New upstream version 18.11-rc3
[deb_dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_eth_ctrl.h>
25 #include <rte_ethdev_driver.h>
26 #include <rte_flow.h>
27 #include <rte_flow_driver.h>
28 #include <rte_malloc.h>
29 #include <rte_ip.h>
30
31 #include "mlx5.h"
32 #include "mlx5_defs.h"
33 #include "mlx5_prm.h"
34 #include "mlx5_glue.h"
35 #include "mlx5_flow.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55         [MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59
60 enum mlx5_expansion {
61         MLX5_EXPANSION_ROOT,
62         MLX5_EXPANSION_ROOT_OUTER,
63         MLX5_EXPANSION_ROOT_ETH_VLAN,
64         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_ETH,
66         MLX5_EXPANSION_OUTER_ETH_VLAN,
67         MLX5_EXPANSION_OUTER_VLAN,
68         MLX5_EXPANSION_OUTER_IPV4,
69         MLX5_EXPANSION_OUTER_IPV4_UDP,
70         MLX5_EXPANSION_OUTER_IPV4_TCP,
71         MLX5_EXPANSION_OUTER_IPV6,
72         MLX5_EXPANSION_OUTER_IPV6_UDP,
73         MLX5_EXPANSION_OUTER_IPV6_TCP,
74         MLX5_EXPANSION_VXLAN,
75         MLX5_EXPANSION_VXLAN_GPE,
76         MLX5_EXPANSION_GRE,
77         MLX5_EXPANSION_MPLS,
78         MLX5_EXPANSION_ETH,
79         MLX5_EXPANSION_ETH_VLAN,
80         MLX5_EXPANSION_VLAN,
81         MLX5_EXPANSION_IPV4,
82         MLX5_EXPANSION_IPV4_UDP,
83         MLX5_EXPANSION_IPV4_TCP,
84         MLX5_EXPANSION_IPV6,
85         MLX5_EXPANSION_IPV6_UDP,
86         MLX5_EXPANSION_IPV6_TCP,
87 };
88
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91         [MLX5_EXPANSION_ROOT] = {
92                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93                                                  MLX5_EXPANSION_IPV4,
94                                                  MLX5_EXPANSION_IPV6),
95                 .type = RTE_FLOW_ITEM_TYPE_END,
96         },
97         [MLX5_EXPANSION_ROOT_OUTER] = {
98                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99                                                  MLX5_EXPANSION_OUTER_IPV4,
100                                                  MLX5_EXPANSION_OUTER_IPV6),
101                 .type = RTE_FLOW_ITEM_TYPE_END,
102         },
103         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105                 .type = RTE_FLOW_ITEM_TYPE_END,
106         },
107         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109                 .type = RTE_FLOW_ITEM_TYPE_END,
110         },
111         [MLX5_EXPANSION_OUTER_ETH] = {
112                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113                                                  MLX5_EXPANSION_OUTER_IPV6,
114                                                  MLX5_EXPANSION_MPLS),
115                 .type = RTE_FLOW_ITEM_TYPE_ETH,
116                 .rss_types = 0,
117         },
118         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120                 .type = RTE_FLOW_ITEM_TYPE_ETH,
121                 .rss_types = 0,
122         },
123         [MLX5_EXPANSION_OUTER_VLAN] = {
124                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125                                                  MLX5_EXPANSION_OUTER_IPV6),
126                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
127         },
128         [MLX5_EXPANSION_OUTER_IPV4] = {
129                 .next = RTE_FLOW_EXPAND_RSS_NEXT
130                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
131                          MLX5_EXPANSION_OUTER_IPV4_TCP,
132                          MLX5_EXPANSION_GRE),
133                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
134                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135                         ETH_RSS_NONFRAG_IPV4_OTHER,
136         },
137         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139                                                  MLX5_EXPANSION_VXLAN_GPE),
140                 .type = RTE_FLOW_ITEM_TYPE_UDP,
141                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142         },
143         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144                 .type = RTE_FLOW_ITEM_TYPE_TCP,
145                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146         },
147         [MLX5_EXPANSION_OUTER_IPV6] = {
148                 .next = RTE_FLOW_EXPAND_RSS_NEXT
149                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
150                          MLX5_EXPANSION_OUTER_IPV6_TCP),
151                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
152                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153                         ETH_RSS_NONFRAG_IPV6_OTHER,
154         },
155         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157                                                  MLX5_EXPANSION_VXLAN_GPE),
158                 .type = RTE_FLOW_ITEM_TYPE_UDP,
159                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160         },
161         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162                 .type = RTE_FLOW_ITEM_TYPE_TCP,
163                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164         },
165         [MLX5_EXPANSION_VXLAN] = {
166                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
168         },
169         [MLX5_EXPANSION_VXLAN_GPE] = {
170                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171                                                  MLX5_EXPANSION_IPV4,
172                                                  MLX5_EXPANSION_IPV6),
173                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174         },
175         [MLX5_EXPANSION_GRE] = {
176                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177                 .type = RTE_FLOW_ITEM_TYPE_GRE,
178         },
179         [MLX5_EXPANSION_MPLS] = {
180                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181                                                  MLX5_EXPANSION_IPV6),
182                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
183         },
184         [MLX5_EXPANSION_ETH] = {
185                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186                                                  MLX5_EXPANSION_IPV6),
187                 .type = RTE_FLOW_ITEM_TYPE_ETH,
188         },
189         [MLX5_EXPANSION_ETH_VLAN] = {
190                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191                 .type = RTE_FLOW_ITEM_TYPE_ETH,
192         },
193         [MLX5_EXPANSION_VLAN] = {
194                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195                                                  MLX5_EXPANSION_IPV6),
196                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
197         },
198         [MLX5_EXPANSION_IPV4] = {
199                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200                                                  MLX5_EXPANSION_IPV4_TCP),
201                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
202                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203                         ETH_RSS_NONFRAG_IPV4_OTHER,
204         },
205         [MLX5_EXPANSION_IPV4_UDP] = {
206                 .type = RTE_FLOW_ITEM_TYPE_UDP,
207                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208         },
209         [MLX5_EXPANSION_IPV4_TCP] = {
210                 .type = RTE_FLOW_ITEM_TYPE_TCP,
211                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212         },
213         [MLX5_EXPANSION_IPV6] = {
214                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215                                                  MLX5_EXPANSION_IPV6_TCP),
216                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
217                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218                         ETH_RSS_NONFRAG_IPV6_OTHER,
219         },
220         [MLX5_EXPANSION_IPV6_UDP] = {
221                 .type = RTE_FLOW_ITEM_TYPE_UDP,
222                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223         },
224         [MLX5_EXPANSION_IPV6_TCP] = {
225                 .type = RTE_FLOW_ITEM_TYPE_TCP,
226                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227         },
228 };
229
230 static const struct rte_flow_ops mlx5_flow_ops = {
231         .validate = mlx5_flow_validate,
232         .create = mlx5_flow_create,
233         .destroy = mlx5_flow_destroy,
234         .flush = mlx5_flow_flush,
235         .isolate = mlx5_flow_isolate,
236         .query = mlx5_flow_query,
237 };
238
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241         struct rte_flow_attr attr;
242         struct rte_flow_item items[4];
243         struct rte_flow_item_eth l2;
244         struct rte_flow_item_eth l2_mask;
245         union {
246                 struct rte_flow_item_ipv4 ipv4;
247                 struct rte_flow_item_ipv6 ipv6;
248         } l3;
249         union {
250                 struct rte_flow_item_ipv4 ipv4;
251                 struct rte_flow_item_ipv6 ipv6;
252         } l3_mask;
253         union {
254                 struct rte_flow_item_udp udp;
255                 struct rte_flow_item_tcp tcp;
256         } l4;
257         union {
258                 struct rte_flow_item_udp udp;
259                 struct rte_flow_item_tcp tcp;
260         } l4_mask;
261         struct rte_flow_action actions[2];
262         struct rte_flow_action_queue queue;
263 };
264
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273         { 9, 10, 11 }, { 12, 13, 14 },
274 };
275
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283         {
284                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
285                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286         },
287         {
288                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290         },
291         {
292                 .tunnel = MLX5_FLOW_LAYER_GRE,
293                 .ptype = RTE_PTYPE_TUNNEL_GRE,
294         },
295         {
296                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE | RTE_PTYPE_L4_UDP,
298         },
299         {
300                 .tunnel = MLX5_FLOW_LAYER_MPLS,
301                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302         },
303 };
304
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318         struct {
319                 struct ibv_flow_attr attr;
320                 struct ibv_flow_spec_eth eth;
321                 struct ibv_flow_spec_action_drop drop;
322         } flow_attr = {
323                 .attr = {
324                         .num_of_specs = 2,
325                 },
326                 .eth = {
327                         .type = IBV_FLOW_SPEC_ETH,
328                         .size = sizeof(struct ibv_flow_spec_eth),
329                 },
330                 .drop = {
331                         .size = sizeof(struct ibv_flow_spec_action_drop),
332                         .type = IBV_FLOW_SPEC_ACTION_DROP,
333                 },
334         };
335         struct ibv_flow *flow;
336         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337         uint16_t vprio[] = { 8, 16 };
338         int i;
339         int priority = 0;
340
341         if (!drop) {
342                 rte_errno = ENOTSUP;
343                 return -rte_errno;
344         }
345         for (i = 0; i != RTE_DIM(vprio); i++) {
346                 flow_attr.attr.priority = vprio[i] - 1;
347                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348                 if (!flow)
349                         break;
350                 claim_zero(mlx5_glue->destroy_flow(flow));
351                 priority = vprio[i];
352         }
353         switch (priority) {
354         case 8:
355                 priority = RTE_DIM(priority_map_3);
356                 break;
357         case 16:
358                 priority = RTE_DIM(priority_map_5);
359                 break;
360         default:
361                 rte_errno = ENOTSUP;
362                 DRV_LOG(ERR,
363                         "port %u verbs maximum priority: %d expected 8/16",
364                         dev->data->port_id, vprio[i]);
365                 return -rte_errno;
366         }
367         mlx5_hrxq_drop_release(dev);
368         DRV_LOG(INFO, "port %u flow maximum priority: %d",
369                 dev->data->port_id, priority);
370         return priority;
371 }
372
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387                                    uint32_t subpriority)
388 {
389         uint32_t res = 0;
390         struct priv *priv = dev->data->dev_private;
391
392         switch (priv->config.flow_prio) {
393         case RTE_DIM(priority_map_3):
394                 res = priority_map_3[priority][subpriority];
395                 break;
396         case RTE_DIM(priority_map_5):
397                 res = priority_map_5[priority][subpriority];
398                 break;
399         }
400         return  res;
401 }
402
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423                           const uint8_t *mask,
424                           const uint8_t *nic_mask,
425                           unsigned int size,
426                           struct rte_flow_error *error)
427 {
428         unsigned int i;
429
430         assert(nic_mask);
431         for (i = 0; i < size; ++i)
432                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
433                         return rte_flow_error_set(error, ENOTSUP,
434                                                   RTE_FLOW_ERROR_TYPE_ITEM,
435                                                   item,
436                                                   "mask enables non supported"
437                                                   " bits");
438         if (!item->spec && (item->mask || item->last))
