New upstream version 18.02
[deb_dpdk.git] / drivers / net / i40e / i40e_rxtx_vec_sse.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <rte_ethdev_driver.h>
7 #include <rte_malloc.h>
8
9 #include "base/i40e_prototype.h"
10 #include "base/i40e_type.h"
11 #include "i40e_ethdev.h"
12 #include "i40e_rxtx.h"
13 #include "i40e_rxtx_vec_common.h"
14
15 #include <tmmintrin.h>
16
17 #ifndef __INTEL_COMPILER
18 #pragma GCC diagnostic ignored "-Wcast-qual"
19 #endif
20
21 static inline void
22 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
23 {
24         int i;
25         uint16_t rx_id;
26         volatile union i40e_rx_desc *rxdp;
27         struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
28         struct rte_mbuf *mb0, *mb1;
29         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
30                         RTE_PKTMBUF_HEADROOM);
31         __m128i dma_addr0, dma_addr1;
32
33         rxdp = rxq->rx_ring + rxq->rxrearm_start;
34
35         /* Pull 'n' more MBUFs into the software ring */
36         if (rte_mempool_get_bulk(rxq->mp,
37                                  (void *)rxep,
38                                  RTE_I40E_RXQ_REARM_THRESH) < 0) {
39                 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
40                     rxq->nb_rx_desc) {
41                         dma_addr0 = _mm_setzero_si128();
42                         for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
43                                 rxep[i].mbuf = &rxq->fake_mbuf;
44                                 _mm_store_si128((__m128i *)&rxdp[i].read,
45                                                 dma_addr0);
46                         }
47                 }
48                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
49                         RTE_I40E_RXQ_REARM_THRESH;
50                 return;
51         }
52
53         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
54         for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
55                 __m128i vaddr0, vaddr1;
56
57                 mb0 = rxep[0].mbuf;
58                 mb1 = rxep[1].mbuf;
59
60                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
61                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
62                                 offsetof(struct rte_mbuf, buf_addr) + 8);
63                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
64                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
65
66                 /* convert pa to dma_addr hdr/data */
67                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
68                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
69
70                 /* add headroom to pa values */
71                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
72                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
73
74                 /* flush desc with pa dma_addr */
75                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
76                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
77         }
78
79         rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
80         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
81                 rxq->rxrearm_start = 0;
82
83         rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
84
85         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
86                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
87
88         /* Update the tail pointer on the NIC */
89         I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
90 }
91
92 static inline void
93 desc_to_olflags_v(struct i40e_rx_queue *rxq, __m128i descs[4],
94         struct rte_mbuf **rx_pkts)
95 {
96         const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
97         __m128i rearm0, rearm1, rearm2, rearm3;
98
99         __m128i vlan0, vlan1, rss, l3_l4e;
100
101         /* mask everything except RSS, flow director and VLAN flags
102          * bit2 is for VLAN tag, bit11 for flow director indication
103          * bit13:12 for RSS indication.
104          */
105         const __m128i rss_vlan_msk = _mm_set_epi32(
106                         0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804);
107
108         const __m128i cksum_mask = _mm_set_epi32(
109                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
110                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
111                         PKT_RX_EIP_CKSUM_BAD,
112                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
113                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
114                         PKT_RX_EIP_CKSUM_BAD,
115                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
116                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
117                         PKT_RX_EIP_CKSUM_BAD,
118                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
119                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
120                         PKT_RX_EIP_CKSUM_BAD);
121
122         /* map rss and vlan type to rss hash and vlan flag */
123         const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
124                         0, 0, 0, 0,
125                         0, 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
126                         0, 0, 0, 0);
127
128         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
129                         0, 0, 0, 0,
130                         PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
131                         0, 0, PKT_RX_FDIR, 0);
132
133         const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
134                         /* shift right 1 bit to make sure it not exceed 255 */
135                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
136                          PKT_RX_IP_CKSUM_BAD) >> 1,
137                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
138                          PKT_RX_L4_CKSUM_BAD) >> 1,
139                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
140                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
141                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
142                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
143                         PKT_RX_IP_CKSUM_BAD >> 1,
144                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
145
146         vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
147         vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
148         vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
149
150         vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
151         vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
152
153         rss = _mm_srli_epi32(vlan1, 11);
154         rss = _mm_shuffle_epi8(rss_flags, rss);
155
156         l3_l4e = _mm_srli_epi32(vlan1, 22);
157         l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
158         /* then we shift left 1 bit */
159         l3_l4e = _mm_slli_epi32(l3_l4e, 1);
160         /* we need to mask out the reduntant bits */
161         l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
162
163         vlan0 = _mm_or_si128(vlan0, rss);
164         vlan0 = _mm_or_si128(vlan0, l3_l4e);
165
166         /*
167          * At this point, we have the 4 sets of flags in the low 16-bits
168          * of each 32-bit value in vlan0.
