Imported Upstream version 16.07-rc1
[deb_dpdk.git] / drivers / net / i40e / i40e_rxtx_vec.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <rte_ethdev.h>
36 #include <rte_malloc.h>
37
38 #include "base/i40e_prototype.h"
39 #include "base/i40e_type.h"
40 #include "i40e_ethdev.h"
41 #include "i40e_rxtx.h"
42
43 #include <tmmintrin.h>
44
45 #ifndef __INTEL_COMPILER
46 #pragma GCC diagnostic ignored "-Wcast-qual"
47 #endif
48
49 static inline void
50 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
51 {
52         int i;
53         uint16_t rx_id;
54         volatile union i40e_rx_desc *rxdp;
55         struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
56         struct rte_mbuf *mb0, *mb1;
57         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
58                         RTE_PKTMBUF_HEADROOM);
59         __m128i dma_addr0, dma_addr1;
60
61         rxdp = rxq->rx_ring + rxq->rxrearm_start;
62
63         /* Pull 'n' more MBUFs into the software ring */
64         if (rte_mempool_get_bulk(rxq->mp,
65                                  (void *)rxep,
66                                  RTE_I40E_RXQ_REARM_THRESH) < 0) {
67                 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
68                     rxq->nb_rx_desc) {
69                         dma_addr0 = _mm_setzero_si128();
70                         for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
71                                 rxep[i].mbuf = &rxq->fake_mbuf;
72                                 _mm_store_si128((__m128i *)&rxdp[i].read,
73                                                 dma_addr0);
74                         }
75                 }
76                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
77                         RTE_I40E_RXQ_REARM_THRESH;
78                 return;
79         }
80
81         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
82         for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
83                 __m128i vaddr0, vaddr1;
84                 uintptr_t p0, p1;
85
86                 mb0 = rxep[0].mbuf;
87                 mb1 = rxep[1].mbuf;
88
89                  /* Flush mbuf with pkt template.
90                  * Data to be rearmed is 6 bytes long.
91                  * Though, RX will overwrite ol_flags that are coming next
92                  * anyway. So overwrite whole 8 bytes with one load:
93                  * 6 bytes of rearm_data plus first 2 bytes of ol_flags.
94                  */
95                 p0 = (uintptr_t)&mb0->rearm_data;
96                 *(uint64_t *)p0 = rxq->mbuf_initializer;
97                 p1 = (uintptr_t)&mb1->rearm_data;
98                 *(uint64_t *)p1 = rxq->mbuf_initializer;
99
100                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
101                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
102                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
103
104                 /* convert pa to dma_addr hdr/data */
105                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
106                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
107
108                 /* add headroom to pa values */
109                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
110                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
111
112                 /* flush desc with pa dma_addr */
113                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
114                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
115         }
116
117         rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
118         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
119                 rxq->rxrearm_start = 0;
120
121         rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
122
123         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
124                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
125
126         /* Update the tail pointer on the NIC */
127         I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
128 }
129
130 /* Handling the offload flags (olflags) field takes computation
131  * time when receiving packets. Therefore we provide a flag to disable
132  * the processing of the olflags field when they are not needed. This
133  * gives improved performance, at the cost of losing the offload info
134  * in the received packet
135  */
136 #ifdef RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE
137
138 static inline void
139 desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
140 {
141         __m128i vlan0, vlan1, rss;
142         union {
143                 uint16_t e[4];
144                 uint64_t dword;
145         } vol;
146
147         /* mask everything except RSS, flow director and VLAN flags
148          * bit2 is for VLAN tag, bit11 for flow director indication
149          * bit13:12 for RSS indication.
