't need to allocate software ring and reset for the fdir
2808          * program queue just set the queue has been configured.
2809          */
2810         txq->q_set = TRUE;
2811         pf->fdir.txq = txq;
2812
2813         return I40E_SUCCESS;
2814 }
2815
2816 enum i40e_status_code
2817 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
2818 {
2819         struct i40e_rx_queue *rxq;
2820         const struct rte_memzone *rz = NULL;
2821         uint32_t ring_size;
2822         struct rte_eth_dev *dev;
2823
2824         if (!pf) {
2825                 PMD_DRV_LOG(ERR, "PF is not available");
2826                 return I40E_ERR_BAD_PTR;
2827         }
2828
2829         dev = pf->adapter->eth_dev;
2830
2831         /* Allocate the RX queue data structure. */
2832         rxq = rte_zmalloc_socket("i40e fdir rx queue",
2833                                   sizeof(struct i40e_rx_queue),
2834                                   RTE_CACHE_LINE_SIZE,
2835                                   SOCKET_ID_ANY);
2836         if (!rxq) {
2837                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2838                                         "rx queue structure.");
2839                 return I40E_ERR_NO_MEMORY;
2840         }
2841
2842         /* Allocate RX hardware ring descriptors. */
2843         ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
2844         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2845
2846         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2847                                       I40E_FDIR_QUEUE_ID, ring_size,
2848                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2849         if (!rz) {
2850                 i40e_dev_rx_queue_release(rxq);
2851                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2852                 return I40E_ERR_NO_MEMORY;
2853         }
2854
2855         rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
2856         rxq->queue_id = I40E_FDIR_QUEUE_ID;
2857         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2858         rxq->vsi = pf->fdir.fdir_vsi;
2859
2860         rxq->rx_ring_phys_addr = rz->iova;
2861         memset(rz->addr, 0, I40E_FDIR_NUM_RX_DESC * sizeof(union i40e_rx_desc));
2862         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2863
2864         /*
2865          * Don't need to allocate software ring and reset for the fdir
2866          * rx queue, just set the queue has been configured.
2867          */
2868         rxq->q_set = TRUE;
2869         pf->fdir.rxq = rxq;
2870
2871         return I40E_SUCCESS;
2872 }
2873
2874 void
2875 i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2876         struct rte_eth_rxq_info *qinfo)
2877 {
2878         struct i40e_rx_queue *rxq;
2879
2880         rxq = dev->data->rx_queues[queue_id];
2881
2882         qinfo->mp = rxq->mp;
2883         qinfo->scattered_rx = dev->data->scattered_rx;
2884         qinfo->nb_desc = rxq->nb_rx_desc;
2885
2886         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2887         qinfo->conf.rx_drop_en = rxq->drop_en;
2888         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2889         qinfo->conf.offloads = rxq->offloads;
2890 }
2891
2892 void
2893 i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2894         struct rte_eth_txq_info *qinfo)
2895 {
2896         struct i40e_tx_queue *txq;
2897
2898         txq = dev->data->tx_queues[queue_id];
2899
2900         qinfo->nb_desc = txq->nb_tx_desc;
2901
2902         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2903         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2904         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2905
2906         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2907         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
2908         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2909         qinfo->conf.offloads = txq->offloads;
2910 }
2911
2912 void __attribute__((cold))
2913 i40e_set_rx_function(struct rte_eth_dev *dev)
2914 {
2915         struct i40e_adapter *ad =
2916                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2917         uint16_t rx_using_sse, i;
2918         /* In order to allow Vector Rx there are a few configuration
2919          * conditions to be met and Rx Bulk Allocation should be allowed.
2920          */
2921         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2922                 if (i40e_rx_vec_dev_conf_condition_check(dev) ||
2923                     !ad->rx_bulk_alloc_allowed) {
2924                         PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
2925                                      " Vector Rx preconditions",
2926                                      dev->data->port_id);
2927
2928                         ad->rx_vec_allowed = false;
2929                 }
2930                 if (ad->rx_vec_allowed) {
2931                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2932                                 struct i40e_rx_queue *rxq =
2933                                         dev->data->rx_queues[i];
2934
2935                                 if (rxq && i40e_rxq_vec_setup(rxq)) {
2936                                         ad->rx_vec_allowed = false;
2937                                         break;
2938                                 }
2939                         }
2940                 }
2941         }
2942
2943         if (dev->data->scattered_rx) {
2944                 /* Set the non-LRO scattered callback: there are Vector and
2945                  * single allocation versions.
