New upstream version 17.11.1
[deb_dpdk.git] / drivers / net / mlx4 / mlx4_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2017 6WIND S.A.
5  *   Copyright 2017 Mellanox
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /**
35  * @file
36  * Data plane functions for mlx4 driver.
37  */
38
39 #include <assert.h>
40 #include <stdint.h>
41 #include <string.h>
42
43 /* Verbs headers do not support -pedantic. */
44 #ifdef PEDANTIC
45 #pragma GCC diagnostic ignored "-Wpedantic"
46 #endif
47 #include <infiniband/verbs.h>
48 #ifdef PEDANTIC
49 #pragma GCC diagnostic error "-Wpedantic"
50 #endif
51
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_io.h>
55 #include <rte_mbuf.h>
56 #include <rte_mempool.h>
57 #include <rte_prefetch.h>
58
59 #include "mlx4.h"
60 #include "mlx4_prm.h"
61 #include "mlx4_rxtx.h"
62 #include "mlx4_utils.h"
63
64 #define WQE_ONE_DATA_SEG_SIZE \
65         (sizeof(struct mlx4_wqe_ctrl_seg) + sizeof(struct mlx4_wqe_data_seg))
66
67 /**
68  * Pointer-value pair structure used in tx_post_send for saving the first
69  * DWORD (32 byte) of a TXBB.
70  */
71 struct pv {
72         volatile struct mlx4_wqe_data_seg *dseg;
73         uint32_t val;
74 };
75
76 /** A table to translate Rx completion flags to packet type. */
77 uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
78         /*
79          * The index to the array should have:
80          *  bit[7] - MLX4_CQE_L2_TUNNEL
81          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
82          *  bit[5] - MLX4_CQE_STATUS_UDP
83          *  bit[4] - MLX4_CQE_STATUS_TCP
84          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
85          *  bit[2] - MLX4_CQE_STATUS_IPV6
86          *  bit[1] - MLX4_CQE_STATUS_IPV4F
87          *  bit[0] - MLX4_CQE_STATUS_IPV4
88          * giving a total of up to 256 entries.
89          */
90         [0x00] = RTE_PTYPE_L2_ETHER,
91         [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
92                      RTE_PTYPE_L4_NONFRAG,
93         [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
94                      RTE_PTYPE_L4_FRAG,
95         [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
96                      RTE_PTYPE_L4_FRAG,
97         [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
98         [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT,
99         [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
100                      RTE_PTYPE_L4_FRAG,
101         [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_TCP,
103         [0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_TCP,
105         [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_TCP,
107         [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
108                      RTE_PTYPE_L4_TCP,
109         [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
110                      RTE_PTYPE_L4_TCP,
111         [0x1a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
112                      RTE_PTYPE_L4_TCP,
113         [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_UDP,
115         [0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_UDP,
117         [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118                      RTE_PTYPE_L4_UDP,
119         [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
120                      RTE_PTYPE_L4_UDP,
121         [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
122                      RTE_PTYPE_L4_UDP,
123         [0x2a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
124                      RTE_PTYPE_L4_UDP,
125         /* Tunneled - L3 IPV6 */
126         [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
127         [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
128                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
129         [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
131                      RTE_PTYPE_INNER_L4_FRAG,
132         [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
133                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
134                      RTE_PTYPE_INNER_L4_FRAG,
135         [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
137         [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
138                      RTE_PTYPE_INNER_L3_IPV4_EXT,
139         [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
140                      RTE_PTYPE_INNER_L3_IPV4_EXT,
141         [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG,
143         /* Tunneled - L3 IPV6, TCP */
144         [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
146                      RTE_PTYPE_INNER_L4_TCP,
147         [0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
149                      RTE_PTYPE_INNER_L4_FRAG |
150                      RTE_PTYPE_INNER_L4_TCP,
151         [0x93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
153                      RTE_PTYPE_INNER_L4_FRAG |
154                      RTE_PTYPE_INNER_L4_TCP,
155         [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L4_TCP,
158         [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
159                      RTE_PTYPE_INNER_L3_IPV4_EXT |
160                      RTE_PTYPE_INNER_L4_TCP,
161         [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
162                      RTE_PTYPE_INNER_L3_IPV4_EXT |
163                      RTE_PTYPE_INNER_L4_TCP,
164         [0x9a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
165                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
166                      RTE_PTYPE_INNER_L4_TCP,
167         /* Tunneled - L3 IPV6, UDP */
168         [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L4_UDP,
171         [0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L4_FRAG |
174                      RTE_PTYPE_INNER_L4_UDP,
175         [0xa3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_FRAG |
178                      RTE_PTYPE_INNER_L4_UDP,
179         [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
181                      RTE_PTYPE_INNER_L4_UDP,
182         [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L3_IPV4_EXT |
184                      RTE_PTYPE_INNER_L4_UDP,
185         [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L3_IPV4_EXT |
187                      RTE_PTYPE_INNER_L4_UDP,
188         [0xaa] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
190                      RTE_PTYPE_INNER_L4_UDP,
191         /* Tunneled - L3 IPV4 */
192         [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