439                 return rte_flow_error_set(error, EINVAL,
440                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
441                                           "mask/last without a spec is not"
442                                           " supported");
443         if (item->spec && item->last) {
444                 uint8_t spec[size];
445                 uint8_t last[size];
446                 unsigned int i;
447                 int ret;
448
449                 for (i = 0; i < size; ++i) {
450                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452                 }
453                 ret = memcmp(spec, last, size);
454                 if (ret != 0)
455                         return rte_flow_error_set(error, EINVAL,
456                                                   RTE_FLOW_ERROR_TYPE_ITEM,
457                                                   item,
458                                                   "range is not valid");
459         }
460         return 0;
461 }
462
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480                             int tunnel __rte_unused, uint64_t layer_types,
481                             uint64_t hash_fields)
482 {
483         struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485         int rss_request_inner = flow->rss.level >= 2;
486
487         /* Check RSS hash level for tunnel. */
488         if (tunnel && rss_request_inner)
489                 hash_fields |= IBV_RX_HASH_INNER;
490         else if (tunnel || rss_request_inner)
491                 return 0;
492 #endif
493         /* Check if requested layer matches RSS hash fields. */
494         if (!(flow->rss.types & layer_types))
495                 return 0;
496         return hash_fields;
497 }
498
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510         unsigned int i;
511         uint32_t tunnel_ptype = 0;
512
513         /* Look up for the ptype to use. */
514         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515                 if (!rxq_ctrl->flow_tunnels_n[i])
516                         continue;
517                 if (!tunnel_ptype) {
518                         tunnel_ptype = tunnels_info[i].ptype;
519                 } else {
520                         tunnel_ptype = 0;
521                         break;
522                 }
523         }
524         rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539         struct priv *priv = dev->data->dev_private;
540         struct rte_flow *flow = dev_flow->flow;
541         const int mark = !!(flow->actions &
542                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544         unsigned int i;
545
546         for (i = 0; i != flow->rss.queue_num; ++i) {
547                 int idx = (*flow->queue)[i];
548                 struct mlx5_rxq_ctrl *rxq_ctrl =
549                         container_of((*priv->rxqs)[idx],
550                                      struct mlx5_rxq_ctrl, rxq);
551
552                 if (mark) {
553                         rxq_ctrl->rxq.mark = 1;
554                         rxq_ctrl->flow_mark_n++;
555                 }
556                 if (tunnel) {
557                         unsigned int j;
558
559                         /* Increase the counter matching the flow. */
560                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561                                 if ((tunnels_info[j].tunnel &
562                                      dev_flow->layers) ==
563                                     tunnels_info[j].tunnel) {
564                                         rxq_ctrl->flow_tunnels_n[j]++;
565                                         break;
566                                 }
567                         }
568                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
569                 }
570         }
571 }
572
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584         struct mlx5_flow *dev_flow;
585
586         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587                 flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602         struct priv *priv = dev->data->dev_private;
603         struct rte_flow *flow = dev_flow->flow;
604         const int mark = !!(flow->actions &
605                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607         unsigned int i;
608
609         assert(dev->data->dev_started);
610         for (i = 0; i != flow->rss.queue_num; ++i) {
611                 int idx = (*flow->queue)[i];
612                 struct mlx5_rxq_ctrl *rxq_ctrl =
613                         container_of((*priv->rxqs)[idx],
614                                      struct mlx5_rxq_ctrl, rxq);
615
616                 if (mark) {
617                         rxq_ctrl->flow_mark_n--;
618                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619                 }
620                 if (tunnel) {
621                         unsigned int j;
622
623                         /* Decrease the counter matching the flow. */
624                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625                                 if ((tunnels_info[j].tunnel &
626                                      dev_flow->layers) ==
627                                     tunnels_info[j].tunnel) {
628                                         rxq_ctrl->flow_tunnels_n[j]--;
629                                         break;
630                                 }
631                         }
632                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
633                 }
634         }
635 }
636
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649         struct mlx5_flow *dev_flow;
650
651         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652                 flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664         struct priv *priv = dev->data->dev_private;
665         unsigned int i;
666
667         for (i = 0; i != priv->rxqs_n; ++i) {
668                 struct mlx5_rxq_ctrl *rxq_ctrl;
669                 unsigned int j;
670
671                 if (!(*priv->rxqs)[i])
672                         continue;
673                 rxq_ctrl = container_of((*priv->rxqs)[i],
674                                         struct mlx5_rxq_ctrl, rxq);
675                 rxq_ctrl->flow_mark_n = 0;
676                 rxq_ctrl->rxq.mark = 0;
677                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678                         rxq_ctrl->flow_tunnels_n[j] = 0;
679                 rxq_ctrl->rxq.tunnel = 0;
680         }
681 }
682
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698                                const struct rte_flow_attr *attr,
699                                struct rte_flow_error *error)
700 {
701
702         if (action_flags & MLX5_FLOW_ACTION_DROP)
703                 return rte_flow_error_set(error, EINVAL,
704                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705                                           "can't drop and flag in same flow");
706         if (action_flags & MLX5_FLOW_ACTION_MARK)
707                 return rte_flow_error_set(error, EINVAL,
708                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709                                           "can't mark and flag in same flow");
710         if (action_flags & MLX5_FLOW_ACTION_FLAG)
711                 return rte_flow_error_set(error, EINVAL,
712                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713                                           "can't have 2 flag"
714                                           " actions in same flow");
715         if (attr->egress)
716                 return rte_flow_error_set(error, ENOTSUP,
717                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718                                           "flag action not supported for "
719                                           "egress");
720         return 0;
721 }
722
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740                                uint64_t action_flags,
741                                const struct rte_flow_attr *attr,
742                                struct rte_flow_error *error)
743 {
744         const struct rte_flow_action_mark *mark = action->conf;
745
746         if (!mark)
747                 return rte_flow_error_set(error, EINVAL,
748                                           RTE_FLOW_ERROR_TYPE_ACTION,
749                                           action,
750                                           "configuration cannot be null");
751         if (mark->id >= MLX5_FLOW_MARK_MAX)
752                 return rte_flow_error_set(error, EINVAL,
753                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754                                           &mark->id,
755                                           "mark id must in 0 <= id < "
756                                           RTE_STR(MLX5_FLOW_MARK_MAX));
757         if (action_flags & MLX5_FLOW_ACTION_DROP)
758                 return rte_flow_error_set(error, EINVAL,
759                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760                                           "can't drop and mark in same flow");
761         if (action_flags & MLX5_FLOW_ACTION_FLAG)
762                 return rte_flow_error_set(error, EINVAL,
763                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764                                           "can't flag and mark in same flow");
765         if (action_flags & MLX5_FLOW_ACTION_MARK)
766                 return rte_flow_error_set(error, EINVAL,
767                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768                                           "can't have 2 mark actions in same"
769                                           " flow");
770         if (attr->egress)
771                 return rte_flow_error_set(error, ENOTSUP,
772                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773                                           "mark action not supported for "
774                                           "egress");
775         return 0;
776 }
777
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_ernno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793                                const struct rte_flow_attr *attr,
794                                struct rte_flow_error *error)
795 {
796         if (action_flags & MLX5_FLOW_ACTION_FLAG)
797                 return rte_flow_error_set(error, EINVAL,
798                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799                                           "can't drop and flag in same flow");
800         if (action_flags & MLX5_FLOW_ACTION_MARK)
801                 return rte_flow_error_set(error, EINVAL,
802                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803                                           "can't drop and mark in same flow");
804         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805                 return rte_flow_error_set(error, EINVAL,
806                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807                                           "can't have 2 fate actions in"
808                                           " same flow");
809         if (attr->egress)
810                 return rte_flow_error_set(error, ENOTSUP,
811                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812                                           "drop action not supported for "
813                                           "egress");
814         return 0;
815 }
816
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_ernno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836                                 uint64_t action_flags,
837                                 struct rte_eth_dev *dev,
838                                 const struct rte_flow_attr *attr,
839                                 struct rte_flow_error *error)
840 {
841         struct priv *priv = dev->data->dev_private;
842         const struct rte_flow_action_queue *queue = action->conf;
843
844         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845                 return rte_flow_error_set(error, EINVAL,
846                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847                                           "can't have 2 fate actions in"
848                                           " same flow");
849         if (queue->index >= priv->rxqs_n)
850                 return rte_flow_error_set(error, EINVAL,
851                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852                                           &queue->index,
853                                           "queue index out of range");
854         if (!(*priv->rxqs)[queue->index])
855                 return rte_flow_error_set(error, EINVAL,
856                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
857                                           &queue->index,
858                                           "queue is not configured");
859         if (attr->egress)
860                 return rte_flow_error_set(error, ENOTSUP,
861                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
862                                           "queue action not supported for "
863                                           "egress");
864         return 0;
865 }
866
867 /*
868  * Validate the rss action.
869  *
870  * @param[in] action
871  *   Pointer to the queue action.
872  * @param[in] action_flags
873  *   Bit-fields that holds the actions detected until now.
874  * @param[in] dev
875  *   Pointer to the Ethernet device structure.
876  * @param[in] attr
877  *   Attributes of flow that includes this action.
878  * @param[out] error
879  *   Pointer to error structure.
880  *
881  * @return
882  *   0 on success, a negative errno value otherwise and rte_ernno is set.
