New upstream version 18.11-rc4
[deb_dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_eth_ctrl.h>
25 #include <rte_ethdev_driver.h>
26 #include <rte_flow.h>
27 #include <rte_flow_driver.h>
28 #include <rte_malloc.h>
29 #include <rte_ip.h>
30
31 #include "mlx5.h"
32 #include "mlx5_defs.h"
33 #include "mlx5_prm.h"
34 #include "mlx5_glue.h"
35 #include "mlx5_flow.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55         [MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59
60 enum mlx5_expansion {
61         MLX5_EXPANSION_ROOT,
62         MLX5_EXPANSION_ROOT_OUTER,
63         MLX5_EXPANSION_ROOT_ETH_VLAN,
64         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_ETH,
66         MLX5_EXPANSION_OUTER_ETH_VLAN,
67         MLX5_EXPANSION_OUTER_VLAN,
68         MLX5_EXPANSION_OUTER_IPV4,
69         MLX5_EXPANSION_OUTER_IPV4_UDP,
70         MLX5_EXPANSION_OUTER_IPV4_TCP,
71         MLX5_EXPANSION_OUTER_IPV6,
72         MLX5_EXPANSION_OUTER_IPV6_UDP,
73         MLX5_EXPANSION_OUTER_IPV6_TCP,
74         MLX5_EXPANSION_VXLAN,
75         MLX5_EXPANSION_VXLAN_GPE,
76         MLX5_EXPANSION_GRE,
77         MLX5_EXPANSION_MPLS,
78         MLX5_EXPANSION_ETH,
79         MLX5_EXPANSION_ETH_VLAN,
80         MLX5_EXPANSION_VLAN,
81         MLX5_EXPANSION_IPV4,
82         MLX5_EXPANSION_IPV4_UDP,
83         MLX5_EXPANSION_IPV4_TCP,
84         MLX5_EXPANSION_IPV6,
85         MLX5_EXPANSION_IPV6_UDP,
86         MLX5_EXPANSION_IPV6_TCP,
87 };
88
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91         [MLX5_EXPANSION_ROOT] = {
92                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93                                                  MLX5_EXPANSION_IPV4,
94                                                  MLX5_EXPANSION_IPV6),
95                 .type = RTE_FLOW_ITEM_TYPE_END,
96         },
97         [MLX5_EXPANSION_ROOT_OUTER] = {
98                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99                                                  MLX5_EXPANSION_OUTER_IPV4,
100                                                  MLX5_EXPANSION_OUTER_IPV6),
101                 .type = RTE_FLOW_ITEM_TYPE_END,
102         },
103         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105                 .type = RTE_FLOW_ITEM_TYPE_END,
106         },
107         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109                 .type = RTE_FLOW_ITEM_TYPE_END,
110         },
111         [MLX5_EXPANSION_OUTER_ETH] = {
112                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113                                                  MLX5_EXPANSION_OUTER_IPV6,
114                                                  MLX5_EXPANSION_MPLS),
115                 .type = RTE_FLOW_ITEM_TYPE_ETH,
116                 .rss_types = 0,
117         },
118         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120                 .type = RTE_FLOW_ITEM_TYPE_ETH,
121                 .rss_types = 0,
122         },
123         [MLX5_EXPANSION_OUTER_VLAN] = {
124                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125                                                  MLX5_EXPANSION_OUTER_IPV6),
126                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
127         },
128         [MLX5_EXPANSION_OUTER_IPV4] = {
129                 .next = RTE_FLOW_EXPAND_RSS_NEXT
130                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
131                          MLX5_EXPANSION_OUTER_IPV4_TCP,
132                          MLX5_EXPANSION_GRE),
133                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
134                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135                         ETH_RSS_NONFRAG_IPV4_OTHER,
136         },
137         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139                                                  MLX5_EXPANSION_VXLAN_GPE),
140                 .type = RTE_FLOW_ITEM_TYPE_UDP,
141                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142         },
143         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144                 .type = RTE_FLOW_ITEM_TYPE_TCP,
145                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146         },
147         [MLX5_EXPANSION_OUTER_IPV6] = {
148                 .next = RTE_FLOW_EXPAND_RSS_NEXT
149                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
150                          MLX5_EXPANSION_OUTER_IPV6_TCP),
151                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
152                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153                         ETH_RSS_NONFRAG_IPV6_OTHER,
154         },
155         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157                                                  MLX5_EXPANSION_VXLAN_GPE),
158                 .type = RTE_FLOW_ITEM_TYPE_UDP,
159                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160         },
161         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162                 .type = RTE_FLOW_ITEM_TYPE_TCP,
163                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164         },
165         [MLX5_EXPANSION_VXLAN] = {
166                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
168         },
169         [MLX5_EXPANSION_VXLAN_GPE] = {
170                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171                                                  MLX5_EXPANSION_IPV4,
172                                                  MLX5_EXPANSION_IPV6),
173                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174         },
175         [MLX5_EXPANSION_GRE] = {
176                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177                 .type = RTE_FLOW_ITEM_TYPE_GRE,
178         },
179         [MLX5_EXPANSION_MPLS] = {
180                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181                                                  MLX5_EXPANSION_IPV6),
182                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
183         },
184         [MLX5_EXPANSION_ETH] = {
185                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186                                                  MLX5_EXPANSION_IPV6),
187                 .type = RTE_FLOW_ITEM_TYPE_ETH,
188         },
189         [MLX5_EXPANSION_ETH_VLAN] = {
190                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191                 .type = RTE_FLOW_ITEM_TYPE_ETH,
192         },
193         [MLX5_EXPANSION_VLAN] = {
194                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195                                                  MLX5_EXPANSION_IPV6),
196                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
197         },
198         [MLX5_EXPANSION_IPV4] = {
199                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200                                                  MLX5_EXPANSION_IPV4_TCP),
201                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
202                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203                         ETH_RSS_NONFRAG_IPV4_OTHER,
204         },
205         [MLX5_EXPANSION_IPV4_UDP] = {
206                 .type = RTE_FLOW_ITEM_TYPE_UDP,
207                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208         },
209         [MLX5_EXPANSION_IPV4_TCP] = {
210                 .type = RTE_FLOW_ITEM_TYPE_TCP,
211                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212         },
213         [MLX5_EXPANSION_IPV6] = {
214                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215                                                  MLX5_EXPANSION_IPV6_TCP),
216                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
217                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218                         ETH_RSS_NONFRAG_IPV6_OTHER,
219         },
220         [MLX5_EXPANSION_IPV6_UDP] = {
221                 .type = RTE_FLOW_ITEM_TYPE_UDP,
222                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223         },
224         [MLX5_EXPANSION_IPV6_TCP] = {
225                 .type = RTE_FLOW_ITEM_TYPE_TCP,
226                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227         },
228 };
229
230 static const struct rte_flow_ops mlx5_flow_ops = {
231         .validate = mlx5_flow_validate,
232         .create = mlx5_flow_create,
233         .destroy = mlx5_flow_destroy,
234         .flush = mlx5_flow_flush,
235         .isolate = mlx5_flow_isolate,
236         .query = mlx5_flow_query,
237 };
238
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241         struct rte_flow_attr attr;
242         struct rte_flow_item items[4];
243         struct rte_flow_item_eth l2;
244         struct rte_flow_item_eth l2_mask;
245         union {
246                 struct rte_flow_item_ipv4 ipv4;
247                 struct rte_flow_item_ipv6 ipv6;
248         } l3;
249         union {
250                 struct rte_flow_item_ipv4 ipv4;
251                 struct rte_flow_item_ipv6 ipv6;
252         } l3_mask;
253         union {
254                 struct rte_flow_item_udp udp;
255                 struct rte_flow_item_tcp tcp;
256         } l4;
257         union {
258                 struct rte_flow_item_udp udp;
259                 struct rte_flow_item_tcp tcp;
260         } l4_mask;
261         struct rte_flow_action actions[2];
262         struct rte_flow_action_queue queue;
263 };
264
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273         { 9, 10, 11 }, { 12, 13, 14 },
274 };
275
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283         {
284                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
285                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286         },
287         {
288                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290         },
291         {
292                 .tunnel = MLX5_FLOW_LAYER_GRE,
293                 .ptype = RTE_PTYPE_TUNNEL_GRE,
294         },
295         {
296                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
298         },
299         {
300                 .tunnel = MLX5_FLOW_LAYER_MPLS,
301                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302         },
303 };
304
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318         struct {
319                 struct ibv_flow_attr attr;
320                 struct ibv_flow_spec_eth eth;
321                 struct ibv_flow_spec_action_drop drop;
322         } flow_attr = {
323                 .attr = {
324                         .num_of_specs = 2,
325                 },
326                 .eth = {
327                         .type = IBV_FLOW_SPEC_ETH,
328                         .size = sizeof(struct ibv_flow_spec_eth),
329                 },
330                 .drop = {
331                         .size = sizeof(struct ibv_flow_spec_action_drop),
332                         .type = IBV_FLOW_SPEC_ACTION_DROP,
333                 },
334         };
335         struct ibv_flow *flow;
336         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337         uint16_t vprio[] = { 8, 16 };
338         int i;
339         int priority = 0;
340
341         if (!drop) {
342                 rte_errno = ENOTSUP;
343                 return -rte_errno;
344         }
345         for (i = 0; i != RTE_DIM(vprio); i++) {
346                 flow_attr.attr.priority = vprio[i] - 1;
347                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348                 if (!flow)
349                         break;
350                 claim_zero(mlx5_glue->destroy_flow(flow));
351                 priority = vprio[i];
352         }
353         switch (priority) {
354         case 8:
355                 priority = RTE_DIM(priority_map_3);
356                 break;
357         case 16:
358                 priority = RTE_DIM(priority_map_5);
359                 break;
360         default:
361                 rte_errno = ENOTSUP;
362                 DRV_LOG(ERR,
363                         "port %u verbs maximum priority: %d expected 8/16",
364                         dev->data->port_id, vprio[i]);
365                 return -rte_errno;
366         }
367         mlx5_hrxq_drop_release(dev);
368         DRV_LOG(INFO, "port %u flow maximum priority: %d",
369                 dev->data->port_id, priority);
370         return priority;
371 }
372
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387                                    uint32_t subpriority)
388 {
389         uint32_t res = 0;
390         struct priv *priv = dev->data->dev_private;
391
392         switch (priv->config.flow_prio) {
393         case RTE_DIM(priority_map_3):
394                 res = priority_map_3[priority][subpriority];
395                 break;
396         case RTE_DIM(priority_map_5):
397                 res = priority_map_5[priority][subpriority];
398                 break;
399         }
400         return  res;
401 }
402
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423                           const uint8_t *mask,
424                           const uint8_t *nic_mask,
425                           unsigned int size,
426                           struct rte_flow_error *error)
427 {
428         unsigned int i;
429
430         assert(nic_mask);
431         for (i = 0; i < size; ++i)
432                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
433                         return rte_flow_error_set(error, ENOTSUP,
434                                                   RTE_FLOW_ERROR_TYPE_ITEM,
435                                                   item,
436                                                   "mask enables non supported"
437                                                   " bits");
438         if (!item->spec && (item->mask || item->last))