193         [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
194                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
195         [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
197                      RTE_PTYPE_INNER_L4_FRAG,
198         [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
199                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L4_FRAG,
201         [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
202                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
203         [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L3_IPV4_EXT,
205         [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
206                      RTE_PTYPE_INNER_L3_IPV4_EXT,
207         [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
208                      RTE_PTYPE_INNER_L3_IPV4_EXT |
209                      RTE_PTYPE_INNER_L4_FRAG,
210         /* Tunneled - L3 IPV4, TCP */
211         [0xd0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
212                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
213                      RTE_PTYPE_INNER_L4_TCP,
214         [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
215                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
216                      RTE_PTYPE_INNER_L4_TCP,
217         [0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
218                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
219                      RTE_PTYPE_INNER_L4_FRAG |
220                      RTE_PTYPE_INNER_L4_TCP,
221         [0xd3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
222                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
223                      RTE_PTYPE_INNER_L4_FRAG |
224                      RTE_PTYPE_INNER_L4_TCP,
225         [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
226                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
227                      RTE_PTYPE_INNER_L4_TCP,
228         [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
229                      RTE_PTYPE_INNER_L3_IPV4_EXT |
230                      RTE_PTYPE_INNER_L4_TCP,
231         [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
232                      RTE_PTYPE_INNER_L3_IPV4_EXT |
233                      RTE_PTYPE_INNER_L4_TCP,
234         [0xda] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
235                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
236                      RTE_PTYPE_INNER_L4_TCP,
237         /* Tunneled - L3 IPV4, UDP */
238         [0xe0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
239                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
240                      RTE_PTYPE_INNER_L4_UDP,
241         [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
242                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
243                      RTE_PTYPE_INNER_L4_UDP,
244         [0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
245                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
246                      RTE_PTYPE_INNER_L4_FRAG |
247                      RTE_PTYPE_INNER_L4_UDP,
248         [0xe3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
249                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
250                      RTE_PTYPE_INNER_L4_FRAG |
251                      RTE_PTYPE_INNER_L4_UDP,
252         [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
253                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
254                      RTE_PTYPE_INNER_L4_UDP,
255         [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
256                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
257         [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
258                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
259         [0xea] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
260                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
261                      RTE_PTYPE_INNER_L4_UDP,
262 };
263
264 /**
265  * Stamp a WQE so it won't be reused by the HW.
266  *
267  * Routine is used when freeing WQE used by the chip or when failing
268  * building an WQ entry has failed leaving partial information on the queue.
269  *
270  * @param sq
271  *   Pointer to the SQ structure.
272  * @param index
273  *   Index of the freed WQE.
274  * @param num_txbbs
275  *   Number of blocks to stamp.
276  *   If < 0 the routine will use the size written in the WQ entry.
277  * @param owner
278  *   The value of the WQE owner bit to use in the stamp.
279  *
280  * @return
281  *   The number of Tx basic blocs (TXBB) the WQE contained.
282  */
283 static int
284 mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, uint16_t index, uint8_t owner)
285 {
286         uint32_t stamp = rte_cpu_to_be_32(MLX4_SQ_STAMP_VAL |
287                                           (!!owner << MLX4_SQ_STAMP_SHIFT));
288         volatile uint8_t *wqe = mlx4_get_send_wqe(sq,
289                                                 (index & sq->txbb_cnt_mask));
290         volatile uint32_t *ptr = (volatile uint32_t *)wqe;
291         int i;
292         int txbbs_size;
293         int num_txbbs;
294
295         /* Extract the size from the control segment of the WQE. */
296         num_txbbs = MLX4_SIZE_TO_TXBBS((((volatile struct mlx4_wqe_ctrl_seg *)
297                                          wqe)->fence_size & 0x3f) << 4);
298         txbbs_size = num_txbbs * MLX4_TXBB_SIZE;
299         /* Optimize the common case when there is no wrap-around. */
300         if (wqe + txbbs_size <= sq->eob) {
301                 /* Stamp the freed descriptor. */
302                 for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
303                         *ptr = stamp;
304                         ptr += MLX4_SQ_STAMP_DWORDS;
305                 }
306         } else {
307                 /* Stamp the freed descriptor. */
308                 for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
309                         *ptr = stamp;
310                         ptr += MLX4_SQ_STAMP_DWORDS;
311                         if ((volatile uint8_t *)ptr >= sq->eob) {
312                                 ptr = (volatile uint32_t *)sq->buf;
313                                 stamp ^= RTE_BE32(0x80000000);
314                         }
315                 }
316         }
317         return num_txbbs;
318 }
319
320 /**
321  * Manage Tx completions.