883  */
884 int
885 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
886                               uint64_t action_flags,
887                               struct rte_eth_dev *dev,
888                               const struct rte_flow_attr *attr,
889                               struct rte_flow_error *error)
890 {
891         struct priv *priv = dev->data->dev_private;
892         const struct rte_flow_action_rss *rss = action->conf;
893         unsigned int i;
894
895         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
896                 return rte_flow_error_set(error, EINVAL,
897                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
898                                           "can't have 2 fate actions"
899                                           " in same flow");
900         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
901             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
902                 return rte_flow_error_set(error, ENOTSUP,
903                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
904                                           &rss->func,
905                                           "RSS hash function not supported");
906 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
907         if (rss->level > 2)
908 #else
909         if (rss->level > 1)
910 #endif
911                 return rte_flow_error_set(error, ENOTSUP,
912                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
913                                           &rss->level,
914                                           "tunnel RSS is not supported");
915         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
916         if (rss->key_len == 0 && rss->key != NULL)
917                 return rte_flow_error_set(error, ENOTSUP,
918                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
919                                           &rss->key_len,
920                                           "RSS hash key length 0");
921         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
922                 return rte_flow_error_set(error, ENOTSUP,
923                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
924                                           &rss->key_len,
925                                           "RSS hash key too small");
926         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
927                 return rte_flow_error_set(error, ENOTSUP,
928                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
929                                           &rss->key_len,
930                                           "RSS hash key too large");
931         if (rss->queue_num > priv->config.ind_table_max_size)
932                 return rte_flow_error_set(error, ENOTSUP,
933                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
934                                           &rss->queue_num,
935                                           "number of queues too large");
936         if (rss->types & MLX5_RSS_HF_MASK)
937                 return rte_flow_error_set(error, ENOTSUP,
938                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
939                                           &rss->types,
940                                           "some RSS protocols are not"
941                                           " supported");
942         for (i = 0; i != rss->queue_num; ++i) {
943                 if (!(*priv->rxqs)[rss->queue[i]])
944                         return rte_flow_error_set
945                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
946                                  &rss->queue[i], "queue is not configured");
947         }
948         if (attr->egress)
949                 return rte_flow_error_set(error, ENOTSUP,
950                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
951                                           "rss action not supported for "
952                                           "egress");
953         return 0;
954 }
955
956 /*
957  * Validate the count action.
958  *
959  * @param[in] dev
960  *   Pointer to the Ethernet device structure.
961  * @param[in] attr
962  *   Attributes of flow that includes this action.
963  * @param[out] error
964  *   Pointer to error structure.
965  *
966  * @return
967  *   0 on success, a negative errno value otherwise and rte_ernno is set.
968  */
969 int
970 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
971                                 const struct rte_flow_attr *attr,
972                                 struct rte_flow_error *error)
973 {
974         if (attr->egress)
975                 return rte_flow_error_set(error, ENOTSUP,
976                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
977                                           "count action not supported for "
978                                           "egress");
979         return 0;
980 }
981
982 /**
983  * Verify the @p attributes will be correctly understood by the NIC and store
984  * them in the @p flow if everything is correct.
985  *
986  * @param[in] dev
987  *   Pointer to the Ethernet device structure.
988  * @param[in] attributes
989  *   Pointer to flow attributes
990  * @param[out] error
991  *   Pointer to error structure.
992  *
993  * @return
994  *   0 on success, a negative errno value otherwise and rte_errno is set.
995  */
996 int
997 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
998                               const struct rte_flow_attr *attributes,
999                               struct rte_flow_error *error)
1000 {
1001         struct priv *priv = dev->data->dev_private;
1002         uint32_t priority_max = priv->config.flow_prio - 1;
1003
1004         if (attributes->group)
1005                 return rte_flow_error_set(error, ENOTSUP,
1006                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1007                                           NULL, "groups is not supported");
1008         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1009             attributes->priority >= priority_max)
1010                 return rte_flow_error_set(error, ENOTSUP,
1011                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1012                                           NULL, "priority out of range");
1013         if (attributes->egress)
1014                 return rte_flow_error_set(error, ENOTSUP,
1015                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1016                                           "egress is not supported");
1017         if (attributes->transfer)
1018                 return rte_flow_error_set(error, ENOTSUP,
1019                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1020                                           NULL, "transfer is not supported");
1021         if (!attributes->ingress)
1022                 return rte_flow_error_set(error, EINVAL,
1023                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1024                                           NULL,
1025                                           "ingress attribute is mandatory");
1026         return 0;
1027 }
1028
1029 /**
1030  * Validate Ethernet item.
1031  *
1032  * @param[in] item
1033  *   Item specification.
1034  * @param[in] item_flags
1035  *   Bit-fields that holds the items detected until now.
1036  * @param[out] error
1037  *   Pointer to error structure.
1038  *
1039  * @return
1040  *   0 on success, a negative errno value otherwise and rte_errno is set.
1041  */
1042 int
1043 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1044                             uint64_t item_flags,
1045                             struct rte_flow_error *error)
1046 {
1047         const struct rte_flow_item_eth *mask = item->mask;
1048         const struct rte_flow_item_eth nic_mask = {
1049                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1050                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1051                 .type = RTE_BE16(0xffff),
1052         };
1053         int ret;
1054         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1055         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1056                                        MLX5_FLOW_LAYER_OUTER_L2;
1057
1058         if (item_flags & ethm)
1059                 return rte_flow_error_set(error, ENOTSUP,
1060                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1061                                           "multiple L2 layers not supported");
1062         if (!mask)
1063                 mask = &rte_flow_item_eth_mask;
1064         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1065                                         (const uint8_t *)&nic_mask,
1066                                         sizeof(struct rte_flow_item_eth),
1067                                         error);
1068         return ret;
1069 }
1070
1071 /**
1072  * Validate VLAN item.
1073  *
1074  * @param[in] item
1075  *   Item specification.
1076  * @param[in] item_flags
1077  *   Bit-fields that holds the items detected until now.
1078  * @param[out] error
1079  *   Pointer to error structure.
1080  *
1081  * @return
1082  *   0 on success, a negative errno value otherwise and rte_errno is set.
1083  */
1084 int
1085 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1086                              uint64_t item_flags,
1087                              struct rte_flow_error *error)
1088 {
1089         const struct rte_flow_item_vlan *spec = item->spec;
1090         const struct rte_flow_item_vlan *mask = item->mask;
1091         const struct rte_flow_item_vlan nic_mask = {
1092                 .tci = RTE_BE16(0x0fff),
1093                 .inner_type = RTE_BE16(0xffff),
1094         };
1095         uint16_t vlan_tag = 0;
1096         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1097         int ret;
1098         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1099                                         MLX5_FLOW_LAYER_INNER_L4) :
1100                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1101                                         MLX5_FLOW_LAYER_OUTER_L4);
1102         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1103                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1104
1105         if (item_flags & vlanm)
1106                 return rte_flow_error_set(error, EINVAL,
1107                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1108                                           "multiple VLAN layers not supported");
1109         else if ((item_flags & l34m) != 0)
1110                 return rte_flow_error_set(error, EINVAL,
1111                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1112                                           "L2 layer cannot follow L3/L4 layer");
1113         if (!mask)
1114                 mask = &rte_flow_item_vlan_mask;
1115         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1116                                         (const uint8_t *)&nic_mask,
1117                                         sizeof(struct rte_flow_item_vlan),
1118                                         error);
1119         if (ret)
1120                 return ret;
1121         if (spec) {
1122                 vlan_tag = spec->tci;
1123                 vlan_tag &= mask->tci;
1124         }
1125         /*
1126          * From verbs perspective an empty VLAN is equivalent
1127          * to a packet without VLAN layer.
1128          */
1129         if (!vlan_tag)
1130                 return rte_flow_error_set(error, EINVAL,
1131                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1132                                           item->spec,
1133                                           "VLAN cannot be empty");
1134         return 0;
1135 }
1136
1137 /**
1138  * Validate IPV4 item.
1139  *
1140  * @param[in] item
1141  *   Item specification.
1142  * @param[in] item_flags
1143  *   Bit-fields that holds the items detected until now.
1144  * @param[out] error
1145  *   Pointer to error structure.
1146  *
1147  * @return
1148  *   0 on success, a negative errno value otherwise and rte_errno is set.
1149  */
1150 int
1151 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1152                              uint64_t item_flags,
1153                              struct rte_flow_error *error)
1154 {
1155         const struct rte_flow_item_ipv4 *mask = item->mask;
1156         const struct rte_flow_item_ipv4 nic_mask = {
1157                 .hdr = {
1158                         .src_addr = RTE_BE32(0xffffffff),
1159                         .dst_addr = RTE_BE32(0xffffffff),
1160                         .type_of_service = 0xff,
1161                         .next_proto_id = 0xff,
1162                 },
1163         };
1164         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1165         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1166                                       MLX5_FLOW_LAYER_OUTER_L3;
1167         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1168                                       MLX5_FLOW_LAYER_OUTER_L4;
1169         int ret;
1170
1171         if (item_flags & l3m)
1172                 return rte_flow_error_set(error, ENOTSUP,
1173                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1174                                           "multiple L3 layers not supported");
1175         else if (item_flags & l4m)
1176                 return rte_flow_error_set(error, EINVAL,
1177                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1178                                           "L3 cannot follow an L4 layer.");
1179         if (!mask)
1180                 mask = &rte_flow_item_ipv4_mask;
1181         else if (mask->hdr.next_proto_id != 0 &&
1182                  mask->hdr.next_proto_id != 0xff)
1183                 return rte_flow_error_set(error, EINVAL,
1184                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1185                                           "partial mask is not supported"
1186                                           " for protocol");
1187         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1188                                         (const uint8_t *)&nic_mask,
1189                                         sizeof(struct rte_flow_item_ipv4),
1190                                         error);
1191         if (ret < 0)
1192                 return ret;
1193         return 0;
1194 }
1195
1196 /**
1197  * Validate IPV6 item.
1198  *
1199  * @param[in] item
1200  *   Item specification.
1201  * @param[in] item_flags
1202  *   Bit-fields that holds the items detected until now.
1203  * @param[out] error
1204  *   Pointer to error structure.
1205  *
1206  * @return
1207  *   0 on success, a negative errno value otherwise and rte_errno is set.
1208  */
1209 int
1210 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1211                              uint64_t item_flags,
1212                              struct rte_flow_error *error)
1213 {
1214         const struct rte_flow_item_ipv6 *mask = item->mask;
1215         const struct rte_flow_item_ipv6 nic_mask = {
1216                 .hdr = {
1217                         .src_addr =
1218                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1219                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1220                         .dst_addr =
1221                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1222                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1223                         .vtc_flow = RTE_BE32(0xffffffff),
1224                         .proto = 0xff,
1225                         .hop_limits = 0xff,
1226                 },
1227         };
1228         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1229         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1230                                       MLX5_FLOW_LAYER_OUTER_L3;
1231         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1232                                       MLX5_FLOW_LAYER_OUTER_L4;
1233         int ret;
1234
1235         if (item_flags & l3m)
1236                 return rte_flow_error_set(error, ENOTSUP,
1237                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1238                                           "multiple L3 layers not supported");
1239         else if (item_flags & l4m)
1240                 return rte_flow_error_set(error, EINVAL,
1241                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1242                                           "L3 cannot follow an L4 layer.");
1243         if (!mask)
1244                 mask = &rte_flow_item_ipv6_mask;
1245         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1246                                         (const uint8_t *)&nic_mask,
1247                                         sizeof(struct rte_flow_item_ipv6),
1248                                         error);
1249         if (ret < 0)
1250                 return ret;
1251         return 0;
1252 }
1253
1254 /**
1255  * Validate UDP item.
