New upstream version 18.11-rc1
[deb_dpdk.git] / drivers / net / i40e / i40e_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26
27 #include "i40e_logs.h"
28 #include "base/i40e_prototype.h"
29 #include "base/i40e_type.h"
30 #include "i40e_ethdev.h"
31 #include "i40e_rxtx.h"
32
33 #define DEFAULT_TX_RS_THRESH   32
34 #define DEFAULT_TX_FREE_THRESH 32
35
36 #define I40E_TX_MAX_BURST  32
37
38 #define I40E_DMA_MEM_ALIGN 4096
39
40 /* Base address of the HW descriptor ring should be 128B aligned. */
41 #define I40E_RING_BASE_ALIGN    128
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45 #ifdef RTE_LIBRTE_IEEE1588
46 #define I40E_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
47 #else
48 #define I40E_TX_IEEE1588_TMST 0
49 #endif
50
51 #define I40E_TX_CKSUM_OFFLOAD_MASK (             \
52                 PKT_TX_IP_CKSUM |                \
53                 PKT_TX_L4_MASK |                 \
54                 PKT_TX_TCP_SEG |                 \
55                 PKT_TX_OUTER_IP_CKSUM)
56
57 #define I40E_TX_OFFLOAD_MASK (  \
58                 PKT_TX_OUTER_IPV4 |     \
59                 PKT_TX_OUTER_IPV6 |     \
60                 PKT_TX_IPV4 |           \
61                 PKT_TX_IPV6 |           \
62                 PKT_TX_IP_CKSUM |       \
63                 PKT_TX_L4_MASK |        \
64                 PKT_TX_OUTER_IP_CKSUM | \
65                 PKT_TX_TCP_SEG |        \
66                 PKT_TX_QINQ_PKT |       \
67                 PKT_TX_VLAN_PKT |       \
68                 PKT_TX_TUNNEL_MASK |    \
69                 I40E_TX_IEEE1588_TMST)
70
71 #define I40E_TX_OFFLOAD_NOTSUP_MASK \
72                 (PKT_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_MASK)
73
74 static inline void
75 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
76 {
77         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
78                 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
79                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
80                 mb->vlan_tci =
81                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
82                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
83                            rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
84         } else {
85                 mb->vlan_tci = 0;
86         }
87 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
88         if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
89                 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
90                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
91                         PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
92                 mb->vlan_tci_outer = mb->vlan_tci;
93                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
94                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
95                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
96                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
97         } else {
98                 mb->vlan_tci_outer = 0;
99         }
100 #endif
101         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
102                    mb->vlan_tci, mb->vlan_tci_outer);
103 }
104
105 /* Translate the rx descriptor status to pkt flags */
106 static inline uint64_t
107 i40e_rxd_status_to_pkt_flags(uint64_t qword)
108 {
109         uint64_t flags;
110
111         /* Check if RSS_HASH */
112         flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
113                                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
114                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
115
116         /* Check if FDIR Match */
117         flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
118                                                         PKT_RX_FDIR : 0);
119
120         return flags;
121 }
122
123 static inline uint64_t
124 i40e_rxd_error_to_pkt_flags(uint64_t qword)
125 {
126         uint64_t flags = 0;
127         uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
128
129 #define I40E_RX_ERR_BITS 0x3f
130         if (likely((error_bits & I40E_RX_ERR_BITS) == 0)) {
131                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
132                 return flags;
133         }
134
135         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
136                 flags |= PKT_RX_IP_CKSUM_BAD;
137         else
138                 flags |= PKT_RX_IP_CKSUM_GOOD;
139
140         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
141                 flags |= PKT_RX_L4_CKSUM_BAD;
142         else
143                 flags |= PKT_RX_L4_CKSUM_GOOD;
144
145         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
146                 flags |= PKT_RX_EIP_CKSUM_BAD;
147
148         return flags;
149 }
150
151 /* Function to check and set the ieee1588 timesync index and get the
152  * appropriate flags.
153  */
154 #ifdef RTE_LIBRTE_IEEE1588
155 static inline uint64_t
156 i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
157 {
158         uint64_t pkt_flags = 0;
159         uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
160                                   | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
161                                     >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
162
163         if ((mb->packet_type & RTE_PTYPE_L2_MASK)
164                         == RTE_PTYPE_L2_ETHER_TIMESYNC)
165                 pkt_flags = PKT_RX_IEEE1588_PTP;
166         if (tsyn & 0x04) {
167                 pkt_flags |= PKT_RX_IEEE1588_TMST;
168                 mb->timesync = tsyn & 0x03;
169         }
170
171         return pkt_flags;
172 }
173 #endif
174
175 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK   0x03
176 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID  0x01
177 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX   0x02
178 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK   0x03
179 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX   0x01
180
181 static inline uint64_t
182 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
183 {
184         uint64_t flags = 0;
185 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
186         uint16_t flexbh, flexbl;
187
188         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
189                 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
190                 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
191         flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
192                 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
193                 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
194
195
196         if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
197                 mb->hash.fdir.hi =
198                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
199                 flags |= PKT_RX_FDIR_ID;
200         } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
201                 mb->hash.fdir.hi =
202                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
203                 flags |= PKT_RX_FDIR_FLX;
204         }
205         if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
206                 mb->hash.fdir.lo =
207                         rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
208                 flags |= PKT_RX_FDIR_FLX;
209         }
210 #else
211         mb->hash.fdir.hi =
212                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
213         flags |= PKT_RX_FDIR_ID;
214 #endif
215         return flags;
216 }
217
218 static inline void
219 i40e_parse_tunneling_params(uint64_t ol_flags,
220                             union i40e_tx_offload tx_offload,
221                             uint32_t *cd_tunneling)
222 {
223         /* EIPT: External (outer) IP header type */
224         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
225                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
226         else if (ol_flags & PKT_TX_OUTER_IPV4)
227                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
228         else if (ol_flags & PKT_TX_OUTER_IPV6)
229                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
230
231         /* EIPLEN: External (outer) IP header length, in DWords */
232         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
233                 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
234
235         /* L4TUNT: L4 Tunneling Type */
236         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
237         case PKT_TX_TUNNEL_IPIP:
238                 /* for non UDP / GRE tunneling, set to 00b */
239                 break;
240         case PKT_TX_TUNNEL_VXLAN:
241         case PKT_TX_TUNNEL_GENEVE:
242                 *cd_tunneling |= I40E_TXD_CTX_UDP_TUNNELING;
243                 break;
244         case PKT_TX_TUNNEL_GRE:
245                 *cd_tunneling |= I40E_TXD_CTX_GRE_TUNNELING;
246                 break;
247         default:
248                 PMD_TX_LOG(ERR, "Tunnel type not supported");
249                 return;
250         }
251
252         /* L4TUNLEN: L4 Tunneling Length, in Words
253          *
254          * We depend on app to set rte_mbuf.l2_len correctly.
255          * For IP in GRE it should be set to the length of the GRE
256          * header;
257          * for MAC in GRE or MAC in UDP it should be set to the length
258          * of the GRE or UDP headers plus the inner MAC up to including
259          * its last Ethertype.
260          */
261         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
262                 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
263 }
264
265 static inline void
266 i40e_txd_enable_checksum(uint64_t ol_flags,
267                         uint32_t *td_cmd,
268                         uint32_t *td_offset,
269                         union i40e_tx_offload tx_offload)
270 {
271         /* Set MACLEN */
272         if (ol_flags & PKT_TX_TUNNEL_MASK)
273                 *td_offset |= (tx_offload.outer_l2_len >> 1)
274                                 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
275         else
276                 *td_offset |= (tx_offload.l2_len >> 1)
277                         << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
278
279         /* Enable L3 checksum offloads */
280         if (ol_flags & PKT_TX_IP_CKSUM) {
281                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
282                 *td_offset |= (tx_offload.l3_len >> 2)
283                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
284         } else if (ol_flags & PKT_TX_IPV4) {
285                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
286                 *td_offset |= (tx_offload.l3_len >> 2)
287                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
288         } else if (ol_flags & PKT_TX_IPV6) {
289                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
290                 *td_offset |= (tx_offload.l3_len >> 2)
291                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
292         }
293
294         if (ol_flags & PKT_TX_TCP_SEG) {
295                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
296                 *td_offset |= (tx_offload.l4_len >> 2)
297                         << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
298                 return;
299         }
300
301         /* Enable L4 checksum offloads */
302         switch (ol_flags & PKT_TX_L4_MASK) {
303         case PKT_TX_TCP_CKSUM:
304                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
305                 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
306                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
307                 break;
308         case PKT_TX_SCTP_CKSUM:
309                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
310                 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
311                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
312                 break;
313         case PKT_TX_UDP_CKSUM:
314                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
315                 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
316                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
317                 break;
318         default:
319                 break;
320         }
321 }
322
323 /* Construct the tx flags */
324 static inline uint64_t
325 i40e_build_ctob(uint32_t td_cmd,
326                 uint32_t td_offset,
327                 unsigned int size,
328                 uint32_t td_tag)
329 {
330         return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
331                         ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
332                         ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
333                         ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
334                         ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
335 }
336
337 static inline int
338 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
339 {
340         struct i40e_tx_entry *sw_ring = txq->sw_ring;
341         volatile struct i40e_tx_desc *txd = txq->tx_ring;
342         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
343         uint16_t nb_tx_desc = txq->nb_tx_desc;
344         uint16_t desc_to_clean_to;
345         uint16_t nb_tx_to_clean;
346
347         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
348         if (desc_to_clean_to >= nb_tx_desc)
349                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
350
351         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
352         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
353                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
354                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
355                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
356                         "(port=%d queue=%d)", desc_to_clean_to,
357                                 txq->port_id, txq->queue_id);
358                 return -1;
359         }
360
361         if (last_desc_cleaned > desc_to_clean_to)
362                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
363                                                         desc_to_clean_to);
364         else
365                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
366                                         last_desc_cleaned);
367
368         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
369
370         txq->last_desc_cleaned = desc_to_clean_to;
371         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
372
373         return 0;
374 }
375
376 static inline int
377 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
378 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
379 #else
380 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
381 #endif
382 {
383         int ret = 0;
384
385 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
386         if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
387                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
388                              "rxq->rx_free_thresh=%d, "
389                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
390                              rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
391                 ret = -EINVAL;
392         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
393                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
394                              "rxq->rx_free_thresh=%d, "
395                              "rxq->nb_rx_desc=%d",
396                              rxq->rx_free_thresh, rxq->nb_rx_desc);
397                 ret = -EINVAL;
398         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
399                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
400                              "rxq->nb_rx_desc=%d, "
401                              "rxq->rx_free_thresh=%d",
402                              rxq->nb_rx_desc, rxq->rx_free_thresh);
403                 ret = -EINVAL;
404         }
405 #else
406         ret = -EINVAL;
407 #endif
408
409         return ret;
410 }
411
412 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
413 #define I40E_LOOK_AHEAD 8
414 #if (I40E_LOOK_AHEAD != 8)
415 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
416 #endif
417 static inline int
418 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
419 {
420         volatile union i40e_rx_desc *rxdp;
421         struct i40e_rx_entry *rxep;
422         struct rte_mbuf *mb;
423         uint16_t pkt_len;
424         uint64_t qword1;
425         uint32_t rx_status;
426         int32_t s[I40E_LOOK_AHEAD], nb_dd;
427         int32_t i, j, nb_rx = 0;
428         uint64_t pkt_flags;
429         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
430
431         rxdp = &rxq->rx_ring[rxq->rx_tail];
432         rxep = &rxq->sw_ring[rxq->rx_tail];
433
434         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
435         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
436                                 I40E_RXD_QW1_STATUS_SHIFT;
437
438         /* Make sure there is at least 1 packet to receive */
439         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
440                 return 0;
441
442         /**
443          * Scan LOOK_AHEAD descriptors at a time to determine which
444          * descriptors reference packets that are ready to be received.
