New upstream version 18.02
[deb_dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <sys/queue.h>
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdarg.h>
14 #include <unistd.h>
15 #include <inttypes.h>
16
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_interrupts.h>
23 #include <rte_pci.h>
24 #include <rte_memory.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_malloc.h>
34 #include <rte_mbuf.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev_driver.h>
37 #include <rte_prefetch.h>
38 #include <rte_udp.h>
39 #include <rte_tcp.h>
40 #include <rte_sctp.h>
41 #include <rte_string_fns.h>
42 #include <rte_errno.h>
43 #include <rte_ip.h>
44 #include <rte_net.h>
45
46 #include "ixgbe_logs.h"
47 #include "base/ixgbe_api.h"
48 #include "base/ixgbe_vf.h"
49 #include "ixgbe_ethdev.h"
50 #include "base/ixgbe_dcb.h"
51 #include "base/ixgbe_common.h"
52 #include "ixgbe_rxtx.h"
53
54 #ifdef RTE_LIBRTE_IEEE1588
55 #define IXGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
56 #else
57 #define IXGBE_TX_IEEE1588_TMST 0
58 #endif
59 /* Bit Mask to indicate what bits required for building TX context */
60 #define IXGBE_TX_OFFLOAD_MASK (                  \
61                 PKT_TX_VLAN_PKT |                \
62                 PKT_TX_IP_CKSUM |                \
63                 PKT_TX_L4_MASK |                 \
64                 PKT_TX_TCP_SEG |                 \
65                 PKT_TX_MACSEC |                  \
66                 PKT_TX_OUTER_IP_CKSUM |          \
67                 PKT_TX_SEC_OFFLOAD |     \
68                 IXGBE_TX_IEEE1588_TMST)
69
70 #define IXGBE_TX_OFFLOAD_NOTSUP_MASK \
71                 (PKT_TX_OFFLOAD_MASK ^ IXGBE_TX_OFFLOAD_MASK)
72
73 #if 1
74 #define RTE_PMD_USE_PREFETCH
75 #endif
76
77 #ifdef RTE_PMD_USE_PREFETCH
78 /*
79  * Prefetch a cache line into all cache levels.
80  */
81 #define rte_ixgbe_prefetch(p)   rte_prefetch0(p)
82 #else
83 #define rte_ixgbe_prefetch(p)   do {} while (0)
84 #endif
85
86 #ifdef RTE_IXGBE_INC_VECTOR
87 uint16_t ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
88                                     uint16_t nb_pkts);
89 #endif
90
91 /*********************************************************************
92  *
93  *  TX functions
94  *
95  **********************************************************************/
96
97 /*
98  * Check for descriptors with their DD bit set and free mbufs.
99  * Return the total number of buffers freed.
100  */
101 static __rte_always_inline int
102 ixgbe_tx_free_bufs(struct ixgbe_tx_queue *txq)
103 {
104         struct ixgbe_tx_entry *txep;
105         uint32_t status;
106         int i, nb_free = 0;
107         struct rte_mbuf *m, *free[RTE_IXGBE_TX_MAX_FREE_BUF_SZ];
108
109         /* check DD bit on threshold descriptor */
110         status = txq->tx_ring[txq->tx_next_dd].wb.status;
111         if (!(status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD)))
112                 return 0;
113
114         /*
115          * first buffer to free from S/W ring is at index
116          * tx_next_dd - (tx_rs_thresh-1)
117          */
118         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
119
120         for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
121                 /* free buffers one at a time */
122                 m = rte_pktmbuf_prefree_seg(txep->mbuf);
123                 txep->mbuf = NULL;
124
125                 if (unlikely(m == NULL))
126                         continue;
127
128                 if (nb_free >= RTE_IXGBE_TX_MAX_FREE_BUF_SZ ||
129                     (nb_free > 0 && m->pool != free[0]->pool)) {
130                         rte_mempool_put_bulk(free[0]->pool,
131                                              (void **)free, nb_free);
132                         nb_free = 0;
133                 }
134
135                 free[nb_free++] = m;
136         }
137
138         if (nb_free > 0)
139                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
140
141         /* buffers were freed, update counters */
142         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
143         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
144         if (txq->tx_next_dd >= txq->nb_tx_desc)
145                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
146
147         return txq->tx_rs_thresh;
148 }
149
150 /* Populate 4 descriptors with data from 4 mbufs */
151 static inline void
152 tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
153 {
154         uint64_t buf_dma_addr;
155         uint32_t pkt_len;
156         int i;
157
158         for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
159                 buf_dma_addr = rte_mbuf_data_iova(*pkts);
160                 pkt_len = (*pkts)->data_len;
161
162                 /* write data to descriptor */
163                 txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
164
165                 txdp->read.cmd_type_len =
166                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
167
168                 txdp->read.olinfo_status =
169                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
170
171                 rte_prefetch0(&(*pkts)->pool);
172         }
173 }
174
175 /* Populate 1 descriptor with data from 1 mbuf */
176 static inline void
177 tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
178 {
179         uint64_t buf_dma_addr;
180         uint32_t pkt_len;
181
182         buf_dma_addr = rte_mbuf_data_iova(*pkts);
183         pkt_len = (*pkts)->data_len;
184
185         /* write data to descriptor */
186         txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
187         txdp->read.cmd_type_len =
188                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
189         txdp->read.olinfo_status =
190                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
191         rte_prefetch0(&(*pkts)->pool);
192 }
193
194 /*
195  * Fill H/W descriptor ring with mbuf data.
196  * Copy mbuf pointers to the S/W ring.
197  */
198 static inline void
199 ixgbe_tx_fill_hw_ring(struct ixgbe_tx_queue *txq, struct rte_mbuf **pkts,
200                       uint16_t nb_pkts)
201 {
202         volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
203         struct ixgbe_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
204         const int N_PER_LOOP = 4;
205         const int N_PER_LOOP_MASK = N_PER_LOOP-1;
206         int mainpart, leftover;
207         int i, j;
208
209         /*
210          * Process most of the packets in chunks of N pkts.  Any
211          * leftover packets will get processed one at a time.
212          */
213         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
214         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
215         for (i = 0; i < mainpart; i += N_PER_LOOP) {
216                 /* Copy N mbuf pointers to the S/W ring */
217                 for (j = 0; j < N_PER_LOOP; ++j) {
218                         (txep + i + j)->mbuf = *(pkts + i + j);
219                 }
220                 tx4(txdp + i, pkts + i);
221         }
222
223         if (unlikely(leftover > 0)) {
224                 for (i = 0; i < leftover; ++i) {
225                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
226                         tx1(txdp + mainpart + i, pkts + mainpart + i);
227                 }
228         }
229 }
230
231 static inline uint16_t
232 tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
233              uint16_t nb_pkts)
234 {
235         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
236         volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
237         uint16_t n = 0;
238
239         /*
240          * Begin scanning the H/W ring for done descriptors when the
241          * number of available descriptors drops below tx_free_thresh.  For
242          * each done descriptor, free the associated buffer.
243          */
244         if (txq->nb_tx_free < txq->tx_free_thresh)
245                 ixgbe_tx_free_bufs(txq);
246
247         /* Only use descriptors that are available */
248         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
249         if (unlikely(nb_pkts == 0))
250                 return 0;
251
252         /* Use exactly nb_pkts descriptors */
253         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
254
255         /*
256          * At this point, we know there are enough descriptors in the
257          * ring to transmit all the packets.  This assumes that each
258          * mbuf contains a single segment, and that no new offloads
259          * are expected, which would require a new context descriptor.
260          */
261
262         /*
263          * See if we're going to wrap-around. If so, handle the top
264          * of the descriptor ring first, then do the bottom.  If not,
265          * the processing looks just like the "bottom" part anyway...
266          */
267         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
268                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
269                 ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
270
271                 /*
272                  * We know that the last descriptor in the ring will need to
273                  * have its RS bit set because tx_rs_thresh has to be
274                  * a divisor of the ring size
275                  */
276                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
277                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
278                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
279
280                 txq->tx_tail = 0;
281         }
282
283         /* Fill H/W descriptor ring with mbuf data */
284         ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
285         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
286
287         /*
288          * Determine if RS bit should be set
289          * This is what we actually want:
290          *   if ((txq->tx_tail - 1) >= txq->tx_next_rs)
291          * but instead of subtracting 1 and doing >=, we can just do
292          * greater than without subtracting.
293          */
294         if (txq->tx_tail > txq->tx_next_rs) {
295                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
296                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
297                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
298                                                 txq->tx_rs_thresh);
299                 if (txq->tx_next_rs >= txq->nb_tx_desc)
300                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
301         }
302
303         /*
304          * Check for wrap-around. This would only happen if we used
305          * up to the last descriptor in the ring, no more, no less.
306          */
307         if (txq->tx_tail >= txq->nb_tx_desc)
308                 txq->tx_tail = 0;
309
310         /* update tail pointer */
311         rte_wmb();
312         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, txq->tx_tail);
313
314         return nb_pkts;
315 }
316
317 uint16_t
318 ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
319                        uint16_t nb_pkts)
320 {
321         uint16_t nb_tx;
322
323         /* Try to transmit at least chunks of TX_MAX_BURST pkts */
324         if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
325                 return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
326
327         /* transmit more than the max burst, in chunks of TX_MAX_BURST */
328         nb_tx = 0;
329         while (nb_pkts) {
330                 uint16_t ret, n;
331
332                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
333                 ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
334                 nb_tx = (uint16_t)(nb_tx + ret);
335                 nb_pkts = (uint16_t)(nb_pkts - ret);
336                 if (ret < n)
337                         break;
338         }
339
340         return nb_tx;
341 }
342
343 #ifdef RTE_IXGBE_INC_VECTOR
344 static uint16_t
345 ixgbe_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
346                     uint16_t nb_pkts)
347 {
348         uint16_t nb_tx = 0;
349         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
350
351         while (nb_pkts) {
352                 uint16_t ret, num;
353
354                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
355                 ret = ixgbe_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
356                                                  num);
357                 nb_tx += ret;
358                 nb_pkts -= ret;
359                 if (ret < num)
360                         break;
361         }
362
363         return nb_tx;
364 }
365 #endif
366
367 static inline void
368 ixgbe_set_xmit_ctx(struct ixgbe_tx_queue *txq,
369                 volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
370                 uint64_t ol_flags, union ixgbe_tx_offload tx_offload,
371                 __rte_unused uint64_t *mdata)
372 {
373         uint32_t type_tucmd_mlhl;
374         uint32_t mss_l4len_idx = 0;
375         uint32_t ctx_idx;
376         uint32_t vlan_macip_lens;
377         union ixgbe_tx_offload tx_offload_mask;
378         uint32_t seqnum_seed = 0;
379
380         ctx_idx = txq->ctx_curr;
381         tx_offload_mask.data[0] = 0;
382         tx_offload_mask.data[1] = 0;
383         type_tucmd_mlhl = 0;
384
385         /* Specify which HW CTX to upload. */
386         mss_l4len_idx |= (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
387
388         if (ol_flags & PKT_TX_VLAN_PKT) {
389                 tx_offload_mask.vlan_tci |= ~0;
390         }
391
392         /* check if TCP segmentation required for this packet */
393         if (ol_flags & PKT_TX_TCP_SEG) {
394                 /* implies IP cksum in IPv4 */
395                 if (ol_flags & PKT_TX_IP_CKSUM)
396                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4 |
397                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
398                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
399                 else
400                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV6 |
401                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
402                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
403
404                 tx_offload_mask.l2_len |= ~0;
405                 tx_offload_mask.l3_len |= ~0;
406                 tx_offload_mask.l4_len |= ~0;
407                 tx_offload_mask.tso_segsz |= ~0;
408                 mss_l4len_idx |= tx_offload.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT;
409                 mss_l4len_idx |= tx_offload.l4_len << IXGBE_ADVTXD_L4LEN_SHIFT;
410         } else { /* no TSO, check if hardware checksum is needed */
411                 if (ol_flags & PKT_TX_IP_CKSUM) {
412                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
413                         tx_offload_mask.l2_len |= ~0;
414                         tx_offload_mask.l3_len |= ~0;
415                 }
416
417                 switch (ol_flags & PKT_TX_L4_MASK) {
418                 case PKT_TX_UDP_CKSUM:
419                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
420                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
421                         mss_l4len_idx |= sizeof(struct udp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
422                         tx_offload_mask.l2_len |= ~0;
423                         tx_offload_mask.l3_len |= ~0;
424                         break;
425                 case PKT_TX_TCP_CKSUM:
426                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
427                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
428                         mss_l4len_idx |= sizeof(struct tcp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
429                         tx_offload_mask.l2_len |= ~0;
430                         tx_offload_mask.l3_len |= ~0;
431                         break;
432                 case PKT_TX_SCTP_CKSUM:
433                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
434                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
435                         mss_l4len_idx |= sizeof(struct sctp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
436                         tx_offload_mask.l2_len |= ~0;
437                         tx_offload_mask.l3_len |= ~0;
438                         break;
439                 default:
440                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
441                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
442                         break;
443                 }
444         }
445
446         if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
447                 tx_offload_mask.outer_l2_len |= ~0;
448                 tx_offload_mask.outer_l3_len |= ~0;
449                 tx_offload_mask.l2_len |= ~0;
450                 seqnum_seed |= tx_offload.outer_l3_len
451                                << IXGBE_ADVTXD_OUTER_IPLEN;
452                 seqnum_seed |= tx_offload.l2_len
453                                << IXGBE_ADVTXD_TUNNEL_LEN;
454         }
455 #ifdef RTE_LIBRTE_SECURITY
456         if (ol_flags & PKT_TX_SEC_OFFLOAD) {
457                 union ixgbe_crypto_tx_desc_md *md =
458                                 (union ixgbe_crypto_tx_desc_md *)mdata;
459                 seqnum_seed |=
460                         (IXGBE_ADVTXD_IPSEC_SA_INDEX_MASK & md->sa_idx);
461                 type_tucmd_mlhl |= md->enc ?
462                                 (IXGBE_ADVTXD_TUCMD_IPSEC_TYPE_ESP |
463                                 IXGBE_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN) : 0;
464                 type_tucmd_mlhl |=
465                         (md->pad_len & IXGBE_ADVTXD_IPSEC_ESP_LEN_MASK);
466                 tx_offload_mask.sa_idx |= ~0;
467                 tx_offload_mask.sec_pad_len |= ~0;
468         }
469 #endif
470
471         txq->ctx_cache[ctx_idx].flags = ol_flags;
472         txq->ctx_cache[ctx_idx].tx_offload.data[0]  =
473                 tx_offload_mask.data[0] & tx_offload.data[0];
474         txq->ctx_cache[ctx_idx].tx_offload.data[1]  =
475                 tx_offload_mask.data[1] & tx_offload.data[1];
476         txq->ctx_cache[ctx_idx].tx_offload_mask    = tx_offload_mask;
477
478         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
479         vlan_macip_lens = tx_offload.l3_len;
480         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
481                 vlan_macip_lens |= (tx_offload.outer_l2_len <<
482                                     IXGBE_ADVTXD_MACLEN_SHIFT);
483         else
484                 vlan_macip_lens |= (tx_offload.l2_len <<
485                                     IXGBE_ADVTXD_MACLEN_SHIFT);
486         vlan_macip_lens |= ((uint32_t)tx_offload.vlan_tci << IXGBE_ADVTXD_VLAN_SHIFT);
487         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
488         ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
489         ctx_txd->seqnum_seed     = seqnum_seed;
490 }
491
492 /*
493  * Check which hardware context can be used. Use the existing match
494  * or create a new context descriptor.
495  */
496 static inline uint32_t
497 what_advctx_update(struct ixgbe_tx_queue *txq, uint64_t flags,
498                    union ixgbe_tx_offload tx_offload)
499 {
500         /* If match with the current used context */
501         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
502                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
503                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
504                      & tx_offload.data[0])) &&
505                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
506                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
507                      & tx_offload.data[1]))))
508                 return txq->ctx_curr;
509
510         /* What if match with the next context  */
511         txq->ctx_curr ^= 1;
512         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
513                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
514                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
515                      & tx_offload.data[0])) &&
516                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
517                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
518                      & tx_offload.data[1]))))
519                 return txq->ctx_curr;
520
521         /* Mismatch, use the previous context */
522         return IXGBE_CTX_NUM;
523 }
524
525 static inline uint32_t
526 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
527 {
528         uint32_t tmp = 0;
529
530         if ((ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM)
531                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
532         if (ol_flags & PKT_TX_IP_CKSUM)
533                 tmp |= IXGBE_ADVTXD_POPTS_IXSM;
534         if (ol_flags & PKT_TX_TCP_SEG)
535                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
536         return tmp;
537 }
538
539 static inline uint32_t
540 tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
541 {
542         uint32_t cmdtype = 0;
543
544         if (ol_flags & PKT_TX_VLAN_PKT)
545                 cmdtype |= IXGBE_ADVTXD_DCMD_VLE;
546         if (ol_flags & PKT_TX_TCP_SEG)
547                 cmdtype |= IXGBE_ADVTXD_DCMD_TSE;
548         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
549                 cmdtype |= (1 << IXGBE_ADVTXD_OUTERIPCS_SHIFT);
550         if (ol_flags & PKT_TX_MACSEC)
551                 cmdtype |= IXGBE_ADVTXD_MAC_LINKSEC;
552         return cmdtype;
553 }
554
555 /* Default RS bit threshold values */
556 #ifndef DEFAULT_TX_RS_THRESH
557 #define DEFAULT_TX_RS_THRESH   32
558 #endif
559 #ifndef DEFAULT_TX_FREE_THRESH
560 #define DEFAULT_TX_FREE_THRESH 32
561 #endif
562
563 /* Reset transmit descriptors after they have been used */
564 static inline int
565 ixgbe_xmit_cleanup(struct ixgbe_tx_queue *txq)
566 {
567         struct ixgbe_tx_entry *sw_ring = txq->sw_ring;
568         volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
569         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
570         uint16_t nb_tx_desc = txq->nb_tx_desc;
571         uint16_t desc_to_clean_to;
572         uint16_t nb_tx_to_clean;
573         uint32_t status;
574
575         /* Determine the last descriptor needing to be cleaned */
576         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
577         if (desc_to_clean_to >= nb_tx_desc)
578                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
579
580         /* Check to make sure the last descriptor to clean is done */
581         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
582         status = txr[desc_to_clean_to].wb.status;
583         if (!(status & rte_cpu_to_le_32(IXGBE_TXD_STAT_DD))) {
584                 PMD_TX_FREE_LOG(DEBUG,
585                                 "TX descriptor %4u is not done"
586                                 "(port=%d queue=%d)",
587                                 desc_to_clean_to,
588                                 txq->port_id, txq->queue_id);
589                 /* Failed to clean any descriptors, better luck next time */
590                 return -(1);
591         }
592
593         /* Figure out how many descriptors will be cleaned */
594         if (last_desc_cleaned > desc_to_clean_to)
595                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
596                                                         desc_to_clean_to);
597         else
598                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
599                                                 last_desc_cleaned);
600
601         PMD_TX_FREE_LOG(DEBUG,
602                         "Cleaning %4u TX descriptors: %4u to %4u "
603                         "(port=%d queue=%d)",
604                         nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
605                         txq->port_id, txq->queue_id);
606
607         /*
608          * The last descriptor to clean is done, so that means all the
609          * descriptors from the last descriptor that was cleaned
610          * up to the last descriptor with the RS bit set
611          * are done. Only reset the threshold descriptor.
612          */
613         txr[desc_to_clean_to].wb.status = 0;
614
615         /* Update the txq to reflect the last descriptor that was cleaned */
616         txq->last_desc_cleaned = desc_to_clean_to;
617         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
618
619         /* No Error */
620         return 0;
621 }
622
623 uint16_t
624 ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
625                 uint16_t nb_pkts)
626 {
627         struct ixgbe_tx_queue *txq;
628         struct ixgbe_tx_entry *sw_ring;
629         struct ixgbe_tx_entry *txe, *txn;
630         volatile union ixgbe_adv_tx_desc *txr;
631         volatile union ixgbe_adv_tx_desc *txd, *txp;
632         struct rte_mbuf     *tx_pkt;
633         struct rte_mbuf     *m_seg;
634         uint64_t buf_dma_addr;
635         uint32_t olinfo_status;
636         uint32_t cmd_type_len;
637         uint32_t pkt_len;
638         uint16_t slen;
639         uint64_t ol_flags;
640         uint16_t tx_id;
641         uint16_t tx_last;
642         uint16_t nb_tx;
643         uint16_t nb_used;
644         uint64_t tx_ol_req;
645         uint32_t ctx = 0;
646         uint32_t new_ctx;
647         union ixgbe_tx_offload tx_offload;
648 #ifdef RTE_LIBRTE_SECURITY
649         uint8_t use_ipsec;
650 #endif
651
652         tx_offload.data[0] = 0;
653         tx_offload.data[1] = 0;
654         txq = tx_queue;
655         sw_ring = txq->sw_ring;
656         txr     = txq->tx_ring;
657         tx_id   = txq->tx_tail;
658         txe = &sw_ring[tx_id];
659         txp = NULL;
660
661         /* Determine if the descriptor ring needs to be cleaned. */
662         if (txq->nb_tx_free < txq->tx_free_thresh)
663                 ixgbe_xmit_cleanup(txq);
664
665         rte_prefetch0(&txe->mbuf->pool);
666
667         /* TX loop */
668         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
669                 new_ctx = 0;
670                 tx_pkt = *tx_pkts++;
671                 pkt_len = tx_pkt->pkt_len;
672
673                 /*
674                  * Determine how many (if any) context descriptors
675                  * are needed for offload functionality.
676                  */
677                 ol_flags = tx_pkt->ol_flags;
678 #ifdef RTE_LIBRTE_SECURITY
679                 use_ipsec = txq->using_ipsec && (ol_flags & PKT_TX_SEC_OFFLOAD);
680 #endif
681
682                 /* If hardware offload required */
683                 tx_ol_req = ol_flags & IXGBE_TX_OFFLOAD_MASK;
684                 if (tx_ol_req) {
685                         tx_offload.l2_len = tx_pkt->l2_len;
686                         tx_offload.l3_len = tx_pkt->l3_len;
687                         tx_offload.l4_len = tx_pkt->l4_len;
688                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
689                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
690                         tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
691                         tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
692 #ifdef RTE_LIBRTE_SECURITY
693                         if (use_ipsec) {
694                                 union ixgbe_crypto_tx_desc_md *ipsec_mdata =
695                                         (union ixgbe_crypto_tx_desc_md *)
696                                                         &tx_pkt->udata64;
697                                 tx_offload.sa_idx = ipsec_mdata->sa_idx;
698                                 tx_offload.sec_pad_len = ipsec_mdata->pad_len;
699                         }
700 #endif
701
702                         /* If new context need be built or reuse the exist ctx. */
703                         ctx = what_advctx_update(txq, tx_ol_req,
704                                 tx_offload);
705                         /* Only allocate context descriptor if required*/
706                         new_ctx = (ctx == IXGBE_CTX_NUM);
707                         ctx = txq->ctx_curr;
708                 }
709
710                 /*
711                  * Keep track of how many descriptors are used this loop
712                  * This will always be the number of segments + the number of
713                  * Context descriptors required to transmit the packet
714                  */
715                 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
716
717                 if (txp != NULL &&
718                                 nb_used + txq->nb_tx_used >= txq->tx_rs_thresh)
719                         /* set RS on the previous packet in the burst */
720                         txp->read.cmd_type_len |=
721                                 rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
722
723                 /*
724                  * The number of descriptors that must be allocated for a
725                  * packet is the number of segments of that packet, plus 1
726                  * Context Descriptor for the hardware offload, if any.