1256  *
1257  * @param[in] item
1258  *   Item specification.
1259  * @param[in] item_flags
1260  *   Bit-fields that holds the items detected until now.
1261  * @param[in] target_protocol
1262  *   The next protocol in the previous item.
1263  * @param[in] flow_mask
1264  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1265  * @param[out] error
1266  *   Pointer to error structure.
1267  *
1268  * @return
1269  *   0 on success, a negative errno value otherwise and rte_errno is set.
1270  */
1271 int
1272 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1273                             uint64_t item_flags,
1274                             uint8_t target_protocol,
1275                             struct rte_flow_error *error)
1276 {
1277         const struct rte_flow_item_udp *mask = item->mask;
1278         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1279         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1280                                       MLX5_FLOW_LAYER_OUTER_L3;
1281         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1282                                       MLX5_FLOW_LAYER_OUTER_L4;
1283         int ret;
1284
1285         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1286                 return rte_flow_error_set(error, EINVAL,
1287                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1288                                           "protocol filtering not compatible"
1289                                           " with UDP layer");
1290         if (!(item_flags & l3m))
1291                 return rte_flow_error_set(error, EINVAL,
1292                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1293                                           "L3 is mandatory to filter on L4");
1294         if (item_flags & l4m)
1295                 return rte_flow_error_set(error, EINVAL,
1296                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1297                                           "multiple L4 layers not supported");
1298         if (!mask)
1299                 mask = &rte_flow_item_udp_mask;
1300         ret = mlx5_flow_item_acceptable
1301                 (item, (const uint8_t *)mask,
1302                  (const uint8_t *)&rte_flow_item_udp_mask,
1303                  sizeof(struct rte_flow_item_udp), error);
1304         if (ret < 0)
1305                 return ret;
1306         return 0;
1307 }
1308
1309 /**
1310  * Validate TCP item.
1311  *
1312  * @param[in] item
1313  *   Item specification.
1314  * @param[in] item_flags
1315  *   Bit-fields that holds the items detected until now.
1316  * @param[in] target_protocol
1317  *   The next protocol in the previous item.
1318  * @param[out] error
1319  *   Pointer to error structure.
1320  *
1321  * @return
1322  *   0 on success, a negative errno value otherwise and rte_errno is set.
1323  */
1324 int
1325 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1326                             uint64_t item_flags,
1327                             uint8_t target_protocol,
1328                             const struct rte_flow_item_tcp *flow_mask,
1329                             struct rte_flow_error *error)
1330 {
1331         const struct rte_flow_item_tcp *mask = item->mask;
1332         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1333         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1334                                       MLX5_FLOW_LAYER_OUTER_L3;
1335         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1336                                       MLX5_FLOW_LAYER_OUTER_L4;
1337         int ret;
1338
1339         assert(flow_mask);
1340         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1341                 return rte_flow_error_set(error, EINVAL,
1342                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1343                                           "protocol filtering not compatible"
1344                                           " with TCP layer");
1345         if (!(item_flags & l3m))
1346                 return rte_flow_error_set(error, EINVAL,
1347                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1348                                           "L3 is mandatory to filter on L4");
1349         if (item_flags & l4m)
1350                 return rte_flow_error_set(error, EINVAL,
1351                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1352                                           "multiple L4 layers not supported");
1353         if (!mask)
1354                 mask = &rte_flow_item_tcp_mask;
1355         ret = mlx5_flow_item_acceptable
1356                 (item, (const uint8_t *)mask,
1357                  (const uint8_t *)flow_mask,
1358                  sizeof(struct rte_flow_item_tcp), error);
1359         if (ret < 0)
1360                 return ret;
1361         return 0;
1362 }
1363
1364 /**
1365  * Validate VXLAN item.
1366  *
1367  * @param[in] item
1368  *   Item specification.
1369  * @param[in] item_flags
1370  *   Bit-fields that holds the items detected until now.
1371  * @param[in] target_protocol
1372  *   The next protocol in the previous item.
1373  * @param[out] error
1374  *   Pointer to error structure.
1375  *
1376  * @return
1377  *   0 on success, a negative errno value otherwise and rte_errno is set.
1378  */
1379 int
1380 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1381                               uint64_t item_flags,
1382                               struct rte_flow_error *error)
1383 {
1384         const struct rte_flow_item_vxlan *spec = item->spec;
1385         const struct rte_flow_item_vxlan *mask = item->mask;
1386         int ret;
1387         union vni {
1388                 uint32_t vlan_id;
1389                 uint8_t vni[4];
1390         } id = { .vlan_id = 0, };
1391         uint32_t vlan_id = 0;
1392
1393
1394         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1395                 return rte_flow_error_set(error, ENOTSUP,
1396                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1397                                           "multiple tunnel layers not"
1398                                           " supported");
1399         /*
1400          * Verify only UDPv4 is present as defined in
1401          * https://tools.ietf.org/html/rfc7348
1402          */
1403         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1404                 return rte_flow_error_set(error, EINVAL,
1405                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1406                                           "no outer UDP layer found");
1407         if (!mask)
1408                 mask = &rte_flow_item_vxlan_mask;
1409         ret = mlx5_flow_item_acceptable
1410                 (item, (const uint8_t *)mask,
1411                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1412                  sizeof(struct rte_flow_item_vxlan),
1413                  error);
1414         if (ret < 0)
1415                 return ret;
1416         if (spec) {
1417                 memcpy(&id.vni[1], spec->vni, 3);
1418                 vlan_id = id.vlan_id;
1419                 memcpy(&id.vni[1], mask->vni, 3);
1420                 vlan_id &= id.vlan_id;
1421         }
1422         /*
1423          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1424          * only this layer is defined in the Verbs specification it is
1425          * interpreted as wildcard and all packets will match this
1426          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1427          * udp), all packets matching the layers before will also
1428          * match this rule.  To avoid such situation, VNI 0 is
1429          * currently refused.
1430          */
1431         if (!vlan_id)
1432                 return rte_flow_error_set(error, ENOTSUP,
1433                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1434                                           "VXLAN vni cannot be 0");
1435         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1436                 return rte_flow_error_set(error, ENOTSUP,
1437                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1438                                           "VXLAN tunnel must be fully defined");
1439         return 0;
1440 }
1441
1442 /**
1443  * Validate VXLAN_GPE item.
1444  *
1445  * @param[in] item
1446  *   Item specification.
1447  * @param[in] item_flags
1448  *   Bit-fields that holds the items detected until now.
1449  * @param[in] priv
1450  *   Pointer to the private data structure.
1451  * @param[in] target_protocol
1452  *   The next protocol in the previous item.
1453  * @param[out] error
1454  *   Pointer to error structure.
1455  *
1456  * @return
1457  *   0 on success, a negative errno value otherwise and rte_errno is set.
1458  */
1459 int
1460 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1461                                   uint64_t item_flags,
1462                                   struct rte_eth_dev *dev,
1463                                   struct rte_flow_error *error)
1464 {
1465         struct priv *priv = dev->data->dev_private;
1466         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1467         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1468         int ret;
1469         union vni {
1470                 uint32_t vlan_id;
1471                 uint8_t vni[4];
1472         } id = { .vlan_id = 0, };
1473         uint32_t vlan_id = 0;
1474
1475         if (!priv->config.l3_vxlan_en)
1476                 return rte_flow_error_set(error, ENOTSUP,
1477                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1478                                           "L3 VXLAN is not enabled by device"
1479                                           " parameter and/or not configured in"
1480                                           " firmware");
1481         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1482                 return rte_flow_error_set(error, ENOTSUP,
1483                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1484                                           "multiple tunnel layers not"
1485                                           " supported");
1486         /*
1487          * Verify only UDPv4 is present as defined in
1488          * https://tools.ietf.org/html/rfc7348
1489          */
1490         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1491                 return rte_flow_error_set(error, EINVAL,
1492                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1493                                           "no outer UDP layer found");
1494         if (!mask)
1495                 mask = &rte_flow_item_vxlan_gpe_mask;
1496         ret = mlx5_flow_item_acceptable
1497                 (item, (const uint8_t *)mask,
1498                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1499                  sizeof(struct rte_flow_item_vxlan_gpe),
1500                  error);
1501         if (ret < 0)
1502                 return ret;
1503         if (spec) {
1504                 if (spec->protocol)
1505                         return rte_flow_error_set(error, ENOTSUP,
1506                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1507                                                   item,
1508                                                   "VxLAN-GPE protocol"
1509                                                   " not supported");
1510                 memcpy(&id.vni[1], spec->vni, 3);
1511                 vlan_id = id.vlan_id;
1512                 memcpy(&id.vni[1], mask->vni, 3);
1513                 vlan_id &= id.vlan_id;
1514         }
1515         /*
1516          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1517          * layer is defined in the Verbs specification it is interpreted as
1518          * wildcard and all packets will match this rule, if it follows a full
1519          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1520          * before will also match this rule.  To avoid such situation, VNI 0
1521          * is currently refused.
1522          */
1523         if (!vlan_id)
1524                 return rte_flow_error_set(error, ENOTSUP,
1525                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1526                                           "VXLAN-GPE vni cannot be 0");
1527         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1528                 return rte_flow_error_set(error, ENOTSUP,
1529                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1530                                           "VXLAN-GPE tunnel must be fully"
1531                                           " defined");
1532         return 0;
1533 }
1534
1535 /**
1536  * Validate GRE item.
1537  *
1538  * @param[in] item
1539  *   Item specification.
1540  * @param[in] item_flags
1541  *   Bit flags to mark detected items.
1542  * @param[in] target_protocol
1543  *   The next protocol in the previous item.
1544  * @param[out] error
1545  *   Pointer to error structure.
1546  *
1547  * @return
1548  *   0 on success, a negative errno value otherwise and rte_errno is set.
1549  */
1550 int
1551 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1552                             uint64_t item_flags,
1553                             uint8_t target_protocol,
1554                             struct rte_flow_error *error)
1555 {
1556         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1557         const struct rte_flow_item_gre *mask = item->mask;
1558         int ret;
1559
1560         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1561                 return rte_flow_error_set(error, EINVAL,
1562                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1563                                           "protocol filtering not compatible"
1564                                           " with this GRE layer");
1565         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1566                 return rte_flow_error_set(error, ENOTSUP,
1567                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1568                                           "multiple tunnel layers not"
1569                                           " supported");
1570         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1571                 return rte_flow_error_set(error, ENOTSUP,
1572                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1573                                           "L3 Layer is missing");
1574         if (!mask)
1575                 mask = &rte_flow_item_gre_mask;
1576         ret = mlx5_flow_item_acceptable
1577                 (item, (const uint8_t *)mask,
1578                  (const uint8_t *)&rte_flow_item_gre_mask,
1579                  sizeof(struct rte_flow_item_gre), error);
1580         if (ret < 0)
1581                 return ret;
1582 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1583         if (spec && (spec->protocol & mask->protocol))
1584                 return rte_flow_error_set(error, ENOTSUP,
1585                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1586                                           "without MPLS support the"
1587                                           " specification cannot be used for"
1588                                           " filtering");
1589 #endif
1590         return 0;
1591 }
1592
1593 /**
1594  * Validate MPLS item.