445          */
446         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
447                         rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
448                 /* Read desc statuses backwards to avoid race condition */
449                 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
450                         qword1 = rte_le_to_cpu_64(\
451                                 rxdp[j].wb.qword1.status_error_len);
452                         s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
453                                         I40E_RXD_QW1_STATUS_SHIFT;
454                 }
455
456                 rte_smp_rmb();
457
458                 /* Compute how many status bits were set */
459                 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
460                         nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
461
462                 nb_rx += nb_dd;
463
464                 /* Translate descriptor info to mbuf parameters */
465                 for (j = 0; j < nb_dd; j++) {
466                         mb = rxep[j].mbuf;
467                         qword1 = rte_le_to_cpu_64(\
468                                 rxdp[j].wb.qword1.status_error_len);
469                         pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
470                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
471                         mb->data_len = pkt_len;
472                         mb->pkt_len = pkt_len;
473                         mb->ol_flags = 0;
474                         i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
475                         pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
476                         pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
477                         mb->packet_type =
478                                 ptype_tbl[(uint8_t)((qword1 &
479                                 I40E_RXD_QW1_PTYPE_MASK) >>
480                                 I40E_RXD_QW1_PTYPE_SHIFT)];
481                         if (pkt_flags & PKT_RX_RSS_HASH)
482                                 mb->hash.rss = rte_le_to_cpu_32(\
483                                         rxdp[j].wb.qword0.hi_dword.rss);
484                         if (pkt_flags & PKT_RX_FDIR)
485                                 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
486
487 #ifdef RTE_LIBRTE_IEEE1588
488                         pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
489 #endif
490                         mb->ol_flags |= pkt_flags;
491
492                 }
493
494                 for (j = 0; j < I40E_LOOK_AHEAD; j++)
495                         rxq->rx_stage[i + j] = rxep[j].mbuf;
496
497                 if (nb_dd != I40E_LOOK_AHEAD)
498                         break;
499         }
500
501         /* Clear software ring entries */
502         for (i = 0; i < nb_rx; i++)
503                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
504
505         return nb_rx;
506 }
507
508 static inline uint16_t
509 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
510                         struct rte_mbuf **rx_pkts,
511                         uint16_t nb_pkts)
512 {
513         uint16_t i;
514         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
515
516         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
517
518         for (i = 0; i < nb_pkts; i++)
519                 rx_pkts[i] = stage[i];
520
521         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
522         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
523
524         return nb_pkts;
525 }
526
527 static inline int
528 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
529 {
530         volatile union i40e_rx_desc *rxdp;
531         struct i40e_rx_entry *rxep;
532         struct rte_mbuf *mb;
533         uint16_t alloc_idx, i;
534         uint64_t dma_addr;
535         int diag;
536
537         /* Allocate buffers in bulk */
538         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
539                                 (rxq->rx_free_thresh - 1));
540         rxep = &(rxq->sw_ring[alloc_idx]);
541         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
542                                         rxq->rx_free_thresh);
543         if (unlikely(diag != 0)) {
544                 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
545                 return -ENOMEM;
546         }
547
548         rxdp = &rxq->rx_ring[alloc_idx];
549         for (i = 0; i < rxq->rx_free_thresh; i++) {
550                 if (likely(i < (rxq->rx_free_thresh - 1)))
551                         /* Prefetch next mbuf */
552                         rte_prefetch0(rxep[i + 1].mbuf);
553
554                 mb = rxep[i].mbuf;
555                 rte_mbuf_refcnt_set(mb, 1);
556                 mb->next = NULL;
557                 mb->data_off = RTE_PKTMBUF_HEADROOM;
558                 mb->nb_segs = 1;
559                 mb->port = rxq->port_id;
560                 dma_addr = rte_cpu_to_le_64(\
561                         rte_mbuf_data_iova_default(mb));
562                 rxdp[i].read.hdr_addr = 0;
563                 rxdp[i].read.pkt_addr = dma_addr;
564         }
565
566         /* Update rx tail regsiter */
567         rte_wmb();
568         I40E_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
569
570         rxq->rx_free_trigger =
571                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
572         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
573                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
574
575         return 0;
576 }
577
578 static inline uint16_t
579 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
580 {
581         struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
582         struct rte_eth_dev *dev;
583         uint16_t nb_rx = 0;
584
585         if (!nb_pkts)
586                 return 0;
587
588         if (rxq->rx_nb_avail)
589                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
590
591         nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
592         rxq->rx_next_avail = 0;
593         rxq->rx_nb_avail = nb_rx;
594         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
595
596         if (rxq->rx_tail > rxq->rx_free_trigger) {
597                 if (i40e_rx_alloc_bufs(rxq) != 0) {
598                         uint16_t i, j;
599
600                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
601                         dev->data->rx_mbuf_alloc_failed +=
602                                 rxq->rx_free_thresh;
603
604                         rxq->rx_nb_avail = 0;
605                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
606                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
607                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
608
609                         return 0;
610                 }
611         }
612
613         if (rxq->rx_tail >= rxq->nb_rx_desc)
614                 rxq->rx_tail = 0;
615
616         if (rxq->rx_nb_avail)
617                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
618
619         return 0;
620 }
621
622 static uint16_t
623 i40e_recv_pkts_bulk_alloc(void *rx_queue,
624                           struct rte_mbuf **rx_pkts,
625                           uint16_t nb_pkts)
626 {
627         uint16_t nb_rx = 0, n, count;
628
629         if (unlikely(nb_pkts == 0))
630                 return 0;
631
632         if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
633                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
634
635         while (nb_pkts) {
636                 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
637                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
638                 nb_rx = (uint16_t)(nb_rx + count);
639                 nb_pkts = (uint16_t)(nb_pkts - count);
640                 if (count < n)
641                         break;
642         }
643
644         return nb_rx;
645 }
646 #else
647 static uint16_t
648 i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
649                           struct rte_mbuf __rte_unused **rx_pkts,
650                           uint16_t __rte_unused nb_pkts)
651 {
652         return 0;
653 }
654 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
655
656 uint16_t
657 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
658 {
659         struct i40e_rx_queue *rxq;
660         volatile union i40e_rx_desc *rx_ring;
661         volatile union i40e_rx_desc *rxdp;
662         union i40e_rx_desc rxd;
663         struct i40e_rx_entry *sw_ring;
664         struct i40e_rx_entry *rxe;
665         struct rte_eth_dev *dev;
666         struct rte_mbuf *rxm;
667         struct rte_mbuf *nmb;
668         uint16_t nb_rx;
669         uint32_t rx_status;
670         uint64_t qword1;
671         uint16_t rx_packet_len;
672         uint16_t rx_id, nb_hold;
673         uint64_t dma_addr;
674         uint64_t pkt_flags;
675         uint32_t *ptype_tbl;
676
677         nb_rx = 0;
678         nb_hold = 0;
679         rxq = rx_queue;
680         rx_id = rxq->rx_tail;
681         rx_ring = rxq->rx_ring;
682         sw_ring = rxq->sw_ring;
683         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
684
685         while (nb_rx < nb_pkts) {
686                 rxdp = &rx_ring[rx_id];
687                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
688                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
689                                 >> I40E_RXD_QW1_STATUS_SHIFT;
690
691                 /* Check the DD bit first */
692                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
693                         break;
694
695                 nmb = rte_mbuf_raw_alloc(rxq->mp);
696                 if (unlikely(!nmb)) {
697                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
698                         dev->data->rx_mbuf_alloc_failed++;
699                         break;
700                 }
701
702                 rxd = *rxdp;
703                 nb_hold++;
704                 rxe = &sw_ring[rx_id];
705                 rx_id++;
706                 if (unlikely(rx_id == rxq->nb_rx_desc))
707                         rx_id = 0;
708
709                 /* Prefetch next mbuf */
710                 rte_prefetch0(sw_ring[rx_id].mbuf);
711
712                 /**
713                  * When next RX descriptor is on a cache line boundary,
714                  * prefetch the next 4 RX descriptors and next 8 pointers
715                  * to mbufs.
716                  */
717                 if ((rx_id & 0x3) == 0) {
718                         rte_prefetch0(&rx_ring[rx_id]);
719                         rte_prefetch0(&sw_ring[rx_id]);
720                 }
721                 rxm = rxe->mbuf;
722                 rxe->mbuf = nmb;
723                 dma_addr =
724                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
725                 rxdp->read.hdr_addr = 0;
726                 rxdp->read.pkt_addr = dma_addr;
727
728                 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
729                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
730
731                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
732                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
733                 rxm->nb_segs = 1;
734                 rxm->next = NULL;
735                 rxm->pkt_len = rx_packet_len;
736                 rxm->data_len = rx_packet_len;
737                 rxm->port = rxq->port_id;
738                 rxm->ol_flags = 0;
739                 i40e_rxd_to_vlan_tci(rxm, &rxd);
740                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
741                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
742                 rxm->packet_type =
743                         ptype_tbl[(uint8_t)((qword1 &
744                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
745                 if (pkt_flags & PKT_RX_RSS_HASH)
746                         rxm->hash.rss =
747                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
748                 if (pkt_flags & PKT_RX_FDIR)
749                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
750
751 #ifdef RTE_LIBRTE_IEEE1588
752                 pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
753 #endif
754                 rxm->ol_flags |= pkt_flags;
755
756                 rx_pkts[nb_rx++] = rxm;
757         }
758         rxq->rx_tail = rx_id;
759
760         /**
761          * If the number of free RX descriptors is greater than the RX free
762          * threshold of the queue, advance the receive tail register of queue.
763          * Update that register with the value of the last processed RX
764          * descriptor minus 1.
765          */
766         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
767         if (nb_hold > rxq->rx_free_thresh) {
768                 rx_id = (uint16_t) ((rx_id == 0) ?
769                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
770                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
771                 nb_hold = 0;
772         }
773         rxq->nb_rx_hold = nb_hold;
774
775         return nb_rx;
776 }
777
778 uint16_t
779 i40e_recv_scattered_pkts(void *rx_queue,
780                          struct rte_mbuf **rx_pkts,
781                          uint16_t nb_pkts)
782 {
783         struct i40e_rx_queue *rxq = rx_queue;
784         volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
785         volatile union i40e_rx_desc *rxdp;
786         union i40e_rx_desc rxd;
787         struct i40e_rx_entry *sw_ring = rxq->sw_ring;
788         struct i40e_rx_entry *rxe;
789         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
790         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
791         struct rte_mbuf *nmb, *rxm;
792         uint16_t rx_id = rxq->rx_tail;
793         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
794         struct rte_eth_dev *dev;
795         uint32_t rx_status;
796         uint64_t qword1;
797         uint64_t dma_addr;
798         uint64_t pkt_flags;
799         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
800
801         while (nb_rx < nb_pkts) {
802                 rxdp = &rx_ring[rx_id];
803                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
804                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
805                                         I40E_RXD_QW1_STATUS_SHIFT;
806
807                 /* Check the DD bit */
808                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
809                         break;
810
811                 nmb = rte_mbuf_raw_alloc(rxq->mp);
812                 if (unlikely(!nmb)) {
813                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
814                         dev->data->rx_mbuf_alloc_failed++;
815                         break;
816                 }
817
818                 rxd = *rxdp;
819                 nb_hold++;
820                 rxe = &sw_ring[rx_id];
821                 rx_id++;
822                 if (rx_id == rxq->nb_rx_desc)
823                         rx_id = 0;
824
825                 /* Prefetch next mbuf */
826                 rte_prefetch0(sw_ring[rx_id].mbuf);
827
828                 /**
829                  * When next RX descriptor is on a cache line boundary,
830                  * prefetch the next 4 RX descriptors and next 8 pointers
831                  * to mbufs.
832                  */
833                 if ((rx_id & 0x3) == 0) {
834                         rte_prefetch0(&rx_ring[rx_id]);
835                         rte_prefetch0(&sw_ring[rx_id]);
836                 }
837
838                 rxm = rxe->mbuf;
839                 rxe->mbuf = nmb;
840                 dma_addr =
841                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
842
843                 /* Set data buffer address and data length of the mbuf */
844                 rxdp->read.hdr_addr = 0;
845                 rxdp->read.pkt_addr = dma_addr;
846                 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
847                                         I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
848                 rxm->data_len = rx_packet_len;
849                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
850
851                 /**
852                  * If this is the first buffer of the received packet, set the
853                  * pointer to the first mbuf of the packet and initialize its
854                  * context. Otherwise, update the total length and the number
855                  * of segments of the current scattered packet, and update the
856                  * pointer to the last mbuf of the current packet.
857                  */
858                 if (!first_seg) {
859                         first_seg = rxm;
860                         first_seg->nb_segs = 1;
861                         first_seg->pkt_len = rx_packet_len;
862                 } else {
863                         first_seg->pkt_len =
864                                 (uint16_t)(first_seg->pkt_len +
865                                                 rx_packet_len);
866                         first_seg->nb_segs++;
867                         last_seg->next = rxm;
868                 }
869
870                 /**
871                  * If this is not the last buffer of the received packet,
872                  * update the pointer to the last mbuf of the current scattered
873                  * packet and continue to parse the RX ring.