439                 return rte_flow_error_set(error, EINVAL,
440                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
441                                           "mask/last without a spec is not"
442                                           " supported");
443         if (item->spec && item->last) {
444                 uint8_t spec[size];
445                 uint8_t last[size];
446                 unsigned int i;
447                 int ret;
448
449                 for (i = 0; i < size; ++i) {
450                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452                 }
453                 ret = memcmp(spec, last, size);
454                 if (ret != 0)
455                         return rte_flow_error_set(error, EINVAL,
456                                                   RTE_FLOW_ERROR_TYPE_ITEM,
457                                                   item,
458                                                   "range is not valid");
459         }
460         return 0;
461 }
462
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480                             int tunnel __rte_unused, uint64_t layer_types,
481                             uint64_t hash_fields)
482 {
483         struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485         int rss_request_inner = flow->rss.level >= 2;
486
487         /* Check RSS hash level for tunnel. */
488         if (tunnel && rss_request_inner)
489                 hash_fields |= IBV_RX_HASH_INNER;
490         else if (tunnel || rss_request_inner)
491                 return 0;
492 #endif
493         /* Check if requested layer matches RSS hash fields. */
494         if (!(flow->rss.types & layer_types))
495                 return 0;
496         return hash_fields;
497 }
498
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510         unsigned int i;
511         uint32_t tunnel_ptype = 0;
512
513         /* Look up for the ptype to use. */
514         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515                 if (!rxq_ctrl->flow_tunnels_n[i])
516                         continue;
517                 if (!tunnel_ptype) {
518                         tunnel_ptype = tunnels_info[i].ptype;
519                 } else {
520                         tunnel_ptype = 0;
521                         break;
522                 }
523         }
524         rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539         struct priv *priv = dev->data->dev_private;
540         struct rte_flow *flow = dev_flow->flow;
541         const int mark = !!(flow->actions &
542                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544         unsigned int i;
545
546         for (i = 0; i != flow->rss.queue_num; ++i) {
547                 int idx = (*flow->queue)[i];
548                 struct mlx5_rxq_ctrl *rxq_ctrl =
549                         container_of((*priv->rxqs)[idx],
550                                      struct mlx5_rxq_ctrl, rxq);
551
552                 if (mark) {
553                         rxq_ctrl->rxq.mark = 1;
554                         rxq_ctrl->flow_mark_n++;
555                 }
556                 if (tunnel) {
557                         unsigned int j;
558
559                         /* Increase the counter matching the flow. */
560                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561                                 if ((tunnels_info[j].tunnel &
562                                      dev_flow->layers) ==
563                                     tunnels_info[j].tunnel) {
564                                         rxq_ctrl->flow_tunnels_n[j]++;
565                                         break;
566                                 }
567                         }
568                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
569                 }
570         }
571 }
572
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584         struct mlx5_flow *dev_flow;
585
586         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587                 flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602         struct priv *priv = dev->data->dev_private;
603         struct rte_flow *flow = dev_flow->flow;
604         const int mark = !!(flow->actions &
605                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607         unsigned int i;
608
609         assert(dev->data->dev_started);
610         for (i = 0; i != flow->rss.queue_num; ++i) {
611                 int idx = (*flow->queue)[i];
612                 struct mlx5_rxq_ctrl *rxq_ctrl =
613                         container_of((*priv->rxqs)[idx],
614                                      struct mlx5_rxq_ctrl, rxq);
615
616                 if (mark) {
617                         rxq_ctrl->flow_mark_n--;
618                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619                 }
620                 if (tunnel) {
621                         unsigned int j;
622
623                         /* Decrease the counter matching the flow. */
624                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625                                 if ((tunnels_info[j].tunnel &
626                                      dev_flow->layers) ==
627                                     tunnels_info[j].tunnel) {
628                                         rxq_ctrl->flow_tunnels_n[j]--;
629                                         break;
630                                 }
631                         }
632                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
633                 }
634         }
635 }
636
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649         struct mlx5_flow *dev_flow;
650
651         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652                 flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664         struct priv *priv = dev->data->dev_private;
665         unsigned int i;
666
667         for (i = 0; i != priv->rxqs_n; ++i) {
668                 struct mlx5_rxq_ctrl *rxq_ctrl;
669                 unsigned int j;
670
671                 if (!(*priv->rxqs)[i])
672                         continue;
673                 rxq_ctrl = container_of((*priv->rxqs)[i],
674                                         struct mlx5_rxq_ctrl, rxq);
675                 rxq_ctrl->flow_mark_n = 0;
676                 rxq_ctrl->rxq.mark = 0;
677                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678                         rxq_ctrl->flow_tunnels_n[j] = 0;
679                 rxq_ctrl->rxq.tunnel = 0;
680         }
681 }
682
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698                                const struct rte_flow_attr *attr,
699                                struct rte_flow_error *error)
700 {
701
702         if (action_flags & MLX5_FLOW_ACTION_DROP)
703                 return rte_flow_error_set(error, EINVAL,
704                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705                                           "can't drop and flag in same flow");
706         if (action_flags & MLX5_FLOW_ACTION_MARK)
707                 return rte_flow_error_set(error, EINVAL,
708                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709                                           "can't mark and flag in same flow");
710         if (action_flags & MLX5_FLOW_ACTION_FLAG)
711                 return rte_flow_error_set(error, EINVAL,
712                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713                                           "can't have 2 flag"
714                                           " actions in same flow");
715         if (attr->egress)
716                 return rte_flow_error_set(error, ENOTSUP,
717                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718                                           "flag action not supported for "
719                                           "egress");
720         return 0;
721 }
722
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740                                uint64_t action_flags,
741                                const struct rte_flow_attr *attr,
742                                struct rte_flow_error *error)
743 {
744         const struct rte_flow_action_mark *mark = action->conf;
745
746         if (!mark)
747                 return rte_flow_error_set(error, EINVAL,
748                                           RTE_FLOW_ERROR_TYPE_ACTION,
749                                           action,
750                                           "configuration cannot be null");
751         if (mark->id >= MLX5_FLOW_MARK_MAX)
752                 return rte_flow_error_set(error, EINVAL,
753                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754                                           &mark->id,
755                                           "mark id must in 0 <= id < "
756                                           RTE_STR(MLX5_FLOW_MARK_MAX));
757         if (action_flags & MLX5_FLOW_ACTION_DROP)
758                 return rte_flow_error_set(error, EINVAL,
759                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760                                           "can't drop and mark in same flow");
761         if (action_flags & MLX5_FLOW_ACTION_FLAG)
762                 return rte_flow_error_set(error, EINVAL,
763                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764                                           "can't flag and mark in same flow");
765         if (action_flags & MLX5_FLOW_ACTION_MARK)
766                 return rte_flow_error_set(error, EINVAL,
767                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768                                           "can't have 2 mark actions in same"
769                                           " flow");
770         if (attr->egress)
771                 return rte_flow_error_set(error, ENOTSUP,
772                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773                                           "mark action not supported for "
774                                           "egress");
775         return 0;
776 }
777
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_ernno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793                                const struct rte_flow_attr *attr,
794                                struct rte_flow_error *error)
795 {
796         if (action_flags & MLX5_FLOW_ACTION_FLAG)
797                 return rte_flow_error_set(error, EINVAL,
798                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799                                           "can't drop and flag in same flow");
800         if (action_flags & MLX5_FLOW_ACTION_MARK)
801                 return rte_flow_error_set(error, EINVAL,
802                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803                                           "can't drop and mark in same flow");
804         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805                 return rte_flow_error_set(error, EINVAL,
806                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807                                           "can't have 2 fate actions in"
808                                           " same flow");
809         if (attr->egress)
810                 return rte_flow_error_set(error, ENOTSUP,
811                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812                                           "drop action not supported for "
813                                           "egress");
814         return 0;
815 }
816
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_ernno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836                                 uint64_t action_flags,
837                                 struct rte_eth_dev *dev,
838                                 const struct rte_flow_attr *attr,
839                                 struct rte_flow_error *error)
840 {
841         struct priv *priv = dev->data->dev_private;
842         const struct rte_flow_action_queue *queue = action->conf;
843
844         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845                 return rte_flow_error_set(error, EINVAL,
846                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847                                           "can't have 2 fate actions in"
848                                           " same flow");
849         if (queue->index >= priv->rxqs_n)
850                 return rte_flow_error_set(error, EINVAL,
851                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852                                           &queue->index,
853                                           "queue index out of range");
854         if (!(*priv->rxqs)[queue->index])
855                 return rte_flow_error_set(error, EINVAL,
856                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
857                                           &queue->index,
858                                           "queue is not configured");
859         if (attr->egress)
860                 return rte_flow_error_set(error, ENOTSUP,
861                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
862                                           "queue action not supported for "
863                                           "egress");
864         return 0;
865 }
866
867 /*
868  * Validate the rss action.
869  *
870  * @param[in] action
871  *   Pointer to the queue action.
872  * @param[in] action_flags
873  *   Bit-fields that holds the actions detected until now.
874  * @param[in] dev
875  *   Pointer to the Ethernet device structure.
876  * @param[in] attr
877  *   Attributes of flow that includes this action.
878  * @param[out] error
879  *   Pointer to error structure.
880  *
881  * @return
882  *   0 on success, a negative errno value otherwise and rte_ernno is set.