1595  *
1596  * @param[in] item
1597  *   Item specification.
1598  * @param[in] item_flags
1599  *   Bit-fields that holds the items detected until now.
1600  * @param[in] target_protocol
1601  *   The next protocol in the previous item.
1602  * @param[out] error
1603  *   Pointer to error structure.
1604  *
1605  * @return
1606  *   0 on success, a negative errno value otherwise and rte_errno is set.
1607  */
1608 int
1609 mlx5_flow_validate_item_mpls(const struct rte_flow_item *item __rte_unused,
1610                              uint64_t item_flags __rte_unused,
1611                              uint8_t target_protocol __rte_unused,
1612                              struct rte_flow_error *error)
1613 {
1614 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1615         const struct rte_flow_item_mpls *mask = item->mask;
1616         int ret;
1617
1618         if (target_protocol != 0xff && target_protocol != IPPROTO_MPLS)
1619                 return rte_flow_error_set(error, EINVAL,
1620                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1621                                           "protocol filtering not compatible"
1622                                           " with MPLS layer");
1623         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1624         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1625             !(item_flags & MLX5_FLOW_LAYER_GRE))
1626                 return rte_flow_error_set(error, ENOTSUP,
1627                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1628                                           "multiple tunnel layers not"
1629                                           " supported");
1630         if (!mask)
1631                 mask = &rte_flow_item_mpls_mask;
1632         ret = mlx5_flow_item_acceptable
1633                 (item, (const uint8_t *)mask,
1634                  (const uint8_t *)&rte_flow_item_mpls_mask,
1635                  sizeof(struct rte_flow_item_mpls), error);
1636         if (ret < 0)
1637                 return ret;
1638         return 0;
1639 #endif
1640         return rte_flow_error_set(error, ENOTSUP,
1641                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
1642                                   "MPLS is not supported by Verbs, please"
1643                                   " update.");
1644 }
1645
1646 static int
1647 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1648                    const struct rte_flow_attr *attr __rte_unused,
1649                    const struct rte_flow_item items[] __rte_unused,
1650                    const struct rte_flow_action actions[] __rte_unused,
1651                    struct rte_flow_error *error __rte_unused)
1652 {
1653         rte_errno = ENOTSUP;
1654         return -rte_errno;
1655 }
1656
1657 static struct mlx5_flow *
1658 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1659                   const struct rte_flow_item items[] __rte_unused,
1660                   const struct rte_flow_action actions[] __rte_unused,
1661                   struct rte_flow_error *error __rte_unused)
1662 {
1663         rte_errno = ENOTSUP;
1664         return NULL;
1665 }
1666
1667 static int
1668 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1669                     struct mlx5_flow *dev_flow __rte_unused,
1670                     const struct rte_flow_attr *attr __rte_unused,
1671                     const struct rte_flow_item items[] __rte_unused,
1672                     const struct rte_flow_action actions[] __rte_unused,
1673                     struct rte_flow_error *error __rte_unused)
1674 {
1675         rte_errno = ENOTSUP;
1676         return -rte_errno;
1677 }
1678
1679 static int
1680 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1681                 struct rte_flow *flow __rte_unused,
1682                 struct rte_flow_error *error __rte_unused)
1683 {
1684         rte_errno = ENOTSUP;
1685         return -rte_errno;
1686 }
1687
1688 static void
1689 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1690                  struct rte_flow *flow __rte_unused)
1691 {
1692 }
1693
1694 static void
1695 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1696                   struct rte_flow *flow __rte_unused)
1697 {
1698 }
1699
1700 static int
1701 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1702                 struct rte_flow *flow __rte_unused,
1703                 const struct rte_flow_action *actions __rte_unused,
1704                 void *data __rte_unused,
1705                 struct rte_flow_error *error __rte_unused)
1706 {
1707         rte_errno = ENOTSUP;
1708         return -rte_errno;
1709 }
1710
1711 /* Void driver to protect from null pointer reference. */
1712 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1713         .validate = flow_null_validate,
1714         .prepare = flow_null_prepare,
1715         .translate = flow_null_translate,
1716         .apply = flow_null_apply,
1717         .remove = flow_null_remove,
1718         .destroy = flow_null_destroy,
1719         .query = flow_null_query,
1720 };
1721
1722 /**
1723  * Select flow driver type according to flow attributes and device
1724  * configuration.
1725  *
1726  * @param[in] dev
1727  *   Pointer to the dev structure.
1728  * @param[in] attr
1729  *   Pointer to the flow attributes.
1730  *
1731  * @return
1732  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1733  */
1734 static enum mlx5_flow_drv_type
1735 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1736 {
1737         struct priv *priv = dev->data->dev_private;
1738         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1739
1740         if (attr->transfer)
1741                 type = MLX5_FLOW_TYPE_TCF;
1742         else
1743                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1744                                                  MLX5_FLOW_TYPE_VERBS;
1745         return type;
1746 }
1747
1748 #define flow_get_drv_ops(type) flow_drv_ops[type]
1749
1750 /**
1751  * Flow driver validation API. This abstracts calling driver specific functions.
1752  * The type of flow driver is determined according to flow attributes.
1753  *
1754  * @param[in] dev
1755  *   Pointer to the dev structure.
1756  * @param[in] attr
1757  *   Pointer to the flow attributes.
1758  * @param[in] items
1759  *   Pointer to the list of items.
1760  * @param[in] actions
1761  *   Pointer to the list of actions.
1762  * @param[out] error
1763  *   Pointer to the error structure.
1764  *
1765  * @return
1766  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1767  */
1768 static inline int
1769 flow_drv_validate(struct rte_eth_dev *dev,
1770                   const struct rte_flow_attr *attr,
1771                   const struct rte_flow_item items[],
1772                   const struct rte_flow_action actions[],
1773                   struct rte_flow_error *error)
1774 {
1775         const struct mlx5_flow_driver_ops *fops;
1776         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1777
1778         fops = flow_get_drv_ops(type);
1779         return fops->validate(dev, attr, items, actions, error);
1780 }
1781
1782 /**
1783  * Flow driver preparation API. This abstracts calling driver specific
1784  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1785  * calculates the size of memory required for device flow, allocates the memory,
1786  * initializes the device flow and returns the pointer.
1787  *
1788  * @note
1789  *   This function initializes device flow structure such as dv, tcf or verbs in
1790  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1791  *   rest. For example, adding returning device flow to flow->dev_flow list and
1792  *   setting backward reference to the flow should be done out of this function.
1793  *   layers field is not filled either.
1794  *
1795  * @param[in] attr
1796  *   Pointer to the flow attributes.
1797  * @param[in] items
1798  *   Pointer to the list of items.
1799  * @param[in] actions
1800  *   Pointer to the list of actions.
1801  * @param[out] error
1802  *   Pointer to the error structure.
1803  *
1804  * @return
1805  *   Pointer to device flow on success, otherwise NULL and rte_ernno is set.
1806  */
1807 static inline struct mlx5_flow *
1808 flow_drv_prepare(const struct rte_flow *flow,
1809                  const struct rte_flow_attr *attr,
1810                  const struct rte_flow_item items[],
1811                  const struct rte_flow_action actions[],
1812                  struct rte_flow_error *error)
1813 {
1814         const struct mlx5_flow_driver_ops *fops;
1815         enum mlx5_flow_drv_type type = flow->drv_type;
1816
1817         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1818         fops = flow_get_drv_ops(type);
1819         return fops->prepare(attr, items, actions, error);
1820 }
1821
1822 /**
1823  * Flow driver translation API. This abstracts calling driver specific
1824  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1825  * translates a generic flow into a driver flow. flow_drv_prepare() must
1826  * precede.
1827  *
1828  * @note
1829  *   dev_flow->layers could be filled as a result of parsing during translation
1830  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1831  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1832  *   flow->actions could be overwritten even though all the expanded dev_flows
1833  *   have the same actions.
1834  *
1835  * @param[in] dev
1836  *   Pointer to the rte dev structure.
1837  * @param[in, out] dev_flow
1838  *   Pointer to the mlx5 flow.
1839  * @param[in] attr
1840  *   Pointer to the flow attributes.
1841  * @param[in] items
1842  *   Pointer to the list of items.
1843  * @param[in] actions
1844  *   Pointer to the list of actions.
1845  * @param[out] error
1846  *   Pointer to the error structure.
1847  *
1848  * @return
1849  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1850  */
1851 static inline int
1852 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1853                    const struct rte_flow_attr *attr,
1854                    const struct rte_flow_item items[],
1855                    const struct rte_flow_action actions[],
1856                    struct rte_flow_error *error)
1857 {
1858         const struct mlx5_flow_driver_ops *fops;
1859         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1860
1861         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1862         fops = flow_get_drv_ops(type);
1863         return fops->translate(dev, dev_flow, attr, items, actions, error);
1864 }
1865
1866 /**
1867  * Flow driver apply API. This abstracts calling driver specific functions.
1868  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1869  * translated driver flows on to device. flow_drv_translate() must precede.
1870  *
1871  * @param[in] dev
1872  *   Pointer to Ethernet device structure.
1873  * @param[in, out] flow
1874  *   Pointer to flow structure.
1875  * @param[out] error
1876  *   Pointer to error structure.
1877  *
1878  * @return
1879  *   0 on success, a negative errno value otherwise and rte_errno is set.
1880  */
1881 static inline int
1882 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1883                struct rte_flow_error *error)
1884 {
1885         const struct mlx5_flow_driver_ops *fops;
1886         enum mlx5_flow_drv_type type = flow->drv_type;
1887
1888         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1889         fops = flow_get_drv_ops(type);
1890         return fops->apply(dev, flow, error);
1891 }
1892
1893 /**
1894  * Flow driver remove API. This abstracts calling driver specific functions.
1895  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1896  * on device. All the resources of the flow should be freed by calling
1897  * flow_drv_destroy().
1898  *
1899  * @param[in] dev
1900  *   Pointer to Ethernet device.
1901  * @param[in, out] flow
1902  *   Pointer to flow structure.