874                  */
875                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
876                         last_seg = rxm;
877                         continue;
878                 }
879
880                 /**
881                  * This is the last buffer of the received packet. If the CRC
882                  * is not stripped by the hardware:
883                  *  - Subtract the CRC length from the total packet length.
884                  *  - If the last buffer only contains the whole CRC or a part
885                  *  of it, free the mbuf associated to the last buffer. If part
886                  *  of the CRC is also contained in the previous mbuf, subtract
887                  *  the length of that CRC part from the data length of the
888                  *  previous mbuf.
889                  */
890                 rxm->next = NULL;
891                 if (unlikely(rxq->crc_len > 0)) {
892                         first_seg->pkt_len -= ETHER_CRC_LEN;
893                         if (rx_packet_len <= ETHER_CRC_LEN) {
894                                 rte_pktmbuf_free_seg(rxm);
895                                 first_seg->nb_segs--;
896                                 last_seg->data_len =
897                                         (uint16_t)(last_seg->data_len -
898                                         (ETHER_CRC_LEN - rx_packet_len));
899                                 last_seg->next = NULL;
900                         } else
901                                 rxm->data_len = (uint16_t)(rx_packet_len -
902                                                                 ETHER_CRC_LEN);
903                 }
904
905                 first_seg->port = rxq->port_id;
906                 first_seg->ol_flags = 0;
907                 i40e_rxd_to_vlan_tci(first_seg, &rxd);
908                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
909                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
910                 first_seg->packet_type =
911                         ptype_tbl[(uint8_t)((qword1 &
912                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
913                 if (pkt_flags & PKT_RX_RSS_HASH)
914                         first_seg->hash.rss =
915                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
916                 if (pkt_flags & PKT_RX_FDIR)
917                         pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
918
919 #ifdef RTE_LIBRTE_IEEE1588
920                 pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
921 #endif
922                 first_seg->ol_flags |= pkt_flags;
923
924                 /* Prefetch data of first segment, if configured to do so. */
925                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
926                         first_seg->data_off));
927                 rx_pkts[nb_rx++] = first_seg;
928                 first_seg = NULL;
929         }
930
931         /* Record index of the next RX descriptor to probe. */
932         rxq->rx_tail = rx_id;
933         rxq->pkt_first_seg = first_seg;
934         rxq->pkt_last_seg = last_seg;
935
936         /**
937          * If the number of free RX descriptors is greater than the RX free
938          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
939          * register. Update the RDT with the value of the last processed RX
940          * descriptor minus 1, to guarantee that the RDT register is never
941          * equal to the RDH register, which creates a "full" ring situtation
942          * from the hardware point of view.
943          */
944         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
945         if (nb_hold > rxq->rx_free_thresh) {
946                 rx_id = (uint16_t)(rx_id == 0 ?
947                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
948                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
949                 nb_hold = 0;
950         }
951         rxq->nb_rx_hold = nb_hold;
952
953         return nb_rx;
954 }
955
956 /* Check if the context descriptor is needed for TX offloading */
957 static inline uint16_t
958 i40e_calc_context_desc(uint64_t flags)
959 {
960         static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
961                 PKT_TX_TCP_SEG |
962                 PKT_TX_QINQ_PKT |
963                 PKT_TX_TUNNEL_MASK;
964
965 #ifdef RTE_LIBRTE_IEEE1588
966         mask |= PKT_TX_IEEE1588_TMST;
967 #endif
968
969         return (flags & mask) ? 1 : 0;
970 }
971
972 /* set i40e TSO context descriptor */
973 static inline uint64_t
974 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
975 {
976         uint64_t ctx_desc = 0;
977         uint32_t cd_cmd, hdr_len, cd_tso_len;
978
979         if (!tx_offload.l4_len) {
980                 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
981                 return ctx_desc;
982         }
983
984         /**
985          * in case of non tunneling packet, the outer_l2_len and
986          * outer_l3_len must be 0.
987          */
988         hdr_len = tx_offload.outer_l2_len +
989                 tx_offload.outer_l3_len +
990                 tx_offload.l2_len +
991                 tx_offload.l3_len +
992                 tx_offload.l4_len;
993
994         cd_cmd = I40E_TX_CTX_DESC_TSO;
995         cd_tso_len = mbuf->pkt_len - hdr_len;
996         ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
997                 ((uint64_t)cd_tso_len <<
998                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
999                 ((uint64_t)mbuf->tso_segsz <<
1000                  I40E_TXD_CTX_QW1_MSS_SHIFT);
1001
1002         return ctx_desc;
1003 }
1004
1005 uint16_t
1006 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1007 {
1008         struct i40e_tx_queue *txq;
1009         struct i40e_tx_entry *sw_ring;
1010         struct i40e_tx_entry *txe, *txn;
1011         volatile struct i40e_tx_desc *txd;
1012         volatile struct i40e_tx_desc *txr;
1013         struct rte_mbuf *tx_pkt;
1014         struct rte_mbuf *m_seg;
1015         uint32_t cd_tunneling_params;
1016         uint16_t tx_id;
1017         uint16_t nb_tx;
1018         uint32_t td_cmd;
1019         uint32_t td_offset;
1020         uint32_t td_tag;
1021         uint64_t ol_flags;
1022         uint16_t nb_used;
1023         uint16_t nb_ctx;
1024         uint16_t tx_last;
1025         uint16_t slen;
1026         uint64_t buf_dma_addr;
1027         union i40e_tx_offload tx_offload = {0};
1028
1029         txq = tx_queue;
1030         sw_ring = txq->sw_ring;
1031         txr = txq->tx_ring;
1032         tx_id = txq->tx_tail;
1033         txe = &sw_ring[tx_id];
1034
1035         /* Check if the descriptor ring needs to be cleaned. */
1036         if (txq->nb_tx_free < txq->tx_free_thresh)
1037                 i40e_xmit_cleanup(txq);
1038
1039         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1040                 td_cmd = 0;
1041                 td_tag = 0;
1042                 td_offset = 0;
1043
1044                 tx_pkt = *tx_pkts++;
1045                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1046
1047                 ol_flags = tx_pkt->ol_flags;
1048                 tx_offload.l2_len = tx_pkt->l2_len;
1049                 tx_offload.l3_len = tx_pkt->l3_len;
1050                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1051                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1052                 tx_offload.l4_len = tx_pkt->l4_len;
1053                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1054
1055                 /* Calculate the number of context descriptors needed. */
1056                 nb_ctx = i40e_calc_context_desc(ol_flags);
1057
1058                 /**
1059                  * The number of descriptors that must be allocated for
1060                  * a packet equals to the number of the segments of that
1061                  * packet plus 1 context descriptor if needed.
1062                  */
1063                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1064                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1065
1066                 /* Circular ring */
1067                 if (tx_last >= txq->nb_tx_desc)
1068                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1069
1070                 if (nb_used > txq->nb_tx_free) {
1071                         if (i40e_xmit_cleanup(txq) != 0) {
1072                                 if (nb_tx == 0)
1073                                         return 0;
1074                                 goto end_of_tx;
1075                         }
1076                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
1077                                 while (nb_used > txq->nb_tx_free) {
1078                                         if (i40e_xmit_cleanup(txq) != 0) {
1079                                                 if (nb_tx == 0)
1080                                                         return 0;
1081                                                 goto end_of_tx;
1082                                         }
1083                                 }
1084                         }
1085                 }
1086
1087                 /* Descriptor based VLAN insertion */
1088                 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1089                         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1090                         td_tag = tx_pkt->vlan_tci;
1091                 }
1092
1093                 /* Always enable CRC offload insertion */
1094                 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1095
1096                 /* Fill in tunneling parameters if necessary */
1097                 cd_tunneling_params = 0;
1098                 if (ol_flags & PKT_TX_TUNNEL_MASK)
1099                         i40e_parse_tunneling_params(ol_flags, tx_offload,
1100                                                     &cd_tunneling_params);
1101                 /* Enable checksum offloading */
1102                 if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)
1103                         i40e_txd_enable_checksum(ol_flags, &td_cmd,
1104                                                  &td_offset, tx_offload);
1105
1106                 if (nb_ctx) {
1107                         /* Setup TX context descriptor if required */
1108                         volatile struct i40e_tx_context_desc *ctx_txd =
1109                                 (volatile struct i40e_tx_context_desc *)\
1110                                                         &txr[tx_id];
1111                         uint16_t cd_l2tag2 = 0;
1112                         uint64_t cd_type_cmd_tso_mss =
1113                                 I40E_TX_DESC_DTYPE_CONTEXT;
1114
1115                         txn = &sw_ring[txe->next_id];
1116                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1117                         if (txe->mbuf != NULL) {
1118                                 rte_pktmbuf_free_seg(txe->mbuf);
1119                                 txe->mbuf = NULL;
1120                         }
1121
1122                         /* TSO enabled means no timestamp */
1123                         if (ol_flags & PKT_TX_TCP_SEG)
1124                                 cd_type_cmd_tso_mss |=
1125                                         i40e_set_tso_ctx(tx_pkt, tx_offload);
1126                         else {
1127 #ifdef RTE_LIBRTE_IEEE1588
1128                                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1129                                         cd_type_cmd_tso_mss |=
1130                                                 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1131                                                  I40E_TXD_CTX_QW1_CMD_SHIFT);
1132 #endif
1133                         }
1134
1135                         ctx_txd->tunneling_params =
1136                                 rte_cpu_to_le_32(cd_tunneling_params);
1137                         if (ol_flags & PKT_TX_QINQ_PKT) {
1138                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1139                                 cd_type_cmd_tso_mss |=
1140                                         ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1141                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1142                         }
1143                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1144                         ctx_txd->type_cmd_tso_mss =
1145                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1146
1147                         PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1148                                 "tunneling_params: %#x;\n"
1149                                 "l2tag2: %#hx;\n"
1150                                 "rsvd: %#hx;\n"
1151                                 "type_cmd_tso_mss: %#"PRIx64";\n",
1152                                 tx_pkt, tx_id,
1153                                 ctx_txd->tunneling_params,
1154                                 ctx_txd->l2tag2,
1155                                 ctx_txd->rsvd,
1156                                 ctx_txd->type_cmd_tso_mss);
1157
1158                         txe->last_id = tx_last;
1159                         tx_id = txe->next_id;
1160                         txe = txn;
1161                 }
1162
1163                 m_seg = tx_pkt;
1164                 do {
1165                         txd = &txr[tx_id];
1166                         txn = &sw_ring[txe->next_id];
1167
1168                         if (txe->mbuf)
1169                                 rte_pktmbuf_free_seg(txe->mbuf);
1170                         txe->mbuf = m_seg;
1171
1172                         /* Setup TX Descriptor */
1173                         slen = m_seg->data_len;
1174                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
1175
1176                         PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1177                                 "buf_dma_addr: %#"PRIx64";\n"
1178                                 "td_cmd: %#x;\n"
1179                                 "td_offset: %#x;\n"
1180                                 "td_len: %u;\n"
1181                                 "td_tag: %#x;\n",
1182                                 tx_pkt, tx_id, buf_dma_addr,
1183                                 td_cmd, td_offset, slen, td_tag);
1184
1185                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1186                         txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1187                                                 td_offset, slen, td_tag);
1188                         txe->last_id = tx_last;
1189                         tx_id = txe->next_id;
1190                         txe = txn;
1191                         m_seg = m_seg->next;
1192                 } while (m_seg != NULL);
1193
1194                 /* The last packet data descriptor needs End Of Packet (EOP) */
1195                 td_cmd |= I40E_TX_DESC_CMD_EOP;
1196                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1197                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1198
1199                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1200                         PMD_TX_FREE_LOG(DEBUG,
1201                                         "Setting RS bit on TXD id="
1202                                         "%4u (port=%d queue=%d)",
1203                                         tx_last, txq->port_id, txq->queue_id);
1204
1205                         td_cmd |= I40E_TX_DESC_CMD_RS;
1206
1207                         /* Update txq RS bit counters */
1208                         txq->nb_tx_used = 0;
1209                 }
1210
1211                 txd->cmd_type_offset_bsz |=
1212                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1213                                         I40E_TXD_QW1_CMD_SHIFT);
1214         }
1215
1216 end_of_tx:
1217         rte_wmb();
1218
1219         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1220                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
1221                    (unsigned) tx_id, (unsigned) nb_tx);
1222
1223         I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
1224         txq->tx_tail = tx_id;
1225
1226         return nb_tx;
1227 }
1228
1229 static __rte_always_inline int
1230 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1231 {
1232         struct i40e_tx_entry *txep;
1233         uint16_t i;
1234
1235         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1236                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1237                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1238                 return 0;
1239
1240         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1241
1242         for (i = 0; i < txq->tx_rs_thresh; i++)
1243                 rte_prefetch0((txep + i)->mbuf);
1244
1245         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
1246                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1247                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1248                         txep->mbuf = NULL;
1249                 }
1250         } else {
1251                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1252                         rte_pktmbuf_free_seg(txep->mbuf);
1253                         txep->mbuf = NULL;
1254                 }
1255         }
1256
1257         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1258         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1259         if (txq->tx_next_dd >= txq->nb_tx_desc)
1260                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1261
1262         return txq->tx_rs_thresh;
1263 }
1264
1265 /* Populate 4 descriptors with data from 4 mbufs */
1266 static inline void
1267 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1268 {
1269         uint64_t dma_addr;
1270         uint32_t i;
1271
1272         for (i = 0; i < 4; i++, txdp++, pkts++) {
1273                 dma_addr = rte_mbuf_data_iova(*pkts);
1274                 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1275                 txdp->cmd_type_offset_bsz =
1276                         i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1277                                         (*pkts)->data_len, 0);
1278         }
1279 }
1280
1281 /* Populate 1 descriptor with data from 1 mbuf */
1282 static inline void
1283 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1284 {
1285         uint64_t dma_addr;
1286
1287         dma_addr = rte_mbuf_data_iova(*pkts);
1288         txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1289         txdp->cmd_type_offset_bsz =
1290                 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1291                                 (*pkts)->data_len, 0);
1292 }
1293
1294 /* Fill hardware descriptor ring with mbuf data */
1295 static inline void
1296 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1297                      struct rte_mbuf **pkts,
1298                      uint16_t nb_pkts)
1299 {
1300         volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1301         struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1302         const int N_PER_LOOP = 4;
1303         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1304         int mainpart, leftover;
1305         int i, j;
1306
1307         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1308         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1309         for (i = 0; i < mainpart; i += N_PER_LOOP) {
1310                 for (j = 0; j < N_PER_LOOP; ++j) {
1311                         (txep + i + j)->mbuf = *(pkts + i + j);
1312                 }
1313                 tx4(txdp + i, pkts + i);
1314         }
1315         if (unlikely(leftover > 0)) {
1316                 for (i = 0; i < leftover; ++i) {
1317                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1318                         tx1(txdp + mainpart + i, pkts + mainpart + i);
1319                 }
1320         }
1321 }
1322
1323 static inline uint16_t
1324 tx_xmit_pkts(struct i40e_tx_queue *txq,
1325              struct rte_mbuf **tx_pkts,
1326              uint16_t nb_pkts)
1327 {
1328         volatile struct i40e_tx_desc *txr = txq->tx_ring;
1329         uint16_t n = 0;
1330
1331         /**
1332          * Begin scanning the H/W ring for done descriptors when the number
1333          * of available descriptors drops below tx_free_thresh. For each done
1334          * descriptor, free the associated buffer.