883  */
884 int
885 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
886                               uint64_t action_flags,
887                               struct rte_eth_dev *dev,
888                               const struct rte_flow_attr *attr,
889                               struct rte_flow_error *error)
890 {
891         struct priv *priv = dev->data->dev_private;
892         const struct rte_flow_action_rss *rss = action->conf;
893         unsigned int i;
894
895         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
896                 return rte_flow_error_set(error, EINVAL,
897                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
898                                           "can't have 2 fate actions"
899                                           " in same flow");
900         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
901             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
902                 return rte_flow_error_set(error, ENOTSUP,
903                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
904                                           &rss->func,
905                                           "RSS hash function not supported");
906 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
907         if (rss->level > 2)
908 #else
909         if (rss->level > 1)
910 #endif
911                 return rte_flow_error_set(error, ENOTSUP,
912                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
913                                           &rss->level,
914                                           "tunnel RSS is not supported");
915         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
916         if (rss->key_len == 0 && rss->key != NULL)
917                 return rte_flow_error_set(error, ENOTSUP,
918                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
919                                           &rss->key_len,
920                                           "RSS hash key length 0");
921         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
922                 return rte_flow_error_set(error, ENOTSUP,
923                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
924                                           &rss->key_len,
925                                           "RSS hash key too small");
926         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
927                 return rte_flow_error_set(error, ENOTSUP,
928                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
929                                           &rss->key_len,
930                                           "RSS hash key too large");
931         if (rss->queue_num > priv->config.ind_table_max_size)
932                 return rte_flow_error_set(error, ENOTSUP,
933                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
934                                           &rss->queue_num,
935                                           "number of queues too large");
936         if (rss->types & MLX5_RSS_HF_MASK)
937                 return rte_flow_error_set(error, ENOTSUP,
938                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
939                                           &rss->types,
940                                           "some RSS protocols are not"
941                                           " supported");
942         for (i = 0; i != rss->queue_num; ++i) {
943                 if (!(*priv->rxqs)[rss->queue[i]])
944                         return rte_flow_error_set
945                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
946                                  &rss->queue[i], "queue is not configured");
947         }
948         if (attr->egress)
949                 return rte_flow_error_set(error, ENOTSUP,
950                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
951                                           "rss action not supported for "
952                                           "egress");
953         return 0;
954 }
955
956 /*
957  * Validate the count action.
958  *
959  * @param[in] dev
960  *   Pointer to the Ethernet device structure.
961  * @param[in] attr
962  *   Attributes of flow that includes this action.
963  * @param[out] error
964  *   Pointer to error structure.
965  *
966  * @return
967  *   0 on success, a negative errno value otherwise and rte_ernno is set.
968  */
969 int
970 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
971                                 const struct rte_flow_attr *attr,
972                                 struct rte_flow_error *error)
973 {
974         if (attr->egress)
975                 return rte_flow_error_set(error, ENOTSUP,
976                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
977                                           "count action not supported for "
978                                           "egress");
979         return 0;
980 }
981
982 /**
983  * Verify the @p attributes will be correctly understood by the NIC and store
984  * them in the @p flow if everything is correct.
985  *
986  * @param[in] dev
987  *   Pointer to the Ethernet device structure.
988  * @param[in] attributes
989  *   Pointer to flow attributes
990  * @param[out] error
991  *   Pointer to error structure.
992  *
993  * @return
994  *   0 on success, a negative errno value otherwise and rte_errno is set.
995  */
996 int
997 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
998                               const struct rte_flow_attr *attributes,
999                               struct rte_flow_error *error)
1000 {
1001         struct priv *priv = dev->data->dev_private;
1002         uint32_t priority_max = priv->config.flow_prio - 1;
1003
1004         if (attributes->group)
1005                 return rte_flow_error_set(error, ENOTSUP,
1006                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1007                                           NULL, "groups is not supported");
1008         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1009             attributes->priority >= priority_max)
1010                 return rte_flow_error_set(error, ENOTSUP,
1011                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1012                                           NULL, "priority out of range");
1013         if (attributes->egress)
1014                 return rte_flow_error_set(error, ENOTSUP,
1015                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1016                                           "egress is not supported");
1017         if (attributes->transfer)
1018                 return rte_flow_error_set(error, ENOTSUP,
1019                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1020                                           NULL, "transfer is not supported");
1021         if (!attributes->ingress)
1022                 return rte_flow_error_set(error, EINVAL,
1023                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1024                                           NULL,
1025                                           "ingress attribute is mandatory");
1026         return 0;
1027 }
1028
1029 /**
1030  * Validate Ethernet item.
1031  *
1032  * @param[in] item
1033  *   Item specification.
1034  * @param[in] item_flags
1035  *   Bit-fields that holds the items detected until now.
1036  * @param[out] error
1037  *   Pointer to error structure.
1038  *
1039  * @return
1040  *   0 on success, a negative errno value otherwise and rte_errno is set.
1041  */
1042 int
1043 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1044                             uint64_t item_flags,
1045                             struct rte_flow_error *error)
1046 {
1047         const struct rte_flow_item_eth *mask = item->mask;
1048         const struct rte_flow_item_eth nic_mask = {
1049                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1050                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1051                 .type = RTE_BE16(0xffff),
1052         };
1053         int ret;
1054         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1055         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1056                                        MLX5_FLOW_LAYER_OUTER_L2;
1057
1058         if (item_flags & ethm)
1059                 return rte_flow_error_set(error, ENOTSUP,
1060                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1061                                           "multiple L2 layers not supported");
1062         if (!mask)
1063                 mask = &rte_flow_item_eth_mask;
1064         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1065                                         (const uint8_t *)&nic_mask,
1066                                         sizeof(struct rte_flow_item_eth),
1067                                         error);
1068         return ret;
1069 }
1070
1071 /**
1072  * Validate VLAN item.
1073  *
1074  * @param[in] item
1075  *   Item specification.
1076  * @param[in] item_flags
1077  *   Bit-fields that holds the items detected until now.
1078  * @param[out] error
1079  *   Pointer to error structure.
1080  *
1081  * @return
1082  *   0 on success, a negative errno value otherwise and rte_errno is set.
1083  */
1084 int
1085 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1086                              uint64_t item_flags,
1087                              struct rte_flow_error *error)
1088 {
1089         const struct rte_flow_item_vlan *spec = item->spec;
1090         const struct rte_flow_item_vlan *mask = item->mask;
1091         const struct rte_flow_item_vlan nic_mask = {
1092                 .tci = RTE_BE16(0x0fff),
1093                 .inner_type = RTE_BE16(0xffff),
1094         };
1095         uint16_t vlan_tag = 0;
1096         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1097         int ret;
1098         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1099                                         MLX5_FLOW_LAYER_INNER_L4) :
1100                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1101                                         MLX5_FLOW_LAYER_OUTER_L4);
1102         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1103                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1104
1105         if (item_flags & vlanm)
1106                 return rte_flow_error_set(error, EINVAL,
1107                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1108                                           "multiple VLAN layers not supported");
1109         else if ((item_flags & l34m) != 0)
1110                 return rte_flow_error_set(error, EINVAL,
1111                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1112                                           "L2 layer cannot follow L3/L4 layer");
1113         if (!mask)
1114                 mask = &rte_flow_item_vlan_mask;
1115         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1116                                         (const uint8_t *)&nic_mask,
1117                                         sizeof(struct rte_flow_item_vlan),
1118                                         error);
1119         if (ret)
1120                 return ret;
1121         if (spec) {
1122                 vlan_tag = spec->tci;
1123                 vlan_tag &= mask->tci;
1124         }
1125         /*
1126          * From verbs perspective an empty VLAN is equivalent
1127          * to a packet without VLAN layer.
1128          */
1129         if (!vlan_tag)
1130                 return rte_flow_error_set(error, EINVAL,
1131                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1132                                           item->spec,
1133                                           "VLAN cannot be empty");
1134         return 0;
1135 }
1136
1137 /**
1138  * Validate IPV4 item.
1139  *
1140  * @param[in] item
1141  *   Item specification.
1142  * @param[in] item_flags
1143  *   Bit-fields that holds the items detected until now.
1144  * @param[out] error
1145  *   Pointer to error structure.
1146  *
1147  * @return
1148  *   0 on success, a negative errno value otherwise and rte_errno is set.
1149  */
1150 int
1151 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1152                              uint64_t item_flags,
1153                              struct rte_flow_error *error)
1154 {
1155         const struct rte_flow_item_ipv4 *mask = item->mask;
1156         const struct rte_flow_item_ipv4 nic_mask = {
1157                 .hdr = {
1158                         .src_addr = RTE_BE32(0xffffffff),
1159                         .dst_addr = RTE_BE32(0xffffffff),
1160                         .type_of_service = 0xff,
1161                         .next_proto_id = 0xff,
1162                 },
1163         };
1164         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1165         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1166                                       MLX5_FLOW_LAYER_OUTER_L3;
1167         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1168                                       MLX5_FLOW_LAYER_OUTER_L4;
1169         int ret;
1170
1171         if (item_flags & l3m)
1172                 return rte_flow_error_set(error, ENOTSUP,
1173                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1174                                           "multiple L3 layers not supported");
1175         else if (item_flags & l4m)
1176                 return rte_flow_error_set(error, EINVAL,
1177                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1178                                           "L3 cannot follow an L4 layer.");
1179         if (!mask)
1180                 mask = &rte_flow_item_ipv4_mask;
1181         else if (mask->hdr.next_proto_id != 0 &&
1182                  mask->hdr.next_proto_id != 0xff)
1183                 return rte_flow_error_set(error, EINVAL,
1184                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1185                                           "partial mask is not supported"
1186                                           " for protocol");
1187         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1188                                         (const uint8_t *)&nic_mask,
1189                                         sizeof(struct rte_flow_item_ipv4),
1190                                         error);
1191         if (ret < 0)
1192                 return ret;
1193         return 0;
1194 }
1195
1196 /**
1197  * Validate IPV6 item.
1198  *
1199  * @param[in] item
1200  *   Item specification.
1201  * @param[in] item_flags
1202  *   Bit-fields that holds the items detected until now.
1203  * @param[out] error
1204  *   Pointer to error structure.
1205  *
1206  * @return
1207  *   0 on success, a negative errno value otherwise and rte_errno is set.
1208  */
1209 int
1210 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1211                              uint64_t item_flags,
1212                              struct rte_flow_error *error)
1213 {
1214         const struct rte_flow_item_ipv6 *mask = item->mask;
1215         const struct rte_flow_item_ipv6 nic_mask = {
1216                 .hdr = {
1217                         .src_addr =
1218                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1219                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1220                         .dst_addr =
1221                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1222                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1223                         .vtc_flow = RTE_BE32(0xffffffff),
1224                         .proto = 0xff,
1225                         .hop_limits = 0xff,
1226                 },
1227         };
1228         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1229         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1230                                       MLX5_FLOW_LAYER_OUTER_L3;
1231         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1232                                       MLX5_FLOW_LAYER_OUTER_L4;
1233         int ret;
1234
1235         if (item_flags & l3m)
1236                 return rte_flow_error_set(error, ENOTSUP,
1237                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1238                                           "multiple L3 layers not supported");
1239         else if (item_flags & l4m)
1240                 return rte_flow_error_set(error, EINVAL,
1241                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1242                                           "L3 cannot follow an L4 layer.");
1243         if (!mask)
1244                 mask = &rte_flow_item_ipv6_mask;
1245         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1246                                         (const uint8_t *)&nic_mask,
1247                                         sizeof(struct rte_flow_item_ipv6),
1248                                         error);
1249         if (ret < 0)
1250                 return ret;
1251         return 0;
1252 }
1253
1254 /**
1255  * Validate UDP item.