1903  */
1904 static inline void
1905 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1906 {
1907         const struct mlx5_flow_driver_ops *fops;
1908         enum mlx5_flow_drv_type type = flow->drv_type;
1909
1910         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1911         fops = flow_get_drv_ops(type);
1912         fops->remove(dev, flow);
1913 }
1914
1915 /**
1916  * Flow driver destroy API. This abstracts calling driver specific functions.
1917  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1918  * on device and releases resources of the flow.
1919  *
1920  * @param[in] dev
1921  *   Pointer to Ethernet device.
1922  * @param[in, out] flow
1923  *   Pointer to flow structure.
1924  */
1925 static inline void
1926 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1927 {
1928         const struct mlx5_flow_driver_ops *fops;
1929         enum mlx5_flow_drv_type type = flow->drv_type;
1930
1931         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1932         fops = flow_get_drv_ops(type);
1933         fops->destroy(dev, flow);
1934 }
1935
1936 /**
1937  * Validate a flow supported by the NIC.
1938  *
1939  * @see rte_flow_validate()
1940  * @see rte_flow_ops
1941  */
1942 int
1943 mlx5_flow_validate(struct rte_eth_dev *dev,
1944                    const struct rte_flow_attr *attr,
1945                    const struct rte_flow_item items[],
1946                    const struct rte_flow_action actions[],
1947                    struct rte_flow_error *error)
1948 {
1949         int ret;
1950
1951         ret = flow_drv_validate(dev, attr, items, actions, error);
1952         if (ret < 0)
1953                 return ret;
1954         return 0;
1955 }
1956
1957 /**
1958  * Get RSS action from the action list.
1959  *
1960  * @param[in] actions
1961  *   Pointer to the list of actions.
1962  *
1963  * @return
1964  *   Pointer to the RSS action if exist, else return NULL.
1965  */
1966 static const struct rte_flow_action_rss*
1967 flow_get_rss_action(const struct rte_flow_action actions[])
1968 {
1969         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1970                 switch (actions->type) {
1971                 case RTE_FLOW_ACTION_TYPE_RSS:
1972                         return (const struct rte_flow_action_rss *)
1973                                actions->conf;
1974                 default:
1975                         break;
1976                 }
1977         }
1978         return NULL;
1979 }
1980
1981 static unsigned int
1982 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
1983 {
1984         const struct rte_flow_item *item;
1985         unsigned int has_vlan = 0;
1986
1987         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
1988                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
1989                         has_vlan = 1;
1990                         break;
1991                 }
1992         }
1993         if (has_vlan)
1994                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
1995                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
1996         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
1997                                MLX5_EXPANSION_ROOT_OUTER;
1998 }
1999
2000 /**
2001  * Create a flow and add it to @p list.
2002  *
2003  * @param dev
2004  *   Pointer to Ethernet device.
2005  * @param list
2006  *   Pointer to a TAILQ flow list.
2007  * @param[in] attr
2008  *   Flow rule attributes.
2009  * @param[in] items
2010  *   Pattern specification (list terminated by the END pattern item).
2011  * @param[in] actions
2012  *   Associated actions (list terminated by the END action).
2013  * @param[out] error
2014  *   Perform verbose error reporting if not NULL.
2015  *
2016  * @return
2017  *   A flow on success, NULL otherwise and rte_errno is set.
2018  */
2019 static struct rte_flow *
2020 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2021                  const struct rte_flow_attr *attr,
2022                  const struct rte_flow_item items[],
2023                  const struct rte_flow_action actions[],
2024                  struct rte_flow_error *error)
2025 {
2026         struct rte_flow *flow = NULL;
2027         struct mlx5_flow *dev_flow;
2028         const struct rte_flow_action_rss *rss;
2029         union {
2030                 struct rte_flow_expand_rss buf;
2031                 uint8_t buffer[2048];
2032         } expand_buffer;
2033         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2034         int ret;
2035         uint32_t i;
2036         uint32_t flow_size;
2037
2038         ret = flow_drv_validate(dev, attr, items, actions, error);
2039         if (ret < 0)
2040                 return NULL;
2041         flow_size = sizeof(struct rte_flow);
2042         rss = flow_get_rss_action(actions);
2043         if (rss)
2044                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2045                                             sizeof(void *));
2046         else
2047                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2048         flow = rte_calloc(__func__, 1, flow_size, 0);
2049         flow->drv_type = flow_get_drv_type(dev, attr);
2050         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2051                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2052         flow->queue = (void *)(flow + 1);
2053         LIST_INIT(&flow->dev_flows);
2054         if (rss && rss->types) {
2055                 unsigned int graph_root;
2056
2057                 graph_root = find_graph_root(items, rss->level);
2058                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2059                                           items, rss->types,
2060                                           mlx5_support_expansion,
2061                                           graph_root);
2062                 assert(ret > 0 &&
2063                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2064         } else {
2065                 buf->entries = 1;
2066                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2067         }
2068         for (i = 0; i < buf->entries; ++i) {
2069                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2070                                             actions, error);
2071                 if (!dev_flow)
2072                         goto error;
2073                 dev_flow->flow = flow;
2074                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2075                 ret = flow_drv_translate(dev, dev_flow, attr,
2076                                          buf->entry[i].pattern,
2077                                          actions, error);
2078                 if (ret < 0)
2079                         goto error;
2080         }
2081         if (dev->data->dev_started) {
2082                 ret = flow_drv_apply(dev, flow, error);
2083                 if (ret < 0)
2084                         goto error;
2085         }
2086         TAILQ_INSERT_TAIL(list, flow, next);
2087         flow_rxq_flags_set(dev, flow);
2088         return flow;
2089 error:
2090         ret = rte_errno; /* Save rte_errno before cleanup. */
2091         assert(flow);
2092         flow_drv_destroy(dev, flow);
2093         rte_free(flow);
2094         rte_errno = ret; /* Restore rte_errno. */
2095         return NULL;
2096 }
2097
2098 /**
2099  * Create a flow.
2100  *
2101  * @see rte_flow_create()
2102  * @see rte_flow_ops
2103  */
2104 struct rte_flow *
2105 mlx5_flow_create(struct rte_eth_dev *dev,
2106                  const struct rte_flow_attr *attr,
2107                  const struct rte_flow_item items[],
2108                  const struct rte_flow_action actions[],
2109                  struct rte_flow_error *error)
2110 {
2111         return flow_list_create(dev,
2112                                 &((struct priv *)dev->data->dev_private)->flows,
2113                                 attr, items, actions, error);
2114 }
2115
2116 /**
2117  * Destroy a flow in a list.
2118  *
2119  * @param dev
2120  *   Pointer to Ethernet device.
2121  * @param list
2122  *   Pointer to a TAILQ flow list.
2123  * @param[in] flow
2124  *   Flow to destroy.
2125  */
2126 static void
2127 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2128                   struct rte_flow *flow)
2129 {
2130         flow_drv_destroy(dev, flow);
2131         TAILQ_REMOVE(list, flow, next);
2132         /*
2133          * Update RX queue flags only if port is started, otherwise it is
2134          * already clean.
2135          */
2136         if (dev->data->dev_started)
2137                 flow_rxq_flags_trim(dev, flow);
2138         rte_free(flow->fdir);
2139         rte_free(flow);
2140 }
2141
2142 /**
2143  * Destroy all flows.
2144  *
2145  * @param dev
2146  *   Pointer to Ethernet device.
2147  * @param list
2148  *   Pointer to a TAILQ flow list.
2149  */
2150 void
2151 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2152 {
2153         while (!TAILQ_EMPTY(list)) {
2154                 struct rte_flow *flow;
2155
2156                 flow = TAILQ_FIRST(list);
2157                 flow_list_destroy(dev, list, flow);
2158         }
2159 }
2160
2161 /**
2162  * Remove all flows.
2163  *
2164  * @param dev
2165  *   Pointer to Ethernet device.
2166  * @param list
2167  *   Pointer to a TAILQ flow list.
2168  */
2169 void
2170 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2171 {
2172         struct rte_flow *flow;
2173
2174         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2175                 flow_drv_remove(dev, flow);
2176         flow_rxq_flags_clear(dev);
2177 }
2178
2179 /**
2180  * Add all flows.
2181  *
2182  * @param dev
2183  *   Pointer to Ethernet device.
2184  * @param list
2185  *   Pointer to a TAILQ flow list.
2186  *
2187  * @return
2188  *   0 on success, a negative errno value otherwise and rte_errno is set.
2189  */
2190 int
2191 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2192 {
2193         struct rte_flow *flow;
2194         struct rte_flow_error error;
2195         int ret = 0;
2196
2197         TAILQ_FOREACH(flow, list, next) {
2198                 ret = flow_drv_apply(dev, flow, &error);
2199                 if (ret < 0)
2200                         goto error;
2201                 flow_rxq_flags_set(dev, flow);
2202         }
2203         return 0;
2204 error:
2205         ret = rte_errno; /* Save rte_errno before cleanup. */
2206         mlx5_flow_stop(dev, list);
2207         rte_errno = ret; /* Restore rte_errno. */
2208         return -rte_errno;
2209 }
2210
2211 /**
2212  * Verify the flow list is empty
2213  *
2214  * @param dev
2215  *  Pointer to Ethernet device.
2216  *
2217  * @return the number of flows not released.
2218  */
2219 int
2220 mlx5_flow_verify(struct rte_eth_dev *dev)
2221 {
2222         struct priv *priv = dev->data->dev_private;
2223         struct rte_flow *flow;
2224         int ret = 0;
2225
2226         TAILQ_FOREACH(flow, &priv->flows, next) {
2227                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2228                         dev->data->port_id, (void *)flow);
2229                 ++ret;
2230         }
2231         return ret;
2232 }
2233
2234 /**
2235  * Enable a control flow configured from the control plane.
2236  *
2237  * @param dev
2238  *   Pointer to Ethernet device.
2239  * @param eth_spec
2240  *   An Ethernet flow spec to apply.
2241  * @param eth_mask
2242  *   An Ethernet flow mask to apply.
2243  * @param vlan_spec
2244  *   A VLAN flow spec to apply.
2245  * @param vlan_mask
2246  *   A VLAN flow mask to apply.
2247  *
2248  * @return
2249  *   0 on success, a negative errno value otherwise and rte_errno is set.
