New upstream version 18.08
[deb_dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <sys/queue.h>
7 #include <stdalign.h>
8 #include <stdint.h>
9 #include <string.h>
10
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #ifdef PEDANTIC
18 #pragma GCC diagnostic error "-Wpedantic"
19 #endif
20
21 #include <rte_common.h>
22 #include <rte_ether.h>
23 #include <rte_eth_ctrl.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_prm.h"
33 #include "mlx5_glue.h"
34
35 /* Dev ops structure defined in mlx5.c */
36 extern const struct eth_dev_ops mlx5_dev_ops;
37 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
38
39 /* Pattern outer Layer bits. */
40 #define MLX5_FLOW_LAYER_OUTER_L2 (1u << 0)
41 #define MLX5_FLOW_LAYER_OUTER_L3_IPV4 (1u << 1)
42 #define MLX5_FLOW_LAYER_OUTER_L3_IPV6 (1u << 2)
43 #define MLX5_FLOW_LAYER_OUTER_L4_UDP (1u << 3)
44 #define MLX5_FLOW_LAYER_OUTER_L4_TCP (1u << 4)
45 #define MLX5_FLOW_LAYER_OUTER_VLAN (1u << 5)
46
47 /* Pattern inner Layer bits. */
48 #define MLX5_FLOW_LAYER_INNER_L2 (1u << 6)
49 #define MLX5_FLOW_LAYER_INNER_L3_IPV4 (1u << 7)
50 #define MLX5_FLOW_LAYER_INNER_L3_IPV6 (1u << 8)
51 #define MLX5_FLOW_LAYER_INNER_L4_UDP (1u << 9)
52 #define MLX5_FLOW_LAYER_INNER_L4_TCP (1u << 10)
53 #define MLX5_FLOW_LAYER_INNER_VLAN (1u << 11)
54
55 /* Pattern tunnel Layer bits. */
56 #define MLX5_FLOW_LAYER_VXLAN (1u << 12)
57 #define MLX5_FLOW_LAYER_VXLAN_GPE (1u << 13)
58 #define MLX5_FLOW_LAYER_GRE (1u << 14)
59 #define MLX5_FLOW_LAYER_MPLS (1u << 15)
60
61 /* Outer Masks. */
62 #define MLX5_FLOW_LAYER_OUTER_L3 \
63         (MLX5_FLOW_LAYER_OUTER_L3_IPV4 | MLX5_FLOW_LAYER_OUTER_L3_IPV6)
64 #define MLX5_FLOW_LAYER_OUTER_L4 \
65         (MLX5_FLOW_LAYER_OUTER_L4_UDP | MLX5_FLOW_LAYER_OUTER_L4_TCP)
66 #define MLX5_FLOW_LAYER_OUTER \
67         (MLX5_FLOW_LAYER_OUTER_L2 | MLX5_FLOW_LAYER_OUTER_L3 | \
68          MLX5_FLOW_LAYER_OUTER_L4)
69
70 /* Tunnel Masks. */
71 #define MLX5_FLOW_LAYER_TUNNEL \
72         (MLX5_FLOW_LAYER_VXLAN | MLX5_FLOW_LAYER_VXLAN_GPE | \
73          MLX5_FLOW_LAYER_GRE | MLX5_FLOW_LAYER_MPLS)
74
75 /* Inner Masks. */
76 #define MLX5_FLOW_LAYER_INNER_L3 \
77         (MLX5_FLOW_LAYER_INNER_L3_IPV4 | MLX5_FLOW_LAYER_INNER_L3_IPV6)
78 #define MLX5_FLOW_LAYER_INNER_L4 \
79         (MLX5_FLOW_LAYER_INNER_L4_UDP | MLX5_FLOW_LAYER_INNER_L4_TCP)
80 #define MLX5_FLOW_LAYER_INNER \
81         (MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_L3 | \
82          MLX5_FLOW_LAYER_INNER_L4)
83
84 /* Actions that modify the fate of matching traffic. */
85 #define MLX5_FLOW_FATE_DROP (1u << 0)
86 #define MLX5_FLOW_FATE_QUEUE (1u << 1)
87 #define MLX5_FLOW_FATE_RSS (1u << 2)
88
89 /* Modify a packet. */
90 #define MLX5_FLOW_MOD_FLAG (1u << 0)
91 #define MLX5_FLOW_MOD_MARK (1u << 1)
92 #define MLX5_FLOW_MOD_COUNT (1u << 2)
93
94 /* possible L3 layers protocols filtering. */
95 #define MLX5_IP_PROTOCOL_TCP 6
96 #define MLX5_IP_PROTOCOL_UDP 17
97 #define MLX5_IP_PROTOCOL_GRE 47
98 #define MLX5_IP_PROTOCOL_MPLS 147
99
100 /* Priority reserved for default flows. */
101 #define MLX5_FLOW_PRIO_RSVD ((uint32_t)-1)
102
103 enum mlx5_expansion {
104         MLX5_EXPANSION_ROOT,
105         MLX5_EXPANSION_ROOT_OUTER,
106         MLX5_EXPANSION_ROOT_ETH_VLAN,
107         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
108         MLX5_EXPANSION_OUTER_ETH,
109         MLX5_EXPANSION_OUTER_ETH_VLAN,
110         MLX5_EXPANSION_OUTER_VLAN,
111         MLX5_EXPANSION_OUTER_IPV4,
112         MLX5_EXPANSION_OUTER_IPV4_UDP,
113         MLX5_EXPANSION_OUTER_IPV4_TCP,
114         MLX5_EXPANSION_OUTER_IPV6,
115         MLX5_EXPANSION_OUTER_IPV6_UDP,
116         MLX5_EXPANSION_OUTER_IPV6_TCP,
117         MLX5_EXPANSION_VXLAN,
118         MLX5_EXPANSION_VXLAN_GPE,
119         MLX5_EXPANSION_GRE,
120         MLX5_EXPANSION_MPLS,
121         MLX5_EXPANSION_ETH,
122         MLX5_EXPANSION_ETH_VLAN,
123         MLX5_EXPANSION_VLAN,
124         MLX5_EXPANSION_IPV4,
125         MLX5_EXPANSION_IPV4_UDP,
126         MLX5_EXPANSION_IPV4_TCP,
127         MLX5_EXPANSION_IPV6,
128         MLX5_EXPANSION_IPV6_UDP,
129         MLX5_EXPANSION_IPV6_TCP,
130 };
131
132 /** Supported expansion of items. */
133 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
134         [MLX5_EXPANSION_ROOT] = {
135                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
136                                                  MLX5_EXPANSION_IPV4,
137                                                  MLX5_EXPANSION_IPV6),
138                 .type = RTE_FLOW_ITEM_TYPE_END,
139         },
140         [MLX5_EXPANSION_ROOT_OUTER] = {
141                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
142                                                  MLX5_EXPANSION_OUTER_IPV4,
143                                                  MLX5_EXPANSION_OUTER_IPV6),
144                 .type = RTE_FLOW_ITEM_TYPE_END,
145         },
146         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
147                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
148                 .type = RTE_FLOW_ITEM_TYPE_END,
149         },
150         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
151                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
152                 .type = RTE_FLOW_ITEM_TYPE_END,
153         },
154         [MLX5_EXPANSION_OUTER_ETH] = {
155                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
156                                                  MLX5_EXPANSION_OUTER_IPV6,
157                                                  MLX5_EXPANSION_MPLS),
158                 .type = RTE_FLOW_ITEM_TYPE_ETH,
159                 .rss_types = 0,
160         },
161         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
162                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
163                 .type = RTE_FLOW_ITEM_TYPE_ETH,
164                 .rss_types = 0,
165         },
166         [MLX5_EXPANSION_OUTER_VLAN] = {
167                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
168                                                  MLX5_EXPANSION_OUTER_IPV6),
169                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
170         },
171         [MLX5_EXPANSION_OUTER_IPV4] = {
172                 .next = RTE_FLOW_EXPAND_RSS_NEXT
173                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
174                          MLX5_EXPANSION_OUTER_IPV4_TCP,
175                          MLX5_EXPANSION_GRE),
176                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
177                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
178                         ETH_RSS_NONFRAG_IPV4_OTHER,
179         },
180         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
181                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
182                                                  MLX5_EXPANSION_VXLAN_GPE),
183                 .type = RTE_FLOW_ITEM_TYPE_UDP,
184                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
185         },
186         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
187                 .type = RTE_FLOW_ITEM_TYPE_TCP,
188                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
189         },
190         [MLX5_EXPANSION_OUTER_IPV6] = {
191                 .next = RTE_FLOW_EXPAND_RSS_NEXT
192                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
193                          MLX5_EXPANSION_OUTER_IPV6_TCP),
194                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
195                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
196                         ETH_RSS_NONFRAG_IPV6_OTHER,
197         },
198         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
199                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
200                                                  MLX5_EXPANSION_VXLAN_GPE),
201                 .type = RTE_FLOW_ITEM_TYPE_UDP,
202                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
203         },
204         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
205                 .type = RTE_FLOW_ITEM_TYPE_TCP,
206                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
207         },
208         [MLX5_EXPANSION_VXLAN] = {
209                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
210                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
211         },
212         [MLX5_EXPANSION_VXLAN_GPE] = {
213                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
214                                                  MLX5_EXPANSION_IPV4,
215                                                  MLX5_EXPANSION_IPV6),
216                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
217         },
218         [MLX5_EXPANSION_GRE] = {
219                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
220                 .type = RTE_FLOW_ITEM_TYPE_GRE,
221         },
222         [MLX5_EXPANSION_MPLS] = {
223                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
224                                                  MLX5_EXPANSION_IPV6),
225                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
226         },
227         [MLX5_EXPANSION_ETH] = {
228                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
229                                                  MLX5_EXPANSION_IPV6),
230                 .type = RTE_FLOW_ITEM_TYPE_ETH,
231         },
232         [MLX5_EXPANSION_ETH_VLAN] = {
233                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
234                 .type = RTE_FLOW_ITEM_TYPE_ETH,
235         },
236         [MLX5_EXPANSION_VLAN] = {
237                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
238                                                  MLX5_EXPANSION_IPV6),
239                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
240         },
241         [MLX5_EXPANSION_IPV4] = {
242                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
243                                                  MLX5_EXPANSION_IPV4_TCP),
244                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
245                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
246                         ETH_RSS_NONFRAG_IPV4_OTHER,
247         },
248         [MLX5_EXPANSION_IPV4_UDP] = {
249                 .type = RTE_FLOW_ITEM_TYPE_UDP,
250                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
251         },
252         [MLX5_EXPANSION_IPV4_TCP] = {
253                 .type = RTE_FLOW_ITEM_TYPE_TCP,
254                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
255         },
256         [MLX5_EXPANSION_IPV6] = {
257                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
258                                                  MLX5_EXPANSION_IPV6_TCP),
259                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
260                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
261                         ETH_RSS_NONFRAG_IPV6_OTHER,
262         },
263         [MLX5_EXPANSION_IPV6_UDP] = {
264                 .type = RTE_FLOW_ITEM_TYPE_UDP,
265                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
266         },
267         [MLX5_EXPANSION_IPV6_TCP] = {
268                 .type = RTE_FLOW_ITEM_TYPE_TCP,
269                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
270         },
271 };
272
273 /** Handles information leading to a drop fate. */
274 struct mlx5_flow_verbs {
275         LIST_ENTRY(mlx5_flow_verbs) next;
276         unsigned int size; /**< Size of the attribute. */
277         struct {
278                 struct ibv_flow_attr *attr;
279                 /**< Pointer to the Specification buffer. */
280                 uint8_t *specs; /**< Pointer to the specifications. */
281         };
282         struct ibv_flow *flow; /**< Verbs flow pointer. */
283         struct mlx5_hrxq *hrxq; /**< Hash Rx queue object. */
284         uint64_t hash_fields; /**< Verbs hash Rx queue hash fields. */
285 };
286
287 /* Counters information. */
288 struct mlx5_flow_counter {
289         LIST_ENTRY(mlx5_flow_counter) next; /**< Pointer to the next counter. */
290         uint32_t shared:1; /**< Share counter ID with other flow rules. */
291         uint32_t ref_cnt:31; /**< Reference counter. */
292         uint32_t id; /**< Counter ID. */
293         struct ibv_counter_set *cs; /**< Holds the counters for the rule. */
294         uint64_t hits; /**< Number of packets matched by the rule. */
295         uint64_t bytes; /**< Number of bytes matched by the rule. */
296 };
297
298 /* Flow structure. */
299 struct rte_flow {
300         TAILQ_ENTRY(rte_flow) next; /**< Pointer to the next flow structure. */
301         struct rte_flow_attr attributes; /**< User flow attribute. */
302         uint32_t l3_protocol_en:1; /**< Protocol filtering requested. */
303         uint32_t layers;
304         /**< Bit-fields of present layers see MLX5_FLOW_LAYER_*. */
305         uint32_t modifier;
306         /**< Bit-fields of present modifier see MLX5_FLOW_MOD_*. */
307         uint32_t fate;
308         /**< Bit-fields of present fate see MLX5_FLOW_FATE_*. */
309         uint8_t l3_protocol; /**< valid when l3_protocol_en is set. */
310         LIST_HEAD(verbs, mlx5_flow_verbs) verbs; /**< Verbs flows list. */
311         struct mlx5_flow_verbs *cur_verbs;
312         /**< Current Verbs flow structure being filled. */
313         struct mlx5_flow_counter *counter; /**< Holds Verbs flow counter. */
314         struct rte_flow_action_rss rss;/**< RSS context. */
315         uint8_t key[MLX5_RSS_HASH_KEY_LEN]; /**< RSS hash key. */
316         uint16_t (*queue)[]; /**< Destination queues to redirect traffic to. */
317         void *nl_flow; /**< Netlink flow buffer if relevant. */
318 };
319
320 static const struct rte_flow_ops mlx5_flow_ops = {
321         .validate = mlx5_flow_validate,
322         .create = mlx5_flow_create,
323         .destroy = mlx5_flow_destroy,
324         .flush = mlx5_flow_flush,
325         .isolate = mlx5_flow_isolate,
326         .query = mlx5_flow_query,
327 };
328
329 /* Convert FDIR request to Generic flow. */
330 struct mlx5_fdir {
331         struct rte_flow_attr attr;
332         struct rte_flow_action actions[2];
333         struct rte_flow_item items[4];
334         struct rte_flow_item_eth l2;
335         struct rte_flow_item_eth l2_mask;
336         union {
337                 struct rte_flow_item_ipv4 ipv4;
338                 struct rte_flow_item_ipv6 ipv6;
339         } l3;
340         union {
341                 struct rte_flow_item_ipv4 ipv4;
342                 struct rte_flow_item_ipv6 ipv6;
343         } l3_mask;
344         union {
345                 struct rte_flow_item_udp udp;
346                 struct rte_flow_item_tcp tcp;
347         } l4;
348         union {
349                 struct rte_flow_item_udp udp;
350                 struct rte_flow_item_tcp tcp;
351         } l4_mask;
352         struct rte_flow_action_queue queue;
353 };
354
355 /* Verbs specification header. */
356 struct ibv_spec_header {
357         enum ibv_flow_spec_type type;
358         uint16_t size;
359 };
360
361 /*
362  * Number of sub priorities.