322  *
323  * When sending a burst, mlx4_tx_burst() posts several WRs.
324  * To improve performance, a completion event is only required once every
325  * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
326  * for other WRs, but this information would not be used anyway.
327  *
328  * @param txq
329  *   Pointer to Tx queue structure.
330  *
331  * @return
332  *   0 on success, -1 on failure.
333  */
334 static int
335 mlx4_txq_complete(struct txq *txq, const unsigned int elts_n,
336                                   struct mlx4_sq *sq)
337 {
338         unsigned int elts_comp = txq->elts_comp;
339         unsigned int elts_tail = txq->elts_tail;
340         unsigned int sq_tail = sq->tail;
341         struct mlx4_cq *cq = &txq->mcq;
342         volatile struct mlx4_cqe *cqe;
343         uint32_t cons_index = cq->cons_index;
344         uint16_t new_index;
345         uint16_t nr_txbbs = 0;
346         int pkts = 0;
347
348         /*
349          * Traverse over all CQ entries reported and handle each WQ entry
350          * reported by them.
351          */
352         do {
353                 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
354                 if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
355                     !!(cons_index & cq->cqe_cnt)))
356                         break;
357                 /*
358                  * Make sure we read the CQE after we read the ownership bit.
359                  */
360                 rte_io_rmb();
361 #ifndef NDEBUG
362                 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
363                              MLX4_CQE_OPCODE_ERROR)) {
364                         volatile struct mlx4_err_cqe *cqe_err =
365                                 (volatile struct mlx4_err_cqe *)cqe;
366                         ERROR("%p CQE error - vendor syndrome: 0x%x"
367                               " syndrome: 0x%x\n",
368                               (void *)txq, cqe_err->vendor_err,
369                               cqe_err->syndrome);
370                 }
371 #endif /* NDEBUG */
372                 /* Get WQE index reported in the CQE. */
373                 new_index =
374                         rte_be_to_cpu_16(cqe->wqe_index) & sq->txbb_cnt_mask;
375                 do {
376                         /* Free next descriptor. */
377                         sq_tail += nr_txbbs;
378                         nr_txbbs =
379                                 mlx4_txq_stamp_freed_wqe(sq,
380                                      sq_tail & sq->txbb_cnt_mask,
381                                      !!(sq_tail & sq->txbb_cnt));
382                         pkts++;
383                 } while ((sq_tail & sq->txbb_cnt_mask) != new_index);
384                 cons_index++;
385         } while (1);
386         if (unlikely(pkts == 0))
387                 return 0;
388         /* Update CQ. */
389         cq->cons_index = cons_index;
390         *cq->set_ci_db = rte_cpu_to_be_32(cq->cons_index & MLX4_CQ_DB_CI_MASK);
391         sq->tail = sq_tail + nr_txbbs;
392         /* Update the list of packets posted for transmission. */
393         elts_comp -= pkts;
394         assert(elts_comp <= txq->elts_comp);
395         /*
396          * Assume completion status is successful as nothing can be done about
397          * it anyway.
398          */
399         elts_tail += pkts;
400         if (elts_tail >= elts_n)
401                 elts_tail -= elts_n;
402         txq->elts_tail = elts_tail;
403         txq->elts_comp = elts_comp;
404         return 0;
405 }
406
407 /**
408  * Get memory pool (MP) from mbuf. If mbuf is indirect, the pool from which
409  * the cloned mbuf is allocated is returned instead.
410  *
411  * @param buf
412  *   Pointer to mbuf.
413  *
414  * @return
415  *   Memory pool where data is located for given mbuf.