2250  */
2251 int
2252 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2253                     struct rte_flow_item_eth *eth_spec,
2254                     struct rte_flow_item_eth *eth_mask,
2255                     struct rte_flow_item_vlan *vlan_spec,
2256                     struct rte_flow_item_vlan *vlan_mask)
2257 {
2258         struct priv *priv = dev->data->dev_private;
2259         const struct rte_flow_attr attr = {
2260                 .ingress = 1,
2261                 .priority = MLX5_FLOW_PRIO_RSVD,
2262         };
2263         struct rte_flow_item items[] = {
2264                 {
2265                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2266                         .spec = eth_spec,
2267                         .last = NULL,
2268                         .mask = eth_mask,
2269                 },
2270                 {
2271                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2272                                               RTE_FLOW_ITEM_TYPE_END,
2273                         .spec = vlan_spec,
2274                         .last = NULL,
2275                         .mask = vlan_mask,
2276                 },
2277                 {
2278                         .type = RTE_FLOW_ITEM_TYPE_END,
2279                 },
2280         };
2281         uint16_t queue[priv->reta_idx_n];
2282         struct rte_flow_action_rss action_rss = {
2283                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2284                 .level = 0,
2285                 .types = priv->rss_conf.rss_hf,
2286                 .key_len = priv->rss_conf.rss_key_len,
2287                 .queue_num = priv->reta_idx_n,
2288                 .key = priv->rss_conf.rss_key,
2289                 .queue = queue,
2290         };
2291         struct rte_flow_action actions[] = {
2292                 {
2293                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2294                         .conf = &action_rss,
2295                 },
2296                 {
2297                         .type = RTE_FLOW_ACTION_TYPE_END,
2298                 },
2299         };
2300         struct rte_flow *flow;
2301         struct rte_flow_error error;
2302         unsigned int i;
2303
2304         if (!priv->reta_idx_n) {
2305                 rte_errno = EINVAL;
2306                 return -rte_errno;
2307         }
2308         for (i = 0; i != priv->reta_idx_n; ++i)
2309                 queue[i] = (*priv->reta_idx)[i];
2310         flow = flow_list_create(dev, &priv->ctrl_flows,
2311                                 &attr, items, actions, &error);
2312         if (!flow)
2313                 return -rte_errno;
2314         return 0;
2315 }
2316
2317 /**
2318  * Enable a flow control configured from the control plane.
2319  *
2320  * @param dev
2321  *   Pointer to Ethernet device.
2322  * @param eth_spec
2323  *   An Ethernet flow spec to apply.
2324  * @param eth_mask
2325  *   An Ethernet flow mask to apply.
2326  *
2327  * @return
2328  *   0 on success, a negative errno value otherwise and rte_errno is set.
2329  */
2330 int
2331 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2332                struct rte_flow_item_eth *eth_spec,
2333                struct rte_flow_item_eth *eth_mask)
2334 {
2335         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2336 }
2337
2338 /**
2339  * Destroy a flow.
2340  *
2341  * @see rte_flow_destroy()
2342  * @see rte_flow_ops
2343  */
2344 int
2345 mlx5_flow_destroy(struct rte_eth_dev *dev,
2346                   struct rte_flow *flow,
2347                   struct rte_flow_error *error __rte_unused)
2348 {
2349         struct priv *priv = dev->data->dev_private;
2350
2351         flow_list_destroy(dev, &priv->flows, flow);
2352         return 0;
2353 }
2354
2355 /**
2356  * Destroy all flows.
2357  *
2358  * @see rte_flow_flush()
2359  * @see rte_flow_ops
2360  */
2361 int
2362 mlx5_flow_flush(struct rte_eth_dev *dev,
2363                 struct rte_flow_error *error __rte_unused)
2364 {
2365         struct priv *priv = dev->data->dev_private;
2366
2367         mlx5_flow_list_flush(dev, &priv->flows);
2368         return 0;
2369 }
2370
2371 /**
2372  * Isolated mode.
2373  *
2374  * @see rte_flow_isolate()
2375  * @see rte_flow_ops
2376  */
2377 int
2378 mlx5_flow_isolate(struct rte_eth_dev *dev,
2379                   int enable,
2380                   struct rte_flow_error *error)
2381 {
2382         struct priv *priv = dev->data->dev_private;
2383
2384         if (dev->data->dev_started) {
2385                 rte_flow_error_set(error, EBUSY,
2386                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2387                                    NULL,
2388                                    "port must be stopped first");
2389                 return -rte_errno;
2390         }
2391         priv->isolated = !!enable;
2392         if (enable)
2393                 dev->dev_ops = &mlx5_dev_ops_isolate;
2394         else
2395                 dev->dev_ops = &mlx5_dev_ops;
2396         return 0;
2397 }
2398
2399 /**
2400  * Query a flow.
2401  *
2402  * @see rte_flow_query()
2403  * @see rte_flow_ops
2404  */
2405 static int
2406 flow_drv_query(struct rte_eth_dev *dev,
2407                struct rte_flow *flow,
2408                const struct rte_flow_action *actions,
2409                void *data,
2410                struct rte_flow_error *error)
2411 {
2412         const struct mlx5_flow_driver_ops *fops;
2413         enum mlx5_flow_drv_type ftype = flow->drv_type;
2414
2415         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2416         fops = flow_get_drv_ops(ftype);
2417
2418         return fops->query(dev, flow, actions, data, error);
2419 }
2420
2421 /**
2422  * Query a flow.
2423  *
2424  * @see rte_flow_query()
2425  * @see rte_flow_ops
2426  */
2427 int
2428 mlx5_flow_query(struct rte_eth_dev *dev,
2429                 struct rte_flow *flow,
2430                 const struct rte_flow_action *actions,
2431                 void *data,
2432                 struct rte_flow_error *error)
2433 {
2434         int ret;
2435
2436         ret = flow_drv_query(dev, flow, actions, data, error);
2437         if (ret < 0)
2438                 return ret;
2439         return 0;
2440 }
2441
2442 /**
2443  * Convert a flow director filter to a generic flow.
2444  *
2445  * @param dev
2446  *   Pointer to Ethernet device.
2447  * @param fdir_filter
2448  *   Flow director filter to add.
2449  * @param attributes
2450  *   Generic flow parameters structure.
2451  *
2452  * @return
2453  *   0 on success, a negative errno value otherwise and rte_errno is set.
2454  */
2455 static int
2456 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2457                          const struct rte_eth_fdir_filter *fdir_filter,
2458                          struct mlx5_fdir *attributes)
2459 {
2460         struct priv *priv = dev->data->dev_private;
2461         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2462         const struct rte_eth_fdir_masks *mask =
2463                 &dev->data->dev_conf.fdir_conf.mask;
2464
2465         /* Validate queue number. */
2466         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2467                 DRV_LOG(ERR, "port %u invalid queue number %d",
2468                         dev->data->port_id, fdir_filter->action.rx_queue);
2469                 rte_errno = EINVAL;
2470                 return -rte_errno;
2471         }
2472         attributes->attr.ingress = 1;
2473         attributes->items[0] = (struct rte_flow_item) {
2474                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2475                 .spec = &attributes->l2,
2476                 .mask = &attributes->l2_mask,
2477         };
2478         switch (fdir_filter->action.behavior) {
2479         case RTE_ETH_FDIR_ACCEPT:
2480                 attributes->actions[0] = (struct rte_flow_action){
2481                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
2482                         .conf = &attributes->queue,
2483                 };
2484                 break;
2485         case RTE_ETH_FDIR_REJECT:
2486                 attributes->actions[0] = (struct rte_flow_action){
2487                         .type = RTE_FLOW_ACTION_TYPE_DROP,
2488                 };
2489                 break;
2490         default:
2491                 DRV_LOG(ERR, "port %u invalid behavior %d",
2492                         dev->data->port_id,
2493                         fdir_filter->action.behavior);
2494                 rte_errno = ENOTSUP;
2495                 return -rte_errno;
2496         }
2497         attributes->queue.index = fdir_filter->action.rx_queue;
2498         /* Handle L3. */
2499         switch (fdir_filter->input.flow_type) {
2500         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2501         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2502         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2503                 attributes->l3.ipv4.hdr = (struct ipv4_hdr){
2504                         .src_addr = input->flow.ip4_flow.src_ip,
2505                         .dst_addr = input->flow.ip4_flow.dst_ip,
2506                         .time_to_live = input->flow.ip4_flow.ttl,
2507                         .type_of_service = input->flow.ip4_flow.tos,
2508                 };
2509                 attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
2510                         .src_addr = mask->ipv4_mask.src_ip,
2511                         .dst_addr = mask->ipv4_mask.dst_ip,
2512                         .time_to_live = mask->ipv4_mask.ttl,
2513                         .type_of_service = mask->ipv4_mask.tos,
2514                         .next_proto_id = mask->ipv4_mask.proto,
2515                 };
2516                 attributes->items[1] = (struct rte_flow_item){
2517                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
2518                         .spec = &attributes->l3,
2519                         .mask = &attributes->l3_mask,
2520                 };
2521                 break;
2522         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2523         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2524         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2525                 attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2526                         .hop_limits = input->flow.ipv6_flow.hop_limits,
2527                         .proto = input->flow.ipv6_flow.proto,
2528                 };
2529
2530                 memcpy(attributes->l3.ipv6.hdr.src_addr,
2531                        input->flow.ipv6_flow.src_ip,
2532                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2533                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
2534                        input->flow.ipv6_flow.dst_ip,
2535                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2536                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2537                        mask->ipv6_mask.src_ip,
2538                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2539                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2540                        mask->ipv6_mask.dst_ip,
2541                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2542                 attributes->items[1] = (struct rte_flow_item){
2543                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
2544                         .spec = &attributes->l3,
2545                         .mask = &attributes->l3_mask,
2546                 };
2547                 break;
2548         default:
2549                 DRV_LOG(ERR, "port %u invalid flow type%d",
2550                         dev->data->port_id, fdir_filter->input.flow_type);
2551                 rte_errno = ENOTSUP;
2552                 return -rte_errno;
2553         }
2554         /* Handle L4. */
2555         switch (fdir_filter->input.flow_type) {
2556         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2557                 attributes->l4.udp.hdr = (struct udp_hdr){
2558                         .src_port = input->flow.udp4_flow.src_port,
2559                         .dst_port = input->flow.udp4_flow.dst_port,
2560                 };
2561                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
2562                         .src_port = mask->src_port_mask,
2563                         .dst_port = mask->dst_port_mask,
2564                 };
2565                 attributes->items[2] = (struct rte_flow_item){
2566                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2567                         .spec = &attributes->l4,
2568                         .mask = &attributes->l4_mask,
2569                 };
2570                 break;
2571         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2572                 attributes->l4.tcp.hdr = (struct tcp_hdr){
2573                         .src_port = input->flow.tcp4_flow.src_port,
2574                         .dst_port = input->flow.tcp4_flow.dst_port,
2575                 };
2576                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2577                         .src_port = mask->src_port_mask,
2578                         .dst_port = mask->dst_port_mask,
2579                 };
2580                 attributes->items[2] = (struct rte_flow_item){
2581                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2582                         .spec = &attributes->l4,
2583                         .mask = &attributes->l4_mask,
2584                 };
2585                 break;
2586         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2587                 attributes->l4.udp.hdr = (struct udp_hdr){
2588                         .src_port = input->flow.udp6_flow.src_port,
2589                         .dst_port = input->flow.udp6_flow.dst_port,
2590                 };
2591                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
2592                         .src_port = mask->src_port_mask,
2593                         .dst_port = mask->dst_port_mask,
2594                 };
2595                 attributes->items[2] = (struct rte_flow_item){
2596                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2597                         .spec = &attributes->l4,
2598                         .mask = &attributes->l4_mask,
2599                 };
2600                 break;
2601         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2602                 attributes->l4.tcp.hdr = (struct tcp_hdr){
2603                         .src_port = input->flow.tcp6_flow.src_port,
2604                         .dst_port = input->flow.tcp6_flow.dst_port,
2605                 };
2606                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2607                         .src_port = mask->src_port_mask,
2608                         .dst_port = mask->dst_port_mask,
2609                 };
2610                 attributes->items[2] = (struct rte_flow_item){
2611                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2612                         .spec = &attributes->l4,
2613                         .mask = &attributes->l4_mask,
2614                 };
2615                 break;
2616         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2617         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2618                 break;
2619         default:
2620                 DRV_LOG(ERR, "port %u invalid flow type%d",
2621                         dev->data->port_id, fdir_filter->input.flow_type);
2622                 rte_errno = ENOTSUP;
2623                 return -rte_errno;
2624         }
2625         return 0;
2626 }
2627
2628 #define FLOW_FDIR_CMP(f1, f2, fld) \
2629         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2630
2631 /**
2632  * Compare two FDIR flows. If items and actions are identical, the two flows are
2633  * regarded as same.