150          */
151         const __m128i rss_vlan_msk = _mm_set_epi16(
152                         0x0000, 0x0000, 0x0000, 0x0000,
153                         0x3804, 0x3804, 0x3804, 0x3804);
154
155         /* map rss and vlan type to rss hash and vlan flag */
156         const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
157                         0, 0, 0, 0,
158                         0, 0, 0, PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
159                         0, 0, 0, 0);
160
161         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
162                         0, 0, 0, 0,
163                         PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
164                         0, 0, PKT_RX_FDIR, 0);
165
166         vlan0 = _mm_unpackhi_epi16(descs[0], descs[1]);
167         vlan1 = _mm_unpackhi_epi16(descs[2], descs[3]);
168         vlan0 = _mm_unpacklo_epi32(vlan0, vlan1);
169
170         vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
171         vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
172
173         rss = _mm_srli_epi16(vlan1, 11);
174         rss = _mm_shuffle_epi8(rss_flags, rss);
175
176         vlan0 = _mm_or_si128(vlan0, rss);
177         vol.dword = _mm_cvtsi128_si64(vlan0);
178
179         rx_pkts[0]->ol_flags = vol.e[0];
180         rx_pkts[1]->ol_flags = vol.e[1];
181         rx_pkts[2]->ol_flags = vol.e[2];
182         rx_pkts[3]->ol_flags = vol.e[3];
183 }
184 #else
185 #define desc_to_olflags_v(desc, rx_pkts) do {} while (0)
186 #endif
187
188 #define PKTLEN_SHIFT     10
189
190  /*
191  * Notice:
192  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
193  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
194  *   numbers of DD bits
195  */
196 static inline uint16_t
197 _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
198                    uint16_t nb_pkts, uint8_t *split_packet)
199 {
200         volatile union i40e_rx_desc *rxdp;
201         struct i40e_rx_entry *sw_ring;
202         uint16_t nb_pkts_recd;
203         int pos;
204         uint64_t var;
205         __m128i shuf_msk;
206
207         __m128i crc_adjust = _mm_set_epi16(
208                                 0, 0, 0,    /* ignore non-length fields */
209                                 -rxq->crc_len, /* sub crc on data_len */
210                                 0,          /* ignore high-16bits of pkt_len */
211                                 -rxq->crc_len, /* sub crc on pkt_len */
212                                 0, 0            /* ignore pkt_type field */
213                         );
214         __m128i dd_check, eop_check;
215
216         /* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
217         nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);
218
219         /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
220         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
221
222         /* Just the act of getting into the function from the application is
223          * going to cost about 7 cycles
224          */
225         rxdp = rxq->rx_ring + rxq->rx_tail;
226
227         _mm_prefetch((const void *)rxdp, _MM_HINT_T0);
228
229         /* See if we need to rearm the RX queue - gives the prefetch a bit
230          * of time to act
231          */
232         if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
233                 i40e_rxq_rearm(rxq);
234
235         /* Before we start moving massive data around, check to see if
236          * there is actually a packet available
237          */
238         if (!(rxdp->wb.qword1.status_error_len &
239                         rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
240                 return 0;
241
242         /* 4 packets DD mask */
243         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
244
245         /* 4 packets EOP mask */
246         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
247
248         /* mask to shuffle from desc. to mbuf */
249         shuf_msk = _mm_set_epi8(
250                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
251                 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
252                 15, 14,      /* octet 15~14, 16 bits data_len */
253                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
254                 15, 14,      /* octet 15~14, low 16 bits pkt_len */
255                 0xFF, 0xFF,  /* pkt_type set as unknown */
256                 0xFF, 0xFF  /*pkt_type set as unknown */
257                 );
258
259         /* Cache is empty -> need to scan the buffer rings, but first move
260          * the next 'n' mbufs into the cache
261          */
262         sw_ring = &rxq->sw_ring[rxq->rx_tail];
263
264         /* A. load 4 packet in one loop
265          * [A*. mask out 4 unused dirty field in desc]
266          * B. copy 4 mbuf point from swring to rx_pkts
267          * C. calc the number of DD bits among the 4 packets
268          * [C*. extract the end-of-packet bit, if requested]
269          * D. fill info. from desc to mbuf
270          */
271
272         for (pos = 0, nb_pkts_recd = 0; pos < RTE_I40E_VPMD_RX_BURST;
273                         pos += RTE_I40E_DESCS_PER_LOOP,
274                         rxdp += RTE_I40E_DESCS_PER_LOOP) {
275                 __m128i descs[RTE_I40E_DESCS_PER_LOOP];
276                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
277                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
278                 __m128i mbp1, mbp2; /* two mbuf pointer in one XMM reg. */
279
280                 /* B.1 load 1 mbuf point */
281                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
282                 /* Read desc statuses backwards to avoid race condition */
283                 /* A.1 load 4 pkts desc */
284                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
285
286                 /* B.2 copy 2 mbuf point into rx_pkts  */
287                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
288
289                 /* B.1 load 1 mbuf point */
290                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
291
292                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
293                 /* B.1 load 2 mbuf point */
294                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
295                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
296
297                 /* B.2 copy 2 mbuf point into rx_pkts  */