416  */
417 static struct rte_mempool *
418 mlx4_txq_mb2mp(struct rte_mbuf *buf)
419 {
420         if (unlikely(RTE_MBUF_INDIRECT(buf)))
421                 return rte_mbuf_from_indirect(buf)->pool;
422         return buf->pool;
423 }
424
425 static int
426 mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
427                    volatile struct mlx4_wqe_ctrl_seg **pctrl)
428 {
429         int wqe_real_size;
430         int nr_txbbs;
431         struct pv *pv = (struct pv *)txq->bounce_buf;
432         struct mlx4_sq *sq = &txq->msq;
433         uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
434         volatile struct mlx4_wqe_ctrl_seg *ctrl;
435         volatile struct mlx4_wqe_data_seg *dseg;
436         struct rte_mbuf *sbuf;
437         uint32_t lkey;
438         uintptr_t addr;
439         uint32_t byte_count;
440         int pv_counter = 0;
441
442         /* Calculate the needed work queue entry size for this packet. */
443         wqe_real_size = sizeof(volatile struct mlx4_wqe_ctrl_seg) +
444                 buf->nb_segs * sizeof(volatile struct mlx4_wqe_data_seg);
445         nr_txbbs = MLX4_SIZE_TO_TXBBS(wqe_real_size);
446         /*
447          * Check that there is room for this WQE in the send queue and that
448          * the WQE size is legal.
449          */
450         if (((sq->head - sq->tail) + nr_txbbs +
451                                 sq->headroom_txbbs) >= sq->txbb_cnt ||
452                         nr_txbbs > MLX4_MAX_WQE_TXBBS) {
453                 return -1;
454         }
455         /* Get the control and data entries of the WQE. */
456         ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
457                         mlx4_get_send_wqe(sq, head_idx);
458         dseg = (volatile struct mlx4_wqe_data_seg *)
459                         ((uintptr_t)ctrl + sizeof(struct mlx4_wqe_ctrl_seg));
460         *pctrl = ctrl;
461         /* Fill the data segments with buffer information. */
462         for (sbuf = buf; sbuf != NULL; sbuf = sbuf->next, dseg++) {
463                 addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
464                 rte_prefetch0((volatile void *)addr);
465                 /* Handle WQE wraparound. */
466                 if (dseg >= (volatile struct mlx4_wqe_data_seg *)sq->eob)
467                         dseg = (volatile struct mlx4_wqe_data_seg *)sq->buf;
468                 dseg->addr = rte_cpu_to_be_64(addr);
469                 /* Memory region key (big endian) for this memory pool. */
470                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
471                 dseg->lkey = rte_cpu_to_be_32(lkey);
472                 /* Calculate the needed work queue entry size for this packet */
473                 if (unlikely(dseg->lkey == rte_cpu_to_be_32((uint32_t)-1))) {
474                         /* MR does not exist. */
475                         DEBUG("%p: unable to get MP <-> MR association",
476                                         (void *)txq);
477                         /*
478                          * Restamp entry in case of failure.
479                          * Make sure that size is written correctly
480                          * Note that we give ownership to the SW, not the HW.
481                          */
482                         wqe_real_size = sizeof(struct mlx4_wqe_ctrl_seg) +
483                                 buf->nb_segs * sizeof(struct mlx4_wqe_data_seg);
484                         ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
485                         mlx4_txq_stamp_freed_wqe(sq, head_idx,
486                                         (sq->head & sq->txbb_cnt) ? 0 : 1);
487                         return -1;
488                 }
489                 if (likely(sbuf->data_len)) {
490                         byte_count = rte_cpu_to_be_32(sbuf->data_len);
491                 } else {
492                         /*
493                          * Zero length segment is treated as inline segment
494                          * with zero data.
495                          */
496                         byte_count = RTE_BE32(0x80000000);
497                 }
498                 /*
499                  * If the data segment is not at the beginning of a
500                  * Tx basic block (TXBB) then write the byte count,
501                  * else postpone the writing to just before updating the
502                  * control segment.
503                  */
504                 if ((uintptr_t)dseg & (uintptr_t)(MLX4_TXBB_SIZE - 1)) {
505 #if RTE_CACHE_LINE_SIZE < 64
506                         /*
507                          * Need a barrier here before writing the byte_count
508                          * fields to make sure that all the data is visible
509                          * before the byte_count field is set.
510                          * Otherwise, if the segment begins a new cacheline,
511                          * the HCA prefetcher could grab the 64-byte chunk and
512                          * get a valid (!= 0xffffffff) byte count but stale
513                          * data, and end up sending the wrong data.
514                          */
515                         rte_io_wmb();
516 #endif /* RTE_CACHE_LINE_SIZE */
517                         dseg->byte_count = byte_count;
518                 } else {
519                         /*
520                          * This data segment starts at the beginning of a new
521                          * TXBB, so we need to postpone its byte_count writing
522                          * for later.
523                          */
524                         pv[pv_counter].dseg = dseg;
525                         pv[pv_counter++].val = byte_count;
526                 }
527         }
528         /* Write the first DWORD of each TXBB save earlier. */
529         if (pv_counter) {
530                 /* Need a barrier here before writing the byte_count. */
531                 rte_io_wmb();
532                 for (--pv_counter; pv_counter  >= 0; pv_counter--)
533                         pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
534         }
535         /* Fill the control parameters for this packet. */
536         ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
537         return nr_txbbs;
538 }
539
540 /**
541  * DPDK callback for Tx.