1335          */
1336         if (txq->nb_tx_free < txq->tx_free_thresh)
1337                 i40e_tx_free_bufs(txq);
1338
1339         /* Use available descriptor only */
1340         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1341         if (unlikely(!nb_pkts))
1342                 return 0;
1343
1344         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1345         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1346                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1347                 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1348                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1349                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1350                                                 I40E_TXD_QW1_CMD_SHIFT);
1351                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1352                 txq->tx_tail = 0;
1353         }
1354
1355         /* Fill hardware descriptor ring with mbuf data */
1356         i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1357         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1358
1359         /* Determin if RS bit needs to be set */
1360         if (txq->tx_tail > txq->tx_next_rs) {
1361                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1362                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1363                                                 I40E_TXD_QW1_CMD_SHIFT);
1364                 txq->tx_next_rs =
1365                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1366                 if (txq->tx_next_rs >= txq->nb_tx_desc)
1367                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1368         }
1369
1370         if (txq->tx_tail >= txq->nb_tx_desc)
1371                 txq->tx_tail = 0;
1372
1373         /* Update the tx tail register */
1374         rte_wmb();
1375         I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, txq->tx_tail);
1376
1377         return nb_pkts;
1378 }
1379
1380 static uint16_t
1381 i40e_xmit_pkts_simple(void *tx_queue,
1382                       struct rte_mbuf **tx_pkts,
1383                       uint16_t nb_pkts)
1384 {
1385         uint16_t nb_tx = 0;
1386
1387         if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1388                 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1389                                                 tx_pkts, nb_pkts);
1390
1391         while (nb_pkts) {
1392                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1393                                                 I40E_TX_MAX_BURST);
1394
1395                 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1396                                                 &tx_pkts[nb_tx], num);
1397                 nb_tx = (uint16_t)(nb_tx + ret);
1398                 nb_pkts = (uint16_t)(nb_pkts - ret);
1399                 if (ret < num)
1400                         break;
1401         }
1402
1403         return nb_tx;
1404 }
1405
1406 static uint16_t
1407 i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1408                    uint16_t nb_pkts)
1409 {
1410         uint16_t nb_tx = 0;
1411         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
1412
1413         while (nb_pkts) {
1414                 uint16_t ret, num;
1415
1416                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1417                 ret = i40e_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
1418                                                 num);
1419                 nb_tx += ret;
1420                 nb_pkts -= ret;
1421                 if (ret < num)
1422                         break;
1423         }
1424
1425         return nb_tx;
1426 }
1427
1428 /*********************************************************************
1429  *
1430  *  TX prep functions
1431  *
1432  **********************************************************************/
1433 uint16_t
1434 i40e_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1435                 uint16_t nb_pkts)
1436 {
1437         int i, ret;
1438         uint64_t ol_flags;
1439         struct rte_mbuf *m;
1440
1441         for (i = 0; i < nb_pkts; i++) {
1442                 m = tx_pkts[i];
1443                 ol_flags = m->ol_flags;
1444
1445                 /* Check for m->nb_segs to not exceed the limits. */
1446                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
1447                         if (m->nb_segs > I40E_TX_MAX_MTU_SEG ||
1448                             m->pkt_len > I40E_FRAME_SIZE_MAX) {
1449                                 rte_errno = -EINVAL;
1450                                 return i;
1451                         }
1452                 } else if (m->nb_segs > I40E_TX_MAX_SEG ||
1453                            m->tso_segsz < I40E_MIN_TSO_MSS ||
1454                            m->tso_segsz > I40E_MAX_TSO_MSS ||
1455                            m->pkt_len > I40E_TSO_FRAME_SIZE_MAX) {
1456                         /* MSS outside the range (256B - 9674B) are considered
1457                          * malicious
1458                          */
1459                         rte_errno = -EINVAL;
1460                         return i;
1461                 }
1462
1463                 if (ol_flags & I40E_TX_OFFLOAD_NOTSUP_MASK) {
1464                         rte_errno = -ENOTSUP;
1465                         return i;
1466                 }
1467
1468                 /* check the size of packet */
1469                 if (m->pkt_len < I40E_TX_MIN_PKT_LEN) {
1470                         rte_errno = -EINVAL;
1471                         return i;
1472                 }
1473
1474 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1475                 ret = rte_validate_tx_offload(m);
1476                 if (ret != 0) {
1477                         rte_errno = ret;
1478                         return i;
1479                 }
1480 #endif
1481                 ret = rte_net_intel_cksum_prepare(m);
1482                 if (ret != 0) {
1483                         rte_errno = ret;
1484                         return i;
1485                 }
1486         }
1487         return i;
1488 }
1489
1490 /*
1491  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1492  * application used, which assume having sequential ones. But from driver's
1493  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1494  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1495  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1496  * use queue_idx from 0 to 95 to access queues, while real queue would be
1497  * different. This function will do a queue mapping to find VSI the queue
1498  * belongs to.
1499  */
1500 static struct i40e_vsi*
1501 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1502 {
1503         /* the queue in MAIN VSI range */
1504         if (queue_idx < pf->main_vsi->nb_qps)
1505                 return pf->main_vsi;
1506
1507         queue_idx -= pf->main_vsi->nb_qps;
1508
1509         /* queue_idx is greater than VMDQ VSIs range */
1510         if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1511                 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1512                 return NULL;
1513         }
1514
1515         return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1516 }
1517
1518 static uint16_t
1519 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1520 {
1521         /* the queue in MAIN VSI range */
1522         if (queue_idx < pf->main_vsi->nb_qps)
1523                 return queue_idx;
1524
1525         /* It's VMDQ queues */
1526         queue_idx -= pf->main_vsi->nb_qps;
1527
1528         if (pf->nb_cfg_vmdq_vsi)
1529                 return queue_idx % pf->vmdq_nb_qps;
1530         else {
1531                 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1532                 return (uint16_t)(-1);
1533         }
1534 }
1535
1536 int
1537 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1538 {
1539         struct i40e_rx_queue *rxq;
1540         int err;
1541         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1542
1543         PMD_INIT_FUNC_TRACE();
1544
1545         rxq = dev->data->rx_queues[rx_queue_id];
1546
1547         err = i40e_alloc_rx_queue_mbufs(rxq);
1548         if (err) {
1549                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1550                 return err;
1551         }
1552
1553         rte_wmb();
1554
1555         /* Init the RX tail regieter. */
1556         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1557
1558         err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1559         if (err) {
1560                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1561                             rx_queue_id);
1562
1563                 i40e_rx_queue_release_mbufs(rxq);
1564                 i40e_reset_rx_queue(rxq);
1565                 return err;
1566         }
1567         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1568
1569         return 0;
1570 }
1571
1572 int
1573 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1574 {
1575         struct i40e_rx_queue *rxq;
1576         int err;
1577         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1578
1579         rxq = dev->data->rx_queues[rx_queue_id];
1580
1581         /*
1582          * rx_queue_id is queue id application refers to, while
1583          * rxq->reg_idx is the real queue index.
1584          */
1585         err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1586         if (err) {
1587                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1588                             rx_queue_id);
1589                 return err;
1590         }
1591         i40e_rx_queue_release_mbufs(rxq);
1592         i40e_reset_rx_queue(rxq);
1593         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1594
1595         return 0;
1596 }
1597
1598 int
1599 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1600 {
1601         int err;
1602         struct i40e_tx_queue *txq;
1603         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1604
1605         PMD_INIT_FUNC_TRACE();
1606
1607         txq = dev->data->tx_queues[tx_queue_id];
1608
1609         /*
1610          * tx_queue_id is queue id application refers to, while
1611          * rxq->reg_idx is the real queue index.
1612          */
1613         err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1614         if (err) {
1615                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1616                             tx_queue_id);
1617                 return err;
1618         }
1619         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1620
1621         return 0;
1622 }
1623
1624 int
1625 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1626 {
1627         struct i40e_tx_queue *txq;
1628         int err;
1629         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1630
1631         txq = dev->data->tx_queues[tx_queue_id];
1632
1633         /*
1634          * tx_queue_id is queue id application refers to, while
1635          * txq->reg_idx is the real queue index.