298                 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
299
300                 if (split_packet) {
301                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
302                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
303                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
304                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
305                 }
306
307                 /* avoid compiler reorder optimization */
308                 rte_compiler_barrier();
309
310                 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
311                 const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
312                 const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
313
314                 /* merge the now-aligned packet length fields back in */
315                 descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
316                 descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
317
318                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
319                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
320                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
321
322                 /* C.1 4=>2 filter staterr info only */
323                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
324                 /* C.1 4=>2 filter staterr info only */
325                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
326
327                 desc_to_olflags_v(descs, &rx_pkts[pos]);
328
329                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
330                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
331                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
332
333                 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
334                 const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
335                 const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
336
337                 /* merge the now-aligned packet length fields back in */
338                 descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
339                 descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
340
341                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
342                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
343                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
344
345                 /* C.2 get 4 pkts staterr value  */
346                 zero = _mm_xor_si128(dd_check, dd_check);
347                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
348
349                 /* D.3 copy final 3,4 data to rx_pkts */
350                 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
351                                  pkt_mb4);
352                 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
353                                  pkt_mb3);
354
355                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
356                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
357                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
358
359                 /* C* extract and record EOP bit */
360                 if (split_packet) {
361                         __m128i eop_shuf_mask = _mm_set_epi8(
362                                         0xFF, 0xFF, 0xFF, 0xFF,
363                                         0xFF, 0xFF, 0xFF, 0xFF,
364                                         0xFF, 0xFF, 0xFF, 0xFF,
365                                         0x04, 0x0C, 0x00, 0x08
366                                         );
367
368                         /* and with mask to extract bits, flipping 1-0 */
369                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
370                         /* the staterr values are not in order, as the count
371                          * count of dd bits doesn't care. However, for end of
372                          * packet tracking, we do care, so shuffle. This also
373                          * compresses the 32-bit values to 8-bit
374                          */
375                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
376                         /* store the resulting 32-bit value */
377                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
378                         split_packet += RTE_I40E_DESCS_PER_LOOP;
379
380                         /* zero-out next pointers */
381                         rx_pkts[pos]->next = NULL;
382                         rx_pkts[pos + 1]->next = NULL;
383                         rx_pkts[pos + 2]->next = NULL;
384                         rx_pkts[pos + 3]->next = NULL;
385                 }
386
387                 /* C.3 calc available number of desc */
388                 staterr = _mm_and_si128(staterr, dd_check);
389                 staterr = _mm_packs_epi32(staterr, zero);
390
391                 /* D.3 copy final 1,2 data to rx_pkts */
392                 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
393                                  pkt_mb2);
394                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
395                                  pkt_mb1);
396                 /* C.4 calc avaialbe number of desc */
397                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
398                 nb_pkts_recd += var;
399                 if (likely(var != RTE_I40E_DESCS_PER_LOOP))
400                         break;
401         }
402
403         /* Update our internal tail pointer */
404         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
405         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
406         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
407
408         return nb_pkts_recd;
409 }
410
411  /*
412  * Notice:
413  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
414  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
415  *   numbers of DD bits
416  */
417 uint16_t
418 i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
419                    uint16_t nb_pkts)
420 {
421         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
422 }
423
424 static inline uint16_t
425 reassemble_packets(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_bufs,
426                    uint16_t nb_bufs, uint8_t *split_flags)
427 {
428         struct rte_mbuf *pkts[RTE_I40E_VPMD_RX_BURST]; /*finished pkts*/
429         struct rte_mbuf *start = rxq->pkt_first_seg;