169          * We want to extract these, and merge them with the mbuf init data
170          * so we can do a single 16-byte write to the mbuf to set the flags
171          * and all the other initialization fields. Extracting the
172          * appropriate flags means that we have to do a shift and blend for
173          * each mbuf before we do the write.
174          */
175         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
176         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
177         rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
178         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
179
180         /* write the rearm data and the olflags in one write */
181         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
182                         offsetof(struct rte_mbuf, rearm_data) + 8);
183         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
184                         RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
185         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
186         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
187         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
188         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
189 }
190
191 #define PKTLEN_SHIFT     10
192
193 static inline void
194 desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
195                 uint32_t *ptype_tbl)
196 {
197         __m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
198         __m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
199
200         ptype0 = _mm_srli_epi64(ptype0, 30);
201         ptype1 = _mm_srli_epi64(ptype1, 30);
202
203         rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 0)];
204         rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 8)];
205         rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 0)];
206         rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 8)];
207 }
208
209  /*
210  * Notice:
211  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
212  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
213  *   numbers of DD bits
214  */
215 static inline uint16_t
216 _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
217                    uint16_t nb_pkts, uint8_t *split_packet)
218 {
219         volatile union i40e_rx_desc *rxdp;
220         struct i40e_rx_entry *sw_ring;
221         uint16_t nb_pkts_recd;
222         int pos;
223         uint64_t var;
224         __m128i shuf_msk;
225         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
226
227         __m128i crc_adjust = _mm_set_epi16(
228                                 0, 0, 0,    /* ignore non-length fields */
229                                 -rxq->crc_len, /* sub crc on data_len */
230                                 0,          /* ignore high-16bits of pkt_len */
231                                 -rxq->crc_len, /* sub crc on pkt_len */
232                                 0, 0            /* ignore pkt_type field */
233                         );
234         /*
235          * compile-time check the above crc_adjust layout is correct.
236          * NOTE: the first field (lowest address) is given last in set_epi16
237          * call above.
238          */
239         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
240                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
241         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
242                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
243         __m128i dd_check, eop_check;
244
245         /* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
246         nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);
247
248         /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
249         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
250
251         /* Just the act of getting into the function from the application is
252          * going to cost about 7 cycles
253          */
254         rxdp = rxq->rx_ring + rxq->rx_tail;
255
256         rte_prefetch0(rxdp);
257
258         /* See if we need to rearm the RX queue - gives the prefetch a bit
259          * of time to act
260          */
261         if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
262                 i40e_rxq_rearm(rxq);
263
264         /* Before we start moving massive data around, check to see if
265          * there is actually a packet available
266          */
267         if (!(rxdp->wb.qword1.status_error_len &
268                         rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
269                 return 0;
270
271         /* 4 packets DD mask */
272         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
273
274         /* 4 packets EOP mask */
275         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
276
277         /* mask to shuffle from desc. to mbuf */
278         shuf_msk = _mm_set_epi8(
279                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
280                 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
281                 15, 14,      /* octet 15~14, 16 bits data_len */
282                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
283                 15, 14,      /* octet 15~14, low 16 bits pkt_len */
284                 0xFF, 0xFF,  /* pkt_type set as unknown */
285                 0xFF, 0xFF  /*pkt_type set as unknown */
286                 );
287         /*
288          * Compile-time verify the shuffle mask
289          * NOTE: some field positions already verified above, but duplicated
290          * here for completeness in case of future modifications.