1636          */
1637         err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1638         if (err) {
1639                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1640                             tx_queue_id);
1641                 return err;
1642         }
1643
1644         i40e_tx_queue_release_mbufs(txq);
1645         i40e_reset_tx_queue(txq);
1646         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1647
1648         return 0;
1649 }
1650
1651 const uint32_t *
1652 i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1653 {
1654         static const uint32_t ptypes[] = {
1655                 /* refers to i40e_rxd_pkt_type_mapping() */
1656                 RTE_PTYPE_L2_ETHER,
1657                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1658                 RTE_PTYPE_L2_ETHER_LLDP,
1659                 RTE_PTYPE_L2_ETHER_ARP,
1660                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1661                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1662                 RTE_PTYPE_L4_FRAG,
1663                 RTE_PTYPE_L4_ICMP,
1664                 RTE_PTYPE_L4_NONFRAG,
1665                 RTE_PTYPE_L4_SCTP,
1666                 RTE_PTYPE_L4_TCP,
1667                 RTE_PTYPE_L4_UDP,
1668                 RTE_PTYPE_TUNNEL_GRENAT,
1669                 RTE_PTYPE_TUNNEL_IP,
1670                 RTE_PTYPE_INNER_L2_ETHER,
1671                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1672                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1673                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1674                 RTE_PTYPE_INNER_L4_FRAG,
1675                 RTE_PTYPE_INNER_L4_ICMP,
1676                 RTE_PTYPE_INNER_L4_NONFRAG,
1677                 RTE_PTYPE_INNER_L4_SCTP,
1678                 RTE_PTYPE_INNER_L4_TCP,
1679                 RTE_PTYPE_INNER_L4_UDP,
1680                 RTE_PTYPE_UNKNOWN
1681         };
1682
1683         if (dev->rx_pkt_burst == i40e_recv_pkts ||
1684 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1685             dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
1686 #endif
1687             dev->rx_pkt_burst == i40e_recv_scattered_pkts ||
1688             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
1689             dev->rx_pkt_burst == i40e_recv_pkts_vec ||
1690             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
1691             dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2)
1692                 return ptypes;
1693         return NULL;
1694 }
1695
1696 static int
1697 i40e_dev_first_queue(uint16_t idx, void **queues, int num)
1698 {
1699         uint16_t i;
1700
1701         for (i = 0; i < num; i++) {
1702                 if (i != idx && queues[i])
1703                         return 0;
1704         }
1705
1706         return 1;
1707 }
1708
1709 static int
1710 i40e_dev_rx_queue_setup_runtime(struct rte_eth_dev *dev,
1711                                 struct i40e_rx_queue *rxq)
1712 {
1713         struct i40e_adapter *ad =
1714                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1715         int use_def_burst_func =
1716                 check_rx_burst_bulk_alloc_preconditions(rxq);
1717         uint16_t buf_size =
1718                 (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
1719                            RTE_PKTMBUF_HEADROOM);
1720         int use_scattered_rx =
1721                 ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size);
1722
1723         if (i40e_rx_queue_init(rxq) != I40E_SUCCESS) {
1724                 PMD_DRV_LOG(ERR,
1725                             "Failed to do RX queue initialization");
1726                 return -EINVAL;
1727         }
1728
1729         if (i40e_dev_first_queue(rxq->queue_id,
1730                                  dev->data->rx_queues,
1731                                  dev->data->nb_rx_queues)) {
1732                 /**
1733                  * If it is the first queue to setup,
1734                  * set all flags to default and call
1735                  * i40e_set_rx_function.
1736                  */
1737                 ad->rx_bulk_alloc_allowed = true;
1738                 ad->rx_vec_allowed = true;
1739                 dev->data->scattered_rx = use_scattered_rx;
1740                 if (use_def_burst_func)
1741                         ad->rx_bulk_alloc_allowed = false;
1742                 i40e_set_rx_function(dev);
1743                 return 0;
1744         }
1745
1746         /* check bulk alloc conflict */
1747         if (ad->rx_bulk_alloc_allowed && use_def_burst_func) {
1748                 PMD_DRV_LOG(ERR, "Can't use default burst.");
1749                 return -EINVAL;
1750         }
1751         /* check scatterred conflict */
1752         if (!dev->data->scattered_rx && use_scattered_rx) {
1753                 PMD_DRV_LOG(ERR, "Scattered rx is required.");
1754                 return -EINVAL;
1755         }
1756         /* check vector conflict */
1757         if (ad->rx_vec_allowed && i40e_rxq_vec_setup(rxq)) {
1758                 PMD_DRV_LOG(ERR, "Failed vector rx setup.");
1759                 return -EINVAL;
1760         }
1761
1762         return 0;
1763 }
1764
1765 int
1766 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1767                         uint16_t queue_idx,
1768                         uint16_t nb_desc,
1769                         unsigned int socket_id,
1770                         const struct rte_eth_rxconf *rx_conf,
1771                         struct rte_mempool *mp)
1772 {
1773         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1774         struct i40e_adapter *ad =
1775                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1776         struct i40e_vsi *vsi;
1777         struct i40e_pf *pf = NULL;
1778         struct i40e_vf *vf = NULL;
1779         struct i40e_rx_queue *rxq;
1780         const struct rte_memzone *rz;
1781         uint32_t ring_size;
1782         uint16_t len, i;
1783         uint16_t reg_idx, base, bsf, tc_mapping;
1784         int q_offset, use_def_burst_func = 1;
1785         uint64_t offloads;
1786
1787         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1788
1789         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
1790                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1791                 vsi = &vf->vsi;
1792                 if (!vsi)
1793                         return -EINVAL;
1794                 reg_idx = queue_idx;
1795         } else {
1796                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1797                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1798                 if (!vsi)
1799                         return -EINVAL;
1800                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
1801                 if (q_offset < 0)
1802                         return -EINVAL;
1803                 reg_idx = vsi->base_queue + q_offset;
1804         }
1805
1806         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1807             (nb_desc > I40E_MAX_RING_DESC) ||
1808             (nb_desc < I40E_MIN_RING_DESC)) {
1809                 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1810                             "invalid", nb_desc);
1811                 return -EINVAL;
1812         }
1813
1814         /* Free memory if needed */
1815         if (dev->data->rx_queues[queue_idx]) {
1816                 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
1817                 dev->data->rx_queues[queue_idx] = NULL;
1818         }
1819
1820         /* Allocate the rx queue data structure */
1821         rxq = rte_zmalloc_socket("i40e rx queue",
1822                                  sizeof(struct i40e_rx_queue),
1823                                  RTE_CACHE_LINE_SIZE,
1824                                  socket_id);
1825         if (!rxq) {
1826                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
1827                             "rx queue data structure");
1828                 return -ENOMEM;
1829         }
1830         rxq->mp = mp;
1831         rxq->nb_rx_desc = nb_desc;
1832         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1833         rxq->queue_id = queue_idx;
1834         rxq->reg_idx = reg_idx;
1835         rxq->port_id = dev->data->port_id;
1836         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1837                 rxq->crc_len = ETHER_CRC_LEN;
1838         else
1839                 rxq->crc_len = 0;
1840         rxq->drop_en = rx_conf->rx_drop_en;
1841         rxq->vsi = vsi;
1842         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1843         rxq->offloads = offloads;
1844
1845         /* Allocate the maximun number of RX ring hardware descriptor. */
1846         len = I40E_MAX_RING_DESC;
1847
1848         /**
1849          * Allocating a little more memory because vectorized/bulk_alloc Rx
1850          * functions doesn't check boundaries each time.
1851          */
1852         len += RTE_PMD_I40E_RX_MAX_BURST;
1853
1854         ring_size = RTE_ALIGN(len * sizeof(union i40e_rx_desc),
1855                               I40E_DMA_MEM_ALIGN);
1856
1857         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1858                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
1859         if (!rz) {
1860                 i40e_dev_rx_queue_release(rxq);
1861                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
1862                 return -ENOMEM;
1863         }
1864
1865         /* Zero all the descriptors in the ring. */
1866         memset(rz->addr, 0, ring_size);
1867
1868         rxq->rx_ring_phys_addr = rz->iova;
1869         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
1870
1871         len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
1872
1873         /* Allocate the software ring. */
1874         rxq->sw_ring =
1875                 rte_zmalloc_socket("i40e rx sw ring",
1876                                    sizeof(struct i40e_rx_entry) * len,
1877                                    RTE_CACHE_LINE_SIZE,
1878                                    socket_id);
1879         if (!rxq->sw_ring) {
1880                 i40e_dev_rx_queue_release(rxq);
1881                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
1882                 return -ENOMEM;
1883         }
1884
1885         i40e_reset_rx_queue(rxq);
1886         rxq->q_set = TRUE;
1887
1888         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1889                 if (!(vsi->enabled_tc & (1 << i)))
1890                         continue;
1891                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
1892                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
1893                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
1894                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
1895                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
1896
1897                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
1898                         rxq->dcb_tc = i;
1899         }
1900
1901         if (dev->data->dev_started) {
1902                 if (i40e_dev_rx_queue_setup_runtime(dev, rxq)) {
1903                         i40e_dev_rx_queue_release(rxq);
1904                         return -EINVAL;
1905                 }
1906         } else {
1907                 use_def_burst_func =
1908                         check_rx_burst_bulk_alloc_preconditions(rxq);
1909                 if (!use_def_burst_func) {
1910 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1911                         PMD_INIT_LOG(DEBUG,
1912                           "Rx Burst Bulk Alloc Preconditions are "
1913                           "satisfied. Rx Burst Bulk Alloc function will be "
1914                           "used on port=%d, queue=%d.",
1915                           rxq->port_id, rxq->queue_id);
1916 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
1917                 } else {
1918                         PMD_INIT_LOG(DEBUG,
1919                           "Rx Burst Bulk Alloc Preconditions are "
1920                           "not satisfied, Scattered Rx is requested, "
1921                           "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
1922                           "not enabled on port=%d, queue=%d.",
1923                           rxq->port_id, rxq->queue_id);
1924                         ad->rx_bulk_alloc_allowed = false;
1925                 }
1926         }
1927
1928         dev->data->rx_queues[queue_idx] = rxq;
1929         return 0;
1930 }
1931
1932 void
1933 i40e_dev_rx_queue_release(void *rxq)
1934 {
1935         struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
1936
1937         if (!q) {
1938                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1939                 return;
1940         }
1941
1942         i40e_rx_queue_release_mbufs(q);
1943         rte_free(q->sw_ring);
1944         rte_free(q);
1945 }
1946
1947 uint32_t
1948 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1949 {
1950 #define I40E_RXQ_SCAN_INTERVAL 4
1951         volatile union i40e_rx_desc *rxdp;
1952         struct i40e_rx_queue *rxq;
1953         uint16_t desc = 0;
1954
1955         rxq = dev->data->rx_queues[rx_queue_id];
1956         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1957         while ((desc < rxq->nb_rx_desc) &&
1958                 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1959                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1960                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1961                 /**
1962                  * Check the DD bit of a rx descriptor of each 4 in a group,
1963                  * to avoid checking too frequently and downgrading performance
1964                  * too much.
1965                  */
1966                 desc += I40E_RXQ_SCAN_INTERVAL;
1967                 rxdp += I40E_RXQ_SCAN_INTERVAL;
1968                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1969                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1970                                         desc - rxq->nb_rx_desc]);
1971         }
1972
1973         return desc;
1974 }
1975
1976 int
1977 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
1978 {
1979         volatile union i40e_rx_desc *rxdp;
1980         struct i40e_rx_queue *rxq = rx_queue;
1981         uint16_t desc;
1982         int ret;
1983
1984         if (unlikely(offset >= rxq->nb_rx_desc)) {
1985                 PMD_DRV_LOG(ERR, "Invalid RX descriptor id %u", offset);
1986                 return 0;
1987         }
1988
1989         desc = rxq->rx_tail + offset;
1990         if (desc >= rxq->nb_rx_desc)
1991                 desc -= rxq->nb_rx_desc;
1992
1993         rxdp = &(rxq->rx_ring[desc]);
1994
1995         ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1996                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1997                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
1998
1999         return ret;
2000 }
2001
2002 int
2003 i40e_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
2004 {
2005         struct i40e_rx_queue *rxq = rx_queue;
2006         volatile uint64_t *status;
2007         uint64_t mask;
2008         uint32_t desc;
2009
2010         if (unlikely(offset >= rxq->nb_rx_desc))
2011                 return -EINVAL;
2012
2013         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2014                 return RTE_ETH_RX_DESC_UNAVAIL;
2015
2016         desc = rxq->rx_tail + offset;
2017         if (desc >= rxq->nb_rx_desc)
2018                 desc -= rxq->nb_rx_desc;
2019
2020         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2021         mask = rte_le_to_cpu_64((1ULL << I40E_RX_DESC_STATUS_DD_SHIFT)
2022                 << I40E_RXD_QW1_STATUS_SHIFT);
2023         if (*status & mask)
2024                 return RTE_ETH_RX_DESC_DONE;
2025
2026         return RTE_ETH_RX_DESC_AVAIL;
2027 }
2028
2029 int
2030 i40e_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
2031 {
2032         struct i40e_tx_queue *txq = tx_queue;
2033         volatile uint64_t *status;
2034         uint64_t mask, expect;
2035         uint32_t desc;
2036
2037         if (unlikely(offset >= txq->nb_tx_desc))
2038                 return -EINVAL;
2039
2040         desc = txq->tx_tail + offset;
2041         /* go to next desc that has the RS bit */
2042         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2043                 txq->tx_rs_thresh;
2044         if (desc >= txq->nb_tx_desc) {
2045                 desc -= txq->nb_tx_desc;
2046                 if (desc >= txq->nb_tx_desc)
2047                         desc -= txq->nb_tx_desc;
2048         }
2049
2050         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2051         mask = rte_le_to_cpu_64(I40E_TXD_QW1_DTYPE_MASK);
2052         expect = rte_cpu_to_le_64(
2053                 I40E_TX_DESC_DTYPE_DESC_DONE << I40E_TXD_QW1_DTYPE_SHIFT);
2054         if ((*status & mask) == expect)
2055                 return RTE_ETH_TX_DESC_DONE;
2056
2057         return RTE_ETH_TX_DESC_FULL;
2058 }
2059
2060 static int
2061 i40e_dev_tx_queue_setup_runtime(struct rte_eth_dev *dev,
2062                                 struct i40e_tx_queue *txq)
2063 {
2064         struct i40e_adapter *ad =
2065                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2066
2067         if (i40e_tx_queue_init(txq) != I40E_SUCCESS) {
2068                 PMD_DRV_LOG(ERR,
2069                             "Failed to do TX queue initialization");
2070                 return -EINVAL;
2071         }
2072
2073         if (i40e_dev_first_queue(txq->queue_id,
2074                                  dev->data->tx_queues,
2075                                  dev->data->nb_tx_queues)) {
2076                 /**
2077                  * If it is the first queue to setup,
2078                  * set all flags and call
2079                  * i40e_set_tx_function.