727                  * Determine the last TX descriptor to allocate in the TX ring
728                  * for the packet, starting from the current position (tx_id)
729                  * in the ring.
730                  */
731                 tx_last = (uint16_t) (tx_id + nb_used - 1);
732
733                 /* Circular ring */
734                 if (tx_last >= txq->nb_tx_desc)
735                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
736
737                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
738                            " tx_first=%u tx_last=%u",
739                            (unsigned) txq->port_id,
740                            (unsigned) txq->queue_id,
741                            (unsigned) pkt_len,
742                            (unsigned) tx_id,
743                            (unsigned) tx_last);
744
745                 /*
746                  * Make sure there are enough TX descriptors available to
747                  * transmit the entire packet.
748                  * nb_used better be less than or equal to txq->tx_rs_thresh
749                  */
750                 if (nb_used > txq->nb_tx_free) {
751                         PMD_TX_FREE_LOG(DEBUG,
752                                         "Not enough free TX descriptors "
753                                         "nb_used=%4u nb_free=%4u "
754                                         "(port=%d queue=%d)",
755                                         nb_used, txq->nb_tx_free,
756                                         txq->port_id, txq->queue_id);
757
758                         if (ixgbe_xmit_cleanup(txq) != 0) {
759                                 /* Could not clean any descriptors */
760                                 if (nb_tx == 0)
761                                         return 0;
762                                 goto end_of_tx;
763                         }
764
765                         /* nb_used better be <= txq->tx_rs_thresh */
766                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
767                                 PMD_TX_FREE_LOG(DEBUG,
768                                         "The number of descriptors needed to "
769                                         "transmit the packet exceeds the "
770                                         "RS bit threshold. This will impact "
771                                         "performance."
772                                         "nb_used=%4u nb_free=%4u "
773                                         "tx_rs_thresh=%4u. "
774                                         "(port=%d queue=%d)",
775                                         nb_used, txq->nb_tx_free,
776                                         txq->tx_rs_thresh,
777                                         txq->port_id, txq->queue_id);
778                                 /*
779                                  * Loop here until there are enough TX
780                                  * descriptors or until the ring cannot be
781                                  * cleaned.
782                                  */
783                                 while (nb_used > txq->nb_tx_free) {
784                                         if (ixgbe_xmit_cleanup(txq) != 0) {
785                                                 /*
786                                                  * Could not clean any
787                                                  * descriptors
788                                                  */
789                                                 if (nb_tx == 0)
790                                                         return 0;
791                                                 goto end_of_tx;
792                                         }
793                                 }
794                         }
795                 }
796
797                 /*
798                  * By now there are enough free TX descriptors to transmit
799                  * the packet.
800                  */
801
802                 /*
803                  * Set common flags of all TX Data Descriptors.
804                  *
805                  * The following bits must be set in all Data Descriptors:
806                  *   - IXGBE_ADVTXD_DTYP_DATA
807                  *   - IXGBE_ADVTXD_DCMD_DEXT
808                  *
809                  * The following bits must be set in the first Data Descriptor
810                  * and are ignored in the other ones:
811                  *   - IXGBE_ADVTXD_DCMD_IFCS
812                  *   - IXGBE_ADVTXD_MAC_1588
813                  *   - IXGBE_ADVTXD_DCMD_VLE
814                  *
815                  * The following bits must only be set in the last Data
816                  * Descriptor:
817                  *   - IXGBE_TXD_CMD_EOP
818                  *
819                  * The following bits can be set in any Data Descriptor, but
820                  * are only set in the last Data Descriptor:
821                  *   - IXGBE_TXD_CMD_RS
822                  */
823                 cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
824                         IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
825
826 #ifdef RTE_LIBRTE_IEEE1588
827                 if (ol_flags & PKT_TX_IEEE1588_TMST)
828                         cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
829 #endif
830
831                 olinfo_status = 0;
832                 if (tx_ol_req) {
833
834                         if (ol_flags & PKT_TX_TCP_SEG) {
835                                 /* when TSO is on, paylen in descriptor is the
836                                  * not the packet len but the tcp payload len */
837                                 pkt_len -= (tx_offload.l2_len +
838                                         tx_offload.l3_len + tx_offload.l4_len);
839                         }
840
841                         /*
842                          * Setup the TX Advanced Context Descriptor if required
843                          */
844                         if (new_ctx) {
845                                 volatile struct ixgbe_adv_tx_context_desc *
846                                     ctx_txd;
847
848                                 ctx_txd = (volatile struct
849                                     ixgbe_adv_tx_context_desc *)
850                                     &txr[tx_id];
851
852                                 txn = &sw_ring[txe->next_id];
853                                 rte_prefetch0(&txn->mbuf->pool);
854
855                                 if (txe->mbuf != NULL) {
856                                         rte_pktmbuf_free_seg(txe->mbuf);
857                                         txe->mbuf = NULL;
858                                 }
859
860                                 ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
861                                         tx_offload, &tx_pkt->udata64);
862
863                                 txe->last_id = tx_last;
864                                 tx_id = txe->next_id;
865                                 txe = txn;
866                         }
867
868                         /*
869                          * Setup the TX Advanced Data Descriptor,
870                          * This path will go through
871                          * whatever new/reuse the context descriptor
872                          */
873                         cmd_type_len  |= tx_desc_ol_flags_to_cmdtype(ol_flags);
874                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
875                         olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
876                 }
877
878                 olinfo_status |= (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
879 #ifdef RTE_LIBRTE_SECURITY
880                 if (use_ipsec)
881                         olinfo_status |= IXGBE_ADVTXD_POPTS_IPSEC;
882 #endif
883
884                 m_seg = tx_pkt;
885                 do {
886                         txd = &txr[tx_id];
887                         txn = &sw_ring[txe->next_id];
888                         rte_prefetch0(&txn->mbuf->pool);
889
890                         if (txe->mbuf != NULL)
891                                 rte_pktmbuf_free_seg(txe->mbuf);
892                         txe->mbuf = m_seg;
893
894                         /*
895                          * Set up Transmit Data Descriptor.
896                          */
897                         slen = m_seg->data_len;
898                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
899                         txd->read.buffer_addr =
900                                 rte_cpu_to_le_64(buf_dma_addr);
901                         txd->read.cmd_type_len =
902                                 rte_cpu_to_le_32(cmd_type_len | slen);
903                         txd->read.olinfo_status =
904                                 rte_cpu_to_le_32(olinfo_status);
905                         txe->last_id = tx_last;
906                         tx_id = txe->next_id;
907                         txe = txn;
908                         m_seg = m_seg->next;
909                 } while (m_seg != NULL);
910
911                 /*
912                  * The last packet data descriptor needs End Of Packet (EOP)
913                  */
914                 cmd_type_len |= IXGBE_TXD_CMD_EOP;
915                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
916                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
917
918                 /* Set RS bit only on threshold packets' last descriptor */
919                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
920                         PMD_TX_FREE_LOG(DEBUG,
921                                         "Setting RS bit on TXD id="
922                                         "%4u (port=%d queue=%d)",
923                                         tx_last, txq->port_id, txq->queue_id);
924
925                         cmd_type_len |= IXGBE_TXD_CMD_RS;
926
927                         /* Update txq RS bit counters */
928                         txq->nb_tx_used = 0;
929                         txp = NULL;
930                 } else
931                         txp = txd;
932
933                 txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
934         }
935
936 end_of_tx:
937         /* set RS on last packet in the burst */
938         if (txp != NULL)
939                 txp->read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
940
941         rte_wmb();
942
943         /*
944          * Set the Transmit Descriptor Tail (TDT)
945          */
946         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
947                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
948                    (unsigned) tx_id, (unsigned) nb_tx);
949         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
950         txq->tx_tail = tx_id;
951
952         return nb_tx;
953 }
954
955 /*********************************************************************
956  *
957  *  TX prep functions
958  *
959  **********************************************************************/
960 uint16_t
961 ixgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
962 {
963         int i, ret;
964         uint64_t ol_flags;
965         struct rte_mbuf *m;
966         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
967
968         for (i = 0; i < nb_pkts; i++) {
969                 m = tx_pkts[i];
970                 ol_flags = m->ol_flags;
971
972                 /**
973                  * Check if packet meets requirements for number of segments
974                  *
975                  * NOTE: for ixgbe it's always (40 - WTHRESH) for both TSO and
976                  *       non-TSO
977                  */
978
979                 if (m->nb_segs > IXGBE_TX_MAX_SEG - txq->wthresh) {
980                         rte_errno = -EINVAL;
981                         return i;
982                 }
983
984                 if (ol_flags & IXGBE_TX_OFFLOAD_NOTSUP_MASK) {
985                         rte_errno = -ENOTSUP;
986                         return i;
987                 }
988
989 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
990                 ret = rte_validate_tx_offload(m);
991                 if (ret != 0) {
992                         rte_errno = ret;
993                         return i;
994                 }
995 #endif
996                 ret = rte_net_intel_cksum_prepare(m);
997                 if (ret != 0) {
998                         rte_errno = ret;
999                         return i;
1000                 }
1001         }
1002
1003         return i;
1004 }
1005
1006 /*********************************************************************
1007  *
1008  *  RX functions
1009  *
1010  **********************************************************************/
1011
1012 #define IXGBE_PACKET_TYPE_ETHER                         0X00
1013 #define IXGBE_PACKET_TYPE_IPV4                          0X01
1014 #define IXGBE_PACKET_TYPE_IPV4_TCP                      0X11
1015 #define IXGBE_PACKET_TYPE_IPV4_UDP                      0X21
1016 #define IXGBE_PACKET_TYPE_IPV4_SCTP                     0X41
1017 #define IXGBE_PACKET_TYPE_IPV4_EXT                      0X03
1018 #define IXGBE_PACKET_TYPE_IPV4_EXT_TCP                  0X13
1019 #define IXGBE_PACKET_TYPE_IPV4_EXT_UDP                  0X23
1020 #define IXGBE_PACKET_TYPE_IPV4_EXT_SCTP                 0X43
1021 #define IXGBE_PACKET_TYPE_IPV6                          0X04
1022 #define IXGBE_PACKET_TYPE_IPV6_TCP                      0X14
1023 #define IXGBE_PACKET_TYPE_IPV6_UDP                      0X24
1024 #define IXGBE_PACKET_TYPE_IPV6_SCTP                     0X44
1025 #define IXGBE_PACKET_TYPE_IPV6_EXT                      0X0C
1026 #define IXGBE_PACKET_TYPE_IPV6_EXT_TCP                  0X1C
1027 #define IXGBE_PACKET_TYPE_IPV6_EXT_UDP                  0X2C
1028 #define IXGBE_PACKET_TYPE_IPV6_EXT_SCTP                 0X4C
1029 #define IXGBE_PACKET_TYPE_IPV4_IPV6                     0X05
1030 #define IXGBE_PACKET_TYPE_IPV4_IPV6_TCP                 0X15
1031 #define IXGBE_PACKET_TYPE_IPV4_IPV6_UDP                 0X25
1032 #define IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP                0X45
1033 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6                 0X07
1034 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP             0X17
1035 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP             0X27
1036 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP            0X47
1037 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT                 0X0D
1038 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP             0X1D
1039 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP             0X2D
1040 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP            0X4D
1041 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT             0X0F
1042 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP         0X1F
1043 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP         0X2F
1044 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP        0X4F
1045
1046 #define IXGBE_PACKET_TYPE_NVGRE                   0X00
1047 #define IXGBE_PACKET_TYPE_NVGRE_IPV4              0X01
1048 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP          0X11
1049 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP          0X21
1050 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP         0X41
1051 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT          0X03
1052 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP      0X13
1053 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP      0X23
1054 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP     0X43
1055 #define IXGBE_PACKET_TYPE_NVGRE_IPV6              0X04
1056 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP          0X14
1057 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP          0X24
1058 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP         0X44
1059 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT          0X0C
1060 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP      0X1C
1061 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP      0X2C
1062 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP     0X4C
1063 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6         0X05
1064 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP     0X15
1065 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP     0X25
1066 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT     0X0D
1067 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP 0X1D
1068 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP 0X2D
1069
1070 #define IXGBE_PACKET_TYPE_VXLAN                   0X80
1071 #define IXGBE_PACKET_TYPE_VXLAN_IPV4              0X81
1072 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP          0x91
1073 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP          0xA1
1074 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP         0xC1
1075 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT          0x83
1076 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP      0X93
1077 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP      0XA3
1078 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP     0XC3
1079 #define IXGBE_PACKET_TYPE_VXLAN_IPV6              0X84
1080 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP          0X94
1081 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP          0XA4
1082 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP         0XC4
1083 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT          0X8C
1084 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP      0X9C
1085 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP      0XAC
1086 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP     0XCC
1087 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6         0X85
1088 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP     0X95
1089 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP     0XA5
1090 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT     0X8D
1091 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP 0X9D
1092 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP 0XAD
1093
1094 /**
1095  * Use 2 different table for normal packet and tunnel packet
1096  * to save the space.
1097  */
1098 const uint32_t
1099         ptype_table[IXGBE_PACKET_TYPE_MAX] __rte_cache_aligned = {
1100         [IXGBE_PACKET_TYPE_ETHER] = RTE_PTYPE_L2_ETHER,
1101         [IXGBE_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
1102                 RTE_PTYPE_L3_IPV4,
1103         [IXGBE_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1104                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
1105         [IXGBE_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1106                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
1107         [IXGBE_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1108                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
1109         [IXGBE_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1110                 RTE_PTYPE_L3_IPV4_EXT,
1111         [IXGBE_PACKET_TYPE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1112                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
1113         [IXGBE_PACKET_TYPE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1114                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
1115         [IXGBE_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1116                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
1117         [IXGBE_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
1118                 RTE_PTYPE_L3_IPV6,
1119         [IXGBE_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1120                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
1121         [IXGBE_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1122                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
1123         [IXGBE_PACKET_TYPE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1124                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP,
1125         [IXGBE_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1126                 RTE_PTYPE_L3_IPV6_EXT,
1127         [IXGBE_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1128                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
1129         [IXGBE_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1130                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
1131         [IXGBE_PACKET_TYPE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1132                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_SCTP,
1133         [IXGBE_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1134                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1135                 RTE_PTYPE_INNER_L3_IPV6,
1136         [IXGBE_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1137                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1138                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1139         [IXGBE_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1140                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1141         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1142         [IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1143                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1144                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1145         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6] = RTE_PTYPE_L2_ETHER |
1146                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1147                 RTE_PTYPE_INNER_L3_IPV6,
1148         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1149                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1150                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1151         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1152                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1153                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1154         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1155                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1156                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1157         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1158                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1159                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1160         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1161                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1162                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1163         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1164                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1165                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1166         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1167                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1168                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1169         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1170                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1171                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1172         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1173                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1174                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1175         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1176                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1177                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1178         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP] =
1179                 RTE_PTYPE_L2_ETHER |
1180                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1181                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1182 };
1183
1184 const uint32_t
1185         ptype_table_tn[IXGBE_PACKET_TYPE_TN_MAX] __rte_cache_aligned = {
1186         [IXGBE_PACKET_TYPE_NVGRE] = RTE_PTYPE_L2_ETHER |
1187                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1188                 RTE_PTYPE_INNER_L2_ETHER,
1189         [IXGBE_PACKET_TYPE_NVGRE_IPV4] = RTE_PTYPE_L2_ETHER |
1190                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1191                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1192         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1193                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1194                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT,
1195         [IXGBE_PACKET_TYPE_NVGRE_IPV6] = RTE_PTYPE_L2_ETHER |
1196                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1197                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6,
1198         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1199                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1200                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1201         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1202                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1203                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT,
1204         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1205                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1206                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1207         [IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1208                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1209                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1210                 RTE_PTYPE_INNER_L4_TCP,
1211         [IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1212                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1213                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1214                 RTE_PTYPE_INNER_L4_TCP,
1215         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1216                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1217                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1218         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1219                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1220                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1221                 RTE_PTYPE_INNER_L4_TCP,
1222         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP] =
1223                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1224                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1225                 RTE_PTYPE_INNER_L3_IPV4,
1226         [IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1227                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1228                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1229                 RTE_PTYPE_INNER_L4_UDP,
1230         [IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1231                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1232                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1233                 RTE_PTYPE_INNER_L4_UDP,
1234         [IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1235                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1236                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1237                 RTE_PTYPE_INNER_L4_SCTP,
1238         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1239                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1240                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1241         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1242                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1243                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1244                 RTE_PTYPE_INNER_L4_UDP,
1245         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1246                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1247                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1248                 RTE_PTYPE_INNER_L4_SCTP,
1249         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP] =
1250                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1251                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1252                 RTE_PTYPE_INNER_L3_IPV4,
1253         [IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1254                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1255                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1256                 RTE_PTYPE_INNER_L4_SCTP,
1257         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1258                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1259                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1260                 RTE_PTYPE_INNER_L4_SCTP,
1261         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1262                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1263                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1264                 RTE_PTYPE_INNER_L4_TCP,
1265         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1266                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1267                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1268                 RTE_PTYPE_INNER_L4_UDP,
1269
1270         [IXGBE_PACKET_TYPE_VXLAN] = RTE_PTYPE_L2_ETHER |
1271                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1272                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER,
1273         [IXGBE_PACKET_TYPE_VXLAN_IPV4] = RTE_PTYPE_L2_ETHER |
1274                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1275                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1276                 RTE_PTYPE_INNER_L3_IPV4,
1277         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1278                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1279                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1280                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1281         [IXGBE_PACKET_TYPE_VXLAN_IPV6] = RTE_PTYPE_L2_ETHER |
1282                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1283                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1284                 RTE_PTYPE_INNER_L3_IPV6,
1285         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1286                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1287                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1288                 RTE_PTYPE_INNER_L3_IPV4,
1289         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1290                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1291                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1292                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1293         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1294                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1295                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1296                 RTE_PTYPE_INNER_L3_IPV4,
1297         [IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1298                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1299                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1300                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP,
1301         [IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1302                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1303                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1304                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1305         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1306                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1307                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1308                 RTE_PTYPE_INNER_L3_IPV4,
1309         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1310                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1311                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1312                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1313         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP] =
1314                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1315                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1316                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1317         [IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1318                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1319                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1320                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP,
1321         [IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1322                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1323                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1324                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1325         [IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1326                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1327                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1328                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1329         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1330                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1331                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1332                 RTE_PTYPE_INNER_L3_IPV4,
1333         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1334                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1335                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1336                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1337         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1338                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1339                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1340                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1341         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP] =
1342                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1343                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1344                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1345         [IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1346                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1347                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1348                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_SCTP,
1349         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1350                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1351                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1352                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_SCTP,
1353         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1354                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1355                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1356                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
1357         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1358                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1359                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1360                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
1361 };
1362
1363 /* @note: fix ixgbe_dev_supported_ptypes_get() if any change here. */
1364 static inline uint32_t
1365 ixgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptype_mask)
1366 {
1367
1368         if (unlikely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1369                 return RTE_PTYPE_UNKNOWN;
1370
1371         pkt_info = (pkt_info >> IXGBE_PACKET_TYPE_SHIFT) & ptype_mask;
1372
1373         /* For tunnel packet */
1374         if (pkt_info & IXGBE_PACKET_TYPE_TUNNEL_BIT) {
1375                 /* Remove the tunnel bit to save the space. */
1376                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
1377                 return ptype_table_tn[pkt_info];
1378         }
1379
1380         /**
1381          * For x550, if it's not tunnel,
1382          * tunnel type bit should be set to 0.
1383          * Reuse 82599's mask.
1384          */
1385         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
1386
1387         return ptype_table[pkt_info];
1388 }
1389
1390 static inline uint64_t
1391 ixgbe_rxd_pkt_info_to_pkt_flags(uint16_t pkt_info)
1392 {
1393         static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
1394                 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
1395                 0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
1396                 PKT_RX_RSS_HASH, 0, 0, 0,
1397                 0, 0, 0,  PKT_RX_FDIR,
1398         };
1399 #ifdef RTE_LIBRTE_IEEE1588
1400         static uint64_t ip_pkt_etqf_map[8] = {
1401                 0, 0, 0, PKT_RX_IEEE1588_PTP,
1402                 0, 0, 0, 0,
1403         };
1404
1405         if (likely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1406                 return ip_pkt_etqf_map[(pkt_info >> 4) & 0X07] |
1407                                 ip_rss_types_map[pkt_info & 0XF];
1408         else
1409                 return ip_rss_types_map[pkt_info & 0XF];
1410 #else
1411         return ip_rss_types_map[pkt_info & 0XF];
1412 #endif
1413 }
1414
1415 static inline uint64_t
1416 rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
1417 {
1418         uint64_t pkt_flags;
1419
1420         /*
1421          * Check if VLAN present only.
1422          * Do not check whether L3/L4 rx checksum done by NIC or not,
1423          * That can be found from rte_eth_rxmode.hw_ip_checksum flag
1424          */
1425         pkt_flags = (rx_status & IXGBE_RXD_STAT_VP) ?  vlan_flags : 0;
1426
1427 #ifdef RTE_LIBRTE_IEEE1588
1428         if (rx_status & IXGBE_RXD_STAT_TMST)
1429                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
1430 #endif
1431         return pkt_flags;
1432 }
1433
1434 static inline uint64_t
1435 rx_desc_error_to_pkt_flags(uint32_t rx_status)
1436 {
1437         uint64_t pkt_flags;
1438
1439         /*
1440          * Bit 31: IPE, IPv4 checksum error
1441          * Bit 30: L4I, L4I integrity error
1442          */
1443         static uint64_t error_to_pkt_flags_map[4] = {
1444                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
1445                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
1446                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
1447                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
1448         };
1449         pkt_flags = error_to_pkt_flags_map[(rx_status >>
1450                 IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
1451
1452         if ((rx_status & IXGBE_RXD_STAT_OUTERIPCS) &&
1453             (rx_status & IXGBE_RXDADV_ERR_OUTERIPER)) {
1454                 pkt_flags |= PKT_RX_EIP_CKSUM_BAD;
1455         }
1456
1457 #ifdef RTE_LIBRTE_SECURITY
1458         if (rx_status & IXGBE_RXD_STAT_SECP) {
1459                 pkt_flags |= PKT_RX_SEC_OFFLOAD;
1460                 if (rx_status & IXGBE_RXDADV_LNKSEC_ERROR_BAD_SIG)
1461                         pkt_flags |= PKT_RX_SEC_OFFLOAD_FAILED;
1462         }
1463 #endif
1464
1465         return pkt_flags;
1466 }
1467
1468 /*
1469  * LOOK_AHEAD defines how many desc statuses to check beyond the
1470  * current descriptor.
1471  * It must be a pound define for optimal performance.
1472  * Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
1473  * function only works with LOOK_AHEAD=8.