2946                  */
2947                 if (ad->rx_vec_allowed) {
2948                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
2949                                             "callback (port=%d).",
2950                                      dev->data->port_id);
2951
2952                         dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
2953 #ifdef RTE_ARCH_X86
2954                         /*
2955                          * since AVX frequency can be different to base
2956                          * frequency, limit use of AVX2 version to later
2957                          * plaforms, not all those that could theoretically
2958                          * run it.
2959                          */
2960                         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
2961                                 dev->rx_pkt_burst =
2962                                         i40e_recv_scattered_pkts_vec_avx2;
2963 #endif
2964                 } else {
2965                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
2966                                            "allocation callback (port=%d).",
2967                                      dev->data->port_id);
2968                         dev->rx_pkt_burst = i40e_recv_scattered_pkts;
2969                 }
2970         /* If parameters allow we are going to choose between the following
2971          * callbacks:
2972          *    - Vector
2973          *    - Bulk Allocation
2974          *    - Single buffer allocation (the simplest one)
2975          */
2976         } else if (ad->rx_vec_allowed) {
2977                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
2978                                     "burst size no less than %d (port=%d).",
2979                              RTE_I40E_DESCS_PER_LOOP,
2980                              dev->data->port_id);
2981
2982                 dev->rx_pkt_burst = i40e_recv_pkts_vec;
2983 #ifdef RTE_ARCH_X86
2984                 /*
2985                  * since AVX frequency can be different to base
2986                  * frequency, limit use of AVX2 version to later
2987                  * plaforms, not all those that could theoretically
2988                  * run it.
2989                  */
2990                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
2991                         dev->rx_pkt_burst = i40e_recv_pkts_vec_avx2;
2992 #endif
2993         } else if (ad->rx_bulk_alloc_allowed) {
2994                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2995                                     "satisfied. Rx Burst Bulk Alloc function "
2996                                     "will be used on port=%d.",
2997                              dev->data->port_id);
2998
2999                 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
3000         } else {
3001                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
3002                                     "satisfied, or Scattered Rx is requested "
3003                                     "(port=%d).",
3004                              dev->data->port_id);
3005
3006                 dev->rx_pkt_burst = i40e_recv_pkts;
3007         }
3008
3009         /* Propagate information about RX function choice through all queues. */
3010         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3011                 rx_using_sse =
3012                         (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
3013                          dev->rx_pkt_burst == i40e_recv_pkts_vec ||
3014                          dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
3015                          dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2);
3016
3017                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
3018                         struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
3019
3020                         if (rxq)
3021                                 rxq->rx_using_sse = rx_using_sse;
3022                 }
3023         }
3024 }
3025
3026 void __attribute__((cold))
3027 i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
3028 {
3029         struct i40e_adapter *ad =
3030                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3031
3032         /* Use a simple Tx queue if possible (only fast free is allowed) */
3033         ad->tx_simple_allowed =
3034                 (txq->offloads ==
3035                  (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
3036                  txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST);
3037         ad->tx_vec_allowed = (ad->tx_simple_allowed &&
3038                         txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ);
3039
3040         if (ad->tx_vec_allowed)
3041                 PMD_INIT_LOG(DEBUG, "Vector Tx can be enabled on Tx queue %u.",
3042                                 txq->queue_id);
3043         else if (ad->tx_simple_allowed)
3044                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3045                                 txq->queue_id);
3046         else
3047                 PMD_INIT_LOG(DEBUG,
3048                                 "Neither simple nor vector Tx enabled on Tx queue %u\n",
3049                                 txq->queue_id);
3050 }
3051
3052 void __attribute__((cold))
3053 i40e_set_tx_function(struct rte_eth_dev *dev)
3054 {
3055         struct i40e_adapter *ad =
3056                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3057         int i;
3058
3059         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3060                 if (ad->tx_vec_allowed) {
3061                         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3062                                 struct i40e_tx_queue *txq =
3063                                         dev->data->tx_queues[i];
3064
3065                                 if (txq && i40e_txq_vec_setup(txq)) {
3066                                         ad->tx_vec_allowed = false;
3067                                         break;
3068                                 }
3069                         }
3070                 }
3071         }
3072
3073         if (ad->tx_simple_allowed) {
3074                 if (ad->tx_vec_allowed) {
3075                         PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
3076                         dev->tx_pkt_burst = i40e_xmit_pkts_vec;
3077 #ifdef RTE_ARCH_X86
3078                         /*
3079                          * since AVX frequency can be different to base
3080                          * frequency, limit use of AVX2 version to later
3081                          * plaforms, not all those that could theoretically
3082                          * run it.