2080                  */
2081                 i40e_set_tx_function_flag(dev, txq);
2082                 i40e_set_tx_function(dev);
2083                 return 0;
2084         }
2085
2086         /* check vector conflict */
2087         if (ad->tx_vec_allowed) {
2088                 if (txq->tx_rs_thresh > RTE_I40E_TX_MAX_FREE_BUF_SZ ||
2089                     i40e_txq_vec_setup(txq)) {
2090                         PMD_DRV_LOG(ERR, "Failed vector tx setup.");
2091                         return -EINVAL;
2092                 }
2093         }
2094         /* check simple tx conflict */
2095         if (ad->tx_simple_allowed) {
2096                 if ((txq->offloads & ~DEV_TX_OFFLOAD_MBUF_FAST_FREE) != 0 ||
2097                                 txq->tx_rs_thresh < RTE_PMD_I40E_TX_MAX_BURST) {
2098                         PMD_DRV_LOG(ERR, "No-simple tx is required.");
2099                         return -EINVAL;
2100                 }
2101         }
2102
2103         return 0;
2104 }
2105
2106 int
2107 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2108                         uint16_t queue_idx,
2109                         uint16_t nb_desc,
2110                         unsigned int socket_id,
2111                         const struct rte_eth_txconf *tx_conf)
2112 {
2113         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2114         struct i40e_vsi *vsi;
2115         struct i40e_pf *pf = NULL;
2116         struct i40e_vf *vf = NULL;
2117         struct i40e_tx_queue *txq;
2118         const struct rte_memzone *tz;
2119         uint32_t ring_size;
2120         uint16_t tx_rs_thresh, tx_free_thresh;
2121         uint16_t reg_idx, i, base, bsf, tc_mapping;
2122         int q_offset;
2123         uint64_t offloads;
2124
2125         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2126
2127         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
2128                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2129                 vsi = &vf->vsi;
2130                 if (!vsi)
2131                         return -EINVAL;
2132                 reg_idx = queue_idx;
2133         } else {
2134                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2135                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2136                 if (!vsi)
2137                         return -EINVAL;
2138                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
2139                 if (q_offset < 0)
2140                         return -EINVAL;
2141                 reg_idx = vsi->base_queue + q_offset;
2142         }
2143
2144         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2145             (nb_desc > I40E_MAX_RING_DESC) ||
2146             (nb_desc < I40E_MIN_RING_DESC)) {
2147                 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2148                             "invalid", nb_desc);
2149                 return -EINVAL;
2150         }
2151
2152         /**
2153          * The following two parameters control the setting of the RS bit on
2154          * transmit descriptors. TX descriptors will have their RS bit set
2155          * after txq->tx_rs_thresh descriptors have been used. The TX
2156          * descriptor ring will be cleaned after txq->tx_free_thresh
2157          * descriptors are used or if the number of descriptors required to
2158          * transmit a packet is greater than the number of free TX descriptors.
2159          *
2160          * The following constraints must be satisfied:
2161          *  - tx_rs_thresh must be greater than 0.
2162          *  - tx_rs_thresh must be less than the size of the ring minus 2.
2163          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
2164          *  - tx_rs_thresh must be a divisor of the ring size.
2165          *  - tx_free_thresh must be greater than 0.
2166          *  - tx_free_thresh must be less than the size of the ring minus 3.
2167          *
2168          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2169          * race condition, hence the maximum threshold constraints. When set
2170          * to zero use default values.
2171          */
2172         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2173                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2174         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2175                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2176         if (tx_rs_thresh >= (nb_desc - 2)) {
2177                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2178                              "number of TX descriptors minus 2. "
2179                              "(tx_rs_thresh=%u port=%d queue=%d)",
2180                              (unsigned int)tx_rs_thresh,
2181                              (int)dev->data->port_id,
2182                              (int)queue_idx);
2183                 return I40E_ERR_PARAM;
2184         }
2185         if (tx_free_thresh >= (nb_desc - 3)) {
2186                 PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
2187                              "number of TX descriptors minus 3. "
2188                              "(tx_free_thresh=%u port=%d queue=%d)",
2189                              (unsigned int)tx_free_thresh,
2190                              (int)dev->data->port_id,
2191                              (int)queue_idx);
2192                 return I40E_ERR_PARAM;
2193         }
2194         if (tx_rs_thresh > tx_free_thresh) {
2195                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2196                              "equal to tx_free_thresh. (tx_free_thresh=%u"
2197                              " tx_rs_thresh=%u port=%d queue=%d)",
2198                              (unsigned int)tx_free_thresh,
2199                              (unsigned int)tx_rs_thresh,
2200                              (int)dev->data->port_id,
2201                              (int)queue_idx);
2202                 return I40E_ERR_PARAM;
2203         }
2204         if ((nb_desc % tx_rs_thresh) != 0) {
2205                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2206                              "number of TX descriptors. (tx_rs_thresh=%u"
2207                              " port=%d queue=%d)",
2208                              (unsigned int)tx_rs_thresh,
2209                              (int)dev->data->port_id,
2210                              (int)queue_idx);
2211                 return I40E_ERR_PARAM;
2212         }
2213         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2214                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2215                              "tx_rs_thresh is greater than 1. "
2216                              "(tx_rs_thresh=%u port=%d queue=%d)",
2217                              (unsigned int)tx_rs_thresh,
2218                              (int)dev->data->port_id,
2219                              (int)queue_idx);
2220                 return I40E_ERR_PARAM;
2221         }
2222
2223         /* Free memory if needed. */
2224         if (dev->data->tx_queues[queue_idx]) {
2225                 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2226                 dev->data->tx_queues[queue_idx] = NULL;
2227         }
2228
2229         /* Allocate the TX queue data structure. */
2230         txq = rte_zmalloc_socket("i40e tx queue",
2231                                   sizeof(struct i40e_tx_queue),
2232                                   RTE_CACHE_LINE_SIZE,
2233                                   socket_id);
2234         if (!txq) {
2235                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2236                             "tx queue structure");
2237                 return -ENOMEM;
2238         }
2239
2240         /* Allocate TX hardware ring descriptors. */
2241         ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2242         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2243         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2244                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
2245         if (!tz) {
2246                 i40e_dev_tx_queue_release(txq);
2247                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2248                 return -ENOMEM;
2249         }
2250
2251         txq->nb_tx_desc = nb_desc;
2252         txq->tx_rs_thresh = tx_rs_thresh;
2253         txq->tx_free_thresh = tx_free_thresh;
2254         txq->pthresh = tx_conf->tx_thresh.pthresh;
2255         txq->hthresh = tx_conf->tx_thresh.hthresh;
2256         txq->wthresh = tx_conf->tx_thresh.wthresh;
2257         txq->queue_id = queue_idx;
2258         txq->reg_idx = reg_idx;
2259         txq->port_id = dev->data->port_id;
2260         txq->offloads = offloads;
2261         txq->vsi = vsi;
2262         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2263
2264         txq->tx_ring_phys_addr = tz->iova;
2265         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2266
2267         /* Allocate software ring */
2268         txq->sw_ring =
2269                 rte_zmalloc_socket("i40e tx sw ring",
2270                                    sizeof(struct i40e_tx_entry) * nb_desc,
2271                                    RTE_CACHE_LINE_SIZE,
2272                                    socket_id);
2273         if (!txq->sw_ring) {
2274                 i40e_dev_tx_queue_release(txq);
2275                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2276                 return -ENOMEM;
2277         }
2278
2279         i40e_reset_tx_queue(txq);
2280         txq->q_set = TRUE;
2281
2282         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2283                 if (!(vsi->enabled_tc & (1 << i)))
2284                         continue;
2285                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2286                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2287                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2288                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2289                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2290
2291                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2292                         txq->dcb_tc = i;
2293         }
2294
2295         if (dev->data->dev_started) {
2296                 if (i40e_dev_tx_queue_setup_runtime(dev, txq)) {
2297                         i40e_dev_tx_queue_release(txq);
2298                         return -EINVAL;
2299                 }
2300         } else {
2301                 /**
2302                  * Use a simple TX queue without offloads or
2303                  * multi segs if possible
2304                  */
2305                 i40e_set_tx_function_flag(dev, txq);
2306         }
2307         dev->data->tx_queues[queue_idx] = txq;
2308
2309         return 0;
2310 }
2311
2312 void
2313 i40e_dev_tx_queue_release(void *txq)
2314 {
2315         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2316
2317         if (!q) {
2318                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2319                 return;
2320         }
2321
2322         i40e_tx_queue_release_mbufs(q);
2323         rte_free(q->sw_ring);
2324         rte_free(q);
2325 }
2326
2327 const struct rte_memzone *
2328 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2329 {
2330         const struct rte_memzone *mz;
2331
2332         mz = rte_memzone_lookup(name);
2333         if (mz)
2334                 return mz;
2335
2336         mz = rte_memzone_reserve_aligned(name, len, socket_id,
2337                         RTE_MEMZONE_IOVA_CONTIG, I40E_RING_BASE_ALIGN);
2338         return mz;
2339 }
2340
2341 void
2342 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2343 {
2344         uint16_t i;
2345
2346         /* SSE Vector driver has a different way of releasing mbufs. */
2347         if (rxq->rx_using_sse) {
2348                 i40e_rx_queue_release_mbufs_vec(rxq);
2349                 return;
2350         }
2351
2352         if (!rxq->sw_ring) {
2353                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
2354                 return;
2355         }
2356
2357         for (i = 0; i < rxq->nb_rx_desc; i++) {
2358                 if (rxq->sw_ring[i].mbuf) {
2359                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2360                         rxq->sw_ring[i].mbuf = NULL;
2361                 }
2362         }
2363 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2364         if (rxq->rx_nb_avail == 0)
2365                 return;
2366         for (i = 0; i < rxq->rx_nb_avail; i++) {
2367                 struct rte_mbuf *mbuf;
2368
2369                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2370                 rte_pktmbuf_free_seg(mbuf);
2371         }
2372         rxq->rx_nb_avail = 0;
2373 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2374 }
2375
2376 void
2377 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2378 {
2379         unsigned i;
2380         uint16_t len;
2381
2382         if (!rxq) {
2383                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2384                 return;
2385         }
2386
2387 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2388         if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2389                 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2390         else
2391 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2392                 len = rxq->nb_rx_desc;
2393
2394         for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2395                 ((volatile char *)rxq->rx_ring)[i] = 0;
2396
2397         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2398         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2399                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2400
2401 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2402         rxq->rx_nb_avail = 0;
2403         rxq->rx_next_avail = 0;
2404         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2405 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2406         rxq->rx_tail = 0;
2407         rxq->nb_rx_hold = 0;
2408         rxq->pkt_first_seg = NULL;
2409         rxq->pkt_last_seg = NULL;
2410
2411         rxq->rxrearm_start = 0;
2412         rxq->rxrearm_nb = 0;
2413 }
2414
2415 void
2416 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2417 {
2418         struct rte_eth_dev *dev;
2419         uint16_t i;
2420
2421         dev = &rte_eth_devices[txq->port_id];
2422
2423         if (!txq || !txq->sw_ring) {
2424                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2425                 return;
2426         }
2427
2428         /**
2429          *  vPMD tx will not set sw_ring's mbuf to NULL after free,
2430          *  so need to free remains more carefully.