430         struct rte_mbuf *end =  rxq->pkt_last_seg;
431         unsigned pkt_idx, buf_idx;
432
433         for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
434                 if (end != NULL) {
435                         /* processing a split packet */
436                         end->next = rx_bufs[buf_idx];
437                         rx_bufs[buf_idx]->data_len += rxq->crc_len;
438
439                         start->nb_segs++;
440                         start->pkt_len += rx_bufs[buf_idx]->data_len;
441                         end = end->next;
442
443                         if (!split_flags[buf_idx]) {
444                                 /* it's the last packet of the set */
445                                 start->hash = end->hash;
446                                 start->ol_flags = end->ol_flags;
447                                 /* we need to strip crc for the whole packet */
448                                 start->pkt_len -= rxq->crc_len;
449                                 if (end->data_len > rxq->crc_len) {
450                                         end->data_len -= rxq->crc_len;
451                                 } else {
452                                         /* free up last mbuf */
453                                         struct rte_mbuf *secondlast = start;
454
455                                         while (secondlast->next != end)
456                                                 secondlast = secondlast->next;
457                                         secondlast->data_len -= (rxq->crc_len -
458                                                         end->data_len);
459                                         secondlast->next = NULL;
460                                         rte_pktmbuf_free_seg(end);
461                                         end = secondlast;
462                                 }
463                                 pkts[pkt_idx++] = start;
464                                 start = end = NULL;
465                         }
466                 } else {
467                         /* not processing a split packet */
468                         if (!split_flags[buf_idx]) {
469                                 /* not a split packet, save and skip */
470                                 pkts[pkt_idx++] = rx_bufs[buf_idx];
471                                 continue;
472                         }
473                         end = start = rx_bufs[buf_idx];
474                         rx_bufs[buf_idx]->data_len += rxq->crc_len;
475                         rx_bufs[buf_idx]->pkt_len += rxq->crc_len;
476                 }
477         }
478
479         /* save the partial packet for next time */
480         rxq->pkt_first_seg = start;
481         rxq->pkt_last_seg = end;
482         memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
483         return pkt_idx;
484 }
485
486  /* vPMD receive routine that reassembles scattered packets
487  * Notice:
488  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
489  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
490  *   numbers of DD bits
491  */
492 uint16_t
493 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
494                              uint16_t nb_pkts)
495 {
496
497         struct i40e_rx_queue *rxq = rx_queue;
498         uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
499
500         /* get some new buffers */
501         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
502                         split_flags);
503         if (nb_bufs == 0)
504                 return 0;
505
506         /* happy day case, full burst + no packets to be joined */
507         const uint64_t *split_fl64 = (uint64_t *)split_flags;
508
509         if (rxq->pkt_first_seg == NULL &&
510                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
511                         split_fl64[2] == 0 && split_fl64[3] == 0)
512                 return nb_bufs;
513
514         /* reassemble any packets that need reassembly*/
515         unsigned i = 0;
516
517         if (rxq->pkt_first_seg == NULL) {
518                 /* find the first split flag, and only reassemble then*/
519                 while (i < nb_bufs && !split_flags[i])
520                         i++;
521                 if (i == nb_bufs)
522                         return nb_bufs;
523         }
524         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
525                 &split_flags[i]);
526 }
527
528 static inline void
529 vtx1(volatile struct i40e_tx_desc *txdp,
530                 struct rte_mbuf *pkt, uint64_t flags)
531 {
532         uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
533                         ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
534                         ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
535
536         __m128i descriptor = _mm_set_epi64x(high_qw,
537                                 pkt->buf_physaddr + pkt->data_off);
538         _mm_store_si128((__m128i *)txdp, descriptor);
539 }
540
541 static inline void
542 vtx(volatile struct i40e_tx_desc *txdp,
543                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
544 {
545         int i;
546
547         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
548                 vtx1(txdp, *pkt, flags);
549 }
550
551 static inline int __attribute__((always_inline))
552 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
553 {
554         struct i40e_tx_entry *txep;
555         uint32_t n;
556         uint32_t i;
557         int nb_free = 0;
558         struct rte_mbuf *m, *free[RTE_I40E_TX_MAX_FREE_BUF_SZ];
559
560         /* check DD bits on threshold descriptor */
561         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
562                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
563                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
564                 return 0;
565
566         n = txq->tx_rs_thresh;
567
568          /* first buffer to free from S/W ring is at index
569           * tx_next_dd - (tx_rs_thresh-1)
570           */
571         txep = &txq->sw_ring[txq->tx_next_dd - (n - 1)];
572         m = __rte_pktmbuf_prefree_seg(txep[0].mbuf);
573         if (likely(m != NULL)) {
574                 free[0] = m;
575                 nb_free = 1;
576                 for (i = 1; i < n; i++) {
577                         m = __rte_pktmbuf_prefree_seg(txep[i].mbuf);
578                         if (likely(m != NULL)) {
579                                 if (likely(m->pool == free[0]->pool)) {