1256  *
1257  * @param[in] item
1258  *   Item specification.
1259  * @param[in] item_flags
1260  *   Bit-fields that holds the items detected until now.
1261  * @param[in] target_protocol
1262  *   The next protocol in the previous item.
1263  * @param[in] flow_mask
1264  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1265  * @param[out] error
1266  *   Pointer to error structure.
1267  *
1268  * @return
1269  *   0 on success, a negative errno value otherwise and rte_errno is set.
1270  */
1271 int
1272 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1273                             uint64_t item_flags,
1274                             uint8_t target_protocol,
1275                             struct rte_flow_error *error)
1276 {
1277         const struct rte_flow_item_udp *mask = item->mask;
1278         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1279         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1280                                       MLX5_FLOW_LAYER_OUTER_L3;
1281         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1282                                       MLX5_FLOW_LAYER_OUTER_L4;
1283         int ret;
1284
1285         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1286                 return rte_flow_error_set(error, EINVAL,
1287                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1288                                           "protocol filtering not compatible"
1289                                           " with UDP layer");
1290         if (!(item_flags & l3m))
1291                 return rte_flow_error_set(error, EINVAL,
1292                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1293                                           "L3 is mandatory to filter on L4");
1294         if (item_flags & l4m)
1295                 return rte_flow_error_set(error, EINVAL,
1296                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1297                                           "multiple L4 layers not supported");
1298         if (!mask)
1299                 mask = &rte_flow_item_udp_mask;
1300         ret = mlx5_flow_item_acceptable
1301                 (item, (const uint8_t *)mask,
1302                  (const uint8_t *)&rte_flow_item_udp_mask,
1303                  sizeof(struct rte_flow_item_udp), error);
1304         if (ret < 0)
1305                 return ret;
1306         return 0;
1307 }
1308
1309 /**
1310  * Validate TCP item.
1311  *
1312  * @param[in] item
1313  *   Item specification.
1314  * @param[in] item_flags
1315  *   Bit-fields that holds the items detected until now.
1316  * @param[in] target_protocol
1317  *   The next protocol in the previous item.
1318  * @param[out] error
1319  *   Pointer to error structure.
1320  *
1321  * @return
1322  *   0 on success, a negative errno value otherwise and rte_errno is set.
1323  */
1324 int
1325 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1326                             uint64_t item_flags,
1327                             uint8_t target_protocol,
1328                             const struct rte_flow_item_tcp *flow_mask,
1329                             struct rte_flow_error *error)
1330 {
1331         const struct rte_flow_item_tcp *mask = item->mask;
1332         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1333         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1334                                       MLX5_FLOW_LAYER_OUTER_L3;
1335         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1336                                       MLX5_FLOW_LAYER_OUTER_L4;
1337         int ret;
1338
1339         assert(flow_mask);
1340         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1341                 return rte_flow_error_set(error, EINVAL,
1342                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1343                                           "protocol filtering not compatible"
1344                                           " with TCP layer");
1345         if (!(item_flags & l3m))
1346                 return rte_flow_error_set(error, EINVAL,
1347                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1348                                           "L3 is mandatory to filter on L4");
1349         if (item_flags & l4m)
1350                 return rte_flow_error_set(error, EINVAL,
1351                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1352                                           "multiple L4 layers not supported");
1353         if (!mask)
1354                 mask = &rte_flow_item_tcp_mask;
1355         ret = mlx5_flow_item_acceptable
1356                 (item, (const uint8_t *)mask,
1357                  (const uint8_t *)flow_mask,
1358                  sizeof(struct rte_flow_item_tcp), error);
1359         if (ret < 0)
1360                 return ret;
1361         return 0;
1362 }
1363
1364 /**
1365  * Validate VXLAN item.
1366  *
1367  * @param[in] item
1368  *   Item specification.
1369  * @param[in] item_flags
1370  *   Bit-fields that holds the items detected until now.
1371  * @param[in] target_protocol
1372  *   The next protocol in the previous item.
1373  * @param[out] error
1374  *   Pointer to error structure.
1375  *
1376  * @return
1377  *   0 on success, a negative errno value otherwise and rte_errno is set.
1378  */
1379 int
1380 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1381                               uint64_t item_flags,
1382                               struct rte_flow_error *error)
1383 {
1384         const struct rte_flow_item_vxlan *spec = item->spec;
1385         const struct rte_flow_item_vxlan *mask = item->mask;
1386         int ret;
1387         union vni {
1388                 uint32_t vlan_id;
1389                 uint8_t vni[4];
1390         } id = { .vlan_id = 0, };
1391         uint32_t vlan_id = 0;
1392
1393
1394         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1395                 return rte_flow_error_set(error, ENOTSUP,
1396                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1397                                           "multiple tunnel layers not"
1398                                           " supported");
1399         /*
1400          * Verify only UDPv4 is present as defined in
1401          * https://tools.ietf.org/html/rfc7348
1402          */
1403         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1404                 return rte_flow_error_set(error, EINVAL,
1405                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1406                                           "no outer UDP layer found");
1407         if (!mask)
1408                 mask = &rte_flow_item_vxlan_mask;
1409         ret = mlx5_flow_item_acceptable
1410                 (item, (const uint8_t *)mask,
1411                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1412                  sizeof(struct rte_flow_item_vxlan),
1413                  error);
1414         if (ret < 0)
1415                 return ret;
1416         if (spec) {
1417                 memcpy(&id.vni[1], spec->vni, 3);
1418                 vlan_id = id.vlan_id;
1419                 memcpy(&id.vni[1], mask->vni, 3);
1420                 vlan_id &= id.vlan_id;
1421         }
1422         /*
1423          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1424          * only this layer is defined in the Verbs specification it is
1425          * interpreted as wildcard and all packets will match this
1426          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1427          * udp), all packets matching the layers before will also
1428          * match this rule.  To avoid such situation, VNI 0 is
1429          * currently refused.
1430          */
1431         if (!vlan_id)
1432                 return rte_flow_error_set(error, ENOTSUP,
1433                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1434                                           "VXLAN vni cannot be 0");
1435         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1436                 return rte_flow_error_set(error, ENOTSUP,
1437                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1438                                           "VXLAN tunnel must be fully defined");
1439         return 0;
1440 }
1441
1442 /**
1443  * Validate VXLAN_GPE item.
1444  *
1445  * @param[in] item
1446  *   Item specification.
1447  * @param[in] item_flags
1448  *   Bit-fields that holds the items detected until now.
1449  * @param[in] priv
1450  *   Pointer to the private data structure.
1451  * @param[in] target_protocol
1452  *   The next protocol in the previous item.
1453  * @param[out] error
1454  *   Pointer to error structure.
1455  *
1456  * @return
1457  *   0 on success, a negative errno value otherwise and rte_errno is set.
1458  */
1459 int
1460 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1461                                   uint64_t item_flags,
1462                                   struct rte_eth_dev *dev,
1463                                   struct rte_flow_error *error)
1464 {
1465         struct priv *priv = dev->data->dev_private;
1466         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1467         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1468         int ret;
1469         union vni {
1470                 uint32_t vlan_id;
1471                 uint8_t vni[4];
1472         } id = { .vlan_id = 0, };
1473         uint32_t vlan_id = 0;
1474
1475         if (!priv->config.l3_vxlan_en)
1476                 return rte_flow_error_set(error, ENOTSUP,
1477                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1478                                           "L3 VXLAN is not enabled by device"
1479                                           " parameter and/or not configured in"
1480                                           " firmware");
1481         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1482                 return rte_flow_error_set(error, ENOTSUP,
1483                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1484                                           "multiple tunnel layers not"
1485                                           " supported");
1486         /*
1487          * Verify only UDPv4 is present as defined in
1488          * https://tools.ietf.org/html/rfc7348
1489          */
1490         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1491                 return rte_flow_error_set(error, EINVAL,
1492                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1493                                           "no outer UDP layer found");
1494         if (!mask)
1495                 mask = &rte_flow_item_vxlan_gpe_mask;
1496         ret = mlx5_flow_item_acceptable
1497                 (item, (const uint8_t *)mask,
1498                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1499                  sizeof(struct rte_flow_item_vxlan_gpe),
1500                  error);
1501         if (ret < 0)
1502                 return ret;
1503         if (spec) {
1504                 if (spec->protocol)
1505                         return rte_flow_error_set(error, ENOTSUP,
1506                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1507                                                   item,
1508                                                   "VxLAN-GPE protocol"
1509                                                   " not supported");
1510                 memcpy(&id.vni[1], spec->vni, 3);
1511                 vlan_id = id.vlan_id;
1512                 memcpy(&id.vni[1], mask->vni, 3);
1513                 vlan_id &= id.vlan_id;
1514         }
1515         /*
1516          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1517          * layer is defined in the Verbs specification it is interpreted as
1518          * wildcard and all packets will match this rule, if it follows a full
1519          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1520          * before will also match this rule.  To avoid such situation, VNI 0
1521          * is currently refused.
1522          */
1523         if (!vlan_id)
1524                 return rte_flow_error_set(error, ENOTSUP,
1525                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1526                                           "VXLAN-GPE vni cannot be 0");
1527         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1528                 return rte_flow_error_set(error, ENOTSUP,
1529                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1530                                           "VXLAN-GPE tunnel must be fully"
1531                                           " defined");
1532         return 0;
1533 }
1534
1535 /**
1536  * Validate GRE item.
1537  *
1538  * @param[in] item
1539  *   Item specification.
1540  * @param[in] item_flags
1541  *   Bit flags to mark detected items.
1542  * @param[in] target_protocol
1543  *   The next protocol in the previous item.
1544  * @param[out] error
1545  *   Pointer to error structure.
1546  *
1547  * @return
1548  *   0 on success, a negative errno value otherwise and rte_errno is set.
1549  */
1550 int
1551 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1552                             uint64_t item_flags,
1553                             uint8_t target_protocol,
1554                             struct rte_flow_error *error)
1555 {
1556         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1557         const struct rte_flow_item_gre *mask = item->mask;
1558         int ret;
1559
1560         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1561                 return rte_flow_error_set(error, EINVAL,
1562                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1563                                           "protocol filtering not compatible"
1564                                           " with this GRE layer");
1565         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1566                 return rte_flow_error_set(error, ENOTSUP,
1567                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1568                                           "multiple tunnel layers not"
1569                                           " supported");
1570         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1571                 return rte_flow_error_set(error, ENOTSUP,
1572                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1573                                           "L3 Layer is missing");
1574         if (!mask)
1575                 mask = &rte_flow_item_gre_mask;
1576         ret = mlx5_flow_item_acceptable
1577                 (item, (const uint8_t *)mask,
1578                  (const uint8_t *)&rte_flow_item_gre_mask,
1579                  sizeof(struct rte_flow_item_gre), error);
1580         if (ret < 0)
1581                 return ret;
1582 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1583         if (spec && (spec->protocol & mask->protocol))
1584                 return rte_flow_error_set(error, ENOTSUP,
1585                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1586                                           "without MPLS support the"
1587                                           " specification cannot be used for"
1588                                           " filtering");
1589 #endif
1590         return 0;
1591 }
1592
1593 /**
1594  * Validate MPLS item.