363  * For each kind of pattern matching i.e. L2, L3, L4 to have a correct
364  * matching on the NIC (firmware dependent) L4 most have the higher priority
365  * followed by L3 and ending with L2.
366  */
367 #define MLX5_PRIORITY_MAP_L2 2
368 #define MLX5_PRIORITY_MAP_L3 1
369 #define MLX5_PRIORITY_MAP_L4 0
370 #define MLX5_PRIORITY_MAP_MAX 3
371
372 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
373 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
374         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
375 };
376
377 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
378 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
379         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
380         { 9, 10, 11 }, { 12, 13, 14 },
381 };
382
383 /* Tunnel information. */
384 struct mlx5_flow_tunnel_info {
385         uint32_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
386         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
387 };
388
389 static struct mlx5_flow_tunnel_info tunnels_info[] = {
390         {
391                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
392                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
393         },
394         {
395                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
396                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
397         },
398         {
399                 .tunnel = MLX5_FLOW_LAYER_GRE,
400                 .ptype = RTE_PTYPE_TUNNEL_GRE,
401         },
402         {
403                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
404                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE | RTE_PTYPE_L4_UDP,
405         },
406         {
407                 .tunnel = MLX5_FLOW_LAYER_MPLS,
408                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
409         },
410 };
411
412 /**
413  * Discover the maximum number of priority available.
414  *
415  * @param[in] dev
416  *   Pointer to Ethernet device.
417  *
418  * @return
419  *   number of supported flow priority on success, a negative errno
420  *   value otherwise and rte_errno is set.
421  */
422 int
423 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
424 {
425         struct {
426                 struct ibv_flow_attr attr;
427                 struct ibv_flow_spec_eth eth;
428                 struct ibv_flow_spec_action_drop drop;
429         } flow_attr = {
430                 .attr = {
431                         .num_of_specs = 2,
432                 },
433                 .eth = {
434                         .type = IBV_FLOW_SPEC_ETH,
435                         .size = sizeof(struct ibv_flow_spec_eth),
436                 },
437                 .drop = {
438                         .size = sizeof(struct ibv_flow_spec_action_drop),
439                         .type = IBV_FLOW_SPEC_ACTION_DROP,
440                 },
441         };
442         struct ibv_flow *flow;
443         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
444         uint16_t vprio[] = { 8, 16 };
445         int i;
446         int priority = 0;
447
448         if (!drop) {
449                 rte_errno = ENOTSUP;
450                 return -rte_errno;
451         }
452         for (i = 0; i != RTE_DIM(vprio); i++) {
453                 flow_attr.attr.priority = vprio[i] - 1;
454                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
455                 if (!flow)
456                         break;
457                 claim_zero(mlx5_glue->destroy_flow(flow));
458                 priority = vprio[i];
459         }
460         switch (priority) {
461         case 8:
462                 priority = RTE_DIM(priority_map_3);
463                 break;
464         case 16:
465                 priority = RTE_DIM(priority_map_5);
466                 break;
467         default:
468                 rte_errno = ENOTSUP;
469                 DRV_LOG(ERR,
470                         "port %u verbs maximum priority: %d expected 8/16",
471                         dev->data->port_id, vprio[i]);
472                 return -rte_errno;
473         }
474         mlx5_hrxq_drop_release(dev);
475         DRV_LOG(INFO, "port %u flow maximum priority: %d",
476                 dev->data->port_id, priority);
477         return priority;
478 }
479
480 /**
481  * Adjust flow priority.
482  *
483  * @param dev
484  *   Pointer to Ethernet device.
485  * @param flow
486  *   Pointer to an rte flow.
487  */
488 static void
489 mlx5_flow_adjust_priority(struct rte_eth_dev *dev, struct rte_flow *flow)
490 {
491         struct priv *priv = dev->data->dev_private;
492         uint32_t priority = flow->attributes.priority;
493         uint32_t subpriority = flow->cur_verbs->attr->priority;
494
495         switch (priv->config.flow_prio) {
496         case RTE_DIM(priority_map_3):
497                 priority = priority_map_3[priority][subpriority];
498                 break;
499         case RTE_DIM(priority_map_5):
500                 priority = priority_map_5[priority][subpriority];
501                 break;
502         }
503         flow->cur_verbs->attr->priority = priority;
504 }
505
506 /**
507  * Get a flow counter.
508  *
509  * @param[in] dev
510  *   Pointer to Ethernet device.
511  * @param[in] shared
512  *   Indicate if this counter is shared with other flows.
513  * @param[in] id
514  *   Counter identifier.
515  *
516  * @return
517  *   A pointer to the counter, NULL otherwise and rte_errno is set.
518  */
519 static struct mlx5_flow_counter *
520 mlx5_flow_counter_new(struct rte_eth_dev *dev, uint32_t shared, uint32_t id)
521 {
522         struct priv *priv = dev->data->dev_private;
523         struct mlx5_flow_counter *cnt;
524
525         LIST_FOREACH(cnt, &priv->flow_counters, next) {
526                 if (!cnt->shared || cnt->shared != shared)
527                         continue;
528                 if (cnt->id != id)
529                         continue;
530                 cnt->ref_cnt++;
531                 return cnt;
532         }
533 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
534
535         struct mlx5_flow_counter tmpl = {
536                 .shared = shared,
537                 .id = id,
538                 .cs = mlx5_glue->create_counter_set
539                         (priv->ctx,
540                          &(struct ibv_counter_set_init_attr){
541                                  .counter_set_id = id,
542                          }),
543                 .hits = 0,
544                 .bytes = 0,
545         };
546
547         if (!tmpl.cs) {
548                 rte_errno = errno;
549                 return NULL;
550         }
551         cnt = rte_calloc(__func__, 1, sizeof(*cnt), 0);
552         if (!cnt) {
553                 rte_errno = ENOMEM;
554                 return NULL;
555         }
556         *cnt = tmpl;
557         LIST_INSERT_HEAD(&priv->flow_counters, cnt, next);
558         return cnt;
559 #endif
560         rte_errno = ENOTSUP;
561         return NULL;
562 }
563
564 /**
565  * Release a flow counter.
566  *
567  * @param[in] counter
568  *   Pointer to the counter handler.
569  */
570 static void
571 mlx5_flow_counter_release(struct mlx5_flow_counter *counter)
572 {
573         if (--counter->ref_cnt == 0) {
574                 claim_zero(mlx5_glue->destroy_counter_set(counter->cs));
575                 LIST_REMOVE(counter, next);
576                 rte_free(counter);
577         }
578 }
579
580 /**
581  * Verify the @p attributes will be correctly understood by the NIC and store
582  * them in the @p flow if everything is correct.
583  *
584  * @param[in] dev
585  *   Pointer to Ethernet device.
586  * @param[in] attributes
587  *   Pointer to flow attributes
588  * @param[in, out] flow
589  *   Pointer to the rte_flow structure.
590  * @param[out] error
591  *   Pointer to error structure.
592  *
593  * @return
594  *   0 on success, a negative errno value otherwise and rte_errno is set.
595  */
596 static int
597 mlx5_flow_attributes(struct rte_eth_dev *dev,
598                      const struct rte_flow_attr *attributes,
599                      struct rte_flow *flow,
600                      struct rte_flow_error *error)
601 {
602         uint32_t priority_max =
603                 ((struct priv *)dev->data->dev_private)->config.flow_prio - 1;
604
605         if (attributes->group)
606                 return rte_flow_error_set(error, ENOTSUP,
607                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
608                                           NULL,
609                                           "groups is not supported");
610         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
611             attributes->priority >= priority_max)
612                 return rte_flow_error_set(error, ENOTSUP,
613                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
614                                           NULL,
615                                           "priority out of range");
616         if (attributes->egress)
617                 return rte_flow_error_set(error, ENOTSUP,
618                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
619                                           NULL,
620                                           "egress is not supported");
621         if (attributes->transfer)
622                 return rte_flow_error_set(error, ENOTSUP,
623                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
624                                           NULL,
625                                           "transfer is not supported");
626         if (!attributes->ingress)
627                 return rte_flow_error_set(error, ENOTSUP,
628                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
629                                           NULL,
630                                           "ingress attribute is mandatory");
631         flow->attributes = *attributes;
632         if (attributes->priority == MLX5_FLOW_PRIO_RSVD)
633                 flow->attributes.priority = priority_max;
634         return 0;
635 }
636
637 /**
638  * Verify the @p item specifications (spec, last, mask) are compatible with the
639  * NIC capabilities.
640  *
641  * @param[in] item
642  *   Item specification.
643  * @param[in] mask
644  *   @p item->mask or flow default bit-masks.
645  * @param[in] nic_mask
646  *   Bit-masks covering supported fields by the NIC to compare with user mask.
647  * @param[in] size
648  *   Bit-masks size in bytes.
649  * @param[out] error
650  *   Pointer to error structure.
651  *
652  * @return
653  *   0 on success, a negative errno value otherwise and rte_errno is set.