542  *
543  * @param dpdk_txq
544  *   Generic pointer to Tx queue structure.
545  * @param[in] pkts
546  *   Packets to transmit.
547  * @param pkts_n
548  *   Number of packets in array.
549  *
550  * @return
551  *   Number of packets successfully transmitted (<= pkts_n).
552  */
553 uint16_t
554 mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
555 {
556         struct txq *txq = (struct txq *)dpdk_txq;
557         unsigned int elts_head = txq->elts_head;
558         const unsigned int elts_n = txq->elts_n;
559         unsigned int bytes_sent = 0;
560         unsigned int i;
561         unsigned int max;
562         struct mlx4_sq *sq = &txq->msq;
563         int nr_txbbs;
564
565         assert(txq->elts_comp_cd != 0);
566         if (likely(txq->elts_comp != 0))
567                 mlx4_txq_complete(txq, elts_n, sq);
568         max = (elts_n - (elts_head - txq->elts_tail));
569         if (max > elts_n)
570                 max -= elts_n;
571         assert(max >= 1);
572         assert(max <= elts_n);
573         /* Always leave one free entry in the ring. */
574         --max;
575         if (max > pkts_n)
576                 max = pkts_n;
577         for (i = 0; (i != max); ++i) {
578                 struct rte_mbuf *buf = pkts[i];
579                 unsigned int elts_head_next =
580                         (((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
581                 struct txq_elt *elt_next = &(*txq->elts)[elts_head_next];
582                 struct txq_elt *elt = &(*txq->elts)[elts_head];
583                 uint32_t owner_opcode = MLX4_OPCODE_SEND;
584                 volatile struct mlx4_wqe_ctrl_seg *ctrl;
585                 volatile struct mlx4_wqe_data_seg *dseg;
586                 union {
587                         uint32_t flags;
588                         uint16_t flags16[2];
589                 } srcrb;
590                 uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
591                 uint32_t lkey;
592                 uintptr_t addr;
593
594                 /* Clean up old buffer. */
595                 if (likely(elt->buf != NULL)) {
596                         struct rte_mbuf *tmp = elt->buf;
597
598 #ifndef NDEBUG
599                         /* Poisoning. */
600                         memset(elt, 0x66, sizeof(*elt));
601 #endif
602                         /* Faster than rte_pktmbuf_free(). */
603                         do {
604                                 struct rte_mbuf *next = tmp->next;
605
606                                 rte_pktmbuf_free_seg(tmp);
607                                 tmp = next;
608                         } while (tmp != NULL);
609                 }
610                 RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
611                 if (buf->nb_segs == 1) {
612                         /*
613                          * Check that there is room for this WQE in the send
614                          * queue and that the WQE size is legal
615                          */
616                         if (((sq->head - sq->tail) + 1 + sq->headroom_txbbs) >=
617                              sq->txbb_cnt || 1 > MLX4_MAX_WQE_TXBBS) {
618                                 elt->buf = NULL;
619                                 break;
620                         }
621                         /* Get the control and data entries of the WQE. */
622                         ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
623                                         mlx4_get_send_wqe(sq, head_idx);
624                         dseg = (volatile struct mlx4_wqe_data_seg *)
625                                         ((uintptr_t)ctrl +
626                                         sizeof(struct mlx4_wqe_ctrl_seg));
627                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
628                         rte_prefetch0((volatile void *)addr);
629                         /* Handle WQE wraparound. */
630                         if (dseg >=
631                                 (volatile struct mlx4_wqe_data_seg *)sq->eob)
632                                 dseg = (volatile struct mlx4_wqe_data_seg *)
633                                                 sq->buf;
634                         dseg->addr = rte_cpu_to_be_64(addr);
635                         /* Memory region key (big endian). */
636                         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(buf));
637                         dseg->lkey = rte_cpu_to_be_32(lkey);
638                         if (unlikely(dseg->lkey ==
639                                 rte_cpu_to_be_32((uint32_t)-1))) {
640                                 /* MR does not exist. */
641                                 DEBUG("%p: unable to get MP <-> MR association",
642                                       (void *)txq);
643                                 /*
644                                  * Restamp entry in case of failure.
645                                  * Make sure that size is written correctly
646                                  * Note that we give ownership to the SW,
647                                  * not the HW.