1595  *
1596  * @param[in] dev
1597  *   Pointer to the rte_eth_dev structure.
1598  * @param[in] item
1599  *   Item specification.
1600  * @param[in] item_flags
1601  *   Bit-fields that holds the items detected until now.
1602  * @param[in] prev_layer
1603  *   The protocol layer indicated in previous item.
1604  * @param[out] error
1605  *   Pointer to error structure.
1606  *
1607  * @return
1608  *   0 on success, a negative errno value otherwise and rte_errno is set.
1609  */
1610 int
1611 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1612                              const struct rte_flow_item *item __rte_unused,
1613                              uint64_t item_flags __rte_unused,
1614                              uint64_t prev_layer __rte_unused,
1615                              struct rte_flow_error *error)
1616 {
1617 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1618         const struct rte_flow_item_mpls *mask = item->mask;
1619         struct priv *priv = dev->data->dev_private;
1620         int ret;
1621
1622         if (!priv->config.mpls_en)
1623                 return rte_flow_error_set(error, ENOTSUP,
1624                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1625                                           "MPLS not supported or"
1626                                           " disabled in firmware"
1627                                           " configuration.");
1628         /* MPLS over IP, UDP, GRE is allowed */
1629         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1630                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
1631                             MLX5_FLOW_LAYER_GRE)))
1632                 return rte_flow_error_set(error, EINVAL,
1633                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1634                                           "protocol filtering not compatible"
1635                                           " with MPLS layer");
1636         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1637         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1638             !(item_flags & MLX5_FLOW_LAYER_GRE))
1639                 return rte_flow_error_set(error, ENOTSUP,
1640                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1641                                           "multiple tunnel layers not"
1642                                           " supported");
1643         if (!mask)
1644                 mask = &rte_flow_item_mpls_mask;
1645         ret = mlx5_flow_item_acceptable
1646                 (item, (const uint8_t *)mask,
1647                  (const uint8_t *)&rte_flow_item_mpls_mask,
1648                  sizeof(struct rte_flow_item_mpls), error);
1649         if (ret < 0)
1650                 return ret;
1651         return 0;
1652 #endif
1653         return rte_flow_error_set(error, ENOTSUP,
1654                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
1655                                   "MPLS is not supported by Verbs, please"
1656                                   " update.");
1657 }
1658
1659 static int
1660 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1661                    const struct rte_flow_attr *attr __rte_unused,
1662                    const struct rte_flow_item items[] __rte_unused,
1663                    const struct rte_flow_action actions[] __rte_unused,
1664                    struct rte_flow_error *error __rte_unused)
1665 {
1666         rte_errno = ENOTSUP;
1667         return -rte_errno;
1668 }
1669
1670 static struct mlx5_flow *
1671 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1672                   const struct rte_flow_item items[] __rte_unused,
1673                   const struct rte_flow_action actions[] __rte_unused,
1674                   struct rte_flow_error *error __rte_unused)
1675 {
1676         rte_errno = ENOTSUP;
1677         return NULL;
1678 }
1679
1680 static int
1681 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1682                     struct mlx5_flow *dev_flow __rte_unused,
1683                     const struct rte_flow_attr *attr __rte_unused,
1684                     const struct rte_flow_item items[] __rte_unused,
1685                     const struct rte_flow_action actions[] __rte_unused,
1686                     struct rte_flow_error *error __rte_unused)
1687 {
1688         rte_errno = ENOTSUP;
1689         return -rte_errno;
1690 }
1691
1692 static int
1693 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1694                 struct rte_flow *flow __rte_unused,
1695                 struct rte_flow_error *error __rte_unused)
1696 {
1697         rte_errno = ENOTSUP;
1698         return -rte_errno;
1699 }
1700
1701 static void
1702 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1703                  struct rte_flow *flow __rte_unused)
1704 {
1705 }
1706
1707 static void
1708 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1709                   struct rte_flow *flow __rte_unused)
1710 {
1711 }
1712
1713 static int
1714 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1715                 struct rte_flow *flow __rte_unused,
1716                 const struct rte_flow_action *actions __rte_unused,
1717                 void *data __rte_unused,
1718                 struct rte_flow_error *error __rte_unused)
1719 {
1720         rte_errno = ENOTSUP;
1721         return -rte_errno;
1722 }
1723
1724 /* Void driver to protect from null pointer reference. */
1725 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1726         .validate = flow_null_validate,
1727         .prepare = flow_null_prepare,
1728         .translate = flow_null_translate,
1729         .apply = flow_null_apply,
1730         .remove = flow_null_remove,
1731         .destroy = flow_null_destroy,
1732         .query = flow_null_query,
1733 };
1734
1735 /**
1736  * Select flow driver type according to flow attributes and device
1737  * configuration.
1738  *
1739  * @param[in] dev
1740  *   Pointer to the dev structure.
1741  * @param[in] attr
1742  *   Pointer to the flow attributes.
1743  *
1744  * @return
1745  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1746  */
1747 static enum mlx5_flow_drv_type
1748 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1749 {
1750         struct priv *priv = dev->data->dev_private;
1751         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1752
1753         if (attr->transfer)
1754                 type = MLX5_FLOW_TYPE_TCF;
1755         else
1756                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1757                                                  MLX5_FLOW_TYPE_VERBS;
1758         return type;
1759 }
1760
1761 #define flow_get_drv_ops(type) flow_drv_ops[type]
1762
1763 /**
1764  * Flow driver validation API. This abstracts calling driver specific functions.
1765  * The type of flow driver is determined according to flow attributes.
1766  *
1767  * @param[in] dev
1768  *   Pointer to the dev structure.
1769  * @param[in] attr
1770  *   Pointer to the flow attributes.
1771  * @param[in] items
1772  *   Pointer to the list of items.
1773  * @param[in] actions
1774  *   Pointer to the list of actions.
1775  * @param[out] error
1776  *   Pointer to the error structure.
1777  *
1778  * @return
1779  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1780  */
1781 static inline int
1782 flow_drv_validate(struct rte_eth_dev *dev,
1783                   const struct rte_flow_attr *attr,
1784                   const struct rte_flow_item items[],
1785                   const struct rte_flow_action actions[],
1786                   struct rte_flow_error *error)
1787 {
1788         const struct mlx5_flow_driver_ops *fops;
1789         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1790
1791         fops = flow_get_drv_ops(type);
1792         return fops->validate(dev, attr, items, actions, error);
1793 }
1794
1795 /**
1796  * Flow driver preparation API. This abstracts calling driver specific
1797  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1798  * calculates the size of memory required for device flow, allocates the memory,
1799  * initializes the device flow and returns the pointer.
1800  *
1801  * @note
1802  *   This function initializes device flow structure such as dv, tcf or verbs in
1803  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1804  *   rest. For example, adding returning device flow to flow->dev_flow list and
1805  *   setting backward reference to the flow should be done out of this function.
1806  *   layers field is not filled either.
1807  *
1808  * @param[in] attr
1809  *   Pointer to the flow attributes.
1810  * @param[in] items
1811  *   Pointer to the list of items.
1812  * @param[in] actions
1813  *   Pointer to the list of actions.
1814  * @param[out] error
1815  *   Pointer to the error structure.
1816  *
1817  * @return
1818  *   Pointer to device flow on success, otherwise NULL and rte_ernno is set.
1819  */
1820 static inline struct mlx5_flow *
1821 flow_drv_prepare(const struct rte_flow *flow,
1822                  const struct rte_flow_attr *attr,
1823                  const struct rte_flow_item items[],
1824                  const struct rte_flow_action actions[],
1825                  struct rte_flow_error *error)
1826 {
1827         const struct mlx5_flow_driver_ops *fops;
1828         enum mlx5_flow_drv_type type = flow->drv_type;
1829
1830         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1831         fops = flow_get_drv_ops(type);
1832         return fops->prepare(attr, items, actions, error);
1833 }
1834
1835 /**
1836  * Flow driver translation API. This abstracts calling driver specific
1837  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1838  * translates a generic flow into a driver flow. flow_drv_prepare() must
1839  * precede.
1840  *
1841  * @note
1842  *   dev_flow->layers could be filled as a result of parsing during translation
1843  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1844  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1845  *   flow->actions could be overwritten even though all the expanded dev_flows
1846  *   have the same actions.
1847  *
1848  * @param[in] dev
1849  *   Pointer to the rte dev structure.
1850  * @param[in, out] dev_flow
1851  *   Pointer to the mlx5 flow.
1852  * @param[in] attr
1853  *   Pointer to the flow attributes.
1854  * @param[in] items
1855  *   Pointer to the list of items.
1856  * @param[in] actions
1857  *   Pointer to the list of actions.
1858  * @param[out] error
1859  *   Pointer to the error structure.
1860  *
1861  * @return
1862  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1863  */
1864 static inline int
1865 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1866                    const struct rte_flow_attr *attr,
1867                    const struct rte_flow_item items[],
1868                    const struct rte_flow_action actions[],
1869                    struct rte_flow_error *error)
1870 {
1871         const struct mlx5_flow_driver_ops *fops;
1872         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1873
1874         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1875         fops = flow_get_drv_ops(type);
1876         return fops->translate(dev, dev_flow, attr, items, actions, error);
1877 }
1878
1879 /**
1880  * Flow driver apply API. This abstracts calling driver specific functions.
1881  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1882  * translated driver flows on to device. flow_drv_translate() must precede.
1883  *
1884  * @param[in] dev
1885  *   Pointer to Ethernet device structure.
1886  * @param[in, out] flow
1887  *   Pointer to flow structure.
1888  * @param[out] error
1889  *   Pointer to error structure.
1890  *
1891  * @return
1892  *   0 on success, a negative errno value otherwise and rte_errno is set.
1893  */
1894 static inline int
1895 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1896                struct rte_flow_error *error)
1897 {
1898         const struct mlx5_flow_driver_ops *fops;
1899         enum mlx5_flow_drv_type type = flow->drv_type;
1900
1901         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1902         fops = flow_get_drv_ops(type);
1903         return fops->apply(dev, flow, error);
1904 }
1905
1906 /**
1907  * Flow driver remove API. This abstracts calling driver specific functions.
1908  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1909  * on device. All the resources of the flow should be freed by calling
1910  * flow_drv_destroy().