654  */
655 static int
656 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
657                           const uint8_t *mask,
658                           const uint8_t *nic_mask,
659                           unsigned int size,
660                           struct rte_flow_error *error)
661 {
662         unsigned int i;
663
664         assert(nic_mask);
665         for (i = 0; i < size; ++i)
666                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
667                         return rte_flow_error_set(error, ENOTSUP,
668                                                   RTE_FLOW_ERROR_TYPE_ITEM,
669                                                   item,
670                                                   "mask enables non supported"
671                                                   " bits");
672         if (!item->spec && (item->mask || item->last))
673                 return rte_flow_error_set(error, EINVAL,
674                                           RTE_FLOW_ERROR_TYPE_ITEM,
675                                           item,
676                                           "mask/last without a spec is not"
677                                           " supported");
678         if (item->spec && item->last) {
679                 uint8_t spec[size];
680                 uint8_t last[size];
681                 unsigned int i;
682                 int ret;
683
684                 for (i = 0; i < size; ++i) {
685                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
686                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
687                 }
688                 ret = memcmp(spec, last, size);
689                 if (ret != 0)
690                         return rte_flow_error_set(error, ENOTSUP,
691                                                   RTE_FLOW_ERROR_TYPE_ITEM,
692                                                   item,
693                                                   "range is not supported");
694         }
695         return 0;
696 }
697
698 /**
699  * Add a verbs item specification into @p flow.
700  *
701  * @param[in, out] flow
702  *   Pointer to flow structure.
703  * @param[in] src
704  *   Create specification.
705  * @param[in] size
706  *   Size in bytes of the specification to copy.
707  */
708 static void
709 mlx5_flow_spec_verbs_add(struct rte_flow *flow, void *src, unsigned int size)
710 {
711         struct mlx5_flow_verbs *verbs = flow->cur_verbs;
712
713         if (verbs->specs) {
714                 void *dst;
715
716                 dst = (void *)(verbs->specs + verbs->size);
717                 memcpy(dst, src, size);
718                 ++verbs->attr->num_of_specs;
719         }
720         verbs->size += size;
721 }
722
723 /**
724  * Adjust verbs hash fields according to the @p flow information.
725  *
726  * @param[in, out] flow.
727  *   Pointer to flow structure.
728  * @param[in] tunnel
729  *   1 when the hash field is for a tunnel item.
730  * @param[in] layer_types
731  *   ETH_RSS_* types.
732  * @param[in] hash_fields
733  *   Item hash fields.
734  */
735 static void
736 mlx5_flow_verbs_hashfields_adjust(struct rte_flow *flow,
737                                   int tunnel __rte_unused,
738                                   uint32_t layer_types, uint64_t hash_fields)
739 {
740 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
741         hash_fields |= (tunnel ? IBV_RX_HASH_INNER : 0);
742         if (flow->rss.level == 2 && !tunnel)
743                 hash_fields = 0;
744         else if (flow->rss.level < 2 && tunnel)
745                 hash_fields = 0;
746 #endif
747         if (!(flow->rss.types & layer_types))
748                 hash_fields = 0;
749         flow->cur_verbs->hash_fields |= hash_fields;
750 }
751
752 /**
753  * Convert the @p item into a Verbs specification after ensuring the NIC
754  * will understand and process it correctly.
755  * If the necessary size for the conversion is greater than the @p flow_size,
756  * nothing is written in @p flow, the validation is still performed.
757  *
758  * @param[in] item
759  *   Item specification.
760  * @param[in, out] flow
761  *   Pointer to flow structure.
762  * @param[in] flow_size
763  *   Size in bytes of the available space in @p flow, if too small, nothing is
764  *   written.
765  * @param[out] error
766  *   Pointer to error structure.
767  *
768  * @return
769  *   On success the number of bytes consumed/necessary, if the returned value
770  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
771  *   otherwise another call with this returned memory size should be done.
772  *   On error, a negative errno value is returned and rte_errno is set.
773  */
774 static int
775 mlx5_flow_item_eth(const struct rte_flow_item *item, struct rte_flow *flow,
776                    const size_t flow_size, struct rte_flow_error *error)
777 {
778         const struct rte_flow_item_eth *spec = item->spec;
779         const struct rte_flow_item_eth *mask = item->mask;
780         const struct rte_flow_item_eth nic_mask = {
781                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
782                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
783                 .type = RTE_BE16(0xffff),
784         };
785         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
786         const unsigned int size = sizeof(struct ibv_flow_spec_eth);
787         struct ibv_flow_spec_eth eth = {
788                 .type = IBV_FLOW_SPEC_ETH | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
789                 .size = size,
790         };
791         int ret;
792
793         if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
794                             MLX5_FLOW_LAYER_OUTER_L2))
795                 return rte_flow_error_set(error, ENOTSUP,
796                                           RTE_FLOW_ERROR_TYPE_ITEM,
797                                           item,
798                                           "L2 layers already configured");
799         if (!mask)
800                 mask = &rte_flow_item_eth_mask;
801         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
802                                         (const uint8_t *)&nic_mask,
803                                         sizeof(struct rte_flow_item_eth),
804                                         error);
805         if (ret)
806                 return ret;
807         flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
808                 MLX5_FLOW_LAYER_OUTER_L2;
809         if (size > flow_size)
810                 return size;
811         if (spec) {
812                 unsigned int i;
813
814                 memcpy(&eth.val.dst_mac, spec->dst.addr_bytes, ETHER_ADDR_LEN);
815                 memcpy(&eth.val.src_mac, spec->src.addr_bytes, ETHER_ADDR_LEN);
816                 eth.val.ether_type = spec->type;
817                 memcpy(&eth.mask.dst_mac, mask->dst.addr_bytes, ETHER_ADDR_LEN);
818                 memcpy(&eth.mask.src_mac, mask->src.addr_bytes, ETHER_ADDR_LEN);
819                 eth.mask.ether_type = mask->type;
820                 /* Remove unwanted bits from values. */
821                 for (i = 0; i < ETHER_ADDR_LEN; ++i) {
822                         eth.val.dst_mac[i] &= eth.mask.dst_mac[i];
823                         eth.val.src_mac[i] &= eth.mask.src_mac[i];
824                 }
825                 eth.val.ether_type &= eth.mask.ether_type;
826         }
827         flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
828         mlx5_flow_spec_verbs_add(flow, &eth, size);
829         return size;
830 }
831
832 /**
833  * Update the VLAN tag in the Verbs Ethernet specification.
834  *
835  * @param[in, out] attr
836  *   Pointer to Verbs attributes structure.
837  * @param[in] eth
838  *   Verbs structure containing the VLAN information to copy.
839  */
840 static void
841 mlx5_flow_item_vlan_update(struct ibv_flow_attr *attr,
842                            struct ibv_flow_spec_eth *eth)
843 {
844         unsigned int i;
845         const enum ibv_flow_spec_type search = eth->type;
846         struct ibv_spec_header *hdr = (struct ibv_spec_header *)
847                 ((uint8_t *)attr + sizeof(struct ibv_flow_attr));
848
849         for (i = 0; i != attr->num_of_specs; ++i) {
850                 if (hdr->type == search) {
851                         struct ibv_flow_spec_eth *e =
852                                 (struct ibv_flow_spec_eth *)hdr;
853
854                         e->val.vlan_tag = eth->val.vlan_tag;
855                         e->mask.vlan_tag = eth->mask.vlan_tag;
856                         e->val.ether_type = eth->val.ether_type;
857                         e->mask.ether_type = eth->mask.ether_type;
858                         break;
859                 }
860                 hdr = (struct ibv_spec_header *)((uint8_t *)hdr + hdr->size);
861         }
862 }
863
864 /**
865  * Convert the @p item into @p flow (or by updating the already present
866  * Ethernet Verbs) specification after ensuring the NIC will understand and
867  * process it correctly.
868  * If the necessary size for the conversion is greater than the @p flow_size,
869  * nothing is written in @p flow, the validation is still performed.
870  *
871  * @param[in] item
872  *   Item specification.
873  * @param[in, out] flow
874  *   Pointer to flow structure.
875  * @param[in] flow_size
876  *   Size in bytes of the available space in @p flow, if too small, nothing is
877  *   written.
878  * @param[out] error
879  *   Pointer to error structure.
880  *
881  * @return
882  *   On success the number of bytes consumed/necessary, if the returned value
883  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
884  *   otherwise another call with this returned memory size should be done.
885  *   On error, a negative errno value is returned and rte_errno is set.
886  */
887 static int
888 mlx5_flow_item_vlan(const struct rte_flow_item *item, struct rte_flow *flow,
889                     const size_t flow_size, struct rte_flow_error *error)
890 {
891         const struct rte_flow_item_vlan *spec = item->spec;
892         const struct rte_flow_item_vlan *mask = item->mask;
893         const struct rte_flow_item_vlan nic_mask = {
894                 .tci = RTE_BE16(0x0fff),
895                 .inner_type = RTE_BE16(0xffff),
896         };
897         unsigned int size = sizeof(struct ibv_flow_spec_eth);
898         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
899         struct ibv_flow_spec_eth eth = {
900                 .type = IBV_FLOW_SPEC_ETH | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
901                 .size = size,
902         };
903         int ret;
904         const uint32_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
905                                         MLX5_FLOW_LAYER_INNER_L4) :
906                 (MLX5_FLOW_LAYER_OUTER_L3 | MLX5_FLOW_LAYER_OUTER_L4);
907         const uint32_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
908                 MLX5_FLOW_LAYER_OUTER_VLAN;
909         const uint32_t l2m = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
910                 MLX5_FLOW_LAYER_OUTER_L2;
911
912         if (flow->layers & vlanm)
913                 return rte_flow_error_set(error, ENOTSUP,
914                                           RTE_FLOW_ERROR_TYPE_ITEM,
915                                           item,
916                                           "VLAN layer already configured");
917         else if ((flow->layers & l34m) != 0)
918                 return rte_flow_error_set(error, ENOTSUP,
919                                           RTE_FLOW_ERROR_TYPE_ITEM,
920                                           item,
921                                           "L2 layer cannot follow L3/L4 layer");
922         if (!mask)
923                 mask = &rte_flow_item_vlan_mask;
924         ret = mlx5_flow_item_acceptable
925                 (item, (const uint8_t *)mask,
926                  (const uint8_t *)&nic_mask,
927                  sizeof(struct rte_flow_item_vlan), error);
928         if (ret)
929                 return ret;
930         if (spec) {
931                 eth.val.vlan_tag = spec->tci;
932                 eth.mask.vlan_tag = mask->tci;
933                 eth.val.vlan_tag &= eth.mask.vlan_tag;
934                 eth.val.ether_type = spec->inner_type;
935                 eth.mask.ether_type = mask->inner_type;
936                 eth.val.ether_type &= eth.mask.ether_type;
937         }
938         /*
939          * From verbs perspective an empty VLAN is equivalent
940          * to a packet without VLAN layer.
941          */
942         if (!eth.mask.vlan_tag)
943                 return rte_flow_error_set(error, EINVAL,
944                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
945                                           item->spec,
946                                           "VLAN cannot be empty");
947         if (!(flow->layers & l2m)) {
948                 if (size <= flow_size) {
949                         flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
950                         mlx5_flow_spec_verbs_add(flow, &eth, size);
951                 }
952         } else {
953                 if (flow->cur_verbs)
954                         mlx5_flow_item_vlan_update(flow->cur_verbs->attr,
955                                                    &eth);
956                 size = 0; /* Only an update is done in eth specification. */
957         }
958         flow->layers |= tunnel ?
959                 (MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_VLAN) :
960                 (MLX5_FLOW_LAYER_OUTER_L2 | MLX5_FLOW_LAYER_OUTER_VLAN);
961         return size;
962 }
963
964 /**
965  * Convert the @p item into a Verbs specification after ensuring the NIC
966  * will understand and process it correctly.
967  * If the necessary size for the conversion is greater than the @p flow_size,
968  * nothing is written in @p flow, the validation is still performed.
969  *
970  * @param[in] item
971  *   Item specification.
972  * @param[in, out] flow
973  *   Pointer to flow structure.
974  * @param[in] flow_size
975  *   Size in bytes of the available space in @p flow, if too small, nothing is
976  *   written.