2431          */
2432         if (dev->tx_pkt_burst == i40e_xmit_pkts_vec_avx2 ||
2433                         dev->tx_pkt_burst == i40e_xmit_pkts_vec) {
2434                 i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
2435                 if (txq->tx_tail < i) {
2436                         for (; i < txq->nb_tx_desc; i++) {
2437                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2438                                 txq->sw_ring[i].mbuf = NULL;
2439                         }
2440                         i = 0;
2441                 }
2442                 for (; i < txq->tx_tail; i++) {
2443                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2444                         txq->sw_ring[i].mbuf = NULL;
2445                 }
2446         } else {
2447                 for (i = 0; i < txq->nb_tx_desc; i++) {
2448                         if (txq->sw_ring[i].mbuf) {
2449                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2450                                 txq->sw_ring[i].mbuf = NULL;
2451                         }
2452                 }
2453         }
2454 }
2455
2456 void
2457 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2458 {
2459         struct i40e_tx_entry *txe;
2460         uint16_t i, prev, size;
2461
2462         if (!txq) {
2463                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2464                 return;
2465         }
2466
2467         txe = txq->sw_ring;
2468         size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2469         for (i = 0; i < size; i++)
2470                 ((volatile char *)txq->tx_ring)[i] = 0;
2471
2472         prev = (uint16_t)(txq->nb_tx_desc - 1);
2473         for (i = 0; i < txq->nb_tx_desc; i++) {
2474                 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2475
2476                 txd->cmd_type_offset_bsz =
2477                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2478                 txe[i].mbuf =  NULL;
2479                 txe[i].last_id = i;
2480                 txe[prev].next_id = i;
2481                 prev = i;
2482         }
2483
2484         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2485         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2486
2487         txq->tx_tail = 0;
2488         txq->nb_tx_used = 0;
2489
2490         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2491         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2492 }
2493
2494 /* Init the TX queue in hardware */
2495 int
2496 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2497 {
2498         enum i40e_status_code err = I40E_SUCCESS;
2499         struct i40e_vsi *vsi = txq->vsi;
2500         struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2501         uint16_t pf_q = txq->reg_idx;
2502         struct i40e_hmc_obj_txq tx_ctx;
2503         uint32_t qtx_ctl;
2504
2505         /* clear the context structure first */
2506         memset(&tx_ctx, 0, sizeof(tx_ctx));
2507         tx_ctx.new_context = 1;
2508         tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2509         tx_ctx.qlen = txq->nb_tx_desc;
2510
2511 #ifdef RTE_LIBRTE_IEEE1588
2512         tx_ctx.timesync_ena = 1;
2513 #endif
2514         tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2515         if (vsi->type == I40E_VSI_FDIR)
2516                 tx_ctx.fd_ena = TRUE;
2517
2518         err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2519         if (err != I40E_SUCCESS) {
2520                 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2521                 return err;
2522         }
2523
2524         err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2525         if (err != I40E_SUCCESS) {
2526                 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2527                 return err;
2528         }
2529
2530         /* Now associate this queue with this PCI function */
2531         qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2532         qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2533                                         I40E_QTX_CTL_PF_INDX_MASK);
2534         I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2535         I40E_WRITE_FLUSH(hw);
2536
2537         txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2538
2539         return err;
2540 }
2541
2542 int
2543 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2544 {
2545         struct i40e_rx_entry *rxe = rxq->sw_ring;
2546         uint64_t dma_addr;
2547         uint16_t i;
2548
2549         for (i = 0; i < rxq->nb_rx_desc; i++) {
2550                 volatile union i40e_rx_desc *rxd;
2551                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
2552
2553                 if (unlikely(!mbuf)) {
2554                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2555                         return -ENOMEM;
2556                 }
2557
2558                 rte_mbuf_refcnt_set(mbuf, 1);
2559                 mbuf->next = NULL;
2560                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2561                 mbuf->nb_segs = 1;
2562                 mbuf->port = rxq->port_id;
2563
2564                 dma_addr =
2565                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2566
2567                 rxd = &rxq->rx_ring[i];
2568                 rxd->read.pkt_addr = dma_addr;
2569                 rxd->read.hdr_addr = 0;
2570 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2571                 rxd->read.rsvd1 = 0;
2572                 rxd->read.rsvd2 = 0;
2573 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2574
2575                 rxe[i].mbuf = mbuf;
2576         }
2577
2578         return 0;
2579 }
2580
2581 /*
2582  * Calculate the buffer length, and check the jumbo frame
2583  * and maximum packet length.
2584  */
2585 static int
2586 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2587 {
2588         struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2589         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2590         struct rte_eth_dev_data *data = pf->dev_data;
2591         uint16_t buf_size, len;
2592
2593         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2594                 RTE_PKTMBUF_HEADROOM);
2595
2596         switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2597                         I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2598         case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2599                 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2600                                 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2601                 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2602                                 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2603                 rxq->hs_mode = i40e_header_split_enabled;
2604                 break;
2605         case I40E_FLAG_HEADER_SPLIT_DISABLED:
2606         default:
2607                 rxq->rx_hdr_len = 0;
2608                 rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size,
2609                         (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2610                 rxq->hs_mode = i40e_header_split_none;
2611                 break;
2612         }
2613
2614         len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
2615         rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
2616         if (data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2617                 if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
2618                         rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2619                         PMD_DRV_LOG(ERR, "maximum packet length must "
2620                                     "be larger than %u and smaller than %u,"
2621                                     "as jumbo frame is enabled",
2622                                     (uint32_t)ETHER_MAX_LEN,
2623                                     (uint32_t)I40E_FRAME_SIZE_MAX);
2624                         return I40E_ERR_CONFIG;
2625                 }
2626         } else {
2627                 if (rxq->max_pkt_len < ETHER_MIN_LEN ||
2628                         rxq->max_pkt_len > ETHER_MAX_LEN) {
2629                         PMD_DRV_LOG(ERR, "maximum packet length must be "
2630                                     "larger than %u and smaller than %u, "
2631                                     "as jumbo frame is disabled",
2632                                     (uint32_t)ETHER_MIN_LEN,
2633                                     (uint32_t)ETHER_MAX_LEN);
2634                         return I40E_ERR_CONFIG;
2635                 }
2636         }
2637
2638         return 0;
2639 }
2640
2641 /* Init the RX queue in hardware */
2642 int
2643 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2644 {
2645         int err = I40E_SUCCESS;
2646         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2647         struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2648         uint16_t pf_q = rxq->reg_idx;
2649         uint16_t buf_size;
2650         struct i40e_hmc_obj_rxq rx_ctx;
2651
2652         err = i40e_rx_queue_config(rxq);
2653         if (err < 0) {
2654                 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2655                 return err;
2656         }
2657
2658         /* Clear the context structure first */
2659         memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2660         rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2661         rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2662
2663         rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2664         rx_ctx.qlen = rxq->nb_rx_desc;
2665 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2666         rx_ctx.dsize = 1;
2667 #endif
2668         rx_ctx.dtype = rxq->hs_mode;
2669         if (rxq->hs_mode)
2670                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2671         else
2672                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2673         rx_ctx.rxmax = rxq->max_pkt_len;
2674         rx_ctx.tphrdesc_ena = 1;
2675         rx_ctx.tphwdesc_ena = 1;
2676         rx_ctx.tphdata_ena = 1;
2677         rx_ctx.tphhead_ena = 1;
2678         rx_ctx.lrxqthresh = 2;
2679         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2680         rx_ctx.l2tsel = 1;
2681         /* showiv indicates if inner VLAN is stripped inside of tunnel
2682          * packet. When set it to 1, vlan information is stripped from
2683          * the inner header, but the hardware does not put it in the
2684          * descriptor. So set it zero by default.
2685          */
2686         rx_ctx.showiv = 0;
2687         rx_ctx.prefena = 1;
2688
2689         err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2690         if (err != I40E_SUCCESS) {
2691                 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2692                 return err;
2693         }
2694         err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2695         if (err != I40E_SUCCESS) {
2696                 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2697                 return err;
2698         }
2699
2700         rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2701
2702         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2703                 RTE_PKTMBUF_HEADROOM);
2704
2705         /* Check if scattered RX needs to be used. */
2706         if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
2707                 dev_data->scattered_rx = 1;
2708         }
2709
2710         /* Init the RX tail regieter. */
2711         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2712
2713         return 0;
2714 }
2715
2716 void
2717 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2718 {
2719         uint16_t i;
2720
2721         PMD_INIT_FUNC_TRACE();
2722
2723         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2724                 if (!dev->data->tx_queues[i])
2725                         continue;
2726                 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2727                 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2728         }
2729
2730         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2731                 if (!dev->data->rx_queues[i])
2732                         continue;
2733                 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2734                 i40e_reset_rx_queue(dev->data->rx_queues[i]);
2735         }
2736 }
2737
2738 void
2739 i40e_dev_free_queues(struct rte_eth_dev *dev)
2740 {
2741         uint16_t i;
2742
2743         PMD_INIT_FUNC_TRACE();
2744
2745         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2746                 if (!dev->data->rx_queues[i])
2747                         continue;
2748                 i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
2749                 dev->data->rx_queues[i] = NULL;
2750         }
2751         dev->data->nb_rx_queues = 0;
2752
2753         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2754                 if (!dev->data->tx_queues[i])
2755                         continue;
2756                 i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
2757                 dev->data->tx_queues[i] = NULL;
2758         }
2759         dev->data->nb_tx_queues = 0;
2760 }
2761
2762 #define I40E_FDIR_NUM_TX_DESC  I40E_MIN_RING_DESC
2763 #define I40E_FDIR_NUM_RX_DESC  I40E_MIN_RING_DESC
2764
2765 enum i40e_status_code
2766 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
2767 {
2768         struct i40e_tx_queue *txq;
2769         const struct rte_memzone *tz = NULL;
2770         uint32_t ring_size;
2771         struct rte_eth_dev *dev;
2772
2773         if (!pf) {
2774                 PMD_DRV_LOG(ERR, "PF is not available");
2775                 return I40E_ERR_BAD_PTR;
2776         }
2777
2778         dev = pf->adapter->eth_dev;
2779
2780         /* Allocate the TX queue data structure. */
2781         txq = rte_zmalloc_socket("i40e fdir tx queue",
2782                                   sizeof(struct i40e_tx_queue),
2783                                   RTE_CACHE_LINE_SIZE,
2784                                   SOCKET_ID_ANY);
2785         if (!txq) {
2786                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2787                                         "tx queue structure.");
2788                 return I40E_ERR_NO_MEMORY;
2789         }
2790
2791         /* Allocate TX hardware ring descriptors. */
2792         ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
2793         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2794
2795         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2796                                       I40E_FDIR_QUEUE_ID, ring_size,
2797                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2798         if (!tz) {
2799                 i40e_dev_tx_queue_release(txq);
2800                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2801                 return I40E_ERR_NO_MEMORY;
2802         }
2803
2804         txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
2805         txq->queue_id = I40E_FDIR_QUEUE_ID;
2806         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2807         txq->vsi = pf->fdir.fdir_vsi;
2808
2809         txq->tx_ring_phys_addr = tz->iova;
2810         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2811         /*
2812          * don't need to allocate software ring and reset for the fdir
2813          * program queue just set the queue has been configured.
2814          */
2815         txq->q_set = TRUE;
2816         pf->fdir.txq = txq;
2817
2818         return I40E_SUCCESS;
2819 }
2820
2821 enum i40e_status_code
2822 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
2823 {
2824         struct i40e_rx_queue *rxq;
2825         const struct rte_memzone *rz = NULL;
2826         uint32_t ring_size;
2827         struct rte_eth_dev *dev;
2828
2829         if (!pf) {
2830                 PMD_DRV_LOG(ERR, "PF is not available");
2831                 return I40E_ERR_BAD_PTR;
2832         }
2833
2834         dev = pf->adapter->eth_dev;
2835
2836         /* Allocate the RX queue data structure. */
2837         rxq = rte_zmalloc_socket("i40e fdir rx queue",
2838                                   sizeof(struct i40e_rx_queue),
2839                                   RTE_CACHE_LINE_SIZE,
2840                                   SOCKET_ID_ANY);
2841         if (!rxq) {
2842                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2843                                         "rx queue structure.");
2844                 return I40E_ERR_NO_MEMORY;
2845         }
2846
2847         /* Allocate RX hardware ring descriptors. */
2848         ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
2849         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2850
2851         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2852                                       I40E_FDIR_QUEUE_ID, ring_size,
2853                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2854         if (!rz) {
2855                 i40e_dev_rx_queue_release(rxq);
2856                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2857                 return I40E_ERR_NO_MEMORY;
2858         }
2859
2860         rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
2861         rxq->queue_id = I40E_FDIR_QUEUE_ID;
2862         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2863         rxq->vsi = pf->fdir.fdir_vsi;
2864
2865         rxq->rx_ring_phys_addr = rz->iova;
2866         memset(rz->addr, 0, I40E_FDIR_NUM_RX_DESC * sizeof(union i40e_rx_desc));
2867         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2868
2869         /*
2870          * Don't need to allocate software ring and reset for the fdir
2871          * rx queue, just set the queue has been configured.