2634  *
2635  * @param dev
2636  *   Pointer to Ethernet device.
2637  * @param f1
2638  *   FDIR flow to compare.
2639  * @param f2
2640  *   FDIR flow to compare.
2641  *
2642  * @return
2643  *   Zero on match, 1 otherwise.
2644  */
2645 static int
2646 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2647 {
2648         if (FLOW_FDIR_CMP(f1, f2, attr) ||
2649             FLOW_FDIR_CMP(f1, f2, l2) ||
2650             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2651             FLOW_FDIR_CMP(f1, f2, l3) ||
2652             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2653             FLOW_FDIR_CMP(f1, f2, l4) ||
2654             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2655             FLOW_FDIR_CMP(f1, f2, actions[0].type))
2656                 return 1;
2657         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2658             FLOW_FDIR_CMP(f1, f2, queue))
2659                 return 1;
2660         return 0;
2661 }
2662
2663 /**
2664  * Search device flow list to find out a matched FDIR flow.
2665  *
2666  * @param dev
2667  *   Pointer to Ethernet device.
2668  * @param fdir_flow
2669  *   FDIR flow to lookup.
2670  *
2671  * @return
2672  *   Pointer of flow if found, NULL otherwise.
2673  */
2674 static struct rte_flow *
2675 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2676 {
2677         struct priv *priv = dev->data->dev_private;
2678         struct rte_flow *flow = NULL;
2679
2680         assert(fdir_flow);
2681         TAILQ_FOREACH(flow, &priv->flows, next) {
2682                 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2683                         DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2684                                 dev->data->port_id, (void *)flow);
2685                         break;
2686                 }
2687         }
2688         return flow;
2689 }
2690
2691 /**
2692  * Add new flow director filter and store it in list.
2693  *
2694  * @param dev
2695  *   Pointer to Ethernet device.
2696  * @param fdir_filter
2697  *   Flow director filter to add.
2698  *
2699  * @return
2700  *   0 on success, a negative errno value otherwise and rte_errno is set.
2701  */
2702 static int
2703 flow_fdir_filter_add(struct rte_eth_dev *dev,
2704                      const struct rte_eth_fdir_filter *fdir_filter)
2705 {
2706         struct priv *priv = dev->data->dev_private;
2707         struct mlx5_fdir *fdir_flow;
2708         struct rte_flow *flow;
2709         int ret;
2710
2711         fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2712         if (!fdir_flow) {
2713                 rte_errno = ENOMEM;
2714                 return -rte_errno;
2715         }
2716         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2717         if (ret)
2718                 goto error;
2719         flow = flow_fdir_filter_lookup(dev, fdir_flow);
2720         if (flow) {
2721                 rte_errno = EEXIST;
2722                 goto error;
2723         }
2724         flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2725                                 fdir_flow->items, fdir_flow->actions, NULL);
2726         if (!flow)
2727                 goto error;
2728         assert(!flow->fdir);
2729         flow->fdir = fdir_flow;
2730         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2731                 dev->data->port_id, (void *)flow);
2732         return 0;
2733 error:
2734         rte_free(fdir_flow);
2735         return -rte_errno;
2736 }
2737
2738 /**
2739  * Delete specific filter.
2740  *
2741  * @param dev
2742  *   Pointer to Ethernet device.
2743  * @param fdir_filter
2744  *   Filter to be deleted.
2745  *
2746  * @return
2747  *   0 on success, a negative errno value otherwise and rte_errno is set.
2748  */
2749 static int
2750 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2751                         const struct rte_eth_fdir_filter *fdir_filter)
2752 {
2753         struct priv *priv = dev->data->dev_private;
2754         struct rte_flow *flow;
2755         struct mlx5_fdir fdir_flow = {
2756                 .attr.group = 0,
2757         };
2758         int ret;
2759
2760         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2761         if (ret)
2762                 return -rte_errno;
2763         flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2764         if (!flow) {
2765                 rte_errno = ENOENT;
2766                 return -rte_errno;
2767         }
2768         flow_list_destroy(dev, &priv->flows, flow);
2769         DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2770                 dev->data->port_id, (void *)flow);
2771         return 0;
2772 }
2773
2774 /**
2775  * Update queue for specific filter.
2776  *
2777  * @param dev
2778  *   Pointer to Ethernet device.
2779  * @param fdir_filter
2780  *   Filter to be updated.
2781  *
2782  * @return
2783  *   0 on success, a negative errno value otherwise and rte_errno is set.
2784  */
2785 static int
2786 flow_fdir_filter_update(struct rte_eth_dev *dev,
2787                         const struct rte_eth_fdir_filter *fdir_filter)
2788 {
2789         int ret;
2790
2791         ret = flow_fdir_filter_delete(dev, fdir_filter);
2792         if (ret)
2793                 return ret;
2794         return flow_fdir_filter_add(dev, fdir_filter);
2795 }
2796
2797 /**
2798  * Flush all filters.
2799  *
2800  * @param dev
2801  *   Pointer to Ethernet device.
2802  */
2803 static void
2804 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2805 {
2806         struct priv *priv = dev->data->dev_private;
2807
2808         mlx5_flow_list_flush(dev, &priv->flows);
2809 }
2810
2811 /**
2812  * Get flow director information.
2813  *
2814  * @param dev
2815  *   Pointer to Ethernet device.
2816  * @param[out] fdir_info
2817  *   Resulting flow director information.
2818  */
2819 static void
2820 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2821 {
2822         struct rte_eth_fdir_masks *mask =
2823                 &dev->data->dev_conf.fdir_conf.mask;
2824
2825         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2826         fdir_info->guarant_spc = 0;
2827         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2828         fdir_info->max_flexpayload = 0;
2829         fdir_info->flow_types_mask[0] = 0;
2830         fdir_info->flex_payload_unit = 0;
2831         fdir_info->max_flex_payload_segment_num = 0;
2832         fdir_info->flex_payload_limit = 0;
2833         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2834 }
2835
2836 /**
2837  * Deal with flow director operations.
2838  *
2839  * @param dev
2840  *   Pointer to Ethernet device.
2841  * @param filter_op
2842  *   Operation to perform.
2843  * @param arg
2844  *   Pointer to operation-specific structure.
2845  *
2846  * @return
2847  *   0 on success, a negative errno value otherwise and rte_errno is set.
2848  */
2849 static int
2850 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2851                     void *arg)
2852 {
2853         enum rte_fdir_mode fdir_mode =
2854                 dev->data->dev_conf.fdir_conf.mode;
2855
2856         if (filter_op == RTE_ETH_FILTER_NOP)
2857                 return 0;
2858         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2859             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2860                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
2861                         dev->data->port_id, fdir_mode);
2862                 rte_errno = EINVAL;
2863                 return -rte_errno;
2864         }
2865         switch (filter_op) {
2866         case RTE_ETH_FILTER_ADD:
2867                 return flow_fdir_filter_add(dev, arg);
2868         case RTE_ETH_FILTER_UPDATE:
2869                 return flow_fdir_filter_update(dev, arg);
2870         case RTE_ETH_FILTER_DELETE:
2871                 return flow_fdir_filter_delete(dev, arg);
2872         case RTE_ETH_FILTER_FLUSH:
2873                 flow_fdir_filter_flush(dev);
2874                 break;
2875         case RTE_ETH_FILTER_INFO:
2876                 flow_fdir_info_get(dev, arg);
2877                 break;
2878         default:
2879                 DRV_LOG(DEBUG, "port %u unknown operation %u",
2880                         dev->data->port_id, filter_op);
2881                 rte_errno = EINVAL;
2882                 return -rte_errno;
2883         }
2884         return 0;
2885 }
2886
2887 /**
2888  * Manage filter operations.
2889  *
2890  * @param dev
2891  *   Pointer to Ethernet device structure.
2892  * @param filter_type
2893  *   Filter type.
2894  * @param filter_op
2895  *   Operation to perform.
2896  * @param arg
2897  *   Pointer to operation-specific structure.
2898  *
2899  * @return
2900  *   0 on success, a negative errno value otherwise and rte_errno is set.
2901  */
2902 int
2903 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2904                      enum rte_filter_type filter_type,
2905                      enum rte_filter_op filter_op,
2906                      void *arg)
2907 {
2908         switch (filter_type) {
2909         case RTE_ETH_FILTER_GENERIC:
2910                 if (filter_op != RTE_ETH_FILTER_GET) {
2911                         rte_errno = EINVAL;
2912                         return -rte_errno;
2913                 }
2914                 *(const void **)arg = &mlx5_flow_ops;
2915                 return 0;
2916         case RTE_ETH_FILTER_FDIR:
2917                 return flow_fdir_ctrl_func(dev, filter_op, arg);
2918         default:
2919                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
2920                         dev->data->port_id, filter_type);
2921                 rte_errno = ENOTSUP;
2922                 return -rte_errno;
2923         }
2924         return 0;
2925 }