1911  *
1912  * @param[in] dev
1913  *   Pointer to Ethernet device.
1914  * @param[in, out] flow
1915  *   Pointer to flow structure.
1916  */
1917 static inline void
1918 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1919 {
1920         const struct mlx5_flow_driver_ops *fops;
1921         enum mlx5_flow_drv_type type = flow->drv_type;
1922
1923         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1924         fops = flow_get_drv_ops(type);
1925         fops->remove(dev, flow);
1926 }
1927
1928 /**
1929  * Flow driver destroy API. This abstracts calling driver specific functions.
1930  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1931  * on device and releases resources of the flow.
1932  *
1933  * @param[in] dev
1934  *   Pointer to Ethernet device.
1935  * @param[in, out] flow
1936  *   Pointer to flow structure.
1937  */
1938 static inline void
1939 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1940 {
1941         const struct mlx5_flow_driver_ops *fops;
1942         enum mlx5_flow_drv_type type = flow->drv_type;
1943
1944         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1945         fops = flow_get_drv_ops(type);
1946         fops->destroy(dev, flow);
1947 }
1948
1949 /**
1950  * Validate a flow supported by the NIC.
1951  *
1952  * @see rte_flow_validate()
1953  * @see rte_flow_ops
1954  */
1955 int
1956 mlx5_flow_validate(struct rte_eth_dev *dev,
1957                    const struct rte_flow_attr *attr,
1958                    const struct rte_flow_item items[],
1959                    const struct rte_flow_action actions[],
1960                    struct rte_flow_error *error)
1961 {
1962         int ret;
1963
1964         ret = flow_drv_validate(dev, attr, items, actions, error);
1965         if (ret < 0)
1966                 return ret;
1967         return 0;
1968 }
1969
1970 /**
1971  * Get RSS action from the action list.
1972  *
1973  * @param[in] actions
1974  *   Pointer to the list of actions.
1975  *
1976  * @return
1977  *   Pointer to the RSS action if exist, else return NULL.
1978  */
1979 static const struct rte_flow_action_rss*
1980 flow_get_rss_action(const struct rte_flow_action actions[])
1981 {
1982         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1983                 switch (actions->type) {
1984                 case RTE_FLOW_ACTION_TYPE_RSS:
1985                         return (const struct rte_flow_action_rss *)
1986                                actions->conf;
1987                 default:
1988                         break;
1989                 }
1990         }
1991         return NULL;
1992 }
1993
1994 static unsigned int
1995 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
1996 {
1997         const struct rte_flow_item *item;
1998         unsigned int has_vlan = 0;
1999
2000         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2001                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2002                         has_vlan = 1;
2003                         break;
2004                 }
2005         }
2006         if (has_vlan)
2007                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2008                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2009         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2010                                MLX5_EXPANSION_ROOT_OUTER;
2011 }
2012
2013 /**
2014  * Create a flow and add it to @p list.
2015  *
2016  * @param dev
2017  *   Pointer to Ethernet device.
2018  * @param list
2019  *   Pointer to a TAILQ flow list.
2020  * @param[in] attr
2021  *   Flow rule attributes.
2022  * @param[in] items
2023  *   Pattern specification (list terminated by the END pattern item).
2024  * @param[in] actions
2025  *   Associated actions (list terminated by the END action).
2026  * @param[out] error
2027  *   Perform verbose error reporting if not NULL.
2028  *
2029  * @return
2030  *   A flow on success, NULL otherwise and rte_errno is set.
2031  */
2032 static struct rte_flow *
2033 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2034                  const struct rte_flow_attr *attr,
2035                  const struct rte_flow_item items[],
2036                  const struct rte_flow_action actions[],
2037                  struct rte_flow_error *error)
2038 {
2039         struct rte_flow *flow = NULL;
2040         struct mlx5_flow *dev_flow;
2041         const struct rte_flow_action_rss *rss;
2042         union {
2043                 struct rte_flow_expand_rss buf;
2044                 uint8_t buffer[2048];
2045         } expand_buffer;
2046         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2047         int ret;
2048         uint32_t i;
2049         uint32_t flow_size;
2050
2051         ret = flow_drv_validate(dev, attr, items, actions, error);
2052         if (ret < 0)
2053                 return NULL;
2054         flow_size = sizeof(struct rte_flow);
2055         rss = flow_get_rss_action(actions);
2056         if (rss)
2057                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2058                                             sizeof(void *));
2059         else
2060                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2061         flow = rte_calloc(__func__, 1, flow_size, 0);
2062         flow->drv_type = flow_get_drv_type(dev, attr);
2063         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2064                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2065         flow->queue = (void *)(flow + 1);
2066         LIST_INIT(&flow->dev_flows);
2067         if (rss && rss->types) {
2068                 unsigned int graph_root;
2069
2070                 graph_root = find_graph_root(items, rss->level);
2071                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2072                                           items, rss->types,
2073                                           mlx5_support_expansion,
2074                                           graph_root);
2075                 assert(ret > 0 &&
2076                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2077         } else {
2078                 buf->entries = 1;
2079                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2080         }
2081         for (i = 0; i < buf->entries; ++i) {
2082                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2083                                             actions, error);
2084                 if (!dev_flow)
2085                         goto error;
2086                 dev_flow->flow = flow;
2087                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2088                 ret = flow_drv_translate(dev, dev_flow, attr,
2089                                          buf->entry[i].pattern,
2090                                          actions, error);
2091                 if (ret < 0)
2092                         goto error;
2093         }
2094         if (dev->data->dev_started) {
2095                 ret = flow_drv_apply(dev, flow, error);
2096                 if (ret < 0)
2097                         goto error;
2098         }
2099         TAILQ_INSERT_TAIL(list, flow, next);
2100         flow_rxq_flags_set(dev, flow);
2101         return flow;
2102 error:
2103         ret = rte_errno; /* Save rte_errno before cleanup. */
2104         assert(flow);
2105         flow_drv_destroy(dev, flow);
2106         rte_free(flow);
2107         rte_errno = ret; /* Restore rte_errno. */
2108         return NULL;
2109 }
2110
2111 /**
2112  * Create a flow.
2113  *
2114  * @see rte_flow_create()
2115  * @see rte_flow_ops
2116  */
2117 struct rte_flow *
2118 mlx5_flow_create(struct rte_eth_dev *dev,
2119                  const struct rte_flow_attr *attr,
2120                  const struct rte_flow_item items[],
2121                  const struct rte_flow_action actions[],
2122                  struct rte_flow_error *error)
2123 {
2124         return flow_list_create(dev,
2125                                 &((struct priv *)dev->data->dev_private)->flows,
2126                                 attr, items, actions, error);
2127 }
2128
2129 /**
2130  * Destroy a flow in a list.
2131  *
2132  * @param dev
2133  *   Pointer to Ethernet device.
2134  * @param list
2135  *   Pointer to a TAILQ flow list.
2136  * @param[in] flow
2137  *   Flow to destroy.
2138  */
2139 static void
2140 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2141                   struct rte_flow *flow)
2142 {
2143         /*
2144          * Update RX queue flags only if port is started, otherwise it is
2145          * already clean.
2146          */
2147         if (dev->data->dev_started)
2148                 flow_rxq_flags_trim(dev, flow);
2149         flow_drv_destroy(dev, flow);
2150         TAILQ_REMOVE(list, flow, next);
2151         rte_free(flow->fdir);
2152         rte_free(flow);
2153 }
2154
2155 /**
2156  * Destroy all flows.
2157  *
2158  * @param dev
2159  *   Pointer to Ethernet device.
2160  * @param list
2161  *   Pointer to a TAILQ flow list.
2162  */
2163 void
2164 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2165 {
2166         while (!TAILQ_EMPTY(list)) {
2167                 struct rte_flow *flow;
2168
2169                 flow = TAILQ_FIRST(list);
2170                 flow_list_destroy(dev, list, flow);
2171         }
2172 }
2173
2174 /**
2175  * Remove all flows.
2176  *
2177  * @param dev
2178  *   Pointer to Ethernet device.
2179  * @param list
2180  *   Pointer to a TAILQ flow list.
2181  */
2182 void
2183 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2184 {
2185         struct rte_flow *flow;
2186
2187         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2188                 flow_drv_remove(dev, flow);
2189         flow_rxq_flags_clear(dev);
2190 }
2191
2192 /**
2193  * Add all flows.
2194  *
2195  * @param dev
2196  *   Pointer to Ethernet device.
2197  * @param list
2198  *   Pointer to a TAILQ flow list.
2199  *
2200  * @return
2201  *   0 on success, a negative errno value otherwise and rte_errno is set.
2202  */
2203 int
2204 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2205 {
2206         struct rte_flow *flow;
2207         struct rte_flow_error error;
2208         int ret = 0;
2209
2210         TAILQ_FOREACH(flow, list, next) {
2211                 ret = flow_drv_apply(dev, flow, &error);
2212                 if (ret < 0)
2213                         goto error;
2214                 flow_rxq_flags_set(dev, flow);
2215         }
2216         return 0;
2217 error:
2218         ret = rte_errno; /* Save rte_errno before cleanup. */
2219         mlx5_flow_stop(dev, list);
2220         rte_errno = ret; /* Restore rte_errno. */
2221         return -rte_errno;
2222 }
2223
2224 /**
2225  * Verify the flow list is empty
2226  *
2227  * @param dev
2228  *  Pointer to Ethernet device.
2229  *
2230  * @return the number of flows not released.
2231  */
2232 int
2233 mlx5_flow_verify(struct rte_eth_dev *dev)
2234 {
2235         struct priv *priv = dev->data->dev_private;
2236         struct rte_flow *flow;
2237         int ret = 0;
2238
2239         TAILQ_FOREACH(flow, &priv->flows, next) {
2240                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2241                         dev->data->port_id, (void *)flow);
2242                 ++ret;
2243         }
2244         return ret;
2245 }
2246
2247 /**
2248  * Enable a control flow configured from the control plane.
2249  *
2250  * @param dev
2251  *   Pointer to Ethernet device.
2252  * @param eth_spec
2253  *   An Ethernet flow spec to apply.
2254  * @param eth_mask
2255  *   An Ethernet flow mask to apply.
2256  * @param vlan_spec
2257  *   A VLAN flow spec to apply.
2258  * @param vlan_mask
2259  *   A VLAN flow mask to apply.
2260  *
2261  * @return
2262  *   0 on success, a negative errno value otherwise and rte_errno is set.