648                                  */
649                                 ctrl->fence_size =
650                                         (WQE_ONE_DATA_SEG_SIZE >> 4) & 0x3f;
651                                 mlx4_txq_stamp_freed_wqe(sq, head_idx,
652                                              (sq->head & sq->txbb_cnt) ? 0 : 1);
653                                 elt->buf = NULL;
654                                 break;
655                         }
656                         /* Never be TXBB aligned, no need compiler barrier. */
657                         dseg->byte_count = rte_cpu_to_be_32(buf->data_len);
658                         /* Fill the control parameters for this packet. */
659                         ctrl->fence_size = (WQE_ONE_DATA_SEG_SIZE >> 4) & 0x3f;
660                         nr_txbbs = 1;
661                 } else {
662                         nr_txbbs = mlx4_tx_burst_segs(buf, txq, &ctrl);
663                         if (nr_txbbs < 0) {
664                                 elt->buf = NULL;
665                                 break;
666                         }
667                 }
668                 /*
669                  * For raw Ethernet, the SOLICIT flag is used to indicate
670                  * that no ICRC should be calculated.
671                  */
672                 txq->elts_comp_cd -= nr_txbbs;
673                 if (unlikely(txq->elts_comp_cd <= 0)) {
674                         txq->elts_comp_cd = txq->elts_comp_cd_init;
675                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
676                                                MLX4_WQE_CTRL_CQ_UPDATE);
677                 } else {
678                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
679                 }
680                 /* Enable HW checksum offload if requested */
681                 if (txq->csum &&
682                     (buf->ol_flags &
683                      (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
684                         const uint64_t is_tunneled = (buf->ol_flags &
685                                                       (PKT_TX_TUNNEL_GRE |
686                                                        PKT_TX_TUNNEL_VXLAN));
687
688                         if (is_tunneled && txq->csum_l2tun) {
689                                 owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
690                                                 MLX4_WQE_CTRL_IL4_HDR_CSUM;
691                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
692                                         srcrb.flags |=
693                                             RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
694                         } else {
695                                 srcrb.flags |=
696                                         RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
697                                                 MLX4_WQE_CTRL_TCP_UDP_CSUM);
698                         }
699                 }
700                 if (txq->lb) {
701                         /*
702                          * Copy destination MAC address to the WQE, this allows
703                          * loopback in eSwitch, so that VFs and PF can
704                          * communicate with each other.
705                          */
706                         srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
707                         ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
708                                               sizeof(uint16_t)));
709                 } else {
710                         ctrl->imm = 0;
711                 }
712                 ctrl->srcrb_flags = srcrb.flags;
713                 /*
714                  * Make sure descriptor is fully written before
715                  * setting ownership bit (because HW can start
716                  * executing as soon as we do).
717                  */
718                 rte_io_wmb();
719                 ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode |
720                                               ((sq->head & sq->txbb_cnt) ?
721                                                        MLX4_BIT_WQE_OWN : 0));
722                 sq->head += nr_txbbs;
723                 elt->buf = buf;
724                 bytes_sent += buf->pkt_len;
725                 elts_head = elts_head_next;
726         }
727         /* Take a shortcut if nothing must be sent. */
728         if (unlikely(i == 0))
729                 return 0;
730         /* Increment send statistics counters. */
731         txq->stats.opackets += i;
732         txq->stats.obytes += bytes_sent;
733         /* Make sure that descriptors are written before doorbell record. */
734         rte_wmb();
735         /* Ring QP doorbell. */
736         rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
737         txq->elts_head = elts_head;
738         txq->elts_comp += i;
739         return i;
740 }
741
742 /**
743  * Translate Rx completion flags to packet type.
744  *
745  * @param[in] cqe
746  *   Pointer to CQE.
747  *
748  * @return
749  *   Packet type for struct rte_mbuf.
750  */
751 static inline uint32_t
752 rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
753                    uint32_t l2tun_offload)
754 {
755         uint8_t idx = 0;
756         uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
757         uint32_t status = rte_be_to_cpu_32(cqe->status);
758
759         /*
760          * The index to the array should have:
761          *  bit[7] - MLX4_CQE_L2_TUNNEL
762          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
763          */
764         if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
765                 idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
766                        ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
767         /*
768          * The index to the array should have:
769          *  bit[5] - MLX4_CQE_STATUS_UDP
770          *  bit[4] - MLX4_CQE_STATUS_TCP
771          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
772          *  bit[2] - MLX4_CQE_STATUS_IPV6
773          *  bit[1] - MLX4_CQE_STATUS_IPV4F
774          *  bit[0] - MLX4_CQE_STATUS_IPV4
775          * giving a total of up to 256 entries.
776          */
777         idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
778         return mlx4_ptype_table[idx];
779 }
780
781 /**
782  * Translate Rx completion flags to offload flags.