1474  */
1475 #define LOOK_AHEAD 8
1476 #if (LOOK_AHEAD != 8)
1477 #error "PMD IXGBE: LOOK_AHEAD must be 8\n"
1478 #endif
1479 static inline int
1480 ixgbe_rx_scan_hw_ring(struct ixgbe_rx_queue *rxq)
1481 {
1482         volatile union ixgbe_adv_rx_desc *rxdp;
1483         struct ixgbe_rx_entry *rxep;
1484         struct rte_mbuf *mb;
1485         uint16_t pkt_len;
1486         uint64_t pkt_flags;
1487         int nb_dd;
1488         uint32_t s[LOOK_AHEAD];
1489         uint32_t pkt_info[LOOK_AHEAD];
1490         int i, j, nb_rx = 0;
1491         uint32_t status;
1492         uint64_t vlan_flags = rxq->vlan_flags;
1493
1494         /* get references to current descriptor and S/W ring entry */
1495         rxdp = &rxq->rx_ring[rxq->rx_tail];
1496         rxep = &rxq->sw_ring[rxq->rx_tail];
1497
1498         status = rxdp->wb.upper.status_error;
1499         /* check to make sure there is at least 1 packet to receive */
1500         if (!(status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1501                 return 0;
1502
1503         /*
1504          * Scan LOOK_AHEAD descriptors at a time to determine which descriptors
1505          * reference packets that are ready to be received.
1506          */
1507         for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
1508              i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
1509                 /* Read desc statuses backwards to avoid race condition */
1510                 for (j = 0; j < LOOK_AHEAD; j++)
1511                         s[j] = rte_le_to_cpu_32(rxdp[j].wb.upper.status_error);
1512
1513                 rte_smp_rmb();
1514
1515                 /* Compute how many status bits were set */
1516                 for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
1517                                 (s[nb_dd] & IXGBE_RXDADV_STAT_DD); nb_dd++)
1518                         ;
1519
1520                 for (j = 0; j < nb_dd; j++)
1521                         pkt_info[j] = rte_le_to_cpu_32(rxdp[j].wb.lower.
1522                                                        lo_dword.data);
1523
1524                 nb_rx += nb_dd;
1525
1526                 /* Translate descriptor info to mbuf format */
1527                 for (j = 0; j < nb_dd; ++j) {
1528                         mb = rxep[j].mbuf;
1529                         pkt_len = rte_le_to_cpu_16(rxdp[j].wb.upper.length) -
1530                                   rxq->crc_len;
1531                         mb->data_len = pkt_len;
1532                         mb->pkt_len = pkt_len;
1533                         mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].wb.upper.vlan);
1534
1535                         /* convert descriptor fields to rte mbuf flags */
1536                         pkt_flags = rx_desc_status_to_pkt_flags(s[j],
1537                                 vlan_flags);
1538                         pkt_flags |= rx_desc_error_to_pkt_flags(s[j]);
1539                         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags
1540                                         ((uint16_t)pkt_info[j]);
1541                         mb->ol_flags = pkt_flags;
1542                         mb->packet_type =
1543                                 ixgbe_rxd_pkt_info_to_pkt_type
1544                                         (pkt_info[j], rxq->pkt_type_mask);
1545
1546                         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1547                                 mb->hash.rss = rte_le_to_cpu_32(
1548                                     rxdp[j].wb.lower.hi_dword.rss);
1549                         else if (pkt_flags & PKT_RX_FDIR) {
1550                                 mb->hash.fdir.hash = rte_le_to_cpu_16(
1551                                     rxdp[j].wb.lower.hi_dword.csum_ip.csum) &
1552                                     IXGBE_ATR_HASH_MASK;
1553                                 mb->hash.fdir.id = rte_le_to_cpu_16(
1554                                     rxdp[j].wb.lower.hi_dword.csum_ip.ip_id);
1555                         }
1556                 }
1557
1558                 /* Move mbuf pointers from the S/W ring to the stage */
1559                 for (j = 0; j < LOOK_AHEAD; ++j) {
1560                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1561                 }
1562
1563                 /* stop if all requested packets could not be received */
1564                 if (nb_dd != LOOK_AHEAD)
1565                         break;
1566         }
1567
1568         /* clear software ring entries so we can cleanup correctly */
1569         for (i = 0; i < nb_rx; ++i) {
1570                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1571         }
1572
1573
1574         return nb_rx;
1575 }
1576
1577 static inline int
1578 ixgbe_rx_alloc_bufs(struct ixgbe_rx_queue *rxq, bool reset_mbuf)
1579 {
1580         volatile union ixgbe_adv_rx_desc *rxdp;
1581         struct ixgbe_rx_entry *rxep;
1582         struct rte_mbuf *mb;
1583         uint16_t alloc_idx;
1584         __le64 dma_addr;
1585         int diag, i;
1586
1587         /* allocate buffers in bulk directly into the S/W ring */
1588         alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
1589         rxep = &rxq->sw_ring[alloc_idx];
1590         diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
1591                                     rxq->rx_free_thresh);
1592         if (unlikely(diag != 0))
1593                 return -ENOMEM;
1594
1595         rxdp = &rxq->rx_ring[alloc_idx];
1596         for (i = 0; i < rxq->rx_free_thresh; ++i) {
1597                 /* populate the static rte mbuf fields */
1598                 mb = rxep[i].mbuf;
1599                 if (reset_mbuf) {
1600                         mb->port = rxq->port_id;
1601                 }
1602
1603                 rte_mbuf_refcnt_set(mb, 1);
1604                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1605
1606                 /* populate the descriptors */
1607                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1608                 rxdp[i].read.hdr_addr = 0;
1609                 rxdp[i].read.pkt_addr = dma_addr;
1610         }
1611
1612         /* update state of internal queue structure */
1613         rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
1614         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1615                 rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
1616
1617         /* no errors */
1618         return 0;
1619 }
1620
1621 static inline uint16_t
1622 ixgbe_rx_fill_from_stage(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
1623                          uint16_t nb_pkts)
1624 {
1625         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1626         int i;
1627
1628         /* how many packets are ready to return? */
1629         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1630
1631         /* copy mbuf pointers to the application's packet list */
1632         for (i = 0; i < nb_pkts; ++i)
1633                 rx_pkts[i] = stage[i];
1634
1635         /* update internal queue state */
1636         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1637         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1638
1639         return nb_pkts;
1640 }
1641
1642 static inline uint16_t
1643 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1644              uint16_t nb_pkts)
1645 {
1646         struct ixgbe_rx_queue *rxq = (struct ixgbe_rx_queue *)rx_queue;
1647         uint16_t nb_rx = 0;
1648
1649         /* Any previously recv'd pkts will be returned from the Rx stage */
1650         if (rxq->rx_nb_avail)
1651                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1652
1653         /* Scan the H/W ring for packets to receive */
1654         nb_rx = (uint16_t)ixgbe_rx_scan_hw_ring(rxq);
1655
1656         /* update internal queue state */
1657         rxq->rx_next_avail = 0;
1658         rxq->rx_nb_avail = nb_rx;
1659         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1660
1661         /* if required, allocate new buffers to replenish descriptors */
1662         if (rxq->rx_tail > rxq->rx_free_trigger) {
1663                 uint16_t cur_free_trigger = rxq->rx_free_trigger;
1664
1665                 if (ixgbe_rx_alloc_bufs(rxq, true) != 0) {
1666                         int i, j;
1667
1668                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1669                                    "queue_id=%u", (unsigned) rxq->port_id,
1670                                    (unsigned) rxq->queue_id);
1671
1672                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
1673                                 rxq->rx_free_thresh;
1674
1675                         /*
1676                          * Need to rewind any previous receives if we cannot
1677                          * allocate new buffers to replenish the old ones.
1678                          */
1679                         rxq->rx_nb_avail = 0;
1680                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1681                         for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
1682                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1683
1684                         return 0;
1685                 }
1686
1687                 /* update tail pointer */
1688                 rte_wmb();
1689                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
1690                                             cur_free_trigger);
1691         }
1692
1693         if (rxq->rx_tail >= rxq->nb_rx_desc)
1694                 rxq->rx_tail = 0;
1695
1696         /* received any packets this loop? */
1697         if (rxq->rx_nb_avail)
1698                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1699
1700         return 0;
1701 }
1702
1703 /* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
1704 uint16_t
1705 ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
1706                            uint16_t nb_pkts)
1707 {
1708         uint16_t nb_rx;
1709
1710         if (unlikely(nb_pkts == 0))
1711                 return 0;
1712
1713         if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
1714                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1715
1716         /* request is relatively large, chunk it up */
1717         nb_rx = 0;
1718         while (nb_pkts) {
1719                 uint16_t ret, n;
1720
1721                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
1722                 ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1723                 nb_rx = (uint16_t)(nb_rx + ret);
1724                 nb_pkts = (uint16_t)(nb_pkts - ret);
1725                 if (ret < n)
1726                         break;
1727         }
1728
1729         return nb_rx;
1730 }
1731
1732 uint16_t
1733 ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1734                 uint16_t nb_pkts)
1735 {
1736         struct ixgbe_rx_queue *rxq;
1737         volatile union ixgbe_adv_rx_desc *rx_ring;
1738         volatile union ixgbe_adv_rx_desc *rxdp;
1739         struct ixgbe_rx_entry *sw_ring;
1740         struct ixgbe_rx_entry *rxe;
1741         struct rte_mbuf *rxm;
1742         struct rte_mbuf *nmb;
1743         union ixgbe_adv_rx_desc rxd;
1744         uint64_t dma_addr;
1745         uint32_t staterr;
1746         uint32_t pkt_info;
1747         uint16_t pkt_len;
1748         uint16_t rx_id;
1749         uint16_t nb_rx;
1750         uint16_t nb_hold;
1751         uint64_t pkt_flags;
1752         uint64_t vlan_flags;
1753
1754         nb_rx = 0;
1755         nb_hold = 0;
1756         rxq = rx_queue;
1757         rx_id = rxq->rx_tail;
1758         rx_ring = rxq->rx_ring;
1759         sw_ring = rxq->sw_ring;
1760         vlan_flags = rxq->vlan_flags;
1761         while (nb_rx < nb_pkts) {
1762                 /*
1763                  * The order of operations here is important as the DD status
1764                  * bit must not be read after any other descriptor fields.
1765                  * rx_ring and rxdp are pointing to volatile data so the order
1766                  * of accesses cannot be reordered by the compiler. If they were
1767                  * not volatile, they could be reordered which could lead to
1768                  * using invalid descriptor fields when read from rxd.
1769                  */
1770                 rxdp = &rx_ring[rx_id];
1771                 staterr = rxdp->wb.upper.status_error;
1772                 if (!(staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1773                         break;
1774                 rxd = *rxdp;
1775
1776                 /*
1777                  * End of packet.
1778                  *
1779                  * If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
1780                  * is likely to be invalid and to be dropped by the various
1781                  * validation checks performed by the network stack.
1782                  *
1783                  * Allocate a new mbuf to replenish the RX ring descriptor.
1784                  * If the allocation fails:
1785                  *    - arrange for that RX descriptor to be the first one
1786                  *      being parsed the next time the receive function is
1787                  *      invoked [on the same queue].
1788                  *
1789                  *    - Stop parsing the RX ring and return immediately.
1790                  *
1791                  * This policy do not drop the packet received in the RX
1792                  * descriptor for which the allocation of a new mbuf failed.
1793                  * Thus, it allows that packet to be later retrieved if
1794                  * mbuf have been freed in the mean time.
1795                  * As a side effect, holding RX descriptors instead of
1796                  * systematically giving them back to the NIC may lead to
1797                  * RX ring exhaustion situations.
1798                  * However, the NIC can gracefully prevent such situations
1799                  * to happen by sending specific "back-pressure" flow control
1800                  * frames to its peer(s).
1801                  */
1802                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1803                            "ext_err_stat=0x%08x pkt_len=%u",
1804                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1805                            (unsigned) rx_id, (unsigned) staterr,
1806                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1807
1808                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1809                 if (nmb == NULL) {
1810                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1811                                    "queue_id=%u", (unsigned) rxq->port_id,
1812                                    (unsigned) rxq->queue_id);
1813                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1814                         break;
1815                 }
1816
1817                 nb_hold++;
1818                 rxe = &sw_ring[rx_id];
1819                 rx_id++;
1820                 if (rx_id == rxq->nb_rx_desc)
1821                         rx_id = 0;
1822
1823                 /* Prefetch next mbuf while processing current one. */
1824                 rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
1825
1826                 /*
1827                  * When next RX descriptor is on a cache-line boundary,
1828                  * prefetch the next 4 RX descriptors and the next 8 pointers
1829                  * to mbufs.
1830                  */
1831                 if ((rx_id & 0x3) == 0) {
1832                         rte_ixgbe_prefetch(&rx_ring[rx_id]);
1833                         rte_ixgbe_prefetch(&sw_ring[rx_id]);
1834                 }
1835
1836                 rxm = rxe->mbuf;
1837                 rxe->mbuf = nmb;
1838                 dma_addr =
1839                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1840                 rxdp->read.hdr_addr = 0;
1841                 rxdp->read.pkt_addr = dma_addr;
1842
1843                 /*
1844                  * Initialize the returned mbuf.
1845                  * 1) setup generic mbuf fields:
1846                  *    - number of segments,
1847                  *    - next segment,
1848                  *    - packet length,
1849                  *    - RX port identifier.
1850                  * 2) integrate hardware offload data, if any:
1851                  *    - RSS flag & hash,
1852                  *    - IP checksum flag,
1853                  *    - VLAN TCI, if any,
1854                  *    - error flags.
1855                  */
1856                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
1857                                       rxq->crc_len);
1858                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1859                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
1860                 rxm->nb_segs = 1;
1861                 rxm->next = NULL;
1862                 rxm->pkt_len = pkt_len;
1863                 rxm->data_len = pkt_len;
1864                 rxm->port = rxq->port_id;
1865
1866                 pkt_info = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1867                 /* Only valid if PKT_RX_VLAN set in pkt_flags */
1868                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1869
1870                 pkt_flags = rx_desc_status_to_pkt_flags(staterr, vlan_flags);
1871                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1872                 pkt_flags = pkt_flags |
1873                         ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1874                 rxm->ol_flags = pkt_flags;
1875                 rxm->packet_type =
1876                         ixgbe_rxd_pkt_info_to_pkt_type(pkt_info,
1877                                                        rxq->pkt_type_mask);
1878
1879                 if (likely(pkt_flags & PKT_RX_RSS_HASH))
1880                         rxm->hash.rss = rte_le_to_cpu_32(
1881                                                 rxd.wb.lower.hi_dword.rss);
1882                 else if (pkt_flags & PKT_RX_FDIR) {
1883                         rxm->hash.fdir.hash = rte_le_to_cpu_16(
1884                                         rxd.wb.lower.hi_dword.csum_ip.csum) &
1885                                         IXGBE_ATR_HASH_MASK;
1886                         rxm->hash.fdir.id = rte_le_to_cpu_16(
1887                                         rxd.wb.lower.hi_dword.csum_ip.ip_id);
1888                 }
1889                 /*
1890                  * Store the mbuf address into the next entry of the array
1891                  * of returned packets.
1892                  */
1893                 rx_pkts[nb_rx++] = rxm;
1894         }
1895         rxq->rx_tail = rx_id;
1896
1897         /*
1898          * If the number of free RX descriptors is greater than the RX free
1899          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1900          * register.
1901          * Update the RDT with the value of the last processed RX descriptor
1902          * minus 1, to guarantee that the RDT register is never equal to the
1903          * RDH register, which creates a "full" ring situtation from the
1904          * hardware point of view...
1905          */
1906         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1907         if (nb_hold > rxq->rx_free_thresh) {
1908                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1909                            "nb_hold=%u nb_rx=%u",
1910                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1911                            (unsigned) rx_id, (unsigned) nb_hold,
1912                            (unsigned) nb_rx);
1913                 rx_id = (uint16_t) ((rx_id == 0) ?
1914                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1915                 IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1916                 nb_hold = 0;
1917         }
1918         rxq->nb_rx_hold = nb_hold;
1919         return nb_rx;
1920 }
1921
1922 /**
1923  * Detect an RSC descriptor.
1924  */
1925 static inline uint32_t
1926 ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
1927 {
1928         return (rte_le_to_cpu_32(rx->wb.lower.lo_dword.data) &
1929                 IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
1930 }
1931
1932 /**
1933  * ixgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
1934  *
1935  * Fill the following info in the HEAD buffer of the Rx cluster:
1936  *    - RX port identifier
1937  *    - hardware offload data, if any:
1938  *      - RSS flag & hash
1939  *      - IP checksum flag
1940  *      - VLAN TCI, if any
1941  *      - error flags
1942  * @head HEAD of the packet cluster
1943  * @desc HW descriptor to get data from
1944  * @rxq Pointer to the Rx queue
1945  */
1946 static inline void
1947 ixgbe_fill_cluster_head_buf(
1948         struct rte_mbuf *head,
1949         union ixgbe_adv_rx_desc *desc,
1950         struct ixgbe_rx_queue *rxq,
1951         uint32_t staterr)
1952 {
1953         uint32_t pkt_info;
1954         uint64_t pkt_flags;
1955
1956         head->port = rxq->port_id;
1957
1958         /* The vlan_tci field is only valid when PKT_RX_VLAN is
1959          * set in the pkt_flags field.
1960          */
1961         head->vlan_tci = rte_le_to_cpu_16(desc->wb.upper.vlan);
1962         pkt_info = rte_le_to_cpu_32(desc->wb.lower.lo_dword.data);
1963         pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
1964         pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
1965         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1966         head->ol_flags = pkt_flags;
1967         head->packet_type =
1968                 ixgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask);
1969
1970         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1971                 head->hash.rss = rte_le_to_cpu_32(desc->wb.lower.hi_dword.rss);
1972         else if (pkt_flags & PKT_RX_FDIR) {
1973                 head->hash.fdir.hash =
1974                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.csum)
1975                                                           & IXGBE_ATR_HASH_MASK;
1976                 head->hash.fdir.id =
1977                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.ip_id);
1978         }
1979 }
1980
1981 /**
1982  * ixgbe_recv_pkts_lro - receive handler for and LRO case.
1983  *
1984  * @rx_queue Rx queue handle
1985  * @rx_pkts table of received packets
1986  * @nb_pkts size of rx_pkts table
1987  * @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
1988  *
1989  * Handles the Rx HW ring completions when RSC feature is configured. Uses an
1990  * additional ring of ixgbe_rsc_entry's that will hold the relevant RSC info.
1991  *
1992  * We use the same logic as in Linux and in FreeBSD ixgbe drivers:
1993  * 1) When non-EOP RSC completion arrives:
1994  *    a) Update the HEAD of the current RSC aggregation cluster with the new
1995  *       segment's data length.
1996  *    b) Set the "next" pointer of the current segment to point to the segment
1997  *       at the NEXTP index.
1998  *    c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
1999  *       in the sw_rsc_ring.
2000  * 2) When EOP arrives we just update the cluster's total length and offload
2001  *    flags and deliver the cluster up to the upper layers. In our case - put it
2002  *    in the rx_pkts table.
2003  *
2004  * Returns the number of received packets/clusters (according to the "bulk
2005  * receive" interface).
2006  */
2007 static inline uint16_t
2008 ixgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
2009                     bool bulk_alloc)
2010 {
2011         struct ixgbe_rx_queue *rxq = rx_queue;
2012         volatile union ixgbe_adv_rx_desc *rx_ring = rxq->rx_ring;
2013         struct ixgbe_rx_entry *sw_ring = rxq->sw_ring;
2014         struct ixgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
2015         uint16_t rx_id = rxq->rx_tail;
2016         uint16_t nb_rx = 0;
2017         uint16_t nb_hold = rxq->nb_rx_hold;
2018         uint16_t prev_id = rxq->rx_tail;
2019
2020         while (nb_rx < nb_pkts) {
2021                 bool eop;
2022                 struct ixgbe_rx_entry *rxe;
2023                 struct ixgbe_scattered_rx_entry *sc_entry;
2024                 struct ixgbe_scattered_rx_entry *next_sc_entry;
2025                 struct ixgbe_rx_entry *next_rxe = NULL;
2026                 struct rte_mbuf *first_seg;
2027                 struct rte_mbuf *rxm;
2028                 struct rte_mbuf *nmb;
2029                 union ixgbe_adv_rx_desc rxd;
2030                 uint16_t data_len;
2031                 uint16_t next_id;
2032                 volatile union ixgbe_adv_rx_desc *rxdp;
2033                 uint32_t staterr;
2034
2035 next_desc:
2036                 /*
2037                  * The code in this whole file uses the volatile pointer to
2038                  * ensure the read ordering of the status and the rest of the
2039                  * descriptor fields (on the compiler level only!!!). This is so
2040                  * UGLY - why not to just use the compiler barrier instead? DPDK
2041                  * even has the rte_compiler_barrier() for that.
2042                  *
2043                  * But most importantly this is just wrong because this doesn't
2044                  * ensure memory ordering in a general case at all. For
2045                  * instance, DPDK is supposed to work on Power CPUs where
2046                  * compiler barrier may just not be enough!
2047                  *
2048                  * I tried to write only this function properly to have a
2049                  * starting point (as a part of an LRO/RSC series) but the
2050                  * compiler cursed at me when I tried to cast away the
2051                  * "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
2052                  * keeping it the way it is for now.
2053                  *
2054                  * The code in this file is broken in so many other places and
2055                  * will just not work on a big endian CPU anyway therefore the
2056                  * lines below will have to be revisited together with the rest
2057                  * of the ixgbe PMD.
2058                  *
2059                  * TODO:
2060                  *    - Get rid of "volatile" crap and let the compiler do its
2061                  *      job.
2062                  *    - Use the proper memory barrier (rte_rmb()) to ensure the
2063                  *      memory ordering below.
2064                  */
2065                 rxdp = &rx_ring[rx_id];
2066                 staterr = rte_le_to_cpu_32(rxdp->wb.upper.status_error);
2067
2068                 if (!(staterr & IXGBE_RXDADV_STAT_DD))
2069                         break;
2070
2071                 rxd = *rxdp;
2072
2073                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
2074                                   "staterr=0x%x data_len=%u",
2075                            rxq->port_id, rxq->queue_id, rx_id, staterr,
2076                            rte_le_to_cpu_16(rxd.wb.upper.length));
2077
2078                 if (!bulk_alloc) {
2079                         nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
2080                         if (nmb == NULL) {
2081                                 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
2082                                                   "port_id=%u queue_id=%u",
2083                                            rxq->port_id, rxq->queue_id);
2084
2085                                 rte_eth_devices[rxq->port_id].data->
2086                                                         rx_mbuf_alloc_failed++;
2087                                 break;
2088                         }
2089                 } else if (nb_hold > rxq->rx_free_thresh) {
2090                         uint16_t next_rdt = rxq->rx_free_trigger;
2091
2092                         if (!ixgbe_rx_alloc_bufs(rxq, false)) {
2093                                 rte_wmb();
2094                                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
2095                                                             next_rdt);
2096                                 nb_hold -= rxq->rx_free_thresh;
2097                         } else {
2098                                 PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
2099                                                   "port_id=%u queue_id=%u",
2100                                            rxq->port_id, rxq->queue_id);
2101
2102                                 rte_eth_devices[rxq->port_id].data->
2103                                                         rx_mbuf_alloc_failed++;
2104                                 break;
2105                         }
2106                 }
2107
2108                 nb_hold++;
2109                 rxe = &sw_ring[rx_id];
2110                 eop = staterr & IXGBE_RXDADV_STAT_EOP;
2111
2112                 next_id = rx_id + 1;
2113                 if (next_id == rxq->nb_rx_desc)
2114                         next_id = 0;
2115
2116                 /* Prefetch next mbuf while processing current one. */
2117                 rte_ixgbe_prefetch(sw_ring[next_id].mbuf);
2118
2119                 /*
2120                  * When next RX descriptor is on a cache-line boundary,
2121                  * prefetch the next 4 RX descriptors and the next 4 pointers
2122                  * to mbufs.