2263  */
2264 int
2265 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2266                     struct rte_flow_item_eth *eth_spec,
2267                     struct rte_flow_item_eth *eth_mask,
2268                     struct rte_flow_item_vlan *vlan_spec,
2269                     struct rte_flow_item_vlan *vlan_mask)
2270 {
2271         struct priv *priv = dev->data->dev_private;
2272         const struct rte_flow_attr attr = {
2273                 .ingress = 1,
2274                 .priority = MLX5_FLOW_PRIO_RSVD,
2275         };
2276         struct rte_flow_item items[] = {
2277                 {
2278                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2279                         .spec = eth_spec,
2280                         .last = NULL,
2281                         .mask = eth_mask,
2282                 },
2283                 {
2284                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2285                                               RTE_FLOW_ITEM_TYPE_END,
2286                         .spec = vlan_spec,
2287                         .last = NULL,
2288                         .mask = vlan_mask,
2289                 },
2290                 {
2291                         .type = RTE_FLOW_ITEM_TYPE_END,
2292                 },
2293         };
2294         uint16_t queue[priv->reta_idx_n];
2295         struct rte_flow_action_rss action_rss = {
2296                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2297                 .level = 0,
2298                 .types = priv->rss_conf.rss_hf,
2299                 .key_len = priv->rss_conf.rss_key_len,
2300                 .queue_num = priv->reta_idx_n,
2301                 .key = priv->rss_conf.rss_key,
2302                 .queue = queue,
2303         };
2304         struct rte_flow_action actions[] = {
2305                 {
2306                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2307                         .conf = &action_rss,
2308                 },
2309                 {
2310                         .type = RTE_FLOW_ACTION_TYPE_END,
2311                 },
2312         };
2313         struct rte_flow *flow;
2314         struct rte_flow_error error;
2315         unsigned int i;
2316
2317         if (!priv->reta_idx_n) {
2318                 rte_errno = EINVAL;
2319                 return -rte_errno;
2320         }
2321         for (i = 0; i != priv->reta_idx_n; ++i)
2322                 queue[i] = (*priv->reta_idx)[i];
2323         flow = flow_list_create(dev, &priv->ctrl_flows,
2324                                 &attr, items, actions, &error);
2325         if (!flow)
2326                 return -rte_errno;
2327         return 0;
2328 }
2329
2330 /**
2331  * Enable a flow control configured from the control plane.
2332  *
2333  * @param dev
2334  *   Pointer to Ethernet device.
2335  * @param eth_spec
2336  *   An Ethernet flow spec to apply.
2337  * @param eth_mask
2338  *   An Ethernet flow mask to apply.
2339  *
2340  * @return
2341  *   0 on success, a negative errno value otherwise and rte_errno is set.
2342  */
2343 int
2344 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2345                struct rte_flow_item_eth *eth_spec,
2346                struct rte_flow_item_eth *eth_mask)
2347 {
2348         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2349 }
2350
2351 /**
2352  * Destroy a flow.
2353  *
2354  * @see rte_flow_destroy()
2355  * @see rte_flow_ops
2356  */
2357 int
2358 mlx5_flow_destroy(struct rte_eth_dev *dev,
2359                   struct rte_flow *flow,
2360                   struct rte_flow_error *error __rte_unused)
2361 {
2362         struct priv *priv = dev->data->dev_private;
2363
2364         flow_list_destroy(dev, &priv->flows, flow);
2365         return 0;
2366 }
2367
2368 /**
2369  * Destroy all flows.
2370  *
2371  * @see rte_flow_flush()
2372  * @see rte_flow_ops
2373  */
2374 int
2375 mlx5_flow_flush(struct rte_eth_dev *dev,
2376                 struct rte_flow_error *error __rte_unused)
2377 {
2378         struct priv *priv = dev->data->dev_private;
2379
2380         mlx5_flow_list_flush(dev, &priv->flows);
2381         return 0;
2382 }
2383
2384 /**
2385  * Isolated mode.
2386  *
2387  * @see rte_flow_isolate()
2388  * @see rte_flow_ops
2389  */
2390 int
2391 mlx5_flow_isolate(struct rte_eth_dev *dev,
2392                   int enable,
2393                   struct rte_flow_error *error)
2394 {
2395         struct priv *priv = dev->data->dev_private;
2396
2397         if (dev->data->dev_started) {
2398                 rte_flow_error_set(error, EBUSY,
2399                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2400                                    NULL,
2401                                    "port must be stopped first");
2402                 return -rte_errno;
2403         }
2404         priv->isolated = !!enable;
2405         if (enable)
2406                 dev->dev_ops = &mlx5_dev_ops_isolate;
2407         else
2408                 dev->dev_ops = &mlx5_dev_ops;
2409         return 0;
2410 }
2411
2412 /**
2413  * Query a flow.
2414  *
2415  * @see rte_flow_query()
2416  * @see rte_flow_ops
2417  */
2418 static int
2419 flow_drv_query(struct rte_eth_dev *dev,
2420                struct rte_flow *flow,
2421                const struct rte_flow_action *actions,
2422                void *data,
2423                struct rte_flow_error *error)
2424 {
2425         const struct mlx5_flow_driver_ops *fops;
2426         enum mlx5_flow_drv_type ftype = flow->drv_type;
2427
2428         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2429         fops = flow_get_drv_ops(ftype);
2430
2431         return fops->query(dev, flow, actions, data, error);
2432 }
2433
2434 /**
2435  * Query a flow.
2436  *
2437  * @see rte_flow_query()
2438  * @see rte_flow_ops
2439  */
2440 int
2441 mlx5_flow_query(struct rte_eth_dev *dev,
2442                 struct rte_flow *flow,
2443                 const struct rte_flow_action *actions,
2444                 void *data,
2445                 struct rte_flow_error *error)
2446 {
2447         int ret;
2448
2449         ret = flow_drv_query(dev, flow, actions, data, error);
2450         if (ret < 0)
2451                 return ret;
2452         return 0;
2453 }
2454
2455 /**
2456  * Convert a flow director filter to a generic flow.
2457  *
2458  * @param dev
2459  *   Pointer to Ethernet device.
2460  * @param fdir_filter
2461  *   Flow director filter to add.
2462  * @param attributes
2463  *   Generic flow parameters structure.
2464  *
2465  * @return
2466  *   0 on success, a negative errno value otherwise and rte_errno is set.
2467  */
2468 static int
2469 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2470                          const struct rte_eth_fdir_filter *fdir_filter,
2471                          struct mlx5_fdir *attributes)
2472 {
2473         struct priv *priv = dev->data->dev_private;
2474         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2475         const struct rte_eth_fdir_masks *mask =
2476                 &dev->data->dev_conf.fdir_conf.mask;
2477
2478         /* Validate queue number. */
2479         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2480                 DRV_LOG(ERR, "port %u invalid queue number %d",
2481                         dev->data->port_id, fdir_filter->action.rx_queue);
2482                 rte_errno = EINVAL;
2483                 return -rte_errno;
2484         }
2485         attributes->attr.ingress = 1;
2486         attributes->items[0] = (struct rte_flow_item) {
2487                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2488                 .spec = &attributes->l2,
2489                 .mask = &attributes->l2_mask,
2490         };
2491         switch (fdir_filter->action.behavior) {
2492         case RTE_ETH_FDIR_ACCEPT:
2493                 attributes->actions[0] = (struct rte_flow_action){
2494                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
2495                         .conf = &attributes->queue,
2496                 };
2497                 break;
2498         case RTE_ETH_FDIR_REJECT:
2499                 attributes->actions[0] = (struct rte_flow_action){
2500                         .type = RTE_FLOW_ACTION_TYPE_DROP,
2501                 };
2502                 break;
2503         default:
2504                 DRV_LOG(ERR, "port %u invalid behavior %d",
2505                         dev->data->port_id,
2506                         fdir_filter->action.behavior);
2507                 rte_errno = ENOTSUP;
2508                 return -rte_errno;
2509         }
2510         attributes->queue.index = fdir_filter->action.rx_queue;
2511         /* Handle L3. */
2512         switch (fdir_filter->input.flow_type) {
2513         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2514         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2515         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2516                 attributes->l3.ipv4.hdr = (struct ipv4_hdr){
2517                         .src_addr = input->flow.ip4_flow.src_ip,
2518                         .dst_addr = input->flow.ip4_flow.dst_ip,
2519                         .time_to_live = input->flow.ip4_flow.ttl,
2520                         .type_of_service = input->flow.ip4_flow.tos,
2521                 };
2522                 attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
2523                         .src_addr = mask->ipv4_mask.src_ip,
2524                         .dst_addr = mask->ipv4_mask.dst_ip,
2525                         .time_to_live = mask->ipv4_mask.ttl,
2526                         .type_of_service = mask->ipv4_mask.tos,
2527                         .next_proto_id = mask->ipv4_mask.proto,
2528                 };
2529                 attributes->items[1] = (struct rte_flow_item){
2530                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
2531                         .spec = &attributes->l3,
2532                         .mask = &attributes->l3_mask,
2533                 };
2534                 break;
2535         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2536         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2537         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2538                 attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2539                         .hop_limits = input->flow.ipv6_flow.hop_limits,
2540                         .proto = input->flow.ipv6_flow.proto,
2541                 };
2542
2543                 memcpy(attributes->l3.ipv6.hdr.src_addr,
2544                        input->flow.ipv6_flow.src_ip,
2545                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2546                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
2547                        input->flow.ipv6_flow.dst_ip,
2548                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2549                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2550                        mask->ipv6_mask.src_ip,
2551                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2552                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2553                        mask->ipv6_mask.dst_ip,
2554                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2555                 attributes->items[1] = (struct rte_flow_item){
2556                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
2557                         .spec = &attributes->l3,
2558                         .mask = &attributes->l3_mask,
2559                 };
2560                 break;
2561         default:
2562                 DRV_LOG(ERR, "port %u invalid flow type%d",
2563                         dev->data->port_id, fdir_filter->input.flow_type);
2564                 rte_errno = ENOTSUP;
2565                 return -rte_errno;
2566         }
2567         /* Handle L4. */
2568         switch (fdir_filter->input.flow_type) {
2569         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2570                 attributes->l4.udp.hdr = (struct udp_hdr){
2571                         .src_port = input->flow.udp4_flow.src_port,
2572                         .dst_port = input->flow.udp4_flow.dst_port,
2573                 };
2574                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
2575                         .src_port = mask->src_port_mask,
2576                         .dst_port = mask->dst_port_mask,
2577                 };
2578                 attributes->items[2] = (struct rte_flow_item){
2579                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2580                         .spec = &attributes->l4,
2581                         .mask = &attributes->l4_mask,
2582                 };
2583                 break;
2584         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2585                 attributes->l4.tcp.hdr = (struct tcp_hdr){
2586                         .src_port = input->flow.tcp4_flow.src_port,
2587                         .dst_port = input->flow.tcp4_flow.dst_port,
2588                 };
2589                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2590                         .src_port = mask->src_port_mask,
2591                         .dst_port = mask->dst_port_mask,
2592                 };
2593                 attributes->items[2] = (struct rte_flow_item){
2594                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2595                         .spec = &attributes->l4,
2596                         .mask = &attributes->l4_mask,
2597                 };
2598                 break;
2599         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2600                 attributes->l4.udp.hdr = (struct udp_hdr){
2601                         .src_port = input->flow.udp6_flow.src_port,
2602                         .dst_port = input->flow.udp6_flow.dst_port,
2603                 };
2604                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
2605                         .src_port = mask->src_port_mask,
2606                         .dst_port = mask->dst_port_mask,
2607                 };
2608                 attributes->items[2] = (struct rte_flow_item){
2609                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2610                         .spec = &attributes->l4,
2611                         .mask = &attributes->l4_mask,
2612                 };
2613                 break;
2614         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2615                 attributes->l4.tcp.hdr = (struct tcp_hdr){
2616                         .src_port = input->flow.tcp6_flow.src_port,
2617                         .dst_port = input->flow.tcp6_flow.dst_port,
2618                 };
2619                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2620                         .src_port = mask->src_port_mask,
2621                         .dst_port = mask->dst_port_mask,
2622                 };
2623                 attributes->items[2] = (struct rte_flow_item){
2624                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2625                         .spec = &attributes->l4,
2626                         .mask = &attributes->l4_mask,
2627                 };
2628                 break;
2629         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2630         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2631                 break;
2632         default:
2633                 DRV_LOG(ERR, "port %u invalid flow type%d",
2634                         dev->data->port_id, fdir_filter->input.flow_type);
2635                 rte_errno = ENOTSUP;
2636                 return -rte_errno;
2637         }
2638         return 0;
2639 }
2640
2641 #define FLOW_FDIR_CMP(f1, f2, fld) \
2642         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2643
2644 /**
2645  * Compare two FDIR flows. If items and actions are identical, the two flows are
2646  * regarded as same.