977  * @param[out] error
978  *   Pointer to error structure.
979  *
980  * @return
981  *   On success the number of bytes consumed/necessary, if the returned value
982  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
983  *   otherwise another call with this returned memory size should be done.
984  *   On error, a negative errno value is returned and rte_errno is set.
985  */
986 static int
987 mlx5_flow_item_ipv4(const struct rte_flow_item *item, struct rte_flow *flow,
988                     const size_t flow_size, struct rte_flow_error *error)
989 {
990         const struct rte_flow_item_ipv4 *spec = item->spec;
991         const struct rte_flow_item_ipv4 *mask = item->mask;
992         const struct rte_flow_item_ipv4 nic_mask = {
993                 .hdr = {
994                         .src_addr = RTE_BE32(0xffffffff),
995                         .dst_addr = RTE_BE32(0xffffffff),
996                         .type_of_service = 0xff,
997                         .next_proto_id = 0xff,
998                 },
999         };
1000         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
1001         unsigned int size = sizeof(struct ibv_flow_spec_ipv4_ext);
1002         struct ibv_flow_spec_ipv4_ext ipv4 = {
1003                 .type = IBV_FLOW_SPEC_IPV4_EXT |
1004                         (tunnel ? IBV_FLOW_SPEC_INNER : 0),
1005                 .size = size,
1006         };
1007         int ret;
1008
1009         if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1010                             MLX5_FLOW_LAYER_OUTER_L3))
1011                 return rte_flow_error_set(error, ENOTSUP,
1012                                           RTE_FLOW_ERROR_TYPE_ITEM,
1013                                           item,
1014                                           "multiple L3 layers not supported");
1015         else if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1016                                  MLX5_FLOW_LAYER_OUTER_L4))
1017                 return rte_flow_error_set(error, ENOTSUP,
1018                                           RTE_FLOW_ERROR_TYPE_ITEM,
1019                                           item,
1020                                           "L3 cannot follow an L4 layer.");
1021         if (!mask)
1022                 mask = &rte_flow_item_ipv4_mask;
1023         ret = mlx5_flow_item_acceptable
1024                 (item, (const uint8_t *)mask,
1025                  (const uint8_t *)&nic_mask,
1026                  sizeof(struct rte_flow_item_ipv4), error);
1027         if (ret < 0)
1028                 return ret;
1029         flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1030                 MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1031         if (spec) {
1032                 ipv4.val = (struct ibv_flow_ipv4_ext_filter){
1033                         .src_ip = spec->hdr.src_addr,
1034                         .dst_ip = spec->hdr.dst_addr,
1035                         .proto = spec->hdr.next_proto_id,
1036                         .tos = spec->hdr.type_of_service,
1037                 };
1038                 ipv4.mask = (struct ibv_flow_ipv4_ext_filter){
1039                         .src_ip = mask->hdr.src_addr,
1040                         .dst_ip = mask->hdr.dst_addr,
1041                         .proto = mask->hdr.next_proto_id,
1042                         .tos = mask->hdr.type_of_service,
1043                 };
1044                 /* Remove unwanted bits from values. */
1045                 ipv4.val.src_ip &= ipv4.mask.src_ip;
1046                 ipv4.val.dst_ip &= ipv4.mask.dst_ip;
1047                 ipv4.val.proto &= ipv4.mask.proto;
1048                 ipv4.val.tos &= ipv4.mask.tos;
1049         }
1050         flow->l3_protocol_en = !!ipv4.mask.proto;
1051         flow->l3_protocol = ipv4.val.proto;
1052         if (size <= flow_size) {
1053                 mlx5_flow_verbs_hashfields_adjust
1054                         (flow, tunnel,
1055                          (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
1056                           ETH_RSS_NONFRAG_IPV4_OTHER),
1057                          (IBV_RX_HASH_SRC_IPV4 | IBV_RX_HASH_DST_IPV4));
1058                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L3;
1059                 mlx5_flow_spec_verbs_add(flow, &ipv4, size);
1060         }
1061         return size;
1062 }
1063
1064 /**
1065  * Convert the @p item into a Verbs specification after ensuring the NIC
1066  * will understand and process it correctly.
1067  * If the necessary size for the conversion is greater than the @p flow_size,
1068  * nothing is written in @p flow, the validation is still performed.
1069  *
1070  * @param[in] item
1071  *   Item specification.
1072  * @param[in, out] flow
1073  *   Pointer to flow structure.
1074  * @param[in] flow_size
1075  *   Size in bytes of the available space in @p flow, if too small, nothing is
1076  *   written.
1077  * @param[out] error
1078  *   Pointer to error structure.
1079  *
1080  * @return
1081  *   On success the number of bytes consumed/necessary, if the returned value
1082  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1083  *   otherwise another call with this returned memory size should be done.
1084  *   On error, a negative errno value is returned and rte_errno is set.
1085  */
1086 static int
1087 mlx5_flow_item_ipv6(const struct rte_flow_item *item, struct rte_flow *flow,
1088                     const size_t flow_size, struct rte_flow_error *error)
1089 {
1090         const struct rte_flow_item_ipv6 *spec = item->spec;
1091         const struct rte_flow_item_ipv6 *mask = item->mask;
1092         const struct rte_flow_item_ipv6 nic_mask = {
1093                 .hdr = {
1094                         .src_addr =
1095                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1096                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1097                         .dst_addr =
1098                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1099                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1100                         .vtc_flow = RTE_BE32(0xffffffff),
1101                         .proto = 0xff,
1102                         .hop_limits = 0xff,
1103                 },
1104         };
1105         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
1106         unsigned int size = sizeof(struct ibv_flow_spec_ipv6);
1107         struct ibv_flow_spec_ipv6 ipv6 = {
1108                 .type = IBV_FLOW_SPEC_IPV6 | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
1109                 .size = size,
1110         };
1111         int ret;
1112
1113         if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1114                             MLX5_FLOW_LAYER_OUTER_L3))
1115                 return rte_flow_error_set(error, ENOTSUP,
1116                                           RTE_FLOW_ERROR_TYPE_ITEM,
1117                                           item,
1118                                           "multiple L3 layers not supported");
1119         else if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1120                                  MLX5_FLOW_LAYER_OUTER_L4))
1121                 return rte_flow_error_set(error, ENOTSUP,
1122                                           RTE_FLOW_ERROR_TYPE_ITEM,
1123                                           item,
1124                                           "L3 cannot follow an L4 layer.");
1125         /*
1126          * IPv6 is not recognised by the NIC inside a GRE tunnel.
1127          * Such support has to be disabled as the rule will be
1128          * accepted.  Issue reproduced with Mellanox OFED 4.3-3.0.2.1 and
1129          * Mellanox OFED 4.4-1.0.0.0.
1130          */
1131         if (tunnel && flow->layers & MLX5_FLOW_LAYER_GRE)
1132                 return rte_flow_error_set(error, ENOTSUP,
1133                                           RTE_FLOW_ERROR_TYPE_ITEM,
1134                                           item,
1135                                           "IPv6 inside a GRE tunnel is"
1136                                           " not recognised.");
1137         if (!mask)
1138                 mask = &rte_flow_item_ipv6_mask;
1139         ret = mlx5_flow_item_acceptable
1140                 (item, (const uint8_t *)mask,
1141                  (const uint8_t *)&nic_mask,
1142                  sizeof(struct rte_flow_item_ipv6), error);
1143         if (ret < 0)
1144                 return ret;
1145         flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1146                 MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1147         if (spec) {
1148                 unsigned int i;
1149                 uint32_t vtc_flow_val;
1150                 uint32_t vtc_flow_mask;
1151
1152                 memcpy(&ipv6.val.src_ip, spec->hdr.src_addr,
1153                        RTE_DIM(ipv6.val.src_ip));
1154                 memcpy(&ipv6.val.dst_ip, spec->hdr.dst_addr,
1155                        RTE_DIM(ipv6.val.dst_ip));
1156                 memcpy(&ipv6.mask.src_ip, mask->hdr.src_addr,
1157                        RTE_DIM(ipv6.mask.src_ip));
1158                 memcpy(&ipv6.mask.dst_ip, mask->hdr.dst_addr,
1159                        RTE_DIM(ipv6.mask.dst_ip));
1160                 vtc_flow_val = rte_be_to_cpu_32(spec->hdr.vtc_flow);
1161                 vtc_flow_mask = rte_be_to_cpu_32(mask->hdr.vtc_flow);
1162                 ipv6.val.flow_label =
1163                         rte_cpu_to_be_32((vtc_flow_val & IPV6_HDR_FL_MASK) >>
1164                                          IPV6_HDR_FL_SHIFT);
1165                 ipv6.val.traffic_class = (vtc_flow_val & IPV6_HDR_TC_MASK) >>
1166                                          IPV6_HDR_TC_SHIFT;
1167                 ipv6.val.next_hdr = spec->hdr.proto;
1168                 ipv6.val.hop_limit = spec->hdr.hop_limits;
1169                 ipv6.mask.flow_label =
1170                         rte_cpu_to_be_32((vtc_flow_mask & IPV6_HDR_FL_MASK) >>
1171                                          IPV6_HDR_FL_SHIFT);
1172                 ipv6.mask.traffic_class = (vtc_flow_mask & IPV6_HDR_TC_MASK) >>
1173                                           IPV6_HDR_TC_SHIFT;
1174                 ipv6.mask.next_hdr = mask->hdr.proto;
1175                 ipv6.mask.hop_limit = mask->hdr.hop_limits;
1176                 /* Remove unwanted bits from values. */
1177                 for (i = 0; i < RTE_DIM(ipv6.val.src_ip); ++i) {
1178                         ipv6.val.src_ip[i] &= ipv6.mask.src_ip[i];
1179                         ipv6.val.dst_ip[i] &= ipv6.mask.dst_ip[i];
1180                 }
1181                 ipv6.val.flow_label &= ipv6.mask.flow_label;
1182                 ipv6.val.traffic_class &= ipv6.mask.traffic_class;
1183                 ipv6.val.next_hdr &= ipv6.mask.next_hdr;
1184                 ipv6.val.hop_limit &= ipv6.mask.hop_limit;
1185         }
1186         flow->l3_protocol_en = !!ipv6.mask.next_hdr;
1187         flow->l3_protocol = ipv6.val.next_hdr;
1188         if (size <= flow_size) {
1189                 mlx5_flow_verbs_hashfields_adjust
1190                         (flow, tunnel,
1191                          (ETH_RSS_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER),
1192                          (IBV_RX_HASH_SRC_IPV6 | IBV_RX_HASH_DST_IPV6));
1193                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L3;
1194                 mlx5_flow_spec_verbs_add(flow, &ipv6, size);
1195         }
1196         return size;
1197 }
1198
1199 /**
1200  * Convert the @p item into a Verbs specification after ensuring the NIC
1201  * will understand and process it correctly.
1202  * If the necessary size for the conversion is greater than the @p flow_size,
1203  * nothing is written in @p flow, the validation is still performed.
1204  *
1205  * @param[in] item
1206  *   Item specification.
1207  * @param[in, out] flow
1208  *   Pointer to flow structure.
1209  * @param[in] flow_size
1210  *   Size in bytes of the available space in @p flow, if too small, nothing is
1211  *   written.
1212  * @param[out] error
1213  *   Pointer to error structure.
1214  *
1215  * @return
1216  *   On success the number of bytes consumed/necessary, if the returned value
1217  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1218  *   otherwise another call with this returned memory size should be done.
1219  *   On error, a negative errno value is returned and rte_errno is set.