2872          */
2873         rxq->q_set = TRUE;
2874         pf->fdir.rxq = rxq;
2875
2876         return I40E_SUCCESS;
2877 }
2878
2879 void
2880 i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2881         struct rte_eth_rxq_info *qinfo)
2882 {
2883         struct i40e_rx_queue *rxq;
2884
2885         rxq = dev->data->rx_queues[queue_id];
2886
2887         qinfo->mp = rxq->mp;
2888         qinfo->scattered_rx = dev->data->scattered_rx;
2889         qinfo->nb_desc = rxq->nb_rx_desc;
2890
2891         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2892         qinfo->conf.rx_drop_en = rxq->drop_en;
2893         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2894         qinfo->conf.offloads = rxq->offloads;
2895 }
2896
2897 void
2898 i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2899         struct rte_eth_txq_info *qinfo)
2900 {
2901         struct i40e_tx_queue *txq;
2902
2903         txq = dev->data->tx_queues[queue_id];
2904
2905         qinfo->nb_desc = txq->nb_tx_desc;
2906
2907         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2908         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2909         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2910
2911         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2912         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
2913         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2914         qinfo->conf.offloads = txq->offloads;
2915 }
2916
2917 static eth_rx_burst_t
2918 i40e_get_latest_rx_vec(bool scatter)
2919 {
2920 #ifdef RTE_ARCH_X86
2921         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
2922                 return scatter ? i40e_recv_scattered_pkts_vec_avx2 :
2923                                  i40e_recv_pkts_vec_avx2;
2924 #endif
2925         return scatter ? i40e_recv_scattered_pkts_vec :
2926                          i40e_recv_pkts_vec;
2927 }
2928
2929 static eth_rx_burst_t
2930 i40e_get_recommend_rx_vec(bool scatter)
2931 {
2932 #ifdef RTE_ARCH_X86
2933         /*
2934          * since AVX frequency can be different to base frequency, limit
2935          * use of AVX2 version to later plaforms, not all those that could
2936          * theoretically run it.
2937          */
2938         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
2939                 return scatter ? i40e_recv_scattered_pkts_vec_avx2 :
2940                                  i40e_recv_pkts_vec_avx2;
2941 #endif
2942         return scatter ? i40e_recv_scattered_pkts_vec :
2943                          i40e_recv_pkts_vec;
2944 }
2945
2946 void __attribute__((cold))
2947 i40e_set_rx_function(struct rte_eth_dev *dev)
2948 {
2949         struct i40e_adapter *ad =
2950                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2951         uint16_t rx_using_sse, i;
2952         /* In order to allow Vector Rx there are a few configuration
2953          * conditions to be met and Rx Bulk Allocation should be allowed.
2954          */
2955         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2956                 if (i40e_rx_vec_dev_conf_condition_check(dev) ||
2957                     !ad->rx_bulk_alloc_allowed) {
2958                         PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
2959                                      " Vector Rx preconditions",
2960                                      dev->data->port_id);
2961
2962                         ad->rx_vec_allowed = false;
2963                 }
2964                 if (ad->rx_vec_allowed) {
2965                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2966                                 struct i40e_rx_queue *rxq =
2967                                         dev->data->rx_queues[i];
2968
2969                                 if (rxq && i40e_rxq_vec_setup(rxq)) {
2970                                         ad->rx_vec_allowed = false;
2971                                         break;
2972                                 }
2973                         }
2974                 }
2975         }
2976
2977         if (ad->rx_vec_allowed) {
2978                 /* Vec Rx path */
2979                 PMD_INIT_LOG(DEBUG, "Vector Rx path will be used on port=%d.",
2980                                 dev->data->port_id);
2981                 if (ad->use_latest_vec)
2982                         dev->rx_pkt_burst =
2983                         i40e_get_latest_rx_vec(dev->data->scattered_rx);
2984                 else
2985                         dev->rx_pkt_burst =
2986                         i40e_get_recommend_rx_vec(dev->data->scattered_rx);
2987         } else if (!dev->data->scattered_rx && ad->rx_bulk_alloc_allowed) {
2988                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2989                                     "satisfied. Rx Burst Bulk Alloc function "
2990                                     "will be used on port=%d.",
2991                              dev->data->port_id);
2992
2993                 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
2994         } else {
2995                 /* Simple Rx Path. */
2996                 PMD_INIT_LOG(DEBUG, "Simple Rx path will be used on port=%d.",
2997                              dev->data->port_id);
2998                 dev->rx_pkt_burst = dev->data->scattered_rx ?
2999                                         i40e_recv_scattered_pkts :
3000                                         i40e_recv_pkts;
3001         }
3002
3003         /* Propagate information about RX function choice through all queues. */
3004         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3005                 rx_using_sse =
3006                         (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
3007                          dev->rx_pkt_burst == i40e_recv_pkts_vec ||
3008                          dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
3009                          dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2);
3010
3011                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
3012                         struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
3013
3014                         if (rxq)
3015                                 rxq->rx_using_sse = rx_using_sse;
3016                 }
3017         }
3018 }
3019
3020 void __attribute__((cold))
3021 i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
3022 {
3023         struct i40e_adapter *ad =
3024                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3025
3026         /* Use a simple Tx queue if possible (only fast free is allowed) */
3027         ad->tx_simple_allowed =
3028                 (txq->offloads ==
3029                  (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
3030                  txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST);
3031         ad->tx_vec_allowed = (ad->tx_simple_allowed &&
3032                         txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ);
3033
3034         if (ad->tx_vec_allowed)
3035                 PMD_INIT_LOG(DEBUG, "Vector Tx can be enabled on Tx queue %u.",
3036                                 txq->queue_id);
3037         else if (ad->tx_simple_allowed)
3038                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3039                                 txq->queue_id);
3040         else
3041                 PMD_INIT_LOG(DEBUG,
3042                                 "Neither simple nor vector Tx enabled on Tx queue %u\n",
3043                                 txq->queue_id);
3044 }
3045
3046 static eth_tx_burst_t
3047 i40e_get_latest_tx_vec(void)
3048 {
3049 #ifdef RTE_ARCH_X86
3050         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
3051                 return i40e_xmit_pkts_vec_avx2;
3052 #endif
3053         return i40e_xmit_pkts_vec;
3054 }
3055
3056 static eth_tx_burst_t
3057 i40e_get_recommend_tx_vec(void)
3058 {
3059 #ifdef RTE_ARCH_X86
3060         /*
3061          * since AVX frequency can be different to base frequency, limit
3062          * use of AVX2 version to later plaforms, not all those that could
3063          * theoretically run it.
3064          */
3065         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
3066                 return i40e_xmit_pkts_vec_avx2;
3067 #endif
3068         return i40e_xmit_pkts_vec;
3069 }
3070
3071 void __attribute__((cold))
3072 i40e_set_tx_function(struct rte_eth_dev *dev)
3073 {
3074         struct i40e_adapter *ad =
3075                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3076         int i;
3077
3078         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3079                 if (ad->tx_vec_allowed) {
3080                         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3081                                 struct i40e_tx_queue *txq =
3082                                         dev->data->tx_queues[i];
3083
3084                                 if (txq && i40e_txq_vec_setup(txq)) {
3085                                         ad->tx_vec_allowed = false;
3086                                         break;
3087                                 }
3088                         }
3089                 }
3090         }
3091
3092         if (ad->tx_simple_allowed) {
3093                 if (ad->tx_vec_allowed) {
3094                         PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
3095                         if (ad->use_latest_vec)
3096                                 dev->tx_pkt_burst =
3097                                         i40e_get_latest_tx_vec();
3098                         else
3099                                 dev->tx_pkt_burst =
3100                                         i40e_get_recommend_tx_vec();
3101                 } else {
3102                         PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3103                         dev->tx_pkt_burst = i40e_xmit_pkts_simple;
3104                 }
3105                 dev->tx_pkt_prepare = NULL;
3106         } else {
3107                 PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
3108                 dev->tx_pkt_burst = i40e_xmit_pkts;
3109                 dev->tx_pkt_prepare = i40e_prep_pkts;
3110         }
3111 }
3112
3113 void __attribute__((cold))
3114 i40e_set_default_ptype_table(struct rte_eth_dev *dev)
3115 {
3116         struct i40e_adapter *ad =
3117                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3118         int i;
3119
3120         for (i = 0; i < I40E_MAX_PKT_TYPE; i++)
3121                 ad->ptype_tbl[i] = i40e_get_default_pkt_type(i);
3122 }
3123
3124 void __attribute__((cold))
3125 i40e_set_default_pctype_table(struct rte_eth_dev *dev)
3126 {
3127         struct i40e_adapter *ad =
3128                         I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3129         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3130         int i;
3131
3132         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++)
3133                 ad->pctypes_tbl[i] = 0ULL;
3134         ad->flow_types_mask = 0ULL;
3135         ad->pctypes_mask = 0ULL;
3136
3137         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV4] =
3138                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4);
3139         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] =
3140                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
3141         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] =
3142                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
3143         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] =
3144                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
3145         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] =
3146                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER);
3147         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV6] =
3148                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6);
3149         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] =
3150                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
3151         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] =
3152                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
3153         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] =
3154                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
3155         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] =
3156                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER);
3157         ad->pctypes_tbl[RTE_ETH_FLOW_L2_PAYLOAD] =
3158                                 (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
3159
3160         if (hw->mac.type == I40E_MAC_X722) {
3161                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3162                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP);
3163                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3164                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP);
3165                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] |=
3166                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK);
3167                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3168                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP);
3169                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3170                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP);
3171                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] |=
3172                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
3173         }
3174
3175         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++) {
3176                 if (ad->pctypes_tbl[i])
3177                         ad->flow_types_mask |= (1ULL << i);
3178                 ad->pctypes_mask |= ad->pctypes_tbl[i];
3179         }
3180 }
3181
3182 /* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */
3183 __rte_weak int
3184 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
3185 {
3186         return -1;
3187 }
3188
3189 __rte_weak uint16_t
3190 i40e_recv_pkts_vec(
3191         void __rte_unused *rx_queue,
3192         struct rte_mbuf __rte_unused **rx_pkts,
3193         uint16_t __rte_unused nb_pkts)
3194 {
3195         return 0;
3196 }
3197
3198 __rte_weak uint16_t
3199 i40e_recv_scattered_pkts_vec(
3200         void __rte_unused *rx_queue,
3201         struct rte_mbuf __rte_unused **rx_pkts,
3202         uint16_t __rte_unused nb_pkts)
3203 {
3204         return 0;
3205 }
3206
3207 __rte_weak uint16_t
3208 i40e_recv_pkts_vec_avx2(void __rte_unused *rx_queue,
3209                         struct rte_mbuf __rte_unused **rx_pkts,
3210                         uint16_t __rte_unused nb_pkts)
3211 {
3212         return 0;
3213 }
3214
3215 __rte_weak uint16_t
3216 i40e_recv_scattered_pkts_vec_avx2(void __rte_unused *rx_queue,
3217                         struct rte_mbuf __rte_unused **rx_pkts,
3218                         uint16_t __rte_unused nb_pkts)
3219 {
3220         return 0;
3221 }
3222
3223 __rte_weak int
3224 i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
3225 {
3226         return -1;
3227 }
3228
3229 __rte_weak int
3230 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
3231 {
3232         return -1;
3233 }
3234
3235 __rte_weak void
3236 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
3237 {
3238         return;
3239 }
3240
3241 __rte_weak uint16_t
3242 i40e_xmit_fixed_burst_vec(void __rte_unused * tx_queue,
3243                           struct rte_mbuf __rte_unused **tx_pkts,
3244                           uint16_t __rte_unused nb_pkts)
3245 {
3246         return 0;
3247 }
3248
3249 __rte_weak uint16_t
3250 i40e_xmit_pkts_vec_avx2(void __rte_unused * tx_queue,
3251                           struct rte_mbuf __rte_unused **tx_pkts,
3252                           uint16_t __rte_unused nb_pkts)
3253 {
3254         return 0;
3255 }