2123                  */
2124                 if ((next_id & 0x3) == 0) {
2125                         rte_ixgbe_prefetch(&rx_ring[next_id]);
2126                         rte_ixgbe_prefetch(&sw_ring[next_id]);
2127                 }
2128
2129                 rxm = rxe->mbuf;
2130
2131                 if (!bulk_alloc) {
2132                         __le64 dma =
2133                           rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2134                         /*
2135                          * Update RX descriptor with the physical address of the
2136                          * new data buffer of the new allocated mbuf.
2137                          */
2138                         rxe->mbuf = nmb;
2139
2140                         rxm->data_off = RTE_PKTMBUF_HEADROOM;
2141                         rxdp->read.hdr_addr = 0;
2142                         rxdp->read.pkt_addr = dma;
2143                 } else
2144                         rxe->mbuf = NULL;
2145
2146                 /*
2147                  * Set data length & data buffer address of mbuf.
2148                  */
2149                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
2150                 rxm->data_len = data_len;
2151
2152                 if (!eop) {
2153                         uint16_t nextp_id;
2154                         /*
2155                          * Get next descriptor index:
2156                          *  - For RSC it's in the NEXTP field.
2157                          *  - For a scattered packet - it's just a following
2158                          *    descriptor.
2159                          */
2160                         if (ixgbe_rsc_count(&rxd))
2161                                 nextp_id =
2162                                         (staterr & IXGBE_RXDADV_NEXTP_MASK) >>
2163                                                        IXGBE_RXDADV_NEXTP_SHIFT;
2164                         else
2165                                 nextp_id = next_id;
2166
2167                         next_sc_entry = &sw_sc_ring[nextp_id];
2168                         next_rxe = &sw_ring[nextp_id];
2169                         rte_ixgbe_prefetch(next_rxe);
2170                 }
2171
2172                 sc_entry = &sw_sc_ring[rx_id];
2173                 first_seg = sc_entry->fbuf;
2174                 sc_entry->fbuf = NULL;
2175
2176                 /*
2177                  * If this is the first buffer of the received packet,
2178                  * set the pointer to the first mbuf of the packet and
2179                  * initialize its context.
2180                  * Otherwise, update the total length and the number of segments
2181                  * of the current scattered packet, and update the pointer to
2182                  * the last mbuf of the current packet.
2183                  */
2184                 if (first_seg == NULL) {
2185                         first_seg = rxm;
2186                         first_seg->pkt_len = data_len;
2187                         first_seg->nb_segs = 1;
2188                 } else {
2189                         first_seg->pkt_len += data_len;
2190                         first_seg->nb_segs++;
2191                 }
2192
2193                 prev_id = rx_id;
2194                 rx_id = next_id;
2195
2196                 /*
2197                  * If this is not the last buffer of the received packet, update
2198                  * the pointer to the first mbuf at the NEXTP entry in the
2199                  * sw_sc_ring and continue to parse the RX ring.
2200                  */
2201                 if (!eop && next_rxe) {
2202                         rxm->next = next_rxe->mbuf;
2203                         next_sc_entry->fbuf = first_seg;
2204                         goto next_desc;
2205                 }
2206
2207                 /* Initialize the first mbuf of the returned packet */
2208                 ixgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
2209
2210                 /*
2211                  * Deal with the case, when HW CRC srip is disabled.
2212                  * That can't happen when LRO is enabled, but still could
2213                  * happen for scattered RX mode.
2214                  */
2215                 first_seg->pkt_len -= rxq->crc_len;
2216                 if (unlikely(rxm->data_len <= rxq->crc_len)) {
2217                         struct rte_mbuf *lp;
2218
2219                         for (lp = first_seg; lp->next != rxm; lp = lp->next)
2220                                 ;
2221
2222                         first_seg->nb_segs--;
2223                         lp->data_len -= rxq->crc_len - rxm->data_len;
2224                         lp->next = NULL;
2225                         rte_pktmbuf_free_seg(rxm);
2226                 } else
2227                         rxm->data_len -= rxq->crc_len;
2228
2229                 /* Prefetch data of first segment, if configured to do so. */
2230                 rte_packet_prefetch((char *)first_seg->buf_addr +
2231                         first_seg->data_off);
2232
2233                 /*
2234                  * Store the mbuf address into the next entry of the array
2235                  * of returned packets.
2236                  */
2237                 rx_pkts[nb_rx++] = first_seg;
2238         }
2239
2240         /*
2241          * Record index of the next RX descriptor to probe.
2242          */
2243         rxq->rx_tail = rx_id;
2244
2245         /*
2246          * If the number of free RX descriptors is greater than the RX free
2247          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2248          * register.
2249          * Update the RDT with the value of the last processed RX descriptor
2250          * minus 1, to guarantee that the RDT register is never equal to the
2251          * RDH register, which creates a "full" ring situtation from the
2252          * hardware point of view...
2253          */
2254         if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
2255                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
2256                            "nb_hold=%u nb_rx=%u",
2257                            rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
2258
2259                 rte_wmb();
2260                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr, prev_id);
2261                 nb_hold = 0;
2262         }
2263
2264         rxq->nb_rx_hold = nb_hold;
2265         return nb_rx;
2266 }
2267
2268 uint16_t
2269 ixgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2270                                  uint16_t nb_pkts)
2271 {
2272         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
2273 }
2274
2275 uint16_t
2276 ixgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2277                                uint16_t nb_pkts)
2278 {
2279         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
2280 }
2281
2282 /*********************************************************************
2283  *
2284  *  Queue management functions
2285  *
2286  **********************************************************************/
2287
2288 static void __attribute__((cold))
2289 ixgbe_tx_queue_release_mbufs(struct ixgbe_tx_queue *txq)
2290 {
2291         unsigned i;
2292
2293         if (txq->sw_ring != NULL) {
2294                 for (i = 0; i < txq->nb_tx_desc; i++) {
2295                         if (txq->sw_ring[i].mbuf != NULL) {
2296                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2297                                 txq->sw_ring[i].mbuf = NULL;
2298                         }
2299                 }
2300         }
2301 }
2302
2303 static void __attribute__((cold))
2304 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
2305 {
2306         if (txq != NULL &&
2307             txq->sw_ring != NULL)
2308                 rte_free(txq->sw_ring);
2309 }
2310
2311 static void __attribute__((cold))
2312 ixgbe_tx_queue_release(struct ixgbe_tx_queue *txq)
2313 {
2314         if (txq != NULL && txq->ops != NULL) {
2315                 txq->ops->release_mbufs(txq);
2316                 txq->ops->free_swring(txq);
2317                 rte_free(txq);
2318         }
2319 }
2320
2321 void __attribute__((cold))
2322 ixgbe_dev_tx_queue_release(void *txq)
2323 {
2324         ixgbe_tx_queue_release(txq);
2325 }
2326
2327 /* (Re)set dynamic ixgbe_tx_queue fields to defaults */
2328 static void __attribute__((cold))
2329 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
2330 {
2331         static const union ixgbe_adv_tx_desc zeroed_desc = {{0}};
2332         struct ixgbe_tx_entry *txe = txq->sw_ring;
2333         uint16_t prev, i;
2334
2335         /* Zero out HW ring memory */
2336         for (i = 0; i < txq->nb_tx_desc; i++) {
2337                 txq->tx_ring[i] = zeroed_desc;
2338         }
2339
2340         /* Initialize SW ring entries */
2341         prev = (uint16_t) (txq->nb_tx_desc - 1);
2342         for (i = 0; i < txq->nb_tx_desc; i++) {
2343                 volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
2344
2345                 txd->wb.status = rte_cpu_to_le_32(IXGBE_TXD_STAT_DD);
2346                 txe[i].mbuf = NULL;
2347                 txe[i].last_id = i;
2348                 txe[prev].next_id = i;
2349                 prev = i;
2350         }
2351
2352         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2353         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2354
2355         txq->tx_tail = 0;
2356         txq->nb_tx_used = 0;
2357         /*
2358          * Always allow 1 descriptor to be un-allocated to avoid
2359          * a H/W race condition
2360          */
2361         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2362         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2363         txq->ctx_curr = 0;
2364         memset((void *)&txq->ctx_cache, 0,
2365                 IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
2366 }
2367
2368 static const struct ixgbe_txq_ops def_txq_ops = {
2369         .release_mbufs = ixgbe_tx_queue_release_mbufs,
2370         .free_swring = ixgbe_tx_free_swring,
2371         .reset = ixgbe_reset_tx_queue,
2372 };
2373
2374 /* Takes an ethdev and a queue and sets up the tx function to be used based on
2375  * the queue parameters. Used in tx_queue_setup by primary process and then
2376  * in dev_init by secondary process when attaching to an existing ethdev.
2377  */
2378 void __attribute__((cold))
2379 ixgbe_set_tx_function(struct rte_eth_dev *dev, struct ixgbe_tx_queue *txq)
2380 {
2381         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2382         if (((txq->txq_flags & IXGBE_SIMPLE_FLAGS) == IXGBE_SIMPLE_FLAGS) &&
2383 #ifdef RTE_LIBRTE_SECURITY
2384                         !(txq->using_ipsec) &&
2385 #endif
2386                         (txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST)) {
2387                 PMD_INIT_LOG(DEBUG, "Using simple tx code path");
2388                 dev->tx_pkt_prepare = NULL;
2389 #ifdef RTE_IXGBE_INC_VECTOR
2390                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2391                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2392                                         ixgbe_txq_vec_setup(txq) == 0)) {
2393                         PMD_INIT_LOG(DEBUG, "Vector tx enabled.");
2394                         dev->tx_pkt_burst = ixgbe_xmit_pkts_vec;
2395                 } else
2396 #endif
2397                 dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
2398         } else {
2399                 PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
2400                 PMD_INIT_LOG(DEBUG,
2401                                 " - txq_flags = %lx " "[IXGBE_SIMPLE_FLAGS=%lx]",
2402                                 (unsigned long)txq->txq_flags,
2403                                 (unsigned long)IXGBE_SIMPLE_FLAGS);
2404                 PMD_INIT_LOG(DEBUG,
2405                                 " - tx_rs_thresh = %lu " "[RTE_PMD_IXGBE_TX_MAX_BURST=%lu]",
2406                                 (unsigned long)txq->tx_rs_thresh,
2407                                 (unsigned long)RTE_PMD_IXGBE_TX_MAX_BURST);
2408                 dev->tx_pkt_burst = ixgbe_xmit_pkts;
2409                 dev->tx_pkt_prepare = ixgbe_prep_pkts;
2410         }
2411 }
2412
2413 int __attribute__((cold))
2414 ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
2415                          uint16_t queue_idx,
2416                          uint16_t nb_desc,
2417                          unsigned int socket_id,
2418                          const struct rte_eth_txconf *tx_conf)
2419 {
2420         const struct rte_memzone *tz;
2421         struct ixgbe_tx_queue *txq;
2422         struct ixgbe_hw     *hw;
2423         uint16_t tx_rs_thresh, tx_free_thresh;
2424
2425         PMD_INIT_FUNC_TRACE();
2426         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2427
2428         /*
2429          * Validate number of transmit descriptors.
2430          * It must not exceed hardware maximum, and must be multiple
2431          * of IXGBE_ALIGN.
2432          */
2433         if (nb_desc % IXGBE_TXD_ALIGN != 0 ||
2434                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2435                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2436                 return -EINVAL;
2437         }
2438
2439         /*
2440          * The following two parameters control the setting of the RS bit on
2441          * transmit descriptors.
2442          * TX descriptors will have their RS bit set after txq->tx_rs_thresh
2443          * descriptors have been used.
2444          * The TX descriptor ring will be cleaned after txq->tx_free_thresh
2445          * descriptors are used or if the number of descriptors required
2446          * to transmit a packet is greater than the number of free TX
2447          * descriptors.
2448          * The following constraints must be satisfied:
2449          *  tx_rs_thresh must be greater than 0.
2450          *  tx_rs_thresh must be less than the size of the ring minus 2.
2451          *  tx_rs_thresh must be less than or equal to tx_free_thresh.
2452          *  tx_rs_thresh must be a divisor of the ring size.
2453          *  tx_free_thresh must be greater than 0.
2454          *  tx_free_thresh must be less than the size of the ring minus 3.
2455          * One descriptor in the TX ring is used as a sentinel to avoid a
2456          * H/W race condition, hence the maximum threshold constraints.
2457          * When set to zero use default values.
2458          */
2459         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2460                         tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2461         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2462                         tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2463         if (tx_rs_thresh >= (nb_desc - 2)) {
2464                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the number "
2465                         "of TX descriptors minus 2. (tx_rs_thresh=%u "
2466                         "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2467                         (int)dev->data->port_id, (int)queue_idx);
2468                 return -(EINVAL);
2469         }
2470         if (tx_rs_thresh > DEFAULT_TX_RS_THRESH) {
2471                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less or equal than %u. "
2472                         "(tx_rs_thresh=%u port=%d queue=%d)",
2473                         DEFAULT_TX_RS_THRESH, (unsigned int)tx_rs_thresh,
2474                         (int)dev->data->port_id, (int)queue_idx);
2475                 return -(EINVAL);
2476         }
2477         if (tx_free_thresh >= (nb_desc - 3)) {
2478                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2479                              "tx_free_thresh must be less than the number of "
2480                              "TX descriptors minus 3. (tx_free_thresh=%u "
2481                              "port=%d queue=%d)",
2482                              (unsigned int)tx_free_thresh,
2483                              (int)dev->data->port_id, (int)queue_idx);
2484                 return -(EINVAL);
2485         }
2486         if (tx_rs_thresh > tx_free_thresh) {
2487                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
2488                              "tx_free_thresh. (tx_free_thresh=%u "
2489                              "tx_rs_thresh=%u port=%d queue=%d)",
2490                              (unsigned int)tx_free_thresh,
2491                              (unsigned int)tx_rs_thresh,
2492                              (int)dev->data->port_id,
2493                              (int)queue_idx);
2494                 return -(EINVAL);
2495         }
2496         if ((nb_desc % tx_rs_thresh) != 0) {
2497                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2498                              "number of TX descriptors. (tx_rs_thresh=%u "
2499                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2500                              (int)dev->data->port_id, (int)queue_idx);
2501                 return -(EINVAL);
2502         }
2503
2504         /*
2505          * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
2506          * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
2507          * by the NIC and all descriptors are written back after the NIC
2508          * accumulates WTHRESH descriptors.
2509          */
2510         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2511                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2512                              "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
2513                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2514                              (int)dev->data->port_id, (int)queue_idx);
2515                 return -(EINVAL);
2516         }
2517
2518         /* Free memory prior to re-allocation if needed... */
2519         if (dev->data->tx_queues[queue_idx] != NULL) {
2520                 ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
2521                 dev->data->tx_queues[queue_idx] = NULL;
2522         }
2523
2524         /* First allocate the tx queue data structure */
2525         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct ixgbe_tx_queue),
2526                                  RTE_CACHE_LINE_SIZE, socket_id);
2527         if (txq == NULL)
2528                 return -ENOMEM;
2529
2530         /*
2531          * Allocate TX ring hardware descriptors. A memzone large enough to
2532          * handle the maximum ring size is allocated in order to allow for
2533          * resizing in later calls to the queue setup function.
2534          */
2535         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2536                         sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
2537                         IXGBE_ALIGN, socket_id);
2538         if (tz == NULL) {
2539                 ixgbe_tx_queue_release(txq);
2540                 return -ENOMEM;
2541         }
2542
2543         txq->nb_tx_desc = nb_desc;
2544         txq->tx_rs_thresh = tx_rs_thresh;
2545         txq->tx_free_thresh = tx_free_thresh;
2546         txq->pthresh = tx_conf->tx_thresh.pthresh;
2547         txq->hthresh = tx_conf->tx_thresh.hthresh;
2548         txq->wthresh = tx_conf->tx_thresh.wthresh;
2549         txq->queue_id = queue_idx;
2550         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2551                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2552         txq->port_id = dev->data->port_id;
2553         txq->txq_flags = tx_conf->txq_flags;
2554         txq->ops = &def_txq_ops;
2555         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2556 #ifdef RTE_LIBRTE_SECURITY
2557         txq->using_ipsec = !!(dev->data->dev_conf.txmode.offloads &
2558                         DEV_TX_OFFLOAD_SECURITY);
2559 #endif
2560
2561         /*
2562          * Modification to set VFTDT for virtual function if vf is detected
2563          */
2564         if (hw->mac.type == ixgbe_mac_82599_vf ||
2565             hw->mac.type == ixgbe_mac_X540_vf ||
2566             hw->mac.type == ixgbe_mac_X550_vf ||
2567             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2568             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2569                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
2570         else
2571                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(txq->reg_idx));
2572
2573         txq->tx_ring_phys_addr = tz->iova;
2574         txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
2575
2576         /* Allocate software ring */
2577         txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
2578                                 sizeof(struct ixgbe_tx_entry) * nb_desc,
2579                                 RTE_CACHE_LINE_SIZE, socket_id);
2580         if (txq->sw_ring == NULL) {
2581                 ixgbe_tx_queue_release(txq);
2582                 return -ENOMEM;
2583         }
2584         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
2585                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
2586
2587         /* set up vector or scalar TX function as appropriate */
2588         ixgbe_set_tx_function(dev, txq);
2589
2590         txq->ops->reset(txq);
2591
2592         dev->data->tx_queues[queue_idx] = txq;
2593
2594
2595         return 0;
2596 }
2597
2598 /**
2599  * ixgbe_free_sc_cluster - free the not-yet-completed scattered cluster
2600  *
2601  * The "next" pointer of the last segment of (not-yet-completed) RSC clusters
2602  * in the sw_rsc_ring is not set to NULL but rather points to the next
2603  * mbuf of this RSC aggregation (that has not been completed yet and still
2604  * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
2605  * will just free first "nb_segs" segments of the cluster explicitly by calling
2606  * an rte_pktmbuf_free_seg().
2607  *
2608  * @m scattered cluster head
2609  */
2610 static void __attribute__((cold))
2611 ixgbe_free_sc_cluster(struct rte_mbuf *m)
2612 {
2613         uint16_t i, nb_segs = m->nb_segs;
2614         struct rte_mbuf *next_seg;
2615
2616         for (i = 0; i < nb_segs; i++) {
2617                 next_seg = m->next;
2618                 rte_pktmbuf_free_seg(m);
2619                 m = next_seg;
2620         }
2621 }
2622
2623 static void __attribute__((cold))
2624 ixgbe_rx_queue_release_mbufs(struct ixgbe_rx_queue *rxq)
2625 {
2626         unsigned i;
2627
2628 #ifdef RTE_IXGBE_INC_VECTOR
2629         /* SSE Vector driver has a different way of releasing mbufs. */
2630         if (rxq->rx_using_sse) {
2631                 ixgbe_rx_queue_release_mbufs_vec(rxq);
2632                 return;
2633         }
2634 #endif
2635
2636         if (rxq->sw_ring != NULL) {
2637                 for (i = 0; i < rxq->nb_rx_desc; i++) {
2638                         if (rxq->sw_ring[i].mbuf != NULL) {
2639                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2640                                 rxq->sw_ring[i].mbuf = NULL;
2641                         }
2642                 }
2643                 if (rxq->rx_nb_avail) {
2644                         for (i = 0; i < rxq->rx_nb_avail; ++i) {
2645                                 struct rte_mbuf *mb;
2646
2647                                 mb = rxq->rx_stage[rxq->rx_next_avail + i];
2648                                 rte_pktmbuf_free_seg(mb);
2649                         }
2650                         rxq->rx_nb_avail = 0;
2651                 }
2652         }
2653
2654         if (rxq->sw_sc_ring)
2655                 for (i = 0; i < rxq->nb_rx_desc; i++)
2656                         if (rxq->sw_sc_ring[i].fbuf) {
2657                                 ixgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
2658                                 rxq->sw_sc_ring[i].fbuf = NULL;
2659                         }
2660 }
2661
2662 static void __attribute__((cold))
2663 ixgbe_rx_queue_release(struct ixgbe_rx_queue *rxq)
2664 {
2665         if (rxq != NULL) {
2666                 ixgbe_rx_queue_release_mbufs(rxq);
2667                 rte_free(rxq->sw_ring);
2668                 rte_free(rxq->sw_sc_ring);
2669                 rte_free(rxq);
2670         }
2671 }
2672
2673 void __attribute__((cold))
2674 ixgbe_dev_rx_queue_release(void *rxq)
2675 {
2676         ixgbe_rx_queue_release(rxq);
2677 }
2678
2679 /*
2680  * Check if Rx Burst Bulk Alloc function can be used.
2681  * Return
2682  *        0: the preconditions are satisfied and the bulk allocation function
2683  *           can be used.
2684  *  -EINVAL: the preconditions are NOT satisfied and the default Rx burst
2685  *           function must be used.
2686  */
2687 static inline int __attribute__((cold))
2688 check_rx_burst_bulk_alloc_preconditions(struct ixgbe_rx_queue *rxq)
2689 {
2690         int ret = 0;
2691
2692         /*
2693          * Make sure the following pre-conditions are satisfied:
2694          *   rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
2695          *   rxq->rx_free_thresh < rxq->nb_rx_desc
2696          *   (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
2697          * Scattered packets are not supported.  This should be checked
2698          * outside of this function.
2699          */
2700         if (!(rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST)) {
2701                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2702                              "rxq->rx_free_thresh=%d, "
2703                              "RTE_PMD_IXGBE_RX_MAX_BURST=%d",
2704                              rxq->rx_free_thresh, RTE_PMD_IXGBE_RX_MAX_BURST);
2705                 ret = -EINVAL;
2706         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
2707                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2708                              "rxq->rx_free_thresh=%d, "
2709                              "rxq->nb_rx_desc=%d",
2710                              rxq->rx_free_thresh, rxq->nb_rx_desc);
2711                 ret = -EINVAL;
2712         } else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
2713                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2714                              "rxq->nb_rx_desc=%d, "
2715                              "rxq->rx_free_thresh=%d",
2716                              rxq->nb_rx_desc, rxq->rx_free_thresh);
2717                 ret = -EINVAL;
2718         }
2719
2720         return ret;
2721 }
2722
2723 /* Reset dynamic ixgbe_rx_queue fields back to defaults */
2724 static void __attribute__((cold))
2725 ixgbe_reset_rx_queue(struct ixgbe_adapter *adapter, struct ixgbe_rx_queue *rxq)
2726 {
2727         static const union ixgbe_adv_rx_desc zeroed_desc = {{0}};
2728         unsigned i;
2729         uint16_t len = rxq->nb_rx_desc;
2730
2731         /*
2732          * By default, the Rx queue setup function allocates enough memory for
2733          * IXGBE_MAX_RING_DESC.  The Rx Burst bulk allocation function requires
2734          * extra memory at the end of the descriptor ring to be zero'd out.