1220  */
1221 static int
1222 mlx5_flow_item_udp(const struct rte_flow_item *item, struct rte_flow *flow,
1223                    const size_t flow_size, struct rte_flow_error *error)
1224 {
1225         const struct rte_flow_item_udp *spec = item->spec;
1226         const struct rte_flow_item_udp *mask = item->mask;
1227         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
1228         unsigned int size = sizeof(struct ibv_flow_spec_tcp_udp);
1229         struct ibv_flow_spec_tcp_udp udp = {
1230                 .type = IBV_FLOW_SPEC_UDP | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
1231                 .size = size,
1232         };
1233         int ret;
1234
1235         if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_UDP)
1236                 return rte_flow_error_set(error, ENOTSUP,
1237                                           RTE_FLOW_ERROR_TYPE_ITEM,
1238                                           item,
1239                                           "protocol filtering not compatible"
1240                                           " with UDP layer");
1241         if (!(flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1242                               MLX5_FLOW_LAYER_OUTER_L3)))
1243                 return rte_flow_error_set(error, ENOTSUP,
1244                                           RTE_FLOW_ERROR_TYPE_ITEM,
1245                                           item,
1246                                           "L3 is mandatory to filter"
1247                                           " on L4");
1248         if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1249                             MLX5_FLOW_LAYER_OUTER_L4))
1250                 return rte_flow_error_set(error, ENOTSUP,
1251                                           RTE_FLOW_ERROR_TYPE_ITEM,
1252                                           item,
1253                                           "L4 layer is already"
1254                                           " present");
1255         if (!mask)
1256                 mask = &rte_flow_item_udp_mask;
1257         ret = mlx5_flow_item_acceptable
1258                 (item, (const uint8_t *)mask,
1259                  (const uint8_t *)&rte_flow_item_udp_mask,
1260                  sizeof(struct rte_flow_item_udp), error);
1261         if (ret < 0)
1262                 return ret;
1263         flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L4_UDP :
1264                 MLX5_FLOW_LAYER_OUTER_L4_UDP;
1265         if (spec) {
1266                 udp.val.dst_port = spec->hdr.dst_port;
1267                 udp.val.src_port = spec->hdr.src_port;
1268                 udp.mask.dst_port = mask->hdr.dst_port;
1269                 udp.mask.src_port = mask->hdr.src_port;
1270                 /* Remove unwanted bits from values. */
1271                 udp.val.src_port &= udp.mask.src_port;
1272                 udp.val.dst_port &= udp.mask.dst_port;
1273         }
1274         if (size <= flow_size) {
1275                 mlx5_flow_verbs_hashfields_adjust(flow, tunnel, ETH_RSS_UDP,
1276                                                   (IBV_RX_HASH_SRC_PORT_UDP |
1277                                                    IBV_RX_HASH_DST_PORT_UDP));
1278                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L4;
1279                 mlx5_flow_spec_verbs_add(flow, &udp, size);
1280         }
1281         return size;
1282 }
1283
1284 /**
1285  * Convert the @p item into a Verbs specification after ensuring the NIC
1286  * will understand and process it correctly.
1287  * If the necessary size for the conversion is greater than the @p flow_size,
1288  * nothing is written in @p flow, the validation is still performed.
1289  *
1290  * @param[in] item
1291  *   Item specification.
1292  * @param[in, out] flow
1293  *   Pointer to flow structure.
1294  * @param[in] flow_size
1295  *   Size in bytes of the available space in @p flow, if too small, nothing is
1296  *   written.
1297  * @param[out] error
1298  *   Pointer to error structure.
1299  *
1300  * @return
1301  *   On success the number of bytes consumed/necessary, if the returned value
1302  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1303  *   otherwise another call with this returned memory size should be done.
1304  *   On error, a negative errno value is returned and rte_errno is set.
1305  */
1306 static int
1307 mlx5_flow_item_tcp(const struct rte_flow_item *item, struct rte_flow *flow,
1308                    const size_t flow_size, struct rte_flow_error *error)
1309 {
1310         const struct rte_flow_item_tcp *spec = item->spec;
1311         const struct rte_flow_item_tcp *mask = item->mask;
1312         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
1313         unsigned int size = sizeof(struct ibv_flow_spec_tcp_udp);
1314         struct ibv_flow_spec_tcp_udp tcp = {
1315                 .type = IBV_FLOW_SPEC_TCP | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
1316                 .size = size,
1317         };
1318         int ret;
1319
1320         if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_TCP)
1321                 return rte_flow_error_set(error, ENOTSUP,
1322                                           RTE_FLOW_ERROR_TYPE_ITEM,
1323                                           item,
1324                                           "protocol filtering not compatible"
1325                                           " with TCP layer");
1326         if (!(flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1327                               MLX5_FLOW_LAYER_OUTER_L3)))
1328                 return rte_flow_error_set(error, ENOTSUP,
1329                                           RTE_FLOW_ERROR_TYPE_ITEM,
1330                                           item,
1331                                           "L3 is mandatory to filter on L4");
1332         if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1333                             MLX5_FLOW_LAYER_OUTER_L4))
1334                 return rte_flow_error_set(error, ENOTSUP,
1335                                           RTE_FLOW_ERROR_TYPE_ITEM,
1336                                           item,
1337                                           "L4 layer is already present");
1338         if (!mask)
1339                 mask = &rte_flow_item_tcp_mask;
1340         ret = mlx5_flow_item_acceptable
1341                 (item, (const uint8_t *)mask,
1342                  (const uint8_t *)&rte_flow_item_tcp_mask,
1343                  sizeof(struct rte_flow_item_tcp), error);
1344         if (ret < 0)
1345                 return ret;
1346         flow->layers |=  tunnel ? MLX5_FLOW_LAYER_INNER_L4_TCP :
1347                 MLX5_FLOW_LAYER_OUTER_L4_TCP;
1348         if (spec) {
1349                 tcp.val.dst_port = spec->hdr.dst_port;
1350                 tcp.val.src_port = spec->hdr.src_port;
1351                 tcp.mask.dst_port = mask->hdr.dst_port;
1352                 tcp.mask.src_port = mask->hdr.src_port;
1353                 /* Remove unwanted bits from values. */
1354                 tcp.val.src_port &= tcp.mask.src_port;
1355                 tcp.val.dst_port &= tcp.mask.dst_port;
1356         }
1357         if (size <= flow_size) {
1358                 mlx5_flow_verbs_hashfields_adjust(flow, tunnel, ETH_RSS_TCP,
1359                                                   (IBV_RX_HASH_SRC_PORT_TCP |
1360                                                    IBV_RX_HASH_DST_PORT_TCP));
1361                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L4;
1362                 mlx5_flow_spec_verbs_add(flow, &tcp, size);
1363         }
1364         return size;
1365 }
1366
1367 /**
1368  * Convert the @p item into a Verbs specification after ensuring the NIC
1369  * will understand and process it correctly.
1370  * If the necessary size for the conversion is greater than the @p flow_size,
1371  * nothing is written in @p flow, the validation is still performed.
1372  *
1373  * @param[in] item
1374  *   Item specification.
1375  * @param[in, out] flow
1376  *   Pointer to flow structure.
1377  * @param[in] flow_size
1378  *   Size in bytes of the available space in @p flow, if too small, nothing is
1379  *   written.
1380  * @param[out] error
1381  *   Pointer to error structure.
1382  *
1383  * @return
1384  *   On success the number of bytes consumed/necessary, if the returned value
1385  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1386  *   otherwise another call with this returned memory size should be done.
1387  *   On error, a negative errno value is returned and rte_errno is set.
1388  */
1389 static int
1390 mlx5_flow_item_vxlan(const struct rte_flow_item *item, struct rte_flow *flow,
1391                      const size_t flow_size, struct rte_flow_error *error)
1392 {
1393         const struct rte_flow_item_vxlan *spec = item->spec;
1394         const struct rte_flow_item_vxlan *mask = item->mask;
1395         unsigned int size = sizeof(struct ibv_flow_spec_tunnel);
1396         struct ibv_flow_spec_tunnel vxlan = {
1397                 .type = IBV_FLOW_SPEC_VXLAN_TUNNEL,
1398                 .size = size,
1399         };
1400         int ret;
1401         union vni {
1402                 uint32_t vlan_id;
1403                 uint8_t vni[4];
1404         } id = { .vlan_id = 0, };
1405
1406         if (flow->layers & MLX5_FLOW_LAYER_TUNNEL)
1407                 return rte_flow_error_set(error, ENOTSUP,
1408                                           RTE_FLOW_ERROR_TYPE_ITEM,
1409                                           item,
1410                                           "a tunnel is already present");
1411         /*
1412          * Verify only UDPv4 is present as defined in
1413          * https://tools.ietf.org/html/rfc7348
1414          */
1415         if (!(flow->layers & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1416                 return rte_flow_error_set(error, ENOTSUP,
1417                                           RTE_FLOW_ERROR_TYPE_ITEM,
1418                                           item,
1419                                           "no outer UDP layer found");
1420         if (!mask)
1421                 mask = &rte_flow_item_vxlan_mask;
1422         ret = mlx5_flow_item_acceptable
1423                 (item, (const uint8_t *)mask,
1424                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1425                  sizeof(struct rte_flow_item_vxlan), error);
1426         if (ret < 0)
1427                 return ret;
1428         if (spec) {
1429                 memcpy(&id.vni[1], spec->vni, 3);
1430                 vxlan.val.tunnel_id = id.vlan_id;
1431                 memcpy(&id.vni[1], mask->vni, 3);
1432                 vxlan.mask.tunnel_id = id.vlan_id;
1433                 /* Remove unwanted bits from values. */
1434                 vxlan.val.tunnel_id &= vxlan.mask.tunnel_id;
1435         }
1436         /*
1437          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1438          * only this layer is defined in the Verbs specification it is
1439          * interpreted as wildcard and all packets will match this
1440          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1441          * udp), all packets matching the layers before will also
1442          * match this rule.  To avoid such situation, VNI 0 is
1443          * currently refused.
1444          */
1445         if (!vxlan.val.tunnel_id)
1446                 return rte_flow_error_set(error, EINVAL,
1447                                           RTE_FLOW_ERROR_TYPE_ITEM,
1448                                           item,
1449                                           "VXLAN vni cannot be 0");
1450         if (!(flow->layers & MLX5_FLOW_LAYER_OUTER))
1451                 return rte_flow_error_set(error, EINVAL,
1452                                           RTE_FLOW_ERROR_TYPE_ITEM,
1453                                           item,
1454                                           "VXLAN tunnel must be fully defined");
1455         if (size <= flow_size) {
1456                 mlx5_flow_spec_verbs_add(flow, &vxlan, size);
1457                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
1458         }
1459         flow->layers |= MLX5_FLOW_LAYER_VXLAN;
1460         return size;
1461 }
1462
1463 /**
1464  * Convert the @p item into a Verbs specification after ensuring the NIC
1465  * will understand and process it correctly.
1466  * If the necessary size for the conversion is greater than the @p flow_size,
1467  * nothing is written in @p flow, the validation is still performed.
1468  *
1469  * @param dev
1470  *   Pointer to Ethernet device.
1471  * @param[in] item
1472  *   Item specification.
1473  * @param[in, out] flow
1474  *   Pointer to flow structure.
1475  * @param[in] flow_size
1476  *   Size in bytes of the available space in @p flow, if too small, nothing is
1477  *   written.
1478  * @param[out] error
1479  *   Pointer to error structure.
1480  *
1481  * @return
1482  *   On success the number of bytes consumed/necessary, if the returned value
1483  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1484  *   otherwise another call with this returned memory size should be done.
1485  *   On error, a negative errno value is returned and rte_errno is set.