580                                         free[nb_free++] = m;
581                                 } else {
582                                         rte_mempool_put_bulk(free[0]->pool,
583                                                              (void *)free,
584                                                              nb_free);
585                                         free[0] = m;
586                                         nb_free = 1;
587                                 }
588                         }
589                 }
590                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
591         } else {
592                 for (i = 1; i < n; i++) {
593                         m = __rte_pktmbuf_prefree_seg(txep[i].mbuf);
594                         if (m != NULL)
595                                 rte_mempool_put(m->pool, m);
596                 }
597         }
598
599         /* buffers were freed, update counters */
600         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
601         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
602         if (txq->tx_next_dd >= txq->nb_tx_desc)
603                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
604
605         return txq->tx_rs_thresh;
606 }
607
608 static inline void __attribute__((always_inline))
609 tx_backlog_entry(struct i40e_tx_entry *txep,
610                  struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
611 {
612         int i;
613
614         for (i = 0; i < (int)nb_pkts; ++i)
615                 txep[i].mbuf = tx_pkts[i];
616 }
617
618 uint16_t
619 i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
620                    uint16_t nb_pkts)
621 {
622         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
623         volatile struct i40e_tx_desc *txdp;
624         struct i40e_tx_entry *txep;
625         uint16_t n, nb_commit, tx_id;
626         uint64_t flags = I40E_TD_CMD;
627         uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
628         int i;
629
630         /* cross rx_thresh boundary is not allowed */
631         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
632
633         if (txq->nb_tx_free < txq->tx_free_thresh)
634                 i40e_tx_free_bufs(txq);
635
636         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
637         if (unlikely(nb_pkts == 0))
638                 return 0;
639
640         tx_id = txq->tx_tail;
641         txdp = &txq->tx_ring[tx_id];
642         txep = &txq->sw_ring[tx_id];
643
644         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
645
646         n = (uint16_t)(txq->nb_tx_desc - tx_id);
647         if (nb_commit >= n) {
648                 tx_backlog_entry(txep, tx_pkts, n);
649
650                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
651                         vtx1(txdp, *tx_pkts, flags);
652
653                 vtx1(txdp, *tx_pkts++, rs);
654
655                 nb_commit = (uint16_t)(nb_commit - n);
656
657                 tx_id = 0;
658                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
659
660                 /* avoid reach the end of ring */
661                 txdp = &txq->tx_ring[tx_id];
662                 txep = &txq->sw_ring[tx_id];
663         }
664
665         tx_backlog_entry(txep, tx_pkts, nb_commit);
666
667         vtx(txdp, tx_pkts, nb_commit, flags);
668
669         tx_id = (uint16_t)(tx_id + nb_commit);
670         if (tx_id > txq->tx_next_rs) {
671                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
672                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
673                                                 I40E_TXD_QW1_CMD_SHIFT);
674                 txq->tx_next_rs =
675                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
676         }
677
678         txq->tx_tail = tx_id;
679
680         I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
681
682         return nb_pkts;
683 }
684
685 void __attribute__((cold))
686 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
687 {
688         const unsigned mask = rxq->nb_rx_desc - 1;
689         unsigned i;
690
691         if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_rx_desc)
692                 return;
693
694         /* free all mbufs that are valid in the ring */
695         for (i = rxq->rx_tail; i != rxq->rxrearm_start; i = (i + 1) & mask)
696                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
697         rxq->rxrearm_nb = rxq->nb_rx_desc;
698
699         /* set all entries to NULL */
700         memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc);
701 }
702
703 int __attribute__((cold))
704 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
705 {
706         uintptr_t p;
707         struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
708
709         mb_def.nb_segs = 1;
710         mb_def.data_off = RTE_PKTMBUF_HEADROOM;
711         mb_def.port = rxq->port_id;
712         rte_mbuf_refcnt_set(&mb_def, 1);
713
714         /* prevent compiler reordering: rearm_data covers previous fields */
715         rte_compiler_barrier();
716         p = (uintptr_t)&mb_def.rearm_data;
717         rxq->mbuf_initializer = *(uint64_t *)p;
718         return 0;
719 }
720
721 int __attribute__((cold))
722 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
723 {
724         return 0;
725 }
726
727 int __attribute__((cold))
728 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
729 {
730 #ifndef RTE_LIBRTE_IEEE1588
731         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
732         struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
733
734         /* need SSE4.1 support */
735         if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
736                 return -1;
737
738 #ifndef RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE
739         /* whithout rx ol_flags, no VP flag report */
740         if (rxmode->hw_vlan_strip != 0 ||
741             rxmode->hw_vlan_extend != 0)
742                 return -1;
743 #endif
744
745         /* no fdir support */
746         if (fconf->mode != RTE_FDIR_MODE_NONE)
747                 return -1;
748
749          /* - no csum error report support
750          * - no header split support
751          */
752         if (rxmode->hw_ip_checksum == 1 ||
753             rxmode->header_split == 1)
754                 return -1;
755
756         return 0;
757 #else
758         RTE_SET_USED(dev);
759         return -1;
760 #endif
761 }