2735          */
2736         if (adapter->rx_bulk_alloc_allowed)
2737                 /* zero out extra memory */
2738                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
2739
2740         /*
2741          * Zero out HW ring memory. Zero out extra memory at the end of
2742          * the H/W ring so look-ahead logic in Rx Burst bulk alloc function
2743          * reads extra memory as zeros.
2744          */
2745         for (i = 0; i < len; i++) {
2746                 rxq->rx_ring[i] = zeroed_desc;
2747         }
2748
2749         /*
2750          * initialize extra software ring entries. Space for these extra
2751          * entries is always allocated
2752          */
2753         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2754         for (i = rxq->nb_rx_desc; i < len; ++i) {
2755                 rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
2756         }
2757
2758         rxq->rx_nb_avail = 0;
2759         rxq->rx_next_avail = 0;
2760         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2761         rxq->rx_tail = 0;
2762         rxq->nb_rx_hold = 0;
2763         rxq->pkt_first_seg = NULL;
2764         rxq->pkt_last_seg = NULL;
2765
2766 #ifdef RTE_IXGBE_INC_VECTOR
2767         rxq->rxrearm_start = 0;
2768         rxq->rxrearm_nb = 0;
2769 #endif
2770 }
2771
2772 int __attribute__((cold))
2773 ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
2774                          uint16_t queue_idx,
2775                          uint16_t nb_desc,
2776                          unsigned int socket_id,
2777                          const struct rte_eth_rxconf *rx_conf,
2778                          struct rte_mempool *mp)
2779 {
2780         const struct rte_memzone *rz;
2781         struct ixgbe_rx_queue *rxq;
2782         struct ixgbe_hw     *hw;
2783         uint16_t len;
2784         struct ixgbe_adapter *adapter =
2785                 (struct ixgbe_adapter *)dev->data->dev_private;
2786
2787         PMD_INIT_FUNC_TRACE();
2788         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2789
2790         /*
2791          * Validate number of receive descriptors.
2792          * It must not exceed hardware maximum, and must be multiple
2793          * of IXGBE_ALIGN.
2794          */
2795         if (nb_desc % IXGBE_RXD_ALIGN != 0 ||
2796                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2797                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2798                 return -EINVAL;
2799         }
2800
2801         /* Free memory prior to re-allocation if needed... */
2802         if (dev->data->rx_queues[queue_idx] != NULL) {
2803                 ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
2804                 dev->data->rx_queues[queue_idx] = NULL;
2805         }
2806
2807         /* First allocate the rx queue data structure */
2808         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct ixgbe_rx_queue),
2809                                  RTE_CACHE_LINE_SIZE, socket_id);
2810         if (rxq == NULL)
2811                 return -ENOMEM;
2812         rxq->mb_pool = mp;
2813         rxq->nb_rx_desc = nb_desc;
2814         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
2815         rxq->queue_id = queue_idx;
2816         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2817                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2818         rxq->port_id = dev->data->port_id;
2819         rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
2820                                                         0 : ETHER_CRC_LEN);
2821         rxq->drop_en = rx_conf->rx_drop_en;
2822         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
2823
2824         /*
2825          * The packet type in RX descriptor is different for different NICs.
2826          * Some bits are used for x550 but reserved for other NICS.
2827          * So set different masks for different NICs.
2828          */
2829         if (hw->mac.type == ixgbe_mac_X550 ||
2830             hw->mac.type == ixgbe_mac_X550EM_x ||
2831             hw->mac.type == ixgbe_mac_X550EM_a ||
2832             hw->mac.type == ixgbe_mac_X550_vf ||
2833             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2834             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2835                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_X550;
2836         else
2837                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_82599;
2838
2839         /*
2840          * Allocate RX ring hardware descriptors. A memzone large enough to
2841          * handle the maximum ring size is allocated in order to allow for
2842          * resizing in later calls to the queue setup function.
2843          */
2844         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
2845                                       RX_RING_SZ, IXGBE_ALIGN, socket_id);
2846         if (rz == NULL) {
2847                 ixgbe_rx_queue_release(rxq);
2848                 return -ENOMEM;
2849         }
2850
2851         /*
2852          * Zero init all the descriptors in the ring.
2853          */
2854         memset(rz->addr, 0, RX_RING_SZ);
2855
2856         /*
2857          * Modified to setup VFRDT for Virtual Function
2858          */
2859         if (hw->mac.type == ixgbe_mac_82599_vf ||
2860             hw->mac.type == ixgbe_mac_X540_vf ||
2861             hw->mac.type == ixgbe_mac_X550_vf ||
2862             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2863             hw->mac.type == ixgbe_mac_X550EM_a_vf) {
2864                 rxq->rdt_reg_addr =
2865                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
2866                 rxq->rdh_reg_addr =
2867                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDH(queue_idx));
2868         } else {
2869                 rxq->rdt_reg_addr =
2870                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(rxq->reg_idx));
2871                 rxq->rdh_reg_addr =
2872                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDH(rxq->reg_idx));
2873         }
2874
2875         rxq->rx_ring_phys_addr = rz->iova;
2876         rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
2877
2878         /*
2879          * Certain constraints must be met in order to use the bulk buffer
2880          * allocation Rx burst function. If any of Rx queues doesn't meet them
2881          * the feature should be disabled for the whole port.
2882          */
2883         if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
2884                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
2885                                     "preconditions - canceling the feature for "
2886                                     "the whole port[%d]",
2887                              rxq->queue_id, rxq->port_id);
2888                 adapter->rx_bulk_alloc_allowed = false;
2889         }
2890
2891         /*
2892          * Allocate software ring. Allow for space at the end of the
2893          * S/W ring to make sure look-ahead logic in bulk alloc Rx burst
2894          * function does not access an invalid memory region.
2895          */
2896         len = nb_desc;
2897         if (adapter->rx_bulk_alloc_allowed)
2898                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
2899
2900         rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
2901                                           sizeof(struct ixgbe_rx_entry) * len,
2902                                           RTE_CACHE_LINE_SIZE, socket_id);
2903         if (!rxq->sw_ring) {
2904                 ixgbe_rx_queue_release(rxq);
2905                 return -ENOMEM;
2906         }
2907
2908         /*
2909          * Always allocate even if it's not going to be needed in order to
2910          * simplify the code.
2911          *
2912          * This ring is used in LRO and Scattered Rx cases and Scattered Rx may
2913          * be requested in ixgbe_dev_rx_init(), which is called later from
2914          * dev_start() flow.
2915          */
2916         rxq->sw_sc_ring =
2917                 rte_zmalloc_socket("rxq->sw_sc_ring",
2918                                    sizeof(struct ixgbe_scattered_rx_entry) * len,
2919                                    RTE_CACHE_LINE_SIZE, socket_id);
2920         if (!rxq->sw_sc_ring) {
2921                 ixgbe_rx_queue_release(rxq);
2922                 return -ENOMEM;
2923         }
2924
2925         PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
2926                             "dma_addr=0x%"PRIx64,
2927                      rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
2928                      rxq->rx_ring_phys_addr);
2929
2930         if (!rte_is_power_of_2(nb_desc)) {
2931                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
2932                                     "preconditions - canceling the feature for "
2933                                     "the whole port[%d]",
2934                              rxq->queue_id, rxq->port_id);
2935                 adapter->rx_vec_allowed = false;
2936         } else
2937                 ixgbe_rxq_vec_setup(rxq);
2938
2939         dev->data->rx_queues[queue_idx] = rxq;
2940
2941         ixgbe_reset_rx_queue(adapter, rxq);
2942
2943         return 0;
2944 }
2945
2946 uint32_t
2947 ixgbe_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2948 {
2949 #define IXGBE_RXQ_SCAN_INTERVAL 4
2950         volatile union ixgbe_adv_rx_desc *rxdp;
2951         struct ixgbe_rx_queue *rxq;
2952         uint32_t desc = 0;
2953
2954         rxq = dev->data->rx_queues[rx_queue_id];
2955         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
2956
2957         while ((desc < rxq->nb_rx_desc) &&
2958                 (rxdp->wb.upper.status_error &
2959                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) {
2960                 desc += IXGBE_RXQ_SCAN_INTERVAL;
2961                 rxdp += IXGBE_RXQ_SCAN_INTERVAL;
2962                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2963                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2964                                 desc - rxq->nb_rx_desc]);
2965         }
2966
2967         return desc;
2968 }
2969
2970 int
2971 ixgbe_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
2972 {
2973         volatile union ixgbe_adv_rx_desc *rxdp;
2974         struct ixgbe_rx_queue *rxq = rx_queue;
2975         uint32_t desc;
2976
2977         if (unlikely(offset >= rxq->nb_rx_desc))
2978                 return 0;
2979         desc = rxq->rx_tail + offset;
2980         if (desc >= rxq->nb_rx_desc)
2981                 desc -= rxq->nb_rx_desc;
2982
2983         rxdp = &rxq->rx_ring[desc];
2984         return !!(rxdp->wb.upper.status_error &
2985                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD));
2986 }
2987
2988 int
2989 ixgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
2990 {
2991         struct ixgbe_rx_queue *rxq = rx_queue;
2992         volatile uint32_t *status;
2993         uint32_t nb_hold, desc;
2994
2995         if (unlikely(offset >= rxq->nb_rx_desc))
2996                 return -EINVAL;
2997
2998 #ifdef RTE_IXGBE_INC_VECTOR
2999         if (rxq->rx_using_sse)
3000                 nb_hold = rxq->rxrearm_nb;
3001         else
3002 #endif
3003                 nb_hold = rxq->nb_rx_hold;
3004         if (offset >= rxq->nb_rx_desc - nb_hold)
3005                 return RTE_ETH_RX_DESC_UNAVAIL;
3006
3007         desc = rxq->rx_tail + offset;
3008         if (desc >= rxq->nb_rx_desc)
3009                 desc -= rxq->nb_rx_desc;
3010
3011         status = &rxq->rx_ring[desc].wb.upper.status_error;
3012         if (*status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))
3013                 return RTE_ETH_RX_DESC_DONE;
3014
3015         return RTE_ETH_RX_DESC_AVAIL;
3016 }
3017
3018 int
3019 ixgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
3020 {
3021         struct ixgbe_tx_queue *txq = tx_queue;
3022         volatile uint32_t *status;
3023         uint32_t desc;
3024
3025         if (unlikely(offset >= txq->nb_tx_desc))
3026                 return -EINVAL;
3027
3028         desc = txq->tx_tail + offset;
3029         /* go to next desc that has the RS bit */
3030         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
3031                 txq->tx_rs_thresh;
3032         if (desc >= txq->nb_tx_desc) {
3033                 desc -= txq->nb_tx_desc;
3034                 if (desc >= txq->nb_tx_desc)
3035                         desc -= txq->nb_tx_desc;
3036         }
3037
3038         status = &txq->tx_ring[desc].wb.status;
3039         if (*status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD))
3040                 return RTE_ETH_TX_DESC_DONE;
3041
3042         return RTE_ETH_TX_DESC_FULL;
3043 }
3044
3045 void __attribute__((cold))
3046 ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
3047 {
3048         unsigned i;
3049         struct ixgbe_adapter *adapter =
3050                 (struct ixgbe_adapter *)dev->data->dev_private;
3051
3052         PMD_INIT_FUNC_TRACE();
3053
3054         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3055                 struct ixgbe_tx_queue *txq = dev->data->tx_queues[i];
3056
3057                 if (txq != NULL) {
3058                         txq->ops->release_mbufs(txq);
3059                         txq->ops->reset(txq);
3060                 }
3061         }
3062
3063         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3064                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
3065
3066                 if (rxq != NULL) {
3067                         ixgbe_rx_queue_release_mbufs(rxq);
3068                         ixgbe_reset_rx_queue(adapter, rxq);
3069                 }
3070         }
3071 }
3072
3073 void
3074 ixgbe_dev_free_queues(struct rte_eth_dev *dev)
3075 {
3076         unsigned i;
3077
3078         PMD_INIT_FUNC_TRACE();
3079
3080         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3081                 ixgbe_dev_rx_queue_release(dev->data->rx_queues[i]);
3082                 dev->data->rx_queues[i] = NULL;
3083         }
3084         dev->data->nb_rx_queues = 0;
3085
3086         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3087                 ixgbe_dev_tx_queue_release(dev->data->tx_queues[i]);
3088                 dev->data->tx_queues[i] = NULL;
3089         }
3090         dev->data->nb_tx_queues = 0;
3091 }
3092
3093 /*********************************************************************
3094  *
3095  *  Device RX/TX init functions
3096  *
3097  **********************************************************************/
3098
3099 /**
3100  * Receive Side Scaling (RSS)
3101  * See section 7.1.2.8 in the following document:
3102  *     "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
3103  *
3104  * Principles:
3105  * The source and destination IP addresses of the IP header and the source
3106  * and destination ports of TCP/UDP headers, if any, of received packets are
3107  * hashed against a configurable random key to compute a 32-bit RSS hash result.
3108  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
3109  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
3110  * RSS output index which is used as the RX queue index where to store the
3111  * received packets.
3112  * The following output is supplied in the RX write-back descriptor:
3113  *     - 32-bit result of the Microsoft RSS hash function,
3114  *     - 4-bit RSS type field.
3115  */
3116
3117 /*
3118  * RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
3119  * Used as the default key.
3120  */
3121 static uint8_t rss_intel_key[40] = {
3122         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
3123         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
3124         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
3125         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
3126         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
3127 };
3128
3129 static void
3130 ixgbe_rss_disable(struct rte_eth_dev *dev)
3131 {
3132         struct ixgbe_hw *hw;
3133         uint32_t mrqc;
3134         uint32_t mrqc_reg;
3135
3136         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3137         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3138         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3139         mrqc &= ~IXGBE_MRQC_RSSEN;
3140         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3141 }
3142
3143 static void
3144 ixgbe_hw_rss_hash_set(struct ixgbe_hw *hw, struct rte_eth_rss_conf *rss_conf)
3145 {
3146         uint8_t  *hash_key;
3147         uint32_t mrqc;
3148         uint32_t rss_key;
3149         uint64_t rss_hf;
3150         uint16_t i;
3151         uint32_t mrqc_reg;
3152         uint32_t rssrk_reg;
3153
3154         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3155         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3156
3157         hash_key = rss_conf->rss_key;
3158         if (hash_key != NULL) {
3159                 /* Fill in RSS hash key */
3160                 for (i = 0; i < 10; i++) {
3161                         rss_key  = hash_key[(i * 4)];
3162                         rss_key |= hash_key[(i * 4) + 1] << 8;
3163                         rss_key |= hash_key[(i * 4) + 2] << 16;
3164                         rss_key |= hash_key[(i * 4) + 3] << 24;
3165                         IXGBE_WRITE_REG_ARRAY(hw, rssrk_reg, i, rss_key);
3166                 }
3167         }
3168
3169         /* Set configured hashing protocols in MRQC register */
3170         rss_hf = rss_conf->rss_hf;
3171         mrqc = IXGBE_MRQC_RSSEN; /* Enable RSS */
3172         if (rss_hf & ETH_RSS_IPV4)
3173                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
3174         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
3175                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
3176         if (rss_hf & ETH_RSS_IPV6)
3177                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
3178         if (rss_hf & ETH_RSS_IPV6_EX)
3179                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
3180         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
3181                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
3182         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
3183                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
3184         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
3185                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
3186         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
3187                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
3188         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
3189                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
3190         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3191 }
3192
3193 int
3194 ixgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
3195                           struct rte_eth_rss_conf *rss_conf)
3196 {
3197         struct ixgbe_hw *hw;
3198         uint32_t mrqc;
3199         uint64_t rss_hf;
3200         uint32_t mrqc_reg;
3201
3202         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3203
3204         if (!ixgbe_rss_update_sp(hw->mac.type)) {
3205                 PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
3206                         "NIC.");
3207                 return -ENOTSUP;
3208         }
3209         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3210
3211         /*
3212          * Excerpt from section 7.1.2.8 Receive-Side Scaling (RSS):
3213          *     "RSS enabling cannot be done dynamically while it must be
3214          *      preceded by a software reset"
3215          * Before changing anything, first check that the update RSS operation
3216          * does not attempt to disable RSS, if RSS was enabled at
3217          * initialization time, or does not attempt to enable RSS, if RSS was
3218          * disabled at initialization time.
3219          */
3220         rss_hf = rss_conf->rss_hf & IXGBE_RSS_OFFLOAD_ALL;
3221         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3222         if (!(mrqc & IXGBE_MRQC_RSSEN)) { /* RSS disabled */
3223                 if (rss_hf != 0) /* Enable RSS */
3224                         return -(EINVAL);
3225                 return 0; /* Nothing to do */
3226         }
3227         /* RSS enabled */
3228         if (rss_hf == 0) /* Disable RSS */
3229                 return -(EINVAL);
3230         ixgbe_hw_rss_hash_set(hw, rss_conf);
3231         return 0;
3232 }
3233
3234 int
3235 ixgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
3236                             struct rte_eth_rss_conf *rss_conf)
3237 {
3238         struct ixgbe_hw *hw;
3239         uint8_t *hash_key;
3240         uint32_t mrqc;
3241         uint32_t rss_key;
3242         uint64_t rss_hf;
3243         uint16_t i;
3244         uint32_t mrqc_reg;
3245         uint32_t rssrk_reg;
3246
3247         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3248         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3249         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3250         hash_key = rss_conf->rss_key;
3251         if (hash_key != NULL) {
3252                 /* Return RSS hash key */
3253                 for (i = 0; i < 10; i++) {
3254                         rss_key = IXGBE_READ_REG_ARRAY(hw, rssrk_reg, i);
3255                         hash_key[(i * 4)] = rss_key & 0x000000FF;
3256                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
3257                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
3258                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
3259                 }
3260         }
3261
3262         /* Get RSS functions configured in MRQC register */
3263         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3264         if ((mrqc & IXGBE_MRQC_RSSEN) == 0) { /* RSS is disabled */
3265                 rss_conf->rss_hf = 0;
3266                 return 0;
3267         }
3268         rss_hf = 0;
3269         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4)
3270                 rss_hf |= ETH_RSS_IPV4;
3271         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_TCP)
3272                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
3273         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6)
3274                 rss_hf |= ETH_RSS_IPV6;
3275         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX)
3276                 rss_hf |= ETH_RSS_IPV6_EX;
3277         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_TCP)
3278                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
3279         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP)
3280                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
3281         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_UDP)
3282                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
3283         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_UDP)
3284                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
3285         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP)
3286                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
3287         rss_conf->rss_hf = rss_hf;
3288         return 0;
3289 }
3290
3291 static void
3292 ixgbe_rss_configure(struct rte_eth_dev *dev)
3293 {
3294         struct rte_eth_rss_conf rss_conf;
3295         struct ixgbe_hw *hw;
3296         uint32_t reta;
3297         uint16_t i;
3298         uint16_t j;
3299         uint16_t sp_reta_size;
3300         uint32_t reta_reg;
3301
3302         PMD_INIT_FUNC_TRACE();
3303         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3304
3305         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
3306
3307         /*
3308          * Fill in redirection table
3309          * The byte-swap is needed because NIC registers are in
3310          * little-endian order.
3311          */
3312         reta = 0;
3313         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
3314                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
3315
3316                 if (j == dev->data->nb_rx_queues)
3317                         j = 0;
3318                 reta = (reta << 8) | j;
3319                 if ((i & 3) == 3)
3320                         IXGBE_WRITE_REG(hw, reta_reg,
3321                                         rte_bswap32(reta));
3322         }
3323
3324         /*
3325          * Configure the RSS key and the RSS protocols used to compute
3326          * the RSS hash of input packets.
3327          */
3328         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
3329         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
3330                 ixgbe_rss_disable(dev);
3331                 return;
3332         }
3333         if (rss_conf.rss_key == NULL)
3334                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
3335         ixgbe_hw_rss_hash_set(hw, &rss_conf);
3336 }
3337
3338 #define NUM_VFTA_REGISTERS 128
3339 #define NIC_RX_BUFFER_SIZE 0x200
3340 #define X550_RX_BUFFER_SIZE 0x180
3341
3342 static void
3343 ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
3344 {
3345         struct rte_eth_vmdq_dcb_conf *cfg;
3346         struct ixgbe_hw *hw;
3347         enum rte_eth_nb_pools num_pools;
3348         uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
3349         uint16_t pbsize;
3350         uint8_t nb_tcs; /* number of traffic classes */
3351         int i;
3352
3353         PMD_INIT_FUNC_TRACE();
3354         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3355         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3356         num_pools = cfg->nb_queue_pools;
3357         /* Check we have a valid number of pools */
3358         if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) {
3359                 ixgbe_rss_disable(dev);
3360                 return;
3361         }
3362         /* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
3363         nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
3364
3365         /*
3366          * RXPBSIZE
3367          * split rx buffer up into sections, each for 1 traffic class
3368          */
3369         switch (hw->mac.type) {
3370         case ixgbe_mac_X550:
3371         case ixgbe_mac_X550EM_x:
3372         case ixgbe_mac_X550EM_a:
3373                 pbsize = (uint16_t)(X550_RX_BUFFER_SIZE / nb_tcs);
3374                 break;
3375         default:
3376                 pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
3377                 break;
3378         }
3379         for (i = 0; i < nb_tcs; i++) {
3380                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3381
3382                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3383                 /* clear 10 bits. */
3384                 rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
3385                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3386         }
3387         /* zero alloc all unused TCs */
3388         for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3389                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3390
3391                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3392                 /* clear 10 bits. */
3393                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3394         }
3395
3396         /* MRQC: enable vmdq and dcb */
3397         mrqc = (num_pools == ETH_16_POOLS) ?