1486  */
1487 static int
1488 mlx5_flow_item_vxlan_gpe(struct rte_eth_dev *dev,
1489                          const struct rte_flow_item *item,
1490                          struct rte_flow *flow, const size_t flow_size,
1491                          struct rte_flow_error *error)
1492 {
1493         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1494         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1495         unsigned int size = sizeof(struct ibv_flow_spec_tunnel);
1496         struct ibv_flow_spec_tunnel vxlan_gpe = {
1497                 .type = IBV_FLOW_SPEC_VXLAN_TUNNEL,
1498                 .size = size,
1499         };
1500         int ret;
1501         union vni {
1502                 uint32_t vlan_id;
1503                 uint8_t vni[4];
1504         } id = { .vlan_id = 0, };
1505
1506         if (!((struct priv *)dev->data->dev_private)->config.l3_vxlan_en)
1507                 return rte_flow_error_set(error, ENOTSUP,
1508                                           RTE_FLOW_ERROR_TYPE_ITEM,
1509                                           item,
1510                                           "L3 VXLAN is not enabled by device"
1511                                           " parameter and/or not configured in"
1512                                           " firmware");
1513         if (flow->layers & MLX5_FLOW_LAYER_TUNNEL)
1514                 return rte_flow_error_set(error, ENOTSUP,
1515                                           RTE_FLOW_ERROR_TYPE_ITEM,
1516                                           item,
1517                                           "a tunnel is already present");
1518         /*
1519          * Verify only UDPv4 is present as defined in
1520          * https://tools.ietf.org/html/rfc7348
1521          */
1522         if (!(flow->layers & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1523                 return rte_flow_error_set(error, ENOTSUP,
1524                                           RTE_FLOW_ERROR_TYPE_ITEM,
1525                                           item,
1526                                           "no outer UDP layer found");
1527         if (!mask)
1528                 mask = &rte_flow_item_vxlan_gpe_mask;
1529         ret = mlx5_flow_item_acceptable
1530                 (item, (const uint8_t *)mask,
1531                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1532                  sizeof(struct rte_flow_item_vxlan_gpe), error);
1533         if (ret < 0)
1534                 return ret;
1535         if (spec) {
1536                 memcpy(&id.vni[1], spec->vni, 3);
1537                 vxlan_gpe.val.tunnel_id = id.vlan_id;
1538                 memcpy(&id.vni[1], mask->vni, 3);
1539                 vxlan_gpe.mask.tunnel_id = id.vlan_id;
1540                 if (spec->protocol)
1541                         return rte_flow_error_set
1542                                 (error, EINVAL,
1543                                  RTE_FLOW_ERROR_TYPE_ITEM,
1544                                  item,
1545                                  "VxLAN-GPE protocol not supported");
1546                 /* Remove unwanted bits from values. */
1547                 vxlan_gpe.val.tunnel_id &= vxlan_gpe.mask.tunnel_id;
1548         }
1549         /*
1550          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1551          * layer is defined in the Verbs specification it is interpreted as
1552          * wildcard and all packets will match this rule, if it follows a full
1553          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1554          * before will also match this rule.  To avoid such situation, VNI 0
1555          * is currently refused.
1556          */
1557         if (!vxlan_gpe.val.tunnel_id)
1558                 return rte_flow_error_set(error, EINVAL,
1559                                           RTE_FLOW_ERROR_TYPE_ITEM,
1560                                           item,
1561                                           "VXLAN-GPE vni cannot be 0");
1562         if (!(flow->layers & MLX5_FLOW_LAYER_OUTER))
1563                 return rte_flow_error_set(error, EINVAL,
1564                                           RTE_FLOW_ERROR_TYPE_ITEM,
1565                                           item,
1566                                           "VXLAN-GPE tunnel must be fully"
1567                                           " defined");
1568         if (size <= flow_size) {
1569                 mlx5_flow_spec_verbs_add(flow, &vxlan_gpe, size);
1570                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
1571         }
1572         flow->layers |= MLX5_FLOW_LAYER_VXLAN_GPE;
1573         return size;
1574 }
1575
1576 /**
1577  * Update the protocol in Verbs IPv4/IPv6 spec.
1578  *
1579  * @param[in, out] attr
1580  *   Pointer to Verbs attributes structure.
1581  * @param[in] search
1582  *   Specification type to search in order to update the IP protocol.
1583  * @param[in] protocol
1584  *   Protocol value to set if none is present in the specification.
1585  */
1586 static void
1587 mlx5_flow_item_gre_ip_protocol_update(struct ibv_flow_attr *attr,
1588                                       enum ibv_flow_spec_type search,
1589                                       uint8_t protocol)
1590 {
1591         unsigned int i;
1592         struct ibv_spec_header *hdr = (struct ibv_spec_header *)
1593                 ((uint8_t *)attr + sizeof(struct ibv_flow_attr));
1594
1595         if (!attr)
1596                 return;
1597         for (i = 0; i != attr->num_of_specs; ++i) {
1598                 if (hdr->type == search) {
1599                         union {
1600                                 struct ibv_flow_spec_ipv4_ext *ipv4;
1601                                 struct ibv_flow_spec_ipv6 *ipv6;
1602                         } ip;
1603
1604                         switch (search) {
1605                         case IBV_FLOW_SPEC_IPV4_EXT:
1606                                 ip.ipv4 = (struct ibv_flow_spec_ipv4_ext *)hdr;
1607                                 if (!ip.ipv4->val.proto) {
1608                                         ip.ipv4->val.proto = protocol;
1609                                         ip.ipv4->mask.proto = 0xff;
1610                                 }
1611                                 break;
1612                         case IBV_FLOW_SPEC_IPV6:
1613                                 ip.ipv6 = (struct ibv_flow_spec_ipv6 *)hdr;
1614                                 if (!ip.ipv6->val.next_hdr) {
1615                                         ip.ipv6->val.next_hdr = protocol;
1616                                         ip.ipv6->mask.next_hdr = 0xff;
1617                                 }
1618                                 break;
1619                         default:
1620                                 break;
1621                         }
1622                         break;
1623                 }
1624                 hdr = (struct ibv_spec_header *)((uint8_t *)hdr + hdr->size);
1625         }
1626 }
1627
1628 /**
1629  * Convert the @p item into a Verbs specification after ensuring the NIC
1630  * will understand and process it correctly.
1631  * It will also update the previous L3 layer with the protocol value matching
1632  * the GRE.
1633  * If the necessary size for the conversion is greater than the @p flow_size,
1634  * nothing is written in @p flow, the validation is still performed.
1635  *
1636  * @param dev
1637  *   Pointer to Ethernet device.
1638  * @param[in] item
1639  *   Item specification.
1640  * @param[in, out] flow
1641  *   Pointer to flow structure.
1642  * @param[in] flow_size
1643  *   Size in bytes of the available space in @p flow, if too small, nothing is
1644  *   written.
1645  * @param[out] error
1646  *   Pointer to error structure.
1647  *
1648  * @return
1649  *   On success the number of bytes consumed/necessary, if the returned value
1650  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1651  *   otherwise another call with this returned memory size should be done.
1652  *   On error, a negative errno value is returned and rte_errno is set.
1653  */
1654 static int
1655 mlx5_flow_item_gre(const struct rte_flow_item *item,
1656                    struct rte_flow *flow, const size_t flow_size,
1657                    struct rte_flow_error *error)
1658 {
1659         struct mlx5_flow_verbs *verbs = flow->cur_verbs;
1660         const struct rte_flow_item_gre *spec = item->spec;
1661         const struct rte_flow_item_gre *mask = item->mask;
1662 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1663         unsigned int size = sizeof(struct ibv_flow_spec_gre);
1664         struct ibv_flow_spec_gre tunnel = {
1665                 .type = IBV_FLOW_SPEC_GRE,
1666                 .size = size,
1667         };
1668 #else
1669         unsigned int size = sizeof(struct ibv_flow_spec_tunnel);
1670         struct ibv_flow_spec_tunnel tunnel = {
1671                 .type = IBV_FLOW_SPEC_VXLAN_TUNNEL,
1672                 .size = size,
1673         };
1674 #endif
1675         int ret;
1676
1677         if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_GRE)
1678                 return rte_flow_error_set(error, ENOTSUP,
1679                                           RTE_FLOW_ERROR_TYPE_ITEM,
1680                                           item,
1681                                           "protocol filtering not compatible"
1682                                           " with this GRE layer");
1683         if (flow->layers & MLX5_FLOW_LAYER_TUNNEL)
1684                 return rte_flow_error_set(error, ENOTSUP,
1685                                           RTE_FLOW_ERROR_TYPE_ITEM,
1686                                           item,
1687                                           "a tunnel is already present");
1688         if (!(flow->layers & MLX5_FLOW_LAYER_OUTER_L3))
1689                 return rte_flow_error_set(error, ENOTSUP,
1690                                           RTE_FLOW_ERROR_TYPE_ITEM,
1691                                           item,
1692                                           "L3 Layer is missing");
1693         if (!mask)
1694                 mask = &rte_flow_item_gre_mask;
1695         ret = mlx5_flow_item_acceptable
1696                 (item, (const uint8_t *)mask,
1697                  (const uint8_t *)&rte_flow_item_gre_mask,
1698                  sizeof(struct rte_flow_item_gre), error);
1699         if (ret < 0)
1700                 return ret;
1701 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1702         if (spec) {
1703                 tunnel.val.c_ks_res0_ver = spec->c_rsvd0_ver;
1704                 tunnel.val.protocol = spec->protocol;
1705                 tunnel.mask.c_ks_res0_ver = mask->c_rsvd0_ver;
1706                 tunnel.mask.protocol = mask->protocol;
1707                 /* Remove unwanted bits from values. */
1708                 tunnel.val.c_ks_res0_ver &= tunnel.mask.c_ks_res0_ver;
1709                 tunnel.val.protocol &= tunnel.mask.protocol;
1710                 tunnel.val.key &= tunnel.mask.key;
1711         }
1712 #else
1713         if (spec && (spec->protocol & mask->protocol))
1714                 return rte_flow_error_set(error, ENOTSUP,
1715                                           RTE_FLOW_ERROR_TYPE_ITEM,
1716                                           item,
1717                                           "without MPLS support the"
1718                                           " specification cannot be used for"
1719                                           " filtering");
1720 #endif /* !HAVE_IBV_DEVICE_MPLS_SUPPORT */
1721         if (size <= flow_size) {
1722                 if (flow->layers & MLX5_FLOW_LAYER_OUTER_L3_IPV4)
1723                         mlx5_flow_item_gre_ip_protocol_update
1724                                 (verbs->attr, IBV_FLOW_SPEC_IPV4_EXT,
1725                                  MLX5_IP_PROTOCOL_GRE);
1726                 else
1727                         mlx5_flow_item_gre_ip_protocol_update
1728                                 (verbs->attr, IBV_FLOW_SPEC_IPV6,
1729                                  MLX5_IP_PROTOCOL_GRE);
1730                 mlx5_flow_spec_verbs_add(flow, &tunnel, size);
1731                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
1732         }
1733         flow->layers |= MLX5_FLOW_LAYER_GRE;
1734         return size;
1735 }
1736
1737 /**
1738  * Convert the @p item into a Verbs specification after ensuring the NIC
1739  * will understand and process it correctly.
1740  * If the necessary size for the conversion is greater than the @p flow_size,
1741  * nothing is written in @p flow, the validation is still performed.
1742  *
1743  * @param[in] item
1744  *   Item specification.
1745  * @param[in, out] flow
1746  *   Pointer to flow structure.
1747  * @param[in] flow_size
1748  *   Size in bytes of the available space in @p flow, if too small, nothing is
1749  *   written.
1750  * @param[out] error
1751  *   Pointer to error structure.
1752  *
1753  * @return
1754  *   On success the number of bytes consumed/necessary, if the returned value
1755  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1756  *   otherwise another call with this returned memory size should be done.
1757  *   On error, a negative errno value is returned and rte_errno is set.