783  *
784  * @param flags
785  *   Rx completion flags returned by mlx4_cqe_flags().
786  * @param csum
787  *   Whether Rx checksums are enabled.
788  * @param csum_l2tun
789  *   Whether Rx L2 tunnel checksums are enabled.
790  *
791  * @return
792  *   Offload flags (ol_flags) in mbuf format.
793  */
794 static inline uint32_t
795 rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
796 {
797         uint32_t ol_flags = 0;
798
799         if (csum)
800                 ol_flags |=
801                         mlx4_transpose(flags,
802                                        MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
803                                        PKT_RX_IP_CKSUM_GOOD) |
804                         mlx4_transpose(flags,
805                                        MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
806                                        PKT_RX_L4_CKSUM_GOOD);
807         if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
808                 ol_flags |=
809                         mlx4_transpose(flags,
810                                        MLX4_CQE_L2_TUNNEL_IPOK,
811                                        PKT_RX_IP_CKSUM_GOOD) |
812                         mlx4_transpose(flags,
813                                        MLX4_CQE_L2_TUNNEL_L4_CSUM,
814                                        PKT_RX_L4_CKSUM_GOOD);
815         return ol_flags;
816 }
817
818 /**
819  * Extract checksum information from CQE flags.
820  *
821  * @param cqe
822  *   Pointer to CQE structure.
823  * @param csum
824  *   Whether Rx checksums are enabled.
825  * @param csum_l2tun
826  *   Whether Rx L2 tunnel checksums are enabled.
827  *
828  * @return
829  *   CQE checksum information.
830  */
831 static inline uint32_t
832 mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
833 {
834         uint32_t flags = 0;
835
836         /*
837          * The relevant bits are in different locations on their
838          * CQE fields therefore we can join them in one 32bit
839          * variable.
840          */
841         if (csum)
842                 flags = (rte_be_to_cpu_32(cqe->status) &
843                          MLX4_CQE_STATUS_IPV4_CSUM_OK);
844         if (csum_l2tun)
845                 flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
846                           (MLX4_CQE_L2_TUNNEL |
847                            MLX4_CQE_L2_TUNNEL_IPOK |
848                            MLX4_CQE_L2_TUNNEL_L4_CSUM |
849                            MLX4_CQE_L2_TUNNEL_IPV4));
850         return flags;
851 }
852
853 /**
854  * Poll one CQE from CQ.
855  *
856  * @param rxq
857  *   Pointer to the receive queue structure.
858  * @param[out] out
859  *   Just polled CQE.
860  *
861  * @return
862  *   Number of bytes of the CQE, 0 in case there is no completion.
863  */
864 static unsigned int
865 mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
866 {
867         int ret = 0;
868         volatile struct mlx4_cqe *cqe = NULL;
869         struct mlx4_cq *cq = &rxq->mcq;
870
871         cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
872         if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
873             !!(cq->cons_index & cq->cqe_cnt))
874                 goto out;
875         /*
876          * Make sure we read CQ entry contents after we've checked the
877          * ownership bit.
878          */
879         rte_rmb();
880         assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
881         assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
882                MLX4_CQE_OPCODE_ERROR);
883         ret = rte_be_to_cpu_32(cqe->byte_cnt);
884         ++cq->cons_index;
885 out:
886         *out = cqe;
887         return ret;
888 }
889
890 /**
891  * DPDK callback for Rx with scattered packets support.
892  *
893  * @param dpdk_rxq
894  *   Generic pointer to Rx queue structure.
895  * @param[out] pkts
896  *   Array to store received packets.
897  * @param pkts_n
898  *   Maximum number of packets in array.
899  *
900  * @return
901  *   Number of packets successfully received (<= pkts_n).
902  */
903 uint16_t
904 mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
905 {
906         struct rxq *rxq = dpdk_rxq;
907         const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
908         const uint16_t sges_n = rxq->sges_n;
909         struct rte_mbuf *pkt = NULL;
910         struct rte_mbuf *seg = NULL;
911         unsigned int i = 0;
912         uint32_t rq_ci = rxq->rq_ci << sges_n;
913         int len = 0;
914
915         while (pkts_n) {
916                 volatile struct mlx4_cqe *cqe;
917                 uint32_t idx = rq_ci & wr_cnt;
918                 struct rte_mbuf *rep = (*rxq->elts)[idx];
919                 volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
920
921                 /* Update the 'next' pointer of the previous segment. */
922                 if (pkt)
923                         seg->next = rep;
924                 seg = rep;
925                 rte_prefetch0(seg);
926                 rte_prefetch0(scat);
927                 rep = rte_mbuf_raw_alloc(rxq->mp);
928                 if (unlikely(rep == NULL)) {
929                         ++rxq->stats.rx_nombuf;
930                         if (!pkt) {
931                                 /*
932                                  * No buffers before we even started,
933                                  * bail out silently.