291          */
292         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
293                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
294         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
295                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
296         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
297                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
298         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
299                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
300
301         /* Cache is empty -> need to scan the buffer rings, but first move
302          * the next 'n' mbufs into the cache
303          */
304         sw_ring = &rxq->sw_ring[rxq->rx_tail];
305
306         /* A. load 4 packet in one loop
307          * [A*. mask out 4 unused dirty field in desc]
308          * B. copy 4 mbuf point from swring to rx_pkts
309          * C. calc the number of DD bits among the 4 packets
310          * [C*. extract the end-of-packet bit, if requested]
311          * D. fill info. from desc to mbuf
312          */
313
314         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
315                         pos += RTE_I40E_DESCS_PER_LOOP,
316                         rxdp += RTE_I40E_DESCS_PER_LOOP) {
317                 __m128i descs[RTE_I40E_DESCS_PER_LOOP];
318                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
319                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
320                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
321                 __m128i mbp1;
322 #if defined(RTE_ARCH_X86_64)
323                 __m128i mbp2;
324 #endif
325
326                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
327                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
328                 /* Read desc statuses backwards to avoid race condition */
329                 /* A.1 load 4 pkts desc */
330                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
331                 rte_compiler_barrier();
332
333                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
334                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
335
336 #if defined(RTE_ARCH_X86_64)
337                 /* B.1 load 2 64 bit mbuf points */
338                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
339 #endif
340
341                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
342                 rte_compiler_barrier();
343                 /* B.1 load 2 mbuf point */
344                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
345                 rte_compiler_barrier();
346                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
347
348 #if defined(RTE_ARCH_X86_64)
349                 /* B.2 copy 2 mbuf point into rx_pkts  */
350                 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
351 #endif
352
353                 if (split_packet) {
354                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
355                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
356                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
357                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
358                 }
359
360                 /* avoid compiler reorder optimization */
361                 rte_compiler_barrier();
362
363                 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
364                 const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
365                 const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
366
367                 /* merge the now-aligned packet length fields back in */
368                 descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
369                 descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
370
371                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
372                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
373                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
374
375                 /* C.1 4=>2 filter staterr info only */
376                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
377                 /* C.1 4=>2 filter staterr info only */
378                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
379
380                 desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
381
382                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
383                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
384                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
385
386                 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
387                 const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
388                 const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
389
390                 /* merge the now-aligned packet length fields back in */
391                 descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
392                 descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
393
394                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
395                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
396                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
397
398                 /* C.2 get 4 pkts staterr value  */
399                 zero = _mm_xor_si128(dd_check, dd_check);
400                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
401
402                 /* D.3 copy final 3,4 data to rx_pkts */
403                 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
404                                  pkt_mb4);
405                 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
406                                  pkt_mb3);
407
408                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
409                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
410                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
411
412                 /* C* extract and record EOP bit */
413                 if (split_packet) {
414                         __m128i eop_shuf_mask = _mm_set_epi8(
415                                         0xFF, 0xFF, 0xFF, 0xFF,
416                                         0xFF, 0xFF, 0xFF, 0xFF,
417                                         0xFF, 0xFF, 0xFF, 0xFF,
418                                         0x04, 0x0C, 0x00, 0x08
419                                         );
420
421                         /* and with mask to extract bits, flipping 1-0 */
422                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
423                         /* the staterr values are not in order, as the count
424                          * count of dd bits doesn't care. However, for end of
425                          * packet tracking, we do care, so shuffle. This also
426                          * compresses the 32-bit values to 8-bit
427                          */
428                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