1758  */
1759 static int
1760 mlx5_flow_item_mpls(const struct rte_flow_item *item __rte_unused,
1761                     struct rte_flow *flow __rte_unused,
1762                     const size_t flow_size __rte_unused,
1763                     struct rte_flow_error *error)
1764 {
1765 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1766         const struct rte_flow_item_mpls *spec = item->spec;
1767         const struct rte_flow_item_mpls *mask = item->mask;
1768         unsigned int size = sizeof(struct ibv_flow_spec_mpls);
1769         struct ibv_flow_spec_mpls mpls = {
1770                 .type = IBV_FLOW_SPEC_MPLS,
1771                 .size = size,
1772         };
1773         int ret;
1774
1775         if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_MPLS)
1776                 return rte_flow_error_set(error, ENOTSUP,
1777                                           RTE_FLOW_ERROR_TYPE_ITEM,
1778                                           item,
1779                                           "protocol filtering not compatible"
1780                                           " with MPLS layer");
1781         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1782         if (flow->layers & MLX5_FLOW_LAYER_TUNNEL &&
1783             (flow->layers & MLX5_FLOW_LAYER_GRE) != MLX5_FLOW_LAYER_GRE)
1784                 return rte_flow_error_set(error, ENOTSUP,
1785                                           RTE_FLOW_ERROR_TYPE_ITEM,
1786                                           item,
1787                                           "a tunnel is already"
1788                                           " present");
1789         if (!mask)
1790                 mask = &rte_flow_item_mpls_mask;
1791         ret = mlx5_flow_item_acceptable
1792                 (item, (const uint8_t *)mask,
1793                  (const uint8_t *)&rte_flow_item_mpls_mask,
1794                  sizeof(struct rte_flow_item_mpls), error);
1795         if (ret < 0)
1796                 return ret;
1797         if (spec) {
1798                 memcpy(&mpls.val.label, spec, sizeof(mpls.val.label));
1799                 memcpy(&mpls.mask.label, mask, sizeof(mpls.mask.label));
1800                 /* Remove unwanted bits from values.  */
1801                 mpls.val.label &= mpls.mask.label;
1802         }
1803         if (size <= flow_size) {
1804                 mlx5_flow_spec_verbs_add(flow, &mpls, size);
1805                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
1806         }
1807         flow->layers |= MLX5_FLOW_LAYER_MPLS;
1808         return size;
1809 #endif /* !HAVE_IBV_DEVICE_MPLS_SUPPORT */
1810         return rte_flow_error_set(error, ENOTSUP,
1811                                   RTE_FLOW_ERROR_TYPE_ITEM,
1812                                   item,
1813                                   "MPLS is not supported by Verbs, please"
1814                                   " update.");
1815 }
1816
1817 /**
1818  * Convert the @p pattern into a Verbs specifications after ensuring the NIC
1819  * will understand and process it correctly.
1820  * The conversion is performed item per item, each of them is written into
1821  * the @p flow if its size is lesser or equal to @p flow_size.
1822  * Validation and memory consumption computation are still performed until the
1823  * end of @p pattern, unless an error is encountered.
1824  *
1825  * @param[in] pattern
1826  *   Flow pattern.
1827  * @param[in, out] flow
1828  *   Pointer to the rte_flow structure.
1829  * @param[in] flow_size
1830  *   Size in bytes of the available space in @p flow, if too small some
1831  *   garbage may be present.
1832  * @param[out] error
1833  *   Pointer to error structure.
1834  *
1835  * @return
1836  *   On success the number of bytes consumed/necessary, if the returned value
1837  *   is lesser or equal to @p flow_size, the @pattern  has fully been
1838  *   converted, otherwise another call with this returned memory size should
1839  *   be done.
1840  *   On error, a negative errno value is returned and rte_errno is set.
1841  */
1842 static int
1843 mlx5_flow_items(struct rte_eth_dev *dev,
1844                 const struct rte_flow_item pattern[],
1845                 struct rte_flow *flow, const size_t flow_size,
1846                 struct rte_flow_error *error)
1847 {
1848         int remain = flow_size;
1849         size_t size = 0;
1850
1851         for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1852                 int ret = 0;
1853
1854                 switch (pattern->type) {
1855                 case RTE_FLOW_ITEM_TYPE_VOID:
1856                         break;
1857                 case RTE_FLOW_ITEM_TYPE_ETH:
1858                         ret = mlx5_flow_item_eth(pattern, flow, remain, error);
1859                         break;
1860                 case RTE_FLOW_ITEM_TYPE_VLAN:
1861                         ret = mlx5_flow_item_vlan(pattern, flow, remain, error);
1862                         break;
1863                 case RTE_FLOW_ITEM_TYPE_IPV4:
1864                         ret = mlx5_flow_item_ipv4(pattern, flow, remain, error);
1865                         break;
1866                 case RTE_FLOW_ITEM_TYPE_IPV6:
1867                         ret = mlx5_flow_item_ipv6(pattern, flow, remain, error);
1868                         break;
1869                 case RTE_FLOW_ITEM_TYPE_UDP:
1870                         ret = mlx5_flow_item_udp(pattern, flow, remain, error);
1871                         break;
1872                 case RTE_FLOW_ITEM_TYPE_TCP:
1873                         ret = mlx5_flow_item_tcp(pattern, flow, remain, error);
1874                         break;
1875                 case RTE_FLOW_ITEM_TYPE_VXLAN:
1876                         ret = mlx5_flow_item_vxlan(pattern, flow, remain,
1877                                                    error);
1878                         break;
1879                 case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
1880                         ret = mlx5_flow_item_vxlan_gpe(dev, pattern, flow,
1881                                                        remain, error);
1882                         break;
1883                 case RTE_FLOW_ITEM_TYPE_GRE:
1884                         ret = mlx5_flow_item_gre(pattern, flow, remain, error);
1885                         break;
1886                 case RTE_FLOW_ITEM_TYPE_MPLS:
1887                         ret = mlx5_flow_item_mpls(pattern, flow, remain, error);
1888                         break;
1889                 default:
1890                         return rte_flow_error_set(error, ENOTSUP,
1891                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1892                                                   pattern,
1893                                                   "item not supported");
1894                 }
1895                 if (ret < 0)
1896                         return ret;
1897                 if (remain > ret)
1898                         remain -= ret;
1899                 else
1900                         remain = 0;
1901                 size += ret;
1902         }
1903         if (!flow->layers) {
1904                 const struct rte_flow_item item = {
1905                         .type = RTE_FLOW_ITEM_TYPE_ETH,
1906                 };
1907
1908                 return mlx5_flow_item_eth(&item, flow, flow_size, error);
1909         }
1910         return size;
1911 }
1912
1913 /**
1914  * Convert the @p action into a Verbs specification after ensuring the NIC
1915  * will understand and process it correctly.
1916  * If the necessary size for the conversion is greater than the @p flow_size,
1917  * nothing is written in @p flow, the validation is still performed.
1918  *
1919  * @param[in] action
1920  *   Action configuration.
1921  * @param[in, out] flow
1922  *   Pointer to flow structure.
1923  * @param[in] flow_size
1924  *   Size in bytes of the available space in @p flow, if too small, nothing is
1925  *   written.
1926  * @param[out] error
1927  *   Pointer to error structure.
1928  *
1929  * @return
1930  *   On success the number of bytes consumed/necessary, if the returned value
1931  *   is lesser or equal to @p flow_size, the @p action has fully been
1932  *   converted, otherwise another call with this returned memory size should
1933  *   be done.
1934  *   On error, a negative errno value is returned and rte_errno is set.
1935  */
1936 static int
1937 mlx5_flow_action_drop(const struct rte_flow_action *action,
1938                       struct rte_flow *flow, const size_t flow_size,
1939                       struct rte_flow_error *error)
1940 {
1941         unsigned int size = sizeof(struct ibv_flow_spec_action_drop);
1942         struct ibv_flow_spec_action_drop drop = {
1943                         .type = IBV_FLOW_SPEC_ACTION_DROP,
1944                         .size = size,
1945         };
1946
1947         if (flow->fate)
1948                 return rte_flow_error_set(error, ENOTSUP,
1949                                           RTE_FLOW_ERROR_TYPE_ACTION,
1950                                           action,
1951                                           "multiple fate actions are not"
1952                                           " supported");
1953         if (flow->modifier & (MLX5_FLOW_MOD_FLAG | MLX5_FLOW_MOD_MARK))
1954                 return rte_flow_error_set(error, ENOTSUP,
1955                                           RTE_FLOW_ERROR_TYPE_ACTION,
1956                                           action,
1957                                           "drop is not compatible with"
1958                                           " flag/mark action");
1959         if (size < flow_size)
1960                 mlx5_flow_spec_verbs_add(flow, &drop, size);
1961         flow->fate |= MLX5_FLOW_FATE_DROP;
1962         return size;
1963 }
1964
1965 /**
1966  * Convert the @p action into @p flow after ensuring the NIC will understand
1967  * and process it correctly.
1968  *
1969  * @param[in] dev
1970  *   Pointer to Ethernet device structure.
1971  * @param[in] action
1972  *   Action configuration.
1973  * @param[in, out] flow
1974  *   Pointer to flow structure.
1975  * @param[out] error
1976  *   Pointer to error structure.
1977  *
1978  * @return
1979  *   0 on success, a negative errno value otherwise and rte_errno is set.
1980  */
1981 static int
1982 mlx5_flow_action_queue(struct rte_eth_dev *dev,
1983                        const struct rte_flow_action *action,
1984                        struct rte_flow *flow,
1985                        struct rte_flow_error *error)
1986 {
1987         struct priv *priv = dev->data->dev_private;
1988         const struct rte_flow_action_queue *queue = action->conf;
1989
1990         if (flow->fate)
1991                 return rte_flow_error_set(error, ENOTSUP,
1992                                           RTE_FLOW_ERROR_TYPE_ACTION,
1993                                           action,
1994                                           "multiple fate actions are not"
1995                                           " supported");
1996         if (queue->index >= priv->rxqs_n)
1997                 return rte_flow_error_set(error, EINVAL,
1998                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1999                                           &queue->index,
2000                                           "queue index out of range");
2001         if (!(*priv->rxqs)[queue->index])
2002                 return rte_flow_error_set(error, EINVAL,
2003                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2004                                           &queue->index,
2005                                           "queue is not configured");
2006         if (flow->queue)
2007                 (*flow->queue)[0] = queue->index;
2008         flow->rss.queue_num = 1;
2009         flow->fate |= MLX5_FLOW_FATE_QUEUE;
2010         return 0;
2011 }
2012
2013 /**
2014  * Ensure the @p action will be understood and used correctly by the  NIC.
2015  *
2016  * @param dev
2017  *   Pointer to Ethernet device structure.
2018  * @param action[in]
2019  *   Pointer to flow actions array.
2020  * @param flow[in, out]
2021  *   Pointer to the rte_flow structure.
2022  * @param error[in, out]
2023  *   Pointer to error structure.
2024  *
2025  * @return
2026  *   On success @p flow->queue array and @p flow->rss are filled and valid.
2027  *   On error, a negative errno value is returned and rte_errno is set.
2028  */
2029 static int
2030 mlx5_flow_action_rss(struct rte_eth_dev *dev,
2031                      const struct rte_flow_action *action,
2032                      struct rte_flow *flow,
2033                      struct rte_flow_error *error)
2034 {
2035         struct priv *priv = dev->data->dev_private;
2036         const struct rte_flow_action_rss *rss = action->conf;
2037         unsigned int i;
2038
2039         if (flow->fate)
2040                 return rte_flow_error_set(error, ENOTSUP,
2041                                           RTE_FLOW_ERROR_TYPE_ACTION,
2042                                           action,
2043                                           "multiple fate actions are not"
2044                                           " supported");
2045         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
2046             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
2047                 return rte_flow_error_set(error, ENOTSUP,
2048                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2049                                           &rss->func,
2050                                           "RSS hash function not supported");
2051 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
2052         if (rss->level > 2)
2053 #else
2054         if (rss->level > 1)
2055 #endif
2056                 return rte_flow_error_set(error, ENOTSUP,
2057                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2058                                           &rss->level,
2059                                           "tunnel RSS is not supported");
2060         if (rss->key_len < MLX5_RSS_HASH_KEY_LEN)
2061                 return rte_flow_error_set(error, ENOTSUP,
2062                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2063                                           &rss->key_len,
2064                                           "RSS hash key too small");
2065         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
2066                 return rte_flow_error_set(error, ENOTSUP,
2067                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2068                                           &rss->key_len,
2069                                           "RSS hash key too large");
2070         if (!rss->queue_num)
2071                 return rte_flow_error_set(error, ENOTSUP,
2072                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2073                                           rss,
2074                                           "no queues were provided for RSS");
2075         if (rss->queue_num > priv->config.ind_table_max_size)
2076                 return rte_flow_error_set(error, ENOTSUP,
2077                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2078                                           &rss->queue_num,
2079                                           "number of queues too large");
2080         if (rss->types & MLX5_RSS_HF_MASK)
2081                 return rte_flow_error_set(error, ENOTSUP,
2082                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2083                                           &rss->types,
2084                                           "some RSS protocols are not"
2085                                           " supported");
2086         for (i = 0; i != rss->queue_num; ++i) {
2087                 if (rss->queue[i] >= priv->rxqs_n)
2088                         return rte_flow_error_set
2089                                 (error, EINVAL,
2090                                  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2091                                  rss,
2092                                  "queue index out of range");
2093                 if (!(*priv->rxqs)[rss->queue[i]])
2094                         return rte_flow_error_set
2095                                 (error, EINVAL,
2096                                  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2097                                  &rss->queue[i],
2098                                  "queue is not configured");
2099         }
2100         if (flow->queue)
2101                 memcpy((*flow->queue), rss->queue,
2102                        rss->queue_num * sizeof(uint16_t));
2103         flow->rss.queue_num = rss->queue_num;
2104         memcpy(flow->key, rss->key, MLX5_RSS_HASH_KEY_LEN);
2105         flow->rss.types = rss->types;
2106         flow->rss.level = rss->level;
2107         flow->fate |= MLX5_FLOW_FATE_RSS;
2108         return 0;
2109 }
2110
2111 /**
2112  * Convert the @p action into a Verbs specification after ensuring the NIC
2113  * will understand and process it correctly.