934                                  */
935                                 break;
936                         }
937                         while (pkt != seg) {
938                                 assert(pkt != (*rxq->elts)[idx]);
939                                 rep = pkt->next;
940                                 pkt->next = NULL;
941                                 pkt->nb_segs = 1;
942                                 rte_mbuf_raw_free(pkt);
943                                 pkt = rep;
944                         }
945                         break;
946                 }
947                 if (!pkt) {
948                         /* Looking for the new packet. */
949                         len = mlx4_cq_poll_one(rxq, &cqe);
950                         if (!len) {
951                                 rte_mbuf_raw_free(rep);
952                                 break;
953                         }
954                         if (unlikely(len < 0)) {
955                                 /* Rx error, packet is likely too large. */
956                                 rte_mbuf_raw_free(rep);
957                                 ++rxq->stats.idropped;
958                                 goto skip;
959                         }
960                         pkt = seg;
961                         /* Update packet information. */
962                         pkt->packet_type =
963                                 rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
964                         pkt->ol_flags = 0;
965                         pkt->pkt_len = len;
966                         if (rxq->csum | rxq->csum_l2tun) {
967                                 uint32_t flags =
968                                         mlx4_cqe_flags(cqe,
969                                                        rxq->csum,
970                                                        rxq->csum_l2tun);
971
972                                 pkt->ol_flags =
973                                         rxq_cq_to_ol_flags(flags,
974                                                            rxq->csum,
975                                                            rxq->csum_l2tun);
976                         }
977                 }
978                 rep->nb_segs = 1;
979                 rep->port = rxq->port_id;
980                 rep->data_len = seg->data_len;
981                 rep->data_off = seg->data_off;
982                 (*rxq->elts)[idx] = rep;
983                 /*
984                  * Fill NIC descriptor with the new buffer. The lkey and size
985                  * of the buffers are already known, only the buffer address
986                  * changes.
987                  */
988                 scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
989                 if (len > seg->data_len) {
990                         len -= seg->data_len;
991                         ++pkt->nb_segs;
992                         ++rq_ci;
993                         continue;
994                 }
995                 /* The last segment. */
996                 seg->data_len = len;
997                 /* Increment bytes counter. */
998                 rxq->stats.ibytes += pkt->pkt_len;
999                 /* Return packet. */
1000                 *(pkts++) = pkt;
1001                 pkt = NULL;
1002                 --pkts_n;
1003                 ++i;
1004 skip:
1005                 /* Align consumer index to the next stride. */
1006                 rq_ci >>= sges_n;
1007                 ++rq_ci;
1008                 rq_ci <<= sges_n;
1009         }
1010         if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
1011                 return 0;
1012         /* Update the consumer index. */
1013         rxq->rq_ci = rq_ci >> sges_n;
1014         rte_wmb();
1015         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1016         *rxq->mcq.set_ci_db =
1017                 rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
1018         /* Increment packets counter. */
1019         rxq->stats.ipackets += i;
1020         return i;
1021 }
1022
1023 /**
1024  * Dummy DPDK callback for Tx.
1025  *
1026  * This function is used to temporarily replace the real callback during
1027  * unsafe control operations on the queue, or in case of error.
1028  *
1029  * @param dpdk_txq
1030  *   Generic pointer to Tx queue structure.
1031  * @param[in] pkts
1032  *   Packets to transmit.
1033  * @param pkts_n
1034  *   Number of packets in array.
1035  *
1036  * @return
1037  *   Number of packets successfully transmitted (<= pkts_n).
1038  */
1039 uint16_t
1040 mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1041 {
1042         (void)dpdk_txq;
1043         (void)pkts;
1044         (void)pkts_n;
1045         return 0;
1046 }
1047
1048 /**
1049  * Dummy DPDK callback for Rx.
1050  *
1051  * This function is used to temporarily replace the real callback during
1052  * unsafe control operations on the queue, or in case of error.
1053  *
1054  * @param dpdk_rxq
1055  *   Generic pointer to Rx queue structure.
1056  * @param[out] pkts
1057  *   Array to store received packets.
1058  * @param pkts_n
1059  *   Maximum number of packets in array.
1060  *
1061  * @return
1062  *   Number of packets successfully received (<= pkts_n).
1063  */
1064 uint16_t
1065 mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1066 {
1067         (void)dpdk_rxq;
1068         (void)pkts;
1069         (void)pkts_n;
1070         return 0;
1071 }