429                         /* store the resulting 32-bit value */
430                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
431                         split_packet += RTE_I40E_DESCS_PER_LOOP;
432                 }
433
434                 /* C.3 calc available number of desc */
435                 staterr = _mm_and_si128(staterr, dd_check);
436                 staterr = _mm_packs_epi32(staterr, zero);
437
438                 /* D.3 copy final 1,2 data to rx_pkts */
439                 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
440                                  pkt_mb2);
441                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
442                                  pkt_mb1);
443                 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
444                 /* C.4 calc avaialbe number of desc */
445                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
446                 nb_pkts_recd += var;
447                 if (likely(var != RTE_I40E_DESCS_PER_LOOP))
448                         break;
449         }
450
451         /* Update our internal tail pointer */
452         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
453         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
454         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
455
456         return nb_pkts_recd;
457 }
458
459  /*
460  * Notice:
461  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
462  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
463  *   numbers of DD bits
464  */
465 uint16_t
466 i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
467                    uint16_t nb_pkts)
468 {
469         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
470 }
471
472  /* vPMD receive routine that reassembles scattered packets
473  * Notice:
474  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
475  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
476  *   numbers of DD bits
477  */
478 uint16_t
479 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
480                              uint16_t nb_pkts)
481 {
482
483         struct i40e_rx_queue *rxq = rx_queue;
484         uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
485
486         /* get some new buffers */
487         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
488                         split_flags);
489         if (nb_bufs == 0)
490                 return 0;
491
492         /* happy day case, full burst + no packets to be joined */
493         const uint64_t *split_fl64 = (uint64_t *)split_flags;
494
495         if (rxq->pkt_first_seg == NULL &&
496                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
497                         split_fl64[2] == 0 && split_fl64[3] == 0)
498                 return nb_bufs;
499
500         /* reassemble any packets that need reassembly*/
501         unsigned i = 0;
502
503         if (rxq->pkt_first_seg == NULL) {
504                 /* find the first split flag, and only reassemble then*/
505                 while (i < nb_bufs && !split_flags[i])
506                         i++;
507                 if (i == nb_bufs)
508                         return nb_bufs;
509         }
510         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
511                 &split_flags[i]);
512 }
513
514 static inline void
515 vtx1(volatile struct i40e_tx_desc *txdp,
516                 struct rte_mbuf *pkt, uint64_t flags)
517 {
518         uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
519                         ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
520                         ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
521
522         __m128i descriptor = _mm_set_epi64x(high_qw,
523                                 pkt->buf_iova + pkt->data_off);
524         _mm_store_si128((__m128i *)txdp, descriptor);
525 }
526
527 static inline void
528 vtx(volatile struct i40e_tx_desc *txdp,
529                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
530 {
531         int i;
532
533         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
534                 vtx1(txdp, *pkt, flags);
535 }
536
537 uint16_t
538 i40e_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
539                           uint16_t nb_pkts)
540 {
541         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
542         volatile struct i40e_tx_desc *txdp;
543         struct i40e_tx_entry *txep;
544         uint16_t n, nb_commit, tx_id;
545         uint64_t flags = I40E_TD_CMD;
546         uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
547         int i;
548
549         /* cross rx_thresh boundary is not allowed */
550         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
551
552         if (txq->nb_tx_free < txq->tx_free_thresh)
553                 i40e_tx_free_bufs(txq);
554
555         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
556         if (unlikely(nb_pkts == 0))
557                 return 0;
558
559         tx_id = txq->tx_tail;
560         txdp = &txq->tx_ring[tx_id];
561         txep = &txq->sw_ring[tx_id];
562
563         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
564
565         n = (uint16_t)(txq->nb_tx_desc - tx_id);
566         if (nb_commit >= n) {
567                 tx_backlog_entry(txep, tx_pkts, n);
568
569                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
570                         vtx1(txdp, *tx_pkts, flags);
571
572                 vtx1(txdp, *tx_pkts++, rs);
573
574                 nb_commit = (uint16_t)(nb_commit - n);
575
576                 tx_id = 0;
577                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
578
579                 /* avoid reach the end of ring */
580                 txdp = &txq->tx_ring[tx_id];
581                 txep = &txq->sw_ring[tx_id];
582         }
583
584         tx_backlog_entry(txep, tx_pkts, nb_commit);
585
586         vtx(txdp, tx_pkts, nb_commit, flags);
587
588         tx_id = (uint16_t)(tx_id + nb_commit);
589         if (tx_id > txq->tx_next_rs) {
590                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
591                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
592                                                 I40E_TXD_QW1_CMD_SHIFT);
593                 txq->tx_next_rs =
594                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
595         }
596
597         txq->tx_tail = tx_id;
598
599         I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
600
601         return nb_pkts;
602 }
603
604 void __attribute__((cold))
605 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
606 {
607         _i40e_rx_queue_release_mbufs_vec(rxq);
608 }
609
610 int __attribute__((cold))
611 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
612 {
613         return i40e_rxq_vec_setup_default(rxq);
614 }
615
616 int __attribute__((cold))
617 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
618 {
619         return 0;
620 }
621
622 int __attribute__((cold))
623 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
624 {
625         return i40e_rx_vec_dev_conf_condition_check_default(dev);
626 }