2114  * If the necessary size for the conversion is greater than the @p flow_size,
2115  * nothing is written in @p flow, the validation is still performed.
2116  *
2117  * @param[in] action
2118  *   Action configuration.
2119  * @param[in, out] flow
2120  *   Pointer to flow structure.
2121  * @param[in] flow_size
2122  *   Size in bytes of the available space in @p flow, if too small, nothing is
2123  *   written.
2124  * @param[out] error
2125  *   Pointer to error structure.
2126  *
2127  * @return
2128  *   On success the number of bytes consumed/necessary, if the returned value
2129  *   is lesser or equal to @p flow_size, the @p action has fully been
2130  *   converted, otherwise another call with this returned memory size should
2131  *   be done.
2132  *   On error, a negative errno value is returned and rte_errno is set.
2133  */
2134 static int
2135 mlx5_flow_action_flag(const struct rte_flow_action *action,
2136                       struct rte_flow *flow, const size_t flow_size,
2137                       struct rte_flow_error *error)
2138 {
2139         unsigned int size = sizeof(struct ibv_flow_spec_action_tag);
2140         struct ibv_flow_spec_action_tag tag = {
2141                 .type = IBV_FLOW_SPEC_ACTION_TAG,
2142                 .size = size,
2143                 .tag_id = mlx5_flow_mark_set(MLX5_FLOW_MARK_DEFAULT),
2144         };
2145         struct mlx5_flow_verbs *verbs = flow->cur_verbs;
2146
2147         if (flow->modifier & MLX5_FLOW_MOD_FLAG)
2148                 return rte_flow_error_set(error, ENOTSUP,
2149                                           RTE_FLOW_ERROR_TYPE_ACTION,
2150                                           action,
2151                                           "flag action already present");
2152         if (flow->fate & MLX5_FLOW_FATE_DROP)
2153                 return rte_flow_error_set(error, ENOTSUP,
2154                                           RTE_FLOW_ERROR_TYPE_ACTION,
2155                                           action,
2156                                           "flag is not compatible with drop"
2157                                           " action");
2158         if (flow->modifier & MLX5_FLOW_MOD_MARK)
2159                 size = 0;
2160         else if (size <= flow_size && verbs)
2161                 mlx5_flow_spec_verbs_add(flow, &tag, size);
2162         flow->modifier |= MLX5_FLOW_MOD_FLAG;
2163         return size;
2164 }
2165
2166 /**
2167  * Update verbs specification to modify the flag to mark.
2168  *
2169  * @param[in, out] verbs
2170  *   Pointer to the mlx5_flow_verbs structure.
2171  * @param[in] mark_id
2172  *   Mark identifier to replace the flag.
2173  */
2174 static void
2175 mlx5_flow_verbs_mark_update(struct mlx5_flow_verbs *verbs, uint32_t mark_id)
2176 {
2177         struct ibv_spec_header *hdr;
2178         int i;
2179
2180         if (!verbs)
2181                 return;
2182         /* Update Verbs specification. */
2183         hdr = (struct ibv_spec_header *)verbs->specs;
2184         if (!hdr)
2185                 return;
2186         for (i = 0; i != verbs->attr->num_of_specs; ++i) {
2187                 if (hdr->type == IBV_FLOW_SPEC_ACTION_TAG) {
2188                         struct ibv_flow_spec_action_tag *t =
2189                                 (struct ibv_flow_spec_action_tag *)hdr;
2190
2191                         t->tag_id = mlx5_flow_mark_set(mark_id);
2192                 }
2193                 hdr = (struct ibv_spec_header *)((uintptr_t)hdr + hdr->size);
2194         }
2195 }
2196
2197 /**
2198  * Convert the @p action into @p flow (or by updating the already present
2199  * Flag Verbs specification) after ensuring the NIC will understand and
2200  * process it correctly.
2201  * If the necessary size for the conversion is greater than the @p flow_size,
2202  * nothing is written in @p flow, the validation is still performed.
2203  *
2204  * @param[in] action
2205  *   Action configuration.
2206  * @param[in, out] flow
2207  *   Pointer to flow structure.
2208  * @param[in] flow_size
2209  *   Size in bytes of the available space in @p flow, if too small, nothing is
2210  *   written.
2211  * @param[out] error
2212  *   Pointer to error structure.
2213  *
2214  * @return
2215  *   On success the number of bytes consumed/necessary, if the returned value
2216  *   is lesser or equal to @p flow_size, the @p action has fully been
2217  *   converted, otherwise another call with this returned memory size should
2218  *   be done.
2219  *   On error, a negative errno value is returned and rte_errno is set.
2220  */
2221 static int
2222 mlx5_flow_action_mark(const struct rte_flow_action *action,
2223                       struct rte_flow *flow, const size_t flow_size,
2224                       struct rte_flow_error *error)
2225 {
2226         const struct rte_flow_action_mark *mark = action->conf;
2227         unsigned int size = sizeof(struct ibv_flow_spec_action_tag);
2228         struct ibv_flow_spec_action_tag tag = {
2229                 .type = IBV_FLOW_SPEC_ACTION_TAG,
2230                 .size = size,
2231         };
2232         struct mlx5_flow_verbs *verbs = flow->cur_verbs;
2233
2234         if (!mark)
2235                 return rte_flow_error_set(error, EINVAL,
2236                                           RTE_FLOW_ERROR_TYPE_ACTION,
2237                                           action,
2238                                           "configuration cannot be null");
2239         if (mark->id >= MLX5_FLOW_MARK_MAX)
2240                 return rte_flow_error_set(error, EINVAL,
2241                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2242                                           &mark->id,
2243                                           "mark id must in 0 <= id < "
2244                                           RTE_STR(MLX5_FLOW_MARK_MAX));
2245         if (flow->modifier & MLX5_FLOW_MOD_MARK)
2246                 return rte_flow_error_set(error, ENOTSUP,
2247                                           RTE_FLOW_ERROR_TYPE_ACTION,
2248                                           action,
2249                                           "mark action already present");
2250         if (flow->fate & MLX5_FLOW_FATE_DROP)
2251                 return rte_flow_error_set(error, ENOTSUP,
2252                                           RTE_FLOW_ERROR_TYPE_ACTION,
2253                                           action,
2254                                           "mark is not compatible with drop"
2255                                           " action");
2256         if (flow->modifier & MLX5_FLOW_MOD_FLAG) {
2257                 mlx5_flow_verbs_mark_update(verbs, mark->id);
2258                 size = 0;
2259         } else if (size <= flow_size) {
2260                 tag.tag_id = mlx5_flow_mark_set(mark->id);
2261                 mlx5_flow_spec_verbs_add(flow, &tag, size);
2262         }
2263         flow->modifier |= MLX5_FLOW_MOD_MARK;
2264         return size;
2265 }
2266
2267 /**
2268  * Convert the @p action into a Verbs specification after ensuring the NIC
2269  * will understand and process it correctly.
2270  * If the necessary size for the conversion is greater than the @p flow_size,
2271  * nothing is written in @p flow, the validation is still performed.
2272  *
2273  * @param action[in]
2274  *   Action configuration.
2275  * @param flow[in, out]
2276  *   Pointer to flow structure.
2277  * @param flow_size[in]
2278  *   Size in bytes of the available space in @p flow, if too small, nothing is
2279  *   written.
2280  * @param error[int, out]
2281  *   Pointer to error structure.
2282  *
2283  * @return
2284  *   On success the number of bytes consumed/necessary, if the returned value
2285  *   is lesser or equal to @p flow_size, the @p action has fully been
2286  *   converted, otherwise another call with this returned memory size should
2287  *   be done.
2288  *   On error, a negative errno value is returned and rte_errno is set.
2289  */
2290 static int
2291 mlx5_flow_action_count(struct rte_eth_dev *dev,
2292                        const struct rte_flow_action *action,
2293                        struct rte_flow *flow,
2294                        const size_t flow_size __rte_unused,
2295                        struct rte_flow_error *error)
2296 {
2297         const struct rte_flow_action_count *count = action->conf;
2298 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
2299         unsigned int size = sizeof(struct ibv_flow_spec_counter_action);
2300         struct ibv_flow_spec_counter_action counter = {
2301                 .type = IBV_FLOW_SPEC_ACTION_COUNT,
2302                 .size = size,
2303         };
2304 #endif
2305
2306         if (!flow->counter) {
2307                 flow->counter = mlx5_flow_counter_new(dev, count->shared,
2308                                                       count->id);
2309                 if (!flow->counter)
2310                         return rte_flow_error_set(error, ENOTSUP,
2311                                                   RTE_FLOW_ERROR_TYPE_ACTION,
2312                                                   action,
2313                                                   "cannot get counter"
2314                                                   " context.");
2315         }
2316         if (!((struct priv *)dev->data->dev_private)->config.flow_counter_en)
2317                 return rte_flow_error_set(error, ENOTSUP,
2318                                           RTE_FLOW_ERROR_TYPE_ACTION,
2319                                           action,
2320                                           "flow counters are not supported.");
2321         flow->modifier |= MLX5_FLOW_MOD_COUNT;
2322 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
2323         counter.counter_set_handle = flow->counter->cs->handle;
2324         if (size <= flow_size)
2325                 mlx5_flow_spec_verbs_add(flow, &counter, size);
2326         return size;
2327 #endif
2328         return 0;
2329 }
2330
2331 /**
2332  * Convert the @p action into @p flow after ensuring the NIC will understand
2333  * and process it correctly.
2334  * The conversion is performed action per action, each of them is written into
2335  * the @p flow if its size is lesser or equal to @p flow_size.
2336  * Validation and memory consumption computation are still performed until the
2337  * end of @p action, unless an error is encountered.
2338  *
2339  * @param[in] dev
2340  *   Pointer to Ethernet device structure.
2341  * @param[in] actions
2342  *   Pointer to flow actions array.
2343  * @param[in, out] flow
2344  *   Pointer to the rte_flow structure.
2345  * @param[in] flow_size
2346  *   Size in bytes of the available space in @p flow, if too small some
2347  *   garbage may be present.
2348  * @param[out] error
2349  *   Pointer to error structure.
2350  *
2351  * @return
2352  *   On success the number of bytes consumed/necessary, if the returned value
2353  *   is lesser or equal to @p flow_size, the @p actions has fully been
2354  *   converted, otherwise another call with this returned memory size should
2355  *   be done.
2356  *   On error, a negative errno value is returned and rte_errno is set.
2357  */
2358 static int
2359 mlx5_flow_actions(struct rte_eth_dev *dev,
2360                   const struct rte_flow_action actions[],
2361                   struct rte_flow *flow, const size_t flow_size,
2362                   struct rte_flow_error *error)
2363 {
2364         size_t size = 0;
2365         int remain = flow_size;
2366         int ret = 0;
2367
2368         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2369                 switch (actions->type) {
2370                 case RTE_FLOW_ACTION_TYPE_VOID:
2371                         break;
2372                 case RTE_FLOW_ACTION_TYPE_FLAG:
2373                         ret = mlx5_flow_action_flag(actions, flow, remain,
2374                                                     error);
2375                         break;
2376                 case RTE_FLOW_ACTION_TYPE_MARK:
2377                         ret = mlx5_flow_action_mark(actions, flow, remain,
2378                                                     error);
2379                         break;
2380                 case RTE_FLOW_ACTION_