3398                 IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN;
3399         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
3400
3401         /* PFVTCTL: turn on virtualisation and set the default pool */
3402         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
3403         if (cfg->enable_default_pool) {
3404                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
3405         } else {
3406                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
3407         }
3408
3409         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
3410
3411         /* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
3412         queue_mapping = 0;
3413         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++)
3414                 /*
3415                  * mapping is done with 3 bits per priority,
3416                  * so shift by i*3 each time
3417                  */
3418                 queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
3419
3420         IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
3421
3422         /* RTRPCS: DCB related */
3423         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
3424
3425         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3426         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3427         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3428         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3429
3430         /* VFTA - enable all vlan filters */
3431         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3432                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3433         }
3434
3435         /* VFRE: pool enabling for receive - 16 or 32 */
3436         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0),
3437                         num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3438
3439         /*
3440          * MPSAR - allow pools to read specific mac addresses
3441          * In this case, all pools should be able to read from mac addr 0
3442          */
3443         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
3444         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
3445
3446         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
3447         for (i = 0; i < cfg->nb_pool_maps; i++) {
3448                 /* set vlan id in VF register and set the valid bit */
3449                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
3450                                 (cfg->pool_map[i].vlan_id & 0xFFF)));
3451                 /*
3452                  * Put the allowed pools in VFB reg. As we only have 16 or 32
3453                  * pools, we only need to use the first half of the register
3454                  * i.e. bits 0-31
3455                  */
3456                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
3457         }
3458 }
3459
3460 /**
3461  * ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
3462  * @dev: pointer to eth_dev structure
3463  * @dcb_config: pointer to ixgbe_dcb_config structure
3464  */
3465 static void
3466 ixgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
3467                        struct ixgbe_dcb_config *dcb_config)
3468 {
3469         uint32_t reg;
3470         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3471
3472         PMD_INIT_FUNC_TRACE();
3473         if (hw->mac.type != ixgbe_mac_82598EB) {
3474                 /* Disable the Tx desc arbiter so that MTQC can be changed */
3475                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3476                 reg |= IXGBE_RTTDCS_ARBDIS;
3477                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3478
3479                 /* Enable DCB for Tx with 8 TCs */
3480                 if (dcb_config->num_tcs.pg_tcs == 8) {
3481                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
3482                 } else {
3483                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
3484                 }
3485                 if (dcb_config->vt_mode)
3486                         reg |= IXGBE_MTQC_VT_ENA;
3487                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
3488
3489                 /* Enable the Tx desc arbiter */
3490                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3491                 reg &= ~IXGBE_RTTDCS_ARBDIS;
3492                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3493
3494                 /* Enable Security TX Buffer IFG for DCB */
3495                 reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
3496                 reg |= IXGBE_SECTX_DCB;
3497                 IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
3498         }
3499 }
3500
3501 /**
3502  * ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
3503  * @dev: pointer to rte_eth_dev structure
3504  * @dcb_config: pointer to ixgbe_dcb_config structure
3505  */
3506 static void
3507 ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
3508                         struct ixgbe_dcb_config *dcb_config)
3509 {
3510         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3511                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3512         struct ixgbe_hw *hw =
3513                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3514
3515         PMD_INIT_FUNC_TRACE();
3516         if (hw->mac.type != ixgbe_mac_82598EB)
3517                 /*PF VF Transmit Enable*/
3518                 IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
3519                         vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3520
3521         /*Configure general DCB TX parameters*/
3522         ixgbe_dcb_tx_hw_config(dev, dcb_config);
3523 }
3524
3525 static void
3526 ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
3527                         struct ixgbe_dcb_config *dcb_config)
3528 {
3529         struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
3530                         &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3531         struct ixgbe_dcb_tc_config *tc;
3532         uint8_t i, j;
3533
3534         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3535         if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS) {
3536                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3537                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3538         } else {
3539                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3540                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3541         }
3542
3543         /* Initialize User Priority to Traffic Class mapping */
3544         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3545                 tc = &dcb_config->tc_config[j];
3546                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3547         }
3548
3549         /* User Priority to Traffic Class mapping */
3550         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3551                 j = vmdq_rx_conf->dcb_tc[i];
3552                 tc = &dcb_config->tc_config[j];
3553                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3554                                                 (uint8_t)(1 << i);
3555         }
3556 }
3557
3558 static void
3559 ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
3560                         struct ixgbe_dcb_config *dcb_config)
3561 {
3562         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3563                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3564         struct ixgbe_dcb_tc_config *tc;
3565         uint8_t i, j;
3566
3567         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3568         if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS) {
3569                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3570                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3571         } else {
3572                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3573                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3574         }
3575
3576         /* Initialize User Priority to Traffic Class mapping */
3577         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3578                 tc = &dcb_config->tc_config[j];
3579                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3580         }
3581
3582         /* User Priority to Traffic Class mapping */
3583         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3584                 j = vmdq_tx_conf->dcb_tc[i];
3585                 tc = &dcb_config->tc_config[j];
3586                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3587                                                 (uint8_t)(1 << i);
3588         }
3589 }
3590
3591 static void
3592 ixgbe_dcb_rx_config(struct rte_eth_dev *dev,
3593                 struct ixgbe_dcb_config *dcb_config)
3594 {
3595         struct rte_eth_dcb_rx_conf *rx_conf =
3596                         &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
3597         struct ixgbe_dcb_tc_config *tc;
3598         uint8_t i, j;
3599
3600         dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
3601         dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
3602
3603         /* Initialize User Priority to Traffic Class mapping */
3604         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3605                 tc = &dcb_config->tc_config[j];
3606                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3607         }
3608
3609         /* User Priority to Traffic Class mapping */
3610         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3611                 j = rx_conf->dcb_tc[i];
3612                 tc = &dcb_config->tc_config[j];
3613                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3614                                                 (uint8_t)(1 << i);
3615         }
3616 }
3617
3618 static void
3619 ixgbe_dcb_tx_config(struct rte_eth_dev *dev,
3620                 struct ixgbe_dcb_config *dcb_config)
3621 {
3622         struct rte_eth_dcb_tx_conf *tx_conf =
3623                         &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
3624         struct ixgbe_dcb_tc_config *tc;
3625         uint8_t i, j;
3626
3627         dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
3628         dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
3629
3630         /* Initialize User Priority to Traffic Class mapping */
3631         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3632                 tc = &dcb_config->tc_config[j];
3633                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3634         }
3635
3636         /* User Priority to Traffic Class mapping */
3637         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3638                 j = tx_conf->dcb_tc[i];
3639                 tc = &dcb_config->tc_config[j];
3640                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3641                                                 (uint8_t)(1 << i);
3642         }
3643 }
3644
3645 /**
3646  * ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
3647  * @dev: pointer to eth_dev structure
3648  * @dcb_config: pointer to ixgbe_dcb_config structure
3649  */
3650 static void
3651 ixgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
3652                        struct ixgbe_dcb_config *dcb_config)
3653 {
3654         uint32_t reg;
3655         uint32_t vlanctrl;
3656         uint8_t i;
3657         uint32_t q;
3658         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3659
3660         PMD_INIT_FUNC_TRACE();
3661         /*
3662          * Disable the arbiter before changing parameters
3663          * (always enable recycle mode; WSP)
3664          */
3665         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
3666         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3667
3668         if (hw->mac.type != ixgbe_mac_82598EB) {
3669                 reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
3670                 if (dcb_config->num_tcs.pg_tcs == 4) {
3671                         if (dcb_config->vt_mode)
3672                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3673                                         IXGBE_MRQC_VMDQRT4TCEN;
3674                         else {
3675                                 /* no matter the mode is DCB or DCB_RSS, just
3676                                  * set the MRQE to RSSXTCEN. RSS is controlled
3677                                  * by RSS_FIELD
3678                                  */
3679                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3680                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3681                                         IXGBE_MRQC_RTRSS4TCEN;
3682                         }
3683                 }
3684                 if (dcb_config->num_tcs.pg_tcs == 8) {
3685                         if (dcb_config->vt_mode)
3686                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3687                                         IXGBE_MRQC_VMDQRT8TCEN;
3688                         else {
3689                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3690                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3691                                         IXGBE_MRQC_RTRSS8TCEN;
3692                         }
3693                 }
3694
3695                 IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
3696
3697                 if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
3698                         /* Disable drop for all queues in VMDQ mode*/
3699                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3700                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3701                                                 (IXGBE_QDE_WRITE |
3702                                                  (q << IXGBE_QDE_IDX_SHIFT)));
3703                 } else {
3704                         /* Enable drop for all queues in SRIOV mode */
3705                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3706                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3707                                                 (IXGBE_QDE_WRITE |
3708                                                  (q << IXGBE_QDE_IDX_SHIFT) |
3709                                                  IXGBE_QDE_ENABLE));
3710                 }
3711         }
3712
3713         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3714         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3715         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3716         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3717
3718         /* VFTA - enable all vlan filters */
3719         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3720                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3721         }
3722
3723         /*
3724          * Configure Rx packet plane (recycle mode; WSP) and
3725          * enable arbiter
3726          */
3727         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
3728         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3729 }
3730
3731 static void
3732 ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
3733                         uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3734 {
3735         switch (hw->mac.type) {
3736         case ixgbe_mac_82598EB:
3737                 ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
3738                 break;
3739         case ixgbe_mac_82599EB:
3740         case ixgbe_mac_X540:
3741         case ixgbe_mac_X550:
3742         case ixgbe_mac_X550EM_x:
3743         case ixgbe_mac_X550EM_a:
3744                 ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
3745                                                   tsa, map);
3746                 break;
3747         default:
3748                 break;
3749         }
3750 }
3751
3752 static void
3753 ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
3754                             uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3755 {
3756         switch (hw->mac.type) {
3757         case ixgbe_mac_82598EB:
3758                 ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id, tsa);
3759                 ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id, tsa);
3760                 break;
3761         case ixgbe_mac_82599EB:
3762         case ixgbe_mac_X540:
3763         case ixgbe_mac_X550:
3764         case ixgbe_mac_X550EM_x:
3765         case ixgbe_mac_X550EM_a:
3766                 ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id, tsa);
3767                 ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id, tsa, map);
3768                 break;
3769         default:
3770                 break;
3771         }
3772 }
3773
3774 #define DCB_RX_CONFIG  1
3775 #define DCB_TX_CONFIG  1
3776 #define DCB_TX_PB      1024
3777 /**
3778  * ixgbe_dcb_hw_configure - Enable DCB and configure
3779  * general DCB in VT mode and non-VT mode parameters
3780  * @dev: pointer to rte_eth_dev structure
3781  * @dcb_config: pointer to ixgbe_dcb_config structure
3782  */
3783 static int
3784 ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
3785                         struct ixgbe_dcb_config *dcb_config)
3786 {
3787         int     ret = 0;
3788         uint8_t i, pfc_en, nb_tcs;
3789         uint16_t pbsize, rx_buffer_size;
3790         uint8_t config_dcb_rx = 0;
3791         uint8_t config_dcb_tx = 0;
3792         uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3793         uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3794         uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3795         uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3796         uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3797         struct ixgbe_dcb_tc_config *tc;
3798         uint32_t max_frame = dev->data->mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
3799         struct ixgbe_hw *hw =
3800                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3801         struct ixgbe_bw_conf *bw_conf =
3802                 IXGBE_DEV_PRIVATE_TO_BW_CONF(dev->data->dev_private);
3803
3804         switch (dev->data->dev_conf.rxmode.mq_mode) {
3805         case ETH_MQ_RX_VMDQ_DCB:
3806                 dcb_config->vt_mode = true;
3807                 if (hw->mac.type != ixgbe_mac_82598EB) {
3808                         config_dcb_rx = DCB_RX_CONFIG;
3809                         /*
3810                          *get dcb and VT rx configuration parameters
3811                          *from rte_eth_conf
3812                          */
3813                         ixgbe_vmdq_dcb_rx_config(dev, dcb_config);
3814                         /*Configure general VMDQ and DCB RX parameters*/
3815                         ixgbe_vmdq_dcb_configure(dev);
3816                 }
3817                 break;
3818         case ETH_MQ_RX_DCB:
3819         case ETH_MQ_RX_DCB_RSS:
3820                 dcb_config->vt_mode = false;
3821                 config_dcb_rx = DCB_RX_CONFIG;
3822                 /* Get dcb TX configuration parameters from rte_eth_conf */
3823                 ixgbe_dcb_rx_config(dev, dcb_config);
3824                 /*Configure general DCB RX parameters*/
3825                 ixgbe_dcb_rx_hw_config(dev, dcb_config);
3826                 break;
3827         default:
3828                 PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
3829                 break;
3830         }
3831         switch (dev->data->dev_conf.txmode.mq_mode) {
3832         case ETH_MQ_TX_VMDQ_DCB:
3833                 dcb_config->vt_mode = true;
3834                 config_dcb_tx = DCB_TX_CONFIG;
3835                 /* get DCB and VT TX configuration parameters
3836                  * from rte_eth_conf
3837                  */
3838                 ixgbe_dcb_vt_tx_config(dev, dcb_config);
3839                 /*Configure general VMDQ and DCB TX parameters*/
3840                 ixgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
3841                 break;
3842
3843         case ETH_MQ_TX_DCB:
3844                 dcb_config->vt_mode = false;
3845                 config_dcb_tx = DCB_TX_CONFIG;
3846                 /*get DCB TX configuration parameters from rte_eth_conf*/
3847                 ixgbe_dcb_tx_config(dev, dcb_config);
3848                 /*Configure general DCB TX parameters*/
3849                 ixgbe_dcb_tx_hw_config(dev, dcb_config);
3850                 break;
3851         default:
3852                 PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
3853                 break;
3854         }
3855
3856         nb_tcs = dcb_config->num_tcs.pfc_tcs;
3857         /* Unpack map */
3858         ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
3859         if (nb_tcs == ETH_4_TCS) {
3860                 /* Avoid un-configured priority mapping to TC0 */
3861                 uint8_t j = 4;
3862                 uint8_t mask = 0xFF;
3863
3864                 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
3865                         mask = (uint8_t)(mask & (~(1 << map[i])));
3866                 for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
3867                         if ((mask & 0x1) && (j < ETH_DCB_NUM_USER_PRIORITIES))
3868                                 map[j++] = i;
3869                         mask >>= 1;
3870                 }
3871                 /* Re-configure 4 TCs BW */
3872                 for (i = 0; i < nb_tcs; i++) {
3873                         tc = &dcb_config->tc_config[i];
3874                         if (bw_conf->tc_num != nb_tcs)
3875                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
3876                                         (uint8_t)(100 / nb_tcs);
3877                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
3878                                                 (uint8_t)(100 / nb_tcs);
3879                 }
3880                 for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
3881                         tc = &dcb_config->tc_config[i];
3882                         tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
3883                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
3884                 }
3885         } else {
3886                 /* Re-configure 8 TCs BW */
3887                 for (i = 0; i < nb_tcs; i++) {
3888                         tc = &dcb_config->tc_config[i];
3889                         if (bw_conf->tc_num != nb_tcs)
3890                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
3891                                         (uint8_t)(100 / nb_tcs + (i & 1));
3892                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
3893                                 (uint8_t)(100 / nb_tcs + (i & 1));
3894                 }
3895         }
3896
3897         switch (hw->mac.type) {
3898         case ixgbe_mac_X550:
3899         case ixgbe_mac_X550EM_x:
3900         case ixgbe_mac_X550EM_a:
3901                 rx_buffer_size = X550_RX_BUFFER_SIZE;
3902                 break;
3903         default:
3904                 rx_buffer_size = NIC_RX_BUFFER_SIZE;
3905                 break;
3906         }
3907
3908         if (config_dcb_rx) {
3909                 /* Set RX buffer size */
3910                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
3911                 uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
3912
3913                 for (i = 0; i < nb_tcs; i++) {
3914                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3915                 }
3916                 /* zero alloc all unused TCs */
3917                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3918                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3919                 }
3920         }
3921         if (config_dcb_tx) {
3922                 /* Only support an equally distributed
3923                  *  Tx packet buffer strategy.
3924                  */
3925                 uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
3926                 uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
3927
3928                 for (i = 0; i < nb_tcs; i++) {
3929                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3930                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3931                 }
3932                 /* Clear unused TCs, if any, to zero buffer size*/
3933                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3934                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3935                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3936                 }
3937         }
3938
3939         /*Calculates traffic class credits*/
3940         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
3941                                 IXGBE_DCB_TX_CONFIG);
3942         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
3943                                 IXGBE_DCB_RX_CONFIG);
3944
3945         if (config_dcb_rx) {
3946                 /* Unpack CEE standard containers */
3947                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
3948                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
3949                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
3950                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
3951                 /* Configure PG(ETS) RX */
3952                 ixgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
3953         }
3954
3955         if (config_dcb_tx) {
3956                 /* Unpack CEE standard containers */
3957                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
3958                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
3959                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
3960                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
3961                 /* Configure PG(ETS) TX */
3962                 ixgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
3963         }
3964
3965         /*Configure queue statistics registers*/
3966         ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
3967
3968         /* Check if the PFC is supported */
3969         if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
3970                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
3971                 for (i = 0; i < nb_tcs; i++) {
3972                         /*
3973                         * If the TC count is 8,and the default high_water is 48,
3974                         * the low_water is 16 as default.
3975                         */
3976                         hw->fc.high_water[i] = (pbsize * 3) / 4;
3977                         hw->fc.low_water[i] = pbsize / 4;
3978                         /* Enable pfc for this TC */
3979                         tc = &dcb_config->tc_config[i];
3980                         tc->pfc = ixgbe_dcb_pfc_enabled;
3981                 }
3982                 ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
3983                 if (dcb_config->num_tcs.pfc_tcs == ETH_4_TCS)
3984                         pfc_en &= 0x0F;
3985                 ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
3986         }
3987
3988         return ret;
3989 }
3990
3991 /**
3992  * ixgbe_configure_dcb - Configure DCB  Hardware
3993  * @dev: pointer to rte_eth_dev
3994  */
3995 void ixgbe_configure_dcb(struct rte_eth_dev *dev)
3996 {
3997         struct ixgbe_dcb_config *dcb_cfg =
3998                         IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
3999         struct rte_eth_conf *dev_conf = &(dev->data->dev_conf);
4000
4001         PMD_INIT_FUNC_TRACE();
4002
4003         /* check support mq_mode for DCB */
4004         if ((dev_conf->rxmode.mq_mode != ETH_MQ_RX_VMDQ_DCB) &&
4005             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB) &&
4006             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB_RSS))
4007                 return;
4008
4009         if (dev->data->nb_rx_queues > ETH_DCB_NUM_QUEUES)
4010                 return;
4011
4012         /** Configure DCB hardware **/
4013         ixgbe_dcb_hw_configure(dev, dcb_cfg);
4014 }
4015
4016 /*
4017  * VMDq only support for 10 GbE NIC.
4018  */
4019 static void
4020 ixgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
4021 {
4022         struct rte_eth_vmdq_rx_conf *cfg;
4023         struct ixgbe_hw *hw;
4024         enum rte_eth_nb_pools num_pools;
4025         uint32_t mrqc, vt_ctl, vlanctrl;
4026         uint32_t vmolr = 0;
4027         int i;
4028
4029         PMD_INIT_FUNC_TRACE();
4030         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4031         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
4032         num_pools = cfg->nb_queue_pools;
4033
4034         ixgbe_rss_disable(dev);
4035
4036         /* MRQC: enable vmdq */
4037         mrqc = IXGBE_MRQC_VMDQEN;
4038         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4039
4040         /* PFVTCTL: turn on virtualisation and set the default pool */
4041         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
4042         if (cfg->enable_default_pool)
4043                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
4044         else
4045                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
4046
4047         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
4048
4049         for (i = 0; i < (int)num_pools; i++) {
4050                 vmolr = ixgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
4051                 IXGBE_WRITE_REG(hw, IXGBE_VMOLR(i), vmolr);
4052         }
4053
4054         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4055         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4056         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4057         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4058
4059         /* VFTA - enable all vlan filters */
4060         for (i = 0; i < NUM_VFTA_REGISTERS; i++)
4061                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), UINT32_MAX);
4062
4063         /* VFRE: pool enabling for receive - 64 */
4064         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), UINT32_MAX);
4065         if (num_pools == ETH_64_POOLS)
4066                 IXGBE_WRITE_REG(hw, IXGBE_VFRE(1), UINT32_MAX);
4067
4068         /*
4069          * MPSAR - allow pools to read specific mac addresses
4070          * In this case, all pools should be able to read from mac addr 0
4071          */
4072         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), UINT32_MAX);
4073         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), UINT32_MAX);
4074
4075         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
4076         for (i = 0; i < cfg->nb_pool_maps; i++) {
4077                 /* set vlan id in VF register and set the valid bit */
4078                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
4079                                 (cfg->pool_map[i].vlan_id & IXGBE_RXD_VLAN_ID_MASK)));
4080                 /*
4081                  * Put the allowed pools in VFB reg. As we only have 16 or 64
4082                  * pools, we only need to use the first half of the register
4083                  * i.e. bits 0-31
4084                  */
4085                 if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
4086                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i * 2),
4087                                         (cfg->pool_map[i].pools & UINT32_MAX));
4088                 else
4089                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB((i * 2 + 1)),
4090                                         ((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
4091
4092         }
4093
4094         /* PFDMA Tx General Switch Control Enables VMDQ loopback */
4095         if (cfg->enable_loop_back) {
4096                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
4097                 for (i = 0; i < RTE_IXGBE_VMTXSW_REGISTER_COUNT; i++)
4098                         IXGBE_WRITE_REG(hw, IXGBE_VMTXSW(i), UINT32_MAX);
4099         }
4100
4101         IXGBE_WRITE_FLUSH(hw);
4102 }
4103
4104 /*
4105  * ixgbe_dcb_config_tx_hw_config - Configure general VMDq TX parameters
4106  * @hw: pointer to hardware structure
4107  */
4108 static void
4109 ixgbe_vmdq_tx_hw_configure(struct ixgbe_hw *hw)
4110 {
4111         uint32_t reg;
4112         uint32_t q;
4113
4114         PMD_INIT_FUNC_TRACE();
4115         /*PF VF Transmit Enable*/
4116         IXGBE_WRITE_REG(hw, IXGBE_VFTE(0), UINT32_MAX);
4117         IXGBE_WRITE_REG(hw, IXGBE_VFTE(1), UINT32_MAX);
4118
4119         /* Disable the Tx desc arbiter so that MTQC can be changed */
4120         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4121         reg |= IXGBE_RTTDCS_ARBDIS;
4122         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4123
4124         reg = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4125         IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
4126
4127         /* Disable drop for all queues */
4128         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4129                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4130                   (IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
4131
4132         /* Enable the Tx desc arbiter */
4133         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4134         reg &= ~IXGBE_RTTDCS_ARBDIS;
4135         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4136
4137         IXGBE_WRITE_FLUSH(hw);
4138 }
4139
4140 static int __attribute__((cold))
4141 ixgbe_alloc_rx_queue_mbufs(struct ixgbe_rx_queue *rxq)
4142 {
4143         struct ixgbe_rx_entry *rxe = rxq->sw_ring;
4144         uint64_t dma_addr;
4145         unsigned int i;
4146
4147         /* Initialize software ring entries */
4148         for (i = 0; i < rxq->nb_rx_desc; i++) {
4149                 volatile union ixgbe_adv_rx_desc *rxd;
4150                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
4151
4152                 if (mbuf == NULL) {
4153                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
4154                                      (unsigned) rxq->queue_id);
4155                         return -ENOMEM;
4156                 }
4157
4158                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
4159                 mbuf->port = rxq->port_id;
4160
4161                 dma_addr =
4162                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
4163                 rxd = &rxq->rx_ring[i];
4164                 rxd->read.hdr_addr = 0;
4165                 rxd->read.pkt_addr = dma_addr;
4166                 rxe[i].mbuf = mbuf;
4167         }
4168
4169         return 0;
4170 }
4171
4172 static int
4173 ixgbe_config_vf_rss(struct rte_eth_dev *dev)
4174 {
4175         struct ixgbe_hw *hw;
4176         uint32_t mrqc;
4177
4178         ixgbe_rss_configure(dev);
4179
4180         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4181
4182         /* MRQC: enable VF RSS */
4183         mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
4184         mrqc &= ~IXGBE_MRQC_MRQE_MASK;
4185         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4186         case ETH_64_POOLS:
4187                 mrqc |= IXGBE_MRQC_VMDQRSS64EN;
4188                 break;
4189
4190         case ETH_32_POOLS:
4191                 mrqc |= IXGBE_MRQC_VMDQRSS32EN;
4192                 break;
4193
4194         default:
4195                 PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
4196                 return -EINVAL;
4197         }
4198
4199         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4200
4201         return 0;
4202 }
4203
4204 static int
4205 ixgbe_config_vf_default(struct rte_eth_dev *dev)
4206 {
4207         struct ixgbe_hw *hw =
4208                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4209
4210         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4211         case ETH_64_POOLS:
4212                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4213                         IXGBE_MRQC_VMDQEN);
4214                 break;
4215
4216         case ETH_32_POOLS:
4217                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4218                         IXGBE_MRQC_VMDQRT4TCEN);
4219                 break;
4220
4221         case ETH_16_POOLS:
4222                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4223                         IXGBE_MRQC_VMDQRT8TCEN);
4224                 break;
4225         default:
4226                 PMD_INIT_LOG(ERR,
4227                         "invalid pool number in IOV mode");
4228                 break;
4229         }
4230         return 0;
4231 }
4232
4233 static int
4234 ixgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
4235 {
4236         struct ixgbe_hw *hw =
4237                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4238
4239         if (hw->mac.type == ixgbe_mac_82598EB)
4240                 return 0;
4241
4242         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4243                 /*
4244                  * SRIOV inactive scheme
4245                  * any DCB/RSS w/o VMDq multi-queue setting
4246                  */
4247                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4248                 case ETH_MQ_RX_RSS:
4249                 case ETH_MQ_RX_DCB_RSS:
4250                 case ETH_MQ_RX_VMDQ_RSS:
4251                         ixgbe_rss_configure(dev);
4252                         break;
4253
4254                 case ETH_MQ_RX_VMDQ_DCB:
4255                         ixgbe_vmdq_dcb_configure(dev);
4256                         break;
4257
4258                 case ETH_MQ_RX_VMDQ_ONLY:
4259                         ixgbe_vmdq_rx_hw_configure(dev);
4260                         break;
4261
4262                 case ETH_MQ_RX_NONE:
4263                 default:
4264                         /* if mq_mode is none, disable rss mode.*/
4265                         ixgbe_rss_disable(dev);
4266                         break;
4267                 }
4268         } else {
4269                 /* SRIOV active scheme
4270                  * Support RSS together with SRIOV.