3083                          */
3084                         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
3085                                 dev->tx_pkt_burst = i40e_xmit_pkts_vec_avx2;
3086 #endif
3087                 } else {
3088                         PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3089                         dev->tx_pkt_burst = i40e_xmit_pkts_simple;
3090                 }
3091                 dev->tx_pkt_prepare = NULL;
3092         } else {
3093                 PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
3094                 dev->tx_pkt_burst = i40e_xmit_pkts;
3095                 dev->tx_pkt_prepare = i40e_prep_pkts;
3096         }
3097 }
3098
3099 void __attribute__((cold))
3100 i40e_set_default_ptype_table(struct rte_eth_dev *dev)
3101 {
3102         struct i40e_adapter *ad =
3103                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3104         int i;
3105
3106         for (i = 0; i < I40E_MAX_PKT_TYPE; i++)
3107                 ad->ptype_tbl[i] = i40e_get_default_pkt_type(i);
3108 }
3109
3110 void __attribute__((cold))
3111 i40e_set_default_pctype_table(struct rte_eth_dev *dev)
3112 {
3113         struct i40e_adapter *ad =
3114                         I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3115         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3116         int i;
3117
3118         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++)
3119                 ad->pctypes_tbl[i] = 0ULL;
3120         ad->flow_types_mask = 0ULL;
3121         ad->pctypes_mask = 0ULL;
3122
3123         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV4] =
3124                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4);
3125         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] =
3126                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
3127         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] =
3128                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
3129         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] =
3130                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
3131         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] =
3132                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER);
3133         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV6] =
3134                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6);
3135         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] =
3136                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
3137         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] =
3138                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
3139         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] =
3140                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
3141         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] =
3142                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER);
3143         ad->pctypes_tbl[RTE_ETH_FLOW_L2_PAYLOAD] =
3144                                 (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
3145
3146         if (hw->mac.type == I40E_MAC_X722) {
3147                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3148                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP);
3149                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3150                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP);
3151                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] |=
3152                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK);
3153                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3154                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP);
3155                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3156                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP);
3157                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] |=
3158                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
3159         }
3160
3161         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++) {
3162                 if (ad->pctypes_tbl[i])
3163                         ad->flow_types_mask |= (1ULL << i);
3164                 ad->pctypes_mask |= ad->pctypes_tbl[i];
3165         }
3166 }
3167
3168 /* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */
3169 int __attribute__((weak))
3170 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
3171 {
3172         return -1;
3173 }
3174
3175 uint16_t __attribute__((weak))
3176 i40e_recv_pkts_vec(
3177         void __rte_unused *rx_queue,
3178         struct rte_mbuf __rte_unused **rx_pkts,
3179         uint16_t __rte_unused nb_pkts)
3180 {
3181         return 0;
3182 }
3183
3184 uint16_t __attribute__((weak))
3185 i40e_recv_scattered_pkts_vec(
3186         void __rte_unused *rx_queue,
3187         struct rte_mbuf __rte_unused **rx_pkts,
3188         uint16_t __rte_unused nb_pkts)
3189 {
3190         return 0;
3191 }
3192
3193 uint16_t __attribute__((weak))
3194 i40e_recv_pkts_vec_avx2(void __rte_unused *rx_queue,
3195                         struct rte_mbuf __rte_unused **rx_pkts,
3196                         uint16_t __rte_unused nb_pkts)
3197 {
3198         return 0;
3199 }
3200
3201 uint16_t __attribute__((weak))
3202 i40e_recv_scattered_pkts_vec_avx2(void __rte_unused *rx_queue,
3203                         struct rte_mbuf __rte_unused **rx_pkts,
3204                         uint16_t __rte_unused nb_pkts)
3205 {
3206         return 0;
3207 }
3208
3209 int __attribute__((weak))
3210 i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
3211 {
3212         return -1;
3213 }
3214
3215 int __attribute__((weak))
3216 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
3217 {
3218         return -1;
3219 }
3220
3221 void __attribute__((weak))
3222 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
3223 {
3224         return;
3225 }
3226
3227 uint16_t __attribute__((weak))
3228 i40e_xmit_fixed_burst_vec(void __rte_unused * tx_queue,
3229                           struct rte_mbuf __rte_unused **tx_pkts,
3230                           uint16_t __rte_unused nb_pkts)
3231 {
3232         return 0;
3233 }
3234
3235 uint16_t __attribute__((weak))
3236 i40e_xmit_pkts_vec_avx2(void __rte_unused * tx_queue,
3237                           struct rte_mbuf __rte_unused **tx_pkts,
3238                           uint16_t __rte_unused nb_pkts)
3239 {
3240         return 0;
3241 }