2647  *
2648  * @param dev
2649  *   Pointer to Ethernet device.
2650  * @param f1
2651  *   FDIR flow to compare.
2652  * @param f2
2653  *   FDIR flow to compare.
2654  *
2655  * @return
2656  *   Zero on match, 1 otherwise.
2657  */
2658 static int
2659 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2660 {
2661         if (FLOW_FDIR_CMP(f1, f2, attr) ||
2662             FLOW_FDIR_CMP(f1, f2, l2) ||
2663             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2664             FLOW_FDIR_CMP(f1, f2, l3) ||
2665             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2666             FLOW_FDIR_CMP(f1, f2, l4) ||
2667             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2668             FLOW_FDIR_CMP(f1, f2, actions[0].type))
2669                 return 1;
2670         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2671             FLOW_FDIR_CMP(f1, f2, queue))
2672                 return 1;
2673         return 0;
2674 }
2675
2676 /**
2677  * Search device flow list to find out a matched FDIR flow.
2678  *
2679  * @param dev
2680  *   Pointer to Ethernet device.
2681  * @param fdir_flow
2682  *   FDIR flow to lookup.
2683  *
2684  * @return
2685  *   Pointer of flow if found, NULL otherwise.
2686  */
2687 static struct rte_flow *
2688 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2689 {
2690         struct priv *priv = dev->data->dev_private;
2691         struct rte_flow *flow = NULL;
2692
2693         assert(fdir_flow);
2694         TAILQ_FOREACH(flow, &priv->flows, next) {
2695                 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2696                         DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2697                                 dev->data->port_id, (void *)flow);
2698                         break;
2699                 }
2700         }
2701         return flow;
2702 }
2703
2704 /**
2705  * Add new flow director filter and store it in list.
2706  *
2707  * @param dev
2708  *   Pointer to Ethernet device.
2709  * @param fdir_filter
2710  *   Flow director filter to add.
2711  *
2712  * @return
2713  *   0 on success, a negative errno value otherwise and rte_errno is set.
2714  */
2715 static int
2716 flow_fdir_filter_add(struct rte_eth_dev *dev,
2717                      const struct rte_eth_fdir_filter *fdir_filter)
2718 {
2719         struct priv *priv = dev->data->dev_private;
2720         struct mlx5_fdir *fdir_flow;
2721         struct rte_flow *flow;
2722         int ret;
2723
2724         fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2725         if (!fdir_flow) {
2726                 rte_errno = ENOMEM;
2727                 return -rte_errno;
2728         }
2729         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2730         if (ret)
2731                 goto error;
2732         flow = flow_fdir_filter_lookup(dev, fdir_flow);
2733         if (flow) {
2734                 rte_errno = EEXIST;
2735                 goto error;
2736         }
2737         flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2738                                 fdir_flow->items, fdir_flow->actions, NULL);
2739         if (!flow)
2740                 goto error;
2741         assert(!flow->fdir);
2742         flow->fdir = fdir_flow;
2743         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2744                 dev->data->port_id, (void *)flow);
2745         return 0;
2746 error:
2747         rte_free(fdir_flow);
2748         return -rte_errno;
2749 }
2750
2751 /**
2752  * Delete specific filter.
2753  *
2754  * @param dev
2755  *   Pointer to Ethernet device.
2756  * @param fdir_filter
2757  *   Filter to be deleted.
2758  *
2759  * @return
2760  *   0 on success, a negative errno value otherwise and rte_errno is set.
2761  */
2762 static int
2763 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2764                         const struct rte_eth_fdir_filter *fdir_filter)
2765 {
2766         struct priv *priv = dev->data->dev_private;
2767         struct rte_flow *flow;
2768         struct mlx5_fdir fdir_flow = {
2769                 .attr.group = 0,
2770         };
2771         int ret;
2772
2773         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2774         if (ret)
2775                 return -rte_errno;
2776         flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2777         if (!flow) {
2778                 rte_errno = ENOENT;
2779                 return -rte_errno;
2780         }
2781         flow_list_destroy(dev, &priv->flows, flow);
2782         DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2783                 dev->data->port_id, (void *)flow);
2784         return 0;
2785 }
2786
2787 /**
2788  * Update queue for specific filter.
2789  *
2790  * @param dev
2791  *   Pointer to Ethernet device.
2792  * @param fdir_filter
2793  *   Filter to be updated.
2794  *
2795  * @return
2796  *   0 on success, a negative errno value otherwise and rte_errno is set.
2797  */
2798 static int
2799 flow_fdir_filter_update(struct rte_eth_dev *dev,
2800                         const struct rte_eth_fdir_filter *fdir_filter)
2801 {
2802         int ret;
2803
2804         ret = flow_fdir_filter_delete(dev, fdir_filter);
2805         if (ret)
2806                 return ret;
2807         return flow_fdir_filter_add(dev, fdir_filter);
2808 }
2809
2810 /**
2811  * Flush all filters.
2812  *
2813  * @param dev
2814  *   Pointer to Ethernet device.
2815  */
2816 static void
2817 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2818 {
2819         struct priv *priv = dev->data->dev_private;
2820
2821         mlx5_flow_list_flush(dev, &priv->flows);
2822 }
2823
2824 /**
2825  * Get flow director information.
2826  *
2827  * @param dev
2828  *   Pointer to Ethernet device.
2829  * @param[out] fdir_info
2830  *   Resulting flow director information.
2831  */
2832 static void
2833 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2834 {
2835         struct rte_eth_fdir_masks *mask =
2836                 &dev->data->dev_conf.fdir_conf.mask;
2837
2838         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2839         fdir_info->guarant_spc = 0;
2840         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2841         fdir_info->max_flexpayload = 0;
2842         fdir_info->flow_types_mask[0] = 0;
2843         fdir_info->flex_payload_unit = 0;
2844         fdir_info->max_flex_payload_segment_num = 0;
2845         fdir_info->flex_payload_limit = 0;
2846         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2847 }
2848
2849 /**
2850  * Deal with flow director operations.
2851  *
2852  * @param dev
2853  *   Pointer to Ethernet device.
2854  * @param filter_op
2855  *   Operation to perform.
2856  * @param arg
2857  *   Pointer to operation-specific structure.
2858  *
2859  * @return
2860  *   0 on success, a negative errno value otherwise and rte_errno is set.
2861  */
2862 static int
2863 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2864                     void *arg)
2865 {
2866         enum rte_fdir_mode fdir_mode =
2867                 dev->data->dev_conf.fdir_conf.mode;
2868
2869         if (filter_op == RTE_ETH_FILTER_NOP)
2870                 return 0;
2871         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2872             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2873                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
2874                         dev->data->port_id, fdir_mode);
2875                 rte_errno = EINVAL;
2876                 return -rte_errno;
2877         }
2878         switch (filter_op) {
2879         case RTE_ETH_FILTER_ADD:
2880                 return flow_fdir_filter_add(dev, arg);
2881         case RTE_ETH_FILTER_UPDATE:
2882                 return flow_fdir_filter_update(dev, arg);
2883         case RTE_ETH_FILTER_DELETE:
2884                 return flow_fdir_filter_delete(dev, arg);
2885         case RTE_ETH_FILTER_FLUSH:
2886                 flow_fdir_filter_flush(dev);
2887                 break;
2888         case RTE_ETH_FILTER_INFO:
2889                 flow_fdir_info_get(dev, arg);
2890                 break;
2891         default:
2892                 DRV_LOG(DEBUG, "port %u unknown operation %u",
2893                         dev->data->port_id, filter_op);
2894                 rte_errno = EINVAL;
2895                 return -rte_errno;
2896         }
2897         return 0;
2898 }
2899
2900 /**
2901  * Manage filter operations.
2902  *
2903  * @param dev
2904  *   Pointer to Ethernet device structure.
2905  * @param filter_type
2906  *   Filter type.
2907  * @param filter_op
2908  *   Operation to perform.
2909  * @param arg
2910  *   Pointer to operation-specific structure.
2911  *
2912  * @return
2913  *   0 on success, a negative errno value otherwise and rte_errno is set.
2914  */
2915 int
2916 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2917                      enum rte_filter_type filter_type,
2918                      enum rte_filter_op filter_op,
2919                      void *arg)
2920 {
2921         switch (filter_type) {
2922         case RTE_ETH_FILTER_GENERIC:
2923                 if (filter_op != RTE_ETH_FILTER_GET) {
2924                         rte_errno = EINVAL;
2925                         return -rte_errno;
2926                 }
2927                 *(const void **)arg = &mlx5_flow_ops;
2928                 return 0;
2929         case RTE_ETH_FILTER_FDIR:
2930                 return flow_fdir_ctrl_func(dev, filter_op, arg);
2931         default:
2932                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
2933                         dev->data->port_id, filter_type);
2934                 rte_errno = ENOTSUP;
2935                 return -rte_errno;
2936         }
2937         return 0;
2938 }