4271                  */
4272                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4273                 case ETH_MQ_RX_RSS:
4274                 case ETH_MQ_RX_VMDQ_RSS:
4275                         ixgbe_config_vf_rss(dev);
4276                         break;
4277                 case ETH_MQ_RX_VMDQ_DCB:
4278                 case ETH_MQ_RX_DCB:
4279                 /* In SRIOV, the configuration is the same as VMDq case */
4280                         ixgbe_vmdq_dcb_configure(dev);
4281                         break;
4282                 /* DCB/RSS together with SRIOV is not supported */
4283                 case ETH_MQ_RX_VMDQ_DCB_RSS:
4284                 case ETH_MQ_RX_DCB_RSS:
4285                         PMD_INIT_LOG(ERR,
4286                                 "Could not support DCB/RSS with VMDq & SRIOV");
4287                         return -1;
4288                 default:
4289                         ixgbe_config_vf_default(dev);
4290                         break;
4291                 }
4292         }
4293
4294         return 0;
4295 }
4296
4297 static int
4298 ixgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
4299 {
4300         struct ixgbe_hw *hw =
4301                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4302         uint32_t mtqc;
4303         uint32_t rttdcs;
4304
4305         if (hw->mac.type == ixgbe_mac_82598EB)
4306                 return 0;
4307
4308         /* disable arbiter before setting MTQC */
4309         rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4310         rttdcs |= IXGBE_RTTDCS_ARBDIS;
4311         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4312
4313         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4314                 /*
4315                  * SRIOV inactive scheme
4316                  * any DCB w/o VMDq multi-queue setting
4317                  */
4318                 if (dev->data->dev_conf.txmode.mq_mode == ETH_MQ_TX_VMDQ_ONLY)
4319                         ixgbe_vmdq_tx_hw_configure(hw);
4320                 else {
4321                         mtqc = IXGBE_MTQC_64Q_1PB;
4322                         IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4323                 }
4324         } else {
4325                 switch (RTE_ETH_DEV_SRIOV(dev).active) {
4326
4327                 /*
4328                  * SRIOV active scheme
4329                  * FIXME if support DCB together with VMDq & SRIOV
4330                  */
4331                 case ETH_64_POOLS:
4332                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4333                         break;
4334                 case ETH_32_POOLS:
4335                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_32VF;
4336                         break;
4337                 case ETH_16_POOLS:
4338                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_RT_ENA |
4339                                 IXGBE_MTQC_8TC_8TQ;
4340                         break;
4341                 default:
4342                         mtqc = IXGBE_MTQC_64Q_1PB;
4343                         PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
4344                 }
4345                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4346         }
4347
4348         /* re-enable arbiter */
4349         rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
4350         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4351
4352         return 0;
4353 }
4354
4355 /**
4356  * ixgbe_get_rscctl_maxdesc - Calculate the RSCCTL[n].MAXDESC for PF
4357  *
4358  * Return the RSCCTL[n].MAXDESC for 82599 and x540 PF devices according to the
4359  * spec rev. 3.0 chapter 8.2.3.8.13.
4360  *
4361  * @pool Memory pool of the Rx queue
4362  */
4363 static inline uint32_t
4364 ixgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
4365 {
4366         struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
4367
4368         /* MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one */
4369         uint16_t maxdesc =
4370                 IPV4_MAX_PKT_LEN /
4371                         (mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
4372
4373         if (maxdesc >= 16)
4374                 return IXGBE_RSCCTL_MAXDESC_16;
4375         else if (maxdesc >= 8)
4376                 return IXGBE_RSCCTL_MAXDESC_8;
4377         else if (maxdesc >= 4)
4378                 return IXGBE_RSCCTL_MAXDESC_4;
4379         else
4380                 return IXGBE_RSCCTL_MAXDESC_1;
4381 }
4382
4383 /**
4384  * ixgbe_set_ivar - Setup the correct IVAR register for a particular MSIX
4385  * interrupt
4386  *
4387  * (Taken from FreeBSD tree)
4388  * (yes this is all very magic and confusing :)
4389  *
4390  * @dev port handle
4391  * @entry the register array entry
4392  * @vector the MSIX vector for this queue
4393  * @type RX/TX/MISC
4394  */
4395 static void
4396 ixgbe_set_ivar(struct rte_eth_dev *dev, u8 entry, u8 vector, s8 type)
4397 {
4398         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4399         u32 ivar, index;
4400
4401         vector |= IXGBE_IVAR_ALLOC_VAL;
4402
4403         switch (hw->mac.type) {
4404
4405         case ixgbe_mac_82598EB:
4406                 if (type == -1)
4407                         entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
4408                 else
4409                         entry += (type * 64);
4410                 index = (entry >> 2) & 0x1F;
4411                 ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
4412                 ivar &= ~(0xFF << (8 * (entry & 0x3)));
4413                 ivar |= (vector << (8 * (entry & 0x3)));
4414                 IXGBE_WRITE_REG(hw, IXGBE_IVAR(index), ivar);
4415                 break;
4416
4417         case ixgbe_mac_82599EB:
4418         case ixgbe_mac_X540:
4419                 if (type == -1) { /* MISC IVAR */
4420                         index = (entry & 1) * 8;
4421                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
4422                         ivar &= ~(0xFF << index);
4423                         ivar |= (vector << index);
4424                         IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
4425                 } else {        /* RX/TX IVARS */
4426                         index = (16 * (entry & 1)) + (8 * type);
4427                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
4428                         ivar &= ~(0xFF << index);
4429                         ivar |= (vector << index);
4430                         IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
4431                 }
4432
4433                 break;
4434
4435         default:
4436                 break;
4437         }
4438 }
4439
4440 void __attribute__((cold))
4441 ixgbe_set_rx_function(struct rte_eth_dev *dev)
4442 {
4443         uint16_t i, rx_using_sse;
4444         struct ixgbe_adapter *adapter =
4445                 (struct ixgbe_adapter *)dev->data->dev_private;
4446
4447         /*
4448          * In order to allow Vector Rx there are a few configuration
4449          * conditions to be met and Rx Bulk Allocation should be allowed.
4450          */
4451         if (ixgbe_rx_vec_dev_conf_condition_check(dev) ||
4452             !adapter->rx_bulk_alloc_allowed) {
4453                 PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet Vector Rx "
4454                                     "preconditions or RTE_IXGBE_INC_VECTOR is "
4455                                     "not enabled",
4456                              dev->data->port_id);
4457
4458                 adapter->rx_vec_allowed = false;
4459         }
4460
4461         /*
4462          * Initialize the appropriate LRO callback.
4463          *
4464          * If all queues satisfy the bulk allocation preconditions
4465          * (hw->rx_bulk_alloc_allowed is TRUE) then we may use bulk allocation.
4466          * Otherwise use a single allocation version.
4467          */
4468         if (dev->data->lro) {
4469                 if (adapter->rx_bulk_alloc_allowed) {
4470                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
4471                                            "allocation version");
4472                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4473                 } else {
4474                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
4475                                            "allocation version");
4476                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4477                 }
4478         } else if (dev->data->scattered_rx) {
4479                 /*
4480                  * Set the non-LRO scattered callback: there are Vector and
4481                  * single allocation versions.
4482                  */
4483                 if (adapter->rx_vec_allowed) {
4484                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
4485                                             "callback (port=%d).",
4486                                      dev->data->port_id);
4487
4488                         dev->rx_pkt_burst = ixgbe_recv_scattered_pkts_vec;
4489                 } else if (adapter->rx_bulk_alloc_allowed) {
4490                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
4491                                            "allocation callback (port=%d).",
4492                                      dev->data->port_id);
4493                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4494                 } else {
4495                         PMD_INIT_LOG(DEBUG, "Using Regualr (non-vector, "
4496                                             "single allocation) "
4497                                             "Scattered Rx callback "
4498                                             "(port=%d).",
4499                                      dev->data->port_id);
4500
4501                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4502                 }
4503         /*
4504          * Below we set "simple" callbacks according to port/queues parameters.
4505          * If parameters allow we are going to choose between the following
4506          * callbacks:
4507          *    - Vector
4508          *    - Bulk Allocation
4509          *    - Single buffer allocation (the simplest one)
4510          */
4511         } else if (adapter->rx_vec_allowed) {
4512                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
4513                                     "burst size no less than %d (port=%d).",
4514                              RTE_IXGBE_DESCS_PER_LOOP,
4515                              dev->data->port_id);
4516
4517                 dev->rx_pkt_burst = ixgbe_recv_pkts_vec;
4518         } else if (adapter->rx_bulk_alloc_allowed) {
4519                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
4520                                     "satisfied. Rx Burst Bulk Alloc function "
4521                                     "will be used on port=%d.",
4522                              dev->data->port_id);
4523
4524                 dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
4525         } else {
4526                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
4527                                     "satisfied, or Scattered Rx is requested "
4528                                     "(port=%d).",
4529                              dev->data->port_id);
4530
4531                 dev->rx_pkt_burst = ixgbe_recv_pkts;
4532         }
4533
4534         /* Propagate information about RX function choice through all queues. */
4535
4536         rx_using_sse =
4537                 (dev->rx_pkt_burst == ixgbe_recv_scattered_pkts_vec ||
4538                 dev->rx_pkt_burst == ixgbe_recv_pkts_vec);
4539
4540         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4541                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4542
4543                 rxq->rx_using_sse = rx_using_sse;
4544 #ifdef RTE_LIBRTE_SECURITY
4545                 rxq->using_ipsec = !!(dev->data->dev_conf.rxmode.offloads &
4546                                 DEV_RX_OFFLOAD_SECURITY);
4547 #endif
4548         }
4549 }
4550
4551 /**
4552  * ixgbe_set_rsc - configure RSC related port HW registers
4553  *
4554  * Configures the port's RSC related registers according to the 4.6.7.2 chapter
4555  * of 82599 Spec (x540 configuration is virtually the same).
4556  *
4557  * @dev port handle
4558  *
4559  * Returns 0 in case of success or a non-zero error code
4560  */
4561 static int
4562 ixgbe_set_rsc(struct rte_eth_dev *dev)
4563 {
4564         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4565         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4566         struct rte_eth_dev_info dev_info = { 0 };
4567         bool rsc_capable = false;
4568         uint16_t i;
4569         uint32_t rdrxctl;
4570         uint32_t rfctl;
4571
4572         /* Sanity check */
4573         dev->dev_ops->dev_infos_get(dev, &dev_info);
4574         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO)
4575                 rsc_capable = true;
4576
4577         if (!rsc_capable && rx_conf->enable_lro) {
4578                 PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
4579                                    "support it");
4580                 return -EINVAL;
4581         }
4582
4583         /* RSC global configuration (chapter 4.6.7.2.1 of 82599 Spec) */
4584
4585         if (!rx_conf->hw_strip_crc && rx_conf->enable_lro) {
4586                 /*
4587                  * According to chapter of 4.6.7.2.1 of the Spec Rev.
4588                  * 3.0 RSC configuration requires HW CRC stripping being
4589                  * enabled. If user requested both HW CRC stripping off
4590                  * and RSC on - return an error.
4591                  */
4592                 PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
4593                                     "is disabled");
4594                 return -EINVAL;
4595         }
4596
4597         /* RFCTL configuration  */
4598         rfctl = IXGBE_READ_REG(hw, IXGBE_RFCTL);
4599         if ((rsc_capable) && (rx_conf->enable_lro))
4600                 /*
4601                  * Since NFS packets coalescing is not supported - clear
4602                  * RFCTL.NFSW_DIS and RFCTL.NFSR_DIS when RSC is
4603                  * enabled.
4604                  */
4605                 rfctl &= ~(IXGBE_RFCTL_RSC_DIS | IXGBE_RFCTL_NFSW_DIS |
4606                            IXGBE_RFCTL_NFSR_DIS);
4607         else
4608                 rfctl |= IXGBE_RFCTL_RSC_DIS;
4609         IXGBE_WRITE_REG(hw, IXGBE_RFCTL, rfctl);
4610
4611         /* If LRO hasn't been requested - we are done here. */
4612         if (!rx_conf->enable_lro)
4613                 return 0;
4614
4615         /* Set RDRXCTL.RSCACKC bit */
4616         rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4617         rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
4618         IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4619
4620         /* Per-queue RSC configuration (chapter 4.6.7.2.2 of 82599 Spec) */
4621         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4622                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4623                 uint32_t srrctl =
4624                         IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxq->reg_idx));
4625                 uint32_t rscctl =
4626                         IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxq->reg_idx));
4627                 uint32_t psrtype =
4628                         IXGBE_READ_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx));
4629                 uint32_t eitr =
4630                         IXGBE_READ_REG(hw, IXGBE_EITR(rxq->reg_idx));
4631
4632                 /*
4633                  * ixgbe PMD doesn't support header-split at the moment.
4634                  *
4635                  * Following the 4.6.7.2.1 chapter of the 82599/x540
4636                  * Spec if RSC is enabled the SRRCTL[n].BSIZEHEADER
4637                  * should be configured even if header split is not
4638                  * enabled. We will configure it 128 bytes following the
4639                  * recommendation in the spec.
4640                  */
4641                 srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
4642                 srrctl |= (128 << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
4643                                             IXGBE_SRRCTL_BSIZEHDR_MASK;
4644
4645                 /*
4646                  * TODO: Consider setting the Receive Descriptor Minimum
4647                  * Threshold Size for an RSC case. This is not an obviously
4648                  * beneficiary option but the one worth considering...
4649                  */
4650
4651                 rscctl |= IXGBE_RSCCTL_RSCEN;
4652                 rscctl |= ixgbe_get_rscctl_maxdesc(rxq->mb_pool);
4653                 psrtype |= IXGBE_PSRTYPE_TCPHDR;
4654
4655                 /*
4656                  * RSC: Set ITR interval corresponding to 2K ints/s.
4657                  *
4658                  * Full-sized RSC aggregations for a 10Gb/s link will
4659                  * arrive at about 20K aggregation/s rate.
4660                  *
4661                  * 2K inst/s rate will make only 10% of the
4662                  * aggregations to be closed due to the interrupt timer
4663                  * expiration for a streaming at wire-speed case.
4664                  *
4665                  * For a sparse streaming case this setting will yield
4666                  * at most 500us latency for a single RSC aggregation.
4667                  */
4668                 eitr &= ~IXGBE_EITR_ITR_INT_MASK;
4669                 eitr |= IXGBE_EITR_INTERVAL_US(500) | IXGBE_EITR_CNT_WDIS;
4670
4671                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
4672                 IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxq->reg_idx), rscctl);
4673                 IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
4674                 IXGBE_WRITE_REG(hw, IXGBE_EITR(rxq->reg_idx), eitr);
4675
4676                 /*
4677                  * RSC requires the mapping of the queue to the
4678                  * interrupt vector.
4679                  */
4680                 ixgbe_set_ivar(dev, rxq->reg_idx, i, 0);
4681         }
4682
4683         dev->data->lro = 1;
4684
4685         PMD_INIT_LOG(DEBUG, "enabling LRO mode");
4686
4687         return 0;
4688 }
4689
4690 /*
4691  * Initializes Receive Unit.
4692  */
4693 int __attribute__((cold))
4694 ixgbe_dev_rx_init(struct rte_eth_dev *dev)
4695 {
4696         struct ixgbe_hw     *hw;
4697         struct ixgbe_rx_queue *rxq;
4698         uint64_t bus_addr;
4699         uint32_t rxctrl;
4700         uint32_t fctrl;
4701         uint32_t hlreg0;
4702         uint32_t maxfrs;
4703         uint32_t srrctl;
4704         uint32_t rdrxctl;
4705         uint32_t rxcsum;
4706         uint16_t buf_size;
4707         uint16_t i;
4708         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4709         int rc;
4710
4711         PMD_INIT_FUNC_TRACE();
4712         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4713
4714         /*
4715          * Make sure receives are disabled while setting
4716          * up the RX context (registers, descriptor rings, etc.).
4717          */
4718         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4719         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
4720
4721         /* Enable receipt of broadcasted frames */
4722         fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
4723         fctrl |= IXGBE_FCTRL_BAM;
4724         fctrl |= IXGBE_FCTRL_DPF;
4725         fctrl |= IXGBE_FCTRL_PMCF;
4726         IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
4727
4728         /*
4729          * Configure CRC stripping, if any.
4730          */
4731         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4732         if (rx_conf->hw_strip_crc)
4733                 hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
4734         else
4735                 hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
4736
4737         /*
4738          * Configure jumbo frame support, if any.
4739          */
4740         if (rx_conf->jumbo_frame == 1) {
4741                 hlreg0 |= IXGBE_HLREG0_JUMBOEN;
4742                 maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
4743                 maxfrs &= 0x0000FFFF;
4744                 maxfrs |= (rx_conf->max_rx_pkt_len << 16);
4745                 IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
4746         } else
4747                 hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
4748
4749         /*
4750          * If loopback mode is configured for 82599, set LPBK bit.
4751          */
4752         if (hw->mac.type == ixgbe_mac_82599EB &&
4753                         dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_82599_TX_RX)
4754                 hlreg0 |= IXGBE_HLREG0_LPBK;
4755         else
4756                 hlreg0 &= ~IXGBE_HLREG0_LPBK;
4757
4758         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4759
4760         /* Setup RX queues */
4761         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4762                 rxq = dev->data->rx_queues[i];
4763
4764                 /*
4765                  * Reset crc_len in case it was changed after queue setup by a
4766                  * call to configure.
4767                  */
4768                 rxq->crc_len = rx_conf->hw_strip_crc ? 0 : ETHER_CRC_LEN;
4769
4770                 /* Setup the Base and Length of the Rx Descriptor Rings */
4771                 bus_addr = rxq->rx_ring_phys_addr;
4772                 IXGBE_WRITE_REG(hw, IXGBE_RDBAL(rxq->reg_idx),
4773                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
4774                 IXGBE_WRITE_REG(hw, IXGBE_RDBAH(rxq->reg_idx),
4775                                 (uint32_t)(bus_addr >> 32));
4776                 IXGBE_WRITE_REG(hw, IXGBE_RDLEN(rxq->reg_idx),
4777                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
4778                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
4779                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), 0);
4780
4781                 /* Configure the SRRCTL register */
4782 #ifdef RTE_HEADER_SPLIT_ENABLE
4783                 /*
4784                  * Configure Header Split
4785                  */
4786                 if (rx_conf->header_split) {
4787                         if (hw->mac.type == ixgbe_mac_82599EB) {
4788                                 /* Must setup the PSRTYPE register */
4789                                 uint32_t psrtype;
4790
4791                                 psrtype = IXGBE_PSRTYPE_TCPHDR |
4792                                         IXGBE_PSRTYPE_UDPHDR   |
4793                                         IXGBE_PSRTYPE_IPV4HDR  |
4794                                         IXGBE_PSRTYPE_IPV6HDR;
4795                                 IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
4796                         }
4797                         srrctl = ((rx_conf->split_hdr_size <<
4798                                 IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
4799                                 IXGBE_SRRCTL_BSIZEHDR_MASK);
4800                         srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
4801                 } else
4802 #endif
4803                         srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
4804
4805                 /* Set if packets are dropped when no descriptors available */
4806                 if (rxq->drop_en)
4807                         srrctl |= IXGBE_SRRCTL_DROP_EN;
4808
4809                 /*
4810                  * Configure the RX buffer size in the BSIZEPACKET field of
4811                  * the SRRCTL register of the queue.
4812                  * The value is in 1 KB resolution. Valid values can be from
4813                  * 1 KB to 16 KB.
4814                  */
4815                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
4816                         RTE_PKTMBUF_HEADROOM);
4817                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
4818                            IXGBE_SRRCTL_BSIZEPKT_MASK);
4819
4820                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
4821
4822                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
4823                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
4824
4825                 /* It adds dual VLAN length for supporting dual VLAN */
4826                 if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
4827                                             2 * IXGBE_VLAN_TAG_SIZE > buf_size)
4828                         dev->data->scattered_rx = 1;
4829         }
4830
4831         if (rx_conf->enable_scatter)
4832                 dev->data->scattered_rx = 1;
4833
4834         /*
4835          * Device configured with multiple RX queues.
4836          */
4837         ixgbe_dev_mq_rx_configure(dev);
4838
4839         /*
4840          * Setup the Checksum Register.
4841          * Disable Full-Packet Checksum which is mutually exclusive with RSS.
4842          * Enable IP/L4 checkum computation by hardware if requested to do so.
4843          */
4844         rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
4845         rxcsum |= IXGBE_RXCSUM_PCSD;
4846         if (rx_conf->hw_ip_checksum)
4847                 rxcsum |= IXGBE_RXCSUM_IPPCSE;
4848         else
4849                 rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
4850
4851         IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
4852
4853         if (hw->mac.type == ixgbe_mac_82599EB ||
4854             hw->mac.type == ixgbe_mac_X540) {
4855                 rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4856                 if (rx_conf->hw_strip_crc)
4857                         rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
4858                 else
4859                         rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
4860                 rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
4861                 IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4862         }
4863
4864         rc = ixgbe_set_rsc(dev);
4865         if (rc)
4866                 return rc;
4867
4868         ixgbe_set_rx_function(dev);
4869
4870         return 0;
4871 }
4872
4873 /*
4874  * Initializes Transmit Unit.
4875  */
4876 void __attribute__((cold))
4877 ixgbe_dev_tx_init(struct rte_eth_dev *dev)
4878 {
4879         struct ixgbe_hw     *hw;
4880         struct ixgbe_tx_queue *txq;
4881         uint64_t bus_addr;
4882         uint32_t hlreg0;
4883         uint32_t txctrl;
4884         uint16_t i;
4885
4886         PMD_INIT_FUNC_TRACE();
4887         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4888
4889         /* Enable TX CRC (checksum offload requirement) and hw padding
4890          * (TSO requirement)
4891          */
4892         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4893         hlreg0 |= (IXGBE_HLREG0_TXCRCEN | IXGBE_HLREG0_TXPADEN);
4894         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4895
4896         /* Setup the Base and Length of the Tx Descriptor Rings */
4897         for (i = 0; i < dev->data->nb_tx_queues; i++) {
4898                 txq = dev->data->tx_queues[i];
4899
4900                 bus_addr = txq->tx_ring_phys_addr;
4901                 IXGBE_WRITE_REG(hw, IXGBE_TDBAL(txq->reg_idx),
4902                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
4903                 IXGBE_WRITE_REG(hw, IXGBE_TDBAH(txq->reg_idx),
4904                                 (uint32_t)(bus_addr >> 32));
4905                 IXGBE_WRITE_REG(hw, IXGBE_TDLEN(txq->reg_idx),
4906                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
4907                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
4908                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
4909                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
4910
4911                 /*
4912                  * Disable Tx Head Writeback RO bit, since this hoses
4913                  * bookkeeping if things aren't delivered in order.
4914                  */
4915                 switch (hw->mac.type) {
4916                 case ixgbe_mac_82598EB:
4917                         txctrl = IXGBE_READ_REG(hw,
4918                                                 IXGBE_DCA_TXCTRL(txq->reg_idx));
4919                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4920                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(txq->reg_idx),
4921                                         txctrl);
4922                         break;
4923
4924                 case ixgbe_mac_82599EB:
4925                 case ixgbe_mac_X540:
4926                 case ixgbe_mac_X550:
4927                 case ixgbe_mac_X550EM_x:
4928                 case ixgbe_mac_X550EM_a:
4929                 default:
4930                         txctrl = IXGBE_READ_REG(hw,
4931                                                 IXGBE_DCA_TXCTRL_82599(txq->reg_idx));
4932                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4933                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(txq->reg_idx),
4934                                         txctrl);
4935                         break;
4936                 }
4937         }
4938
4939         /* Device configured with multiple TX queues. */
4940         ixgbe_dev_mq_tx_configure(dev);
4941 }
4942
4943 /*
4944  * Set up link for 82599 loopback mode Tx->Rx.
4945  */
4946 static inline void __attribute__((cold))
4947 ixgbe_setup_loopback_link_82599(struct ixgbe_hw *hw)
4948 {
4949         PMD_INIT_FUNC_TRACE();
4950
4951         if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
4952                 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM) !=
4953                                 IXGBE_SUCCESS) {
4954                         PMD_INIT_LOG(ERR, "Could not enable loopback mode");
4955                         /* ignore error */
4956                         return;
4957                 }
4958         }
4959
4960         /* Restart link */
4961         IXGBE_WRITE_REG(hw,
4962                         IXGBE_AUTOC,
4963                         IXGBE_AUTOC_LMS_10G_LINK_NO_AN | IXGBE_AUTOC_FLU);
4964         ixgbe_reset_pipeline_82599(hw);
4965
4966         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
4967         msec_delay(50);
4968 }
4969
4970
4971 /*
4972  * Start Transmit and Receive Units.
4973  */
4974 int __attribute__((cold))
4975 ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
4976 {
4977         struct ixgbe_hw     *hw;
4978         struct ixgbe_tx_queue *txq;
4979         struct ixgbe_rx_queue *rxq;
4980         uint32_t txdctl;
4981         uint32_t dmatxctl;
4982         uint32_t rxctrl;
4983         uint16_t i;
4984         int ret = 0;
4985
4986         PMD_INIT_FUNC_TRACE();
4987         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4988
4989         for (i = 0; i < dev->data->nb_tx_queues; i++) {
4990                 txq = dev->data->tx_queues[i];
4991                 /* Setup Transmit Threshold Registers */
4992                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
4993                 txdctl |= txq->pthresh & 0x7F;
4994                 txdctl |= ((txq->hthresh & 0x7F) << 8);
4995                 txdctl |= ((txq->wthresh & 0x7F) << 16);
4996                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
4997         }
4998
4999         if (hw->mac.type != ixgbe_mac_82598EB) {
5000                 dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
5001                 dmatxctl |= IXGBE_DMATXCTL_TE;
5002                 IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
5003         }
5004
5005         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5006                 txq = dev->data->tx_queues[i];
5007                 if (!txq->tx_deferred_start) {
5008                         ret = ixgbe_dev_tx_queue_start(dev, i);
5009                         if (ret < 0)
5010                                 return ret;
5011                 }
5012         }
5013
5014         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5015                 rxq = dev->data->rx_queues[i];
5016                 if (!rxq->rx_deferred_start) {
5017                         ret = ixgbe_dev_rx_queue_start(dev, i);
5018                         if (ret < 0)
5019                                 return ret;
5020                 }
5021         }
5022
5023         /* Enable Receive engine */
5024         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5025         if (hw->mac.type == ixgbe_mac_82598EB)
5026                 rxctrl |= IXGBE_RXCTRL_DMBYPS;
5027         rxctrl |= IXGBE_RXCTRL_RXEN;
5028         hw->mac.ops.enable_rx_dma(hw, rxctrl);
5029
5030         /* If loopback mode is enabled for 82599, set up the link accordingly */
5031         if (hw->mac.type == ixgbe_mac_82599EB &&
5032                         dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_82599_TX_RX)
5033                 ixgbe_setup_loopback_link_82599(hw);
5034
5035 #ifdef RTE_LIBRTE_SECURITY
5036         if ((dev->data->dev_conf.rxmode.offloads &
5037                         DEV_RX_OFFLOAD_SECURITY) ||
5038                 (dev->data->dev_conf.txmode.offloads &
5039                         DEV_TX_OFFLOAD_SECURITY)) {
5040                 ret = ixgbe_crypto_enable_ipsec(dev);
5041                 if (ret != 0) {
5042                         PMD_DRV_LOG(ERR,
5043                                     "ixgbe_crypto_enable_ipsec fails with %d.",
5044                                     ret);
5045                         return ret;
5046                 }
5047         }
5048 #endif
5049
5050         return 0;
5051 }
5052
5053 /*
5054  * Start Receive Units for specified queue.
5055  */
5056 int __attribute__((cold))
5057 ixgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5058 {
5059         struct ixgbe_hw     *hw;
5060         struct ixgbe_rx_queue *rxq;
5061         uint32_t rxdctl;
5062         int poll_ms;
5063
5064         PMD_INIT_FUNC_TRACE();
5065         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5066
5067         if (rx_queue_id < dev->data->nb_rx_queues) {
5068                 rxq = dev->data->rx_queues[rx_queue_id];
5069
5070                 /* Allocate buffers for descriptor rings */
5071                 if (ixgbe_alloc_rx_queue_mbufs(rxq) != 0) {
5072                         PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
5073                                      rx_queue_id);
5074                         return -1;
5075                 }
5076                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5077                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5078                 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5079
5080                 /* Wait until RX Enable ready */
5081                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5082                 do {
5083                         rte_delay_ms(1);
5084                         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5085                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5086                 if (!poll_ms)
5087                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d",
5088                                      rx_queue_id);
5089                 rte_wmb();
5090                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5091                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
5092                 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5093         } else
5094                 return -1;
5095
5096         return 0;
5097 }
5098
5099 /*
5100  * Stop Receive Units for specified queue.
5101  */
5102 int __attribute__((cold))
5103 ixgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5104 {
5105         struct ixgbe_hw     *hw;
5106         struct ixgbe_adapter *adapter =
5107                 (struct ixgbe_adapter *)dev->data->dev_private;
5108         struct ixgbe_rx_queue *rxq;
5109         uint32_t rxdctl;
5110         int poll_ms;
5111
5112         PMD_INIT_FUNC_TRACE();
5113         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5114
5115         if (rx_queue_id < dev->data->nb_rx_queues) {
5116                 rxq = dev->data->rx_queues[rx_queue_id];
5117
5118                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5119                 rxdctl &= ~IXGBE_RXDCTL_ENABLE;
5120                 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5121
5122                 /* Wait until RX Enable bit clear */
5123                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5124                 do {
5125                         rte_delay_ms(1);
5126                         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5127                 } while (--poll_ms && (rxdctl & IXGBE_RXDCTL_ENABLE));
5128                 if (!poll_ms)
5129                         PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d",
5130                                      rx_queue_id);
5131
5132                 rte_delay_us(RTE_IXGBE_WAIT_100_US);
5133
5134                 ixgbe_rx_queue_release_mbufs(rxq);
5135                 ixgbe_reset_rx_queue(adapter, rxq);
5136                 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5137         } else
5138                 return -1;
5139
5140         return 0;
5141 }
5142
5143
5144 /*
5145  * Start Transmit Units for specified queue.
5146  */
5147 int __attribute__((cold))
5148 ixgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5149 {
5150         struct ixgbe_hw     *hw;
5151         struct ixgbe_tx_queue *txq;
5152         uint32_t txdctl;
5153         int poll_ms;
5154
5155         PMD_INIT_FUNC_TRACE();
5156         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5157
5158         if (tx_queue_id < dev->data->nb_tx_queues) {
5159                 txq = dev->data->tx_queues[tx_queue_id];
5160                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5161                 txdctl |= IXGBE_TXDCTL_ENABLE;
5162                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5163
5164                 /* Wait until TX Enable ready */
5165                 if (hw->mac.type == ixgbe_mac_82599EB) {
5166                         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5167                         do {
5168                                 rte_delay_ms(1);
5169                                 txdctl = IXGBE_READ_REG(hw,
5170                                         IXGBE_TXDCTL(txq->reg_idx));
5171                         } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5172                         if (!poll_ms)
5173                                 PMD_INIT_LOG(ERR, "Could not enable "
5174                                              "Tx Queue %d", tx_queue_id);
5175                 }
5176                 rte_wmb();
5177                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5178                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5179                 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5180         } else
5181                 return -1;
5182
5183         return 0;
5184 }
5185
5186 /*
5187  * Stop Transmit Units for specified queue.
5188  */
5189 int __attribute__((cold))
5190 ixgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5191 {
5192         struct ixgbe_hw     *hw;
5193         struct ixgbe_tx_queue *txq;
5194         uint32_t txdctl;
5195         uint32_t txtdh, txtdt;
5196         int poll_ms;
5197
5198         PMD_INIT_FUNC_TRACE();
5199         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5200
5201         if (tx_queue_id >= dev->data->nb_tx_queues)
5202                 return -1;
5203
5204         txq = dev->data->tx_queues[tx_queue_id];
5205
5206         /* Wait until TX queue is empty */
5207         if (hw->mac.type == ixgbe_mac_82599EB) {
5208                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5209                 do {
5210                         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5211                         txtdh = IXGBE_READ_REG(hw,
5212                                                IXGBE_TDH(txq->reg_idx));
5213                         txtdt = IXGBE_READ_REG(hw,
5214                                                IXGBE_TDT(txq->reg_idx));
5215                 } while (--poll_ms && (txtdh != txtdt));
5216                 if (!poll_ms)
5217                         PMD_INIT_LOG(ERR, "Tx Queue %d is not empty "
5218                                      "when stopping.", tx_queue_id);
5219         }
5220
5221         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5222         txdctl &= ~IXGBE_TXDCTL_ENABLE;
5223         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5224
5225         /* Wait until TX Enable bit clear */
5226         if (hw->mac.type == ixgbe_mac_82599EB) {
5227                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5228                 do {
5229                         rte_delay_ms(1);
5230                         txdctl = IXGBE_READ_REG(hw,
5231                                                 IXGBE_TXDCTL(txq->reg_idx));
5232                 } while (--poll_ms && (txdctl & IXGBE_TXDCTL_ENABLE));
5233                 if (!poll_ms)
5234                         PMD_INIT_LOG(ERR, "Could not disable "
5235                                      "Tx Queue %d", tx_queue_id);
5236         }
5237
5238         if (txq->ops != NULL) {
5239                 txq->ops->release_mbufs(txq);
5240                 txq->ops->reset(txq);
5241         }
5242         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5243
5244         return 0;
5245 }
5246
5247 void
5248 ixgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5249         struct rte_eth_rxq_info *qinfo)
5250 {
5251         struct ixgbe_rx_queue *rxq;
5252
5253         rxq = dev->data->rx_queues[queue_id];
5254
5255         qinfo->mp = rxq->mb_pool;
5256         qinfo->scattered_rx = dev->data->scattered_rx;
5257         qinfo->nb_desc = rxq->nb_rx_desc;
5258
5259         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
5260         qinfo->conf.rx_drop_en = rxq->drop_en;
5261         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
5262 }
5263
5264 void
5265 ixgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5266         struct rte_eth_txq_info *qinfo)
5267 {
5268         struct ixgbe_tx_queue *txq;
5269
5270         txq = dev->data->tx_queues[queue_id];
5271
5272         qinfo->nb_desc = txq->nb_tx_desc;
5273
5274         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
5275         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
5276         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
5277
5278         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
5279         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
5280         qinfo->conf.txq_flags = txq->txq_flags;
5281         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
5282 }
5283
5284 /*
5285  * [VF] Initializes Receive Unit.
5286  */
5287 int __attribute__((cold))
5288 ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
5289 {
5290         struct ixgbe_hw     *hw;
5291         struct ixgbe_rx_queue *rxq;
5292         uint64_t bus_addr;
5293         uint32_t srrctl, psrtype = 0;
5294         uint16_t buf_size;
5295         uint16_t i;
5296         int ret;
5297
5298         PMD_INIT_FUNC_TRACE();
5299         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5300
5301         if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
5302                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5303                         "it should be power of 2");
5304                 return -1;
5305         }
5306
5307         if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
5308                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5309                         "it should be equal to or less than %d",
5310                         hw->mac.max_rx_queues);
5311                 return -1;
5312         }
5313
5314         /*
5315          * When the VF driver issues a IXGBE_VF_RESET request, the PF driver
5316          * disables the VF receipt of packets if the PF MTU is > 1500.
5317          * This is done to deal with 82599 limitations that imposes
5318          * the PF and all VFs to share the same MTU.
5319          * Then, the PF driver enables again the VF receipt of packet when
5320          * the VF driver issues a IXGBE_VF_SET_LPE request.
5321          * In the meantime, the VF device cannot be used, even if the VF driver
5322          * and the Guest VM network stack are ready to accept packets with a
5323          * size up to the PF MTU.
5324          * As a work-around to this PF behaviour, force the call to
5325          * ixgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
5326          * VF packets received can work in all cases.
5327          */
5328         ixgbevf_rlpml_set_vf(hw,
5329                 (uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len);
5330
5331         /* Setup RX queues */
5332         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5333                 rxq = dev->data->rx_queues[i];
5334
5335                 /* Allocate buffers for descriptor rings */
5336                 ret = ixgbe_alloc_rx_queue_mbufs(rxq);
5337                 if (ret)
5338                         return ret;
5339
5340                 /* Setup the Base and Length of the Rx Descriptor Rings */
5341                 bus_addr = rxq->rx_ring_phys_addr;
5342
5343                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
5344                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5345                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
5346                                 (uint32_t)(bus_addr >> 32));
5347                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
5348                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5349                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
5350                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
5351
5352
5353                 /* Configure the SRRCTL register */
5354 #ifdef RTE_HEADER_SPLIT_ENABLE
5355                 /*
5356                  * Configure Header Split
5357                  */
5358                 if (dev->data->dev_conf.rxmode.header_split) {
5359                         srrctl = ((dev->data->dev_conf.rxmode.split_hdr_size <<
5360                                 IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
5361                                 IXGBE_SRRCTL_BSIZEHDR_MASK);
5362                         srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
5363                 } else
5364 #endif
5365                         srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5366
5367                 /* Set if packets are dropped when no descriptors available */
5368                 if (rxq->drop_en)
5369                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5370
5371                 /*
5372                  * Configure the RX buffer size in the BSIZEPACKET field of
5373                  * the SRRCTL register of the queue.
5374                  * The value is in 1 KB resolution. Valid values can be from
5375                  * 1 KB to 16 KB.
5376                  */
5377                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5378                         RTE_PKTMBUF_HEADROOM);
5379                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5380                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5381
5382                 /*
5383                  * VF modification to write virtual function SRRCTL register
5384                  */
5385                 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
5386
5387                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5388                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5389
5390                 if (dev->data->dev_conf.rxmode.enable_scatter ||
5391                     /* It adds dual VLAN length for supporting dual VLAN */
5392                     (dev->data->dev_conf.rxmode.max_rx_pkt_len +
5393                                 2 * IXGBE_VLAN_TAG_SIZE) > buf_size) {
5394                         if (!dev->data->scattered_rx)
5395                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
5396                         dev->data->scattered_rx = 1;
5397                 }
5398         }
5399
5400 #ifdef RTE_HEADER_SPLIT_ENABLE
5401         if (dev->data->dev_conf.rxmode.header_split)
5402                 /* Must setup the PSRTYPE register */
5403                 psrtype = IXGBE_PSRTYPE_TCPHDR |
5404                         IXGBE_PSRTYPE_UDPHDR   |
5405                         IXGBE_PSRTYPE_IPV4HDR  |
5406                         IXGBE_PSRTYPE_IPV6HDR;
5407 #endif
5408
5409         /* Set RQPL for VF RSS according to max Rx queue */
5410         psrtype |= (dev->data->nb_rx_queues >> 1) <<
5411                 IXGBE_PSRTYPE_RQPL_SHIFT;
5412         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
5413
5414         ixgbe_set_rx_function(dev);
5415
5416         return 0;
5417 }
5418
5419 /*
5420  * [VF] Initializes Transmit Unit.
5421  */
5422 void __attribute__((cold))
5423 ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
5424 {
5425         struct ixgbe_hw     *hw;
5426         struct ixgbe_tx_queue *txq;
5427         uint64_t bus_addr;
5428         uint32_t txctrl;
5429         uint16_t i;
5430
5431         PMD_INIT_FUNC_TRACE();
5432         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5433
5434         /* Setup the Base and Length of the Tx Descriptor Rings */
5435         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5436                 txq = dev->data->tx_queues[i];
5437                 bus_addr = txq->tx_ring_phys_addr;
5438                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
5439                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5440                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
5441                                 (uint32_t)(bus_addr >> 32));
5442                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
5443                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5444                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5445                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
5446                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
5447
5448                 /*
5449                  * Disable Tx Head Writeback RO bit, since this hoses
5450                  * bookkeeping if things aren't delivered in order.
5451                  */
5452                 txctrl = IXGBE_READ_REG(hw,
5453                                 IXGBE_VFDCA_TXCTRL(i));
5454                 txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5455                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
5456                                 txctrl);
5457         }
5458 }
5459
5460 /*
5461  * [VF] Start Transmit and Receive Units.
5462  */
5463 void __attribute__((cold))
5464 ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
5465 {
5466         struct ixgbe_hw     *hw;
5467         struct ixgbe_tx_queue *txq;
5468         struct ixgbe_rx_queue *rxq;
5469         uint32_t txdctl;
5470         uint32_t rxdctl;
5471         uint16_t i;
5472         int poll_ms;
5473
5474         PMD_INIT_FUNC_TRACE();
5475         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5476
5477         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5478                 txq = dev->data->tx_queues[i];
5479                 /* Setup Transmit Threshold Registers */
5480                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5481                 txdctl |= txq->pthresh & 0x7F;
5482                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5483                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5484                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5485         }
5486
5487         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5488
5489                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5490                 txdctl |= IXGBE_TXDCTL_ENABLE;
5491                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5492
5493                 poll_ms = 10;
5494                 /* Wait until TX Enable ready */
5495                 do {
5496                         rte_delay_ms(1);
5497                         txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5498                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5499                 if (!poll_ms)
5500                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
5501         }
5502         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5503
5504                 rxq = dev->data->rx_queues[i];
5505
5506                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5507                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5508                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
5509
5510                 /* Wait until RX Enable ready */
5511                 poll_ms = 10;
5512                 do {
5513                         rte_delay_ms(1);
5514                         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5515                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5516                 if (!poll_ms)
5517                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
5518                 rte_wmb();
5519                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
5520
5521         }
5522 }
5523
5524 int
5525 ixgbe_config_rss_filter(struct rte_eth_dev *dev,
5526                 struct ixgbe_rte_flow_rss_conf *conf, bool add)
5527 {
5528         struct ixgbe_hw *hw;
5529         uint32_t reta;
5530         uint16_t i;
5531         uint16_t j;
5532         uint16_t sp_reta_size;
5533         uint32_t reta_reg;
5534         struct rte_eth_rss_conf rss_conf = conf->rss_conf;
5535         struct ixgbe_filter_info *filter_info =
5536                 IXGBE_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5537
5538         PMD_INIT_FUNC_TRACE();
5539         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5540
5541         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
5542
5543         if (!add) {
5544                 if (memcmp(conf, &filter_info->rss_info,
5545                         sizeof(struct ixgbe_rte_flow_rss_conf)) == 0) {
5546                         ixgbe_rss_disable(dev);
5547                         memset(&filter_info->rss_info, 0,
5548                                 sizeof(struct ixgbe_rte_flow_rss_conf));
5549                         return 0;
5550                 }
5551                 return -EINVAL;
5552         }
5553
5554         if (filter_info->rss_info.num)
5555                 return -EINVAL;
5556         /* Fill in redirection table
5557          * The byte-swap is needed because NIC registers are in
5558          * little-endian order.
5559          */
5560         reta = 0;
5561         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
5562                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
5563
5564                 if (j == conf->num)
5565                         j = 0;
5566                 reta = (reta << 8) | conf->queue[j];
5567                 if ((i & 3) == 3)
5568                         IXGBE_WRITE_REG(hw, reta_reg,
5569                                         rte_bswap32(reta));
5570         }
5571
5572         /* Configure the RSS key and the RSS protocols used to compute
5573          * the RSS hash of input packets.
5574          */
5575         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
5576                 ixgbe_rss_disable(dev);
5577                 return -EINVAL;
5578         }
5579         if (rss_conf.rss_key == NULL)
5580                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
5581         ixgbe_hw_rss_hash_set(hw, &rss_conf);
5582
5583         rte_memcpy(&filter_info->rss_info,
5584                 conf, sizeof(struct ixgbe_rte_flow_rss_conf));
5585
5586         return 0;
5587 }
5588
5589 /* Stubs needed for linkage when CONFIG_RTE_IXGBE_INC_VECTOR is set to 'n' */
5590 int __attribute__((weak))
5591 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
5592 {
5593         return -1;
5594 }
5595
5596 uint16_t __attribute__((weak))
5597 ixgbe_recv_pkts_vec(
5598         void __rte_unused *rx_queue,
5599         struct rte_mbuf __rte_unused **rx_pkts,
5600         uint16_t __rte_unused nb_pkts)
5601 {
5602         return 0;
5603 }
5604
5605 uint16_t __attribute__((weak))
5606 ixgbe_recv_scattered_pkts_vec(
5607         void __rte_unused *rx_queue,
5608         struct rte_mbuf __rte_unused **rx_pkts,
5609         uint16_t __rte_unused nb_pkts)
5610 {
5611         return 0;
5612 }
5613
5614 int __attribute__((weak))
5615 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue __rte_unused *rxq)
5616 {
5617         return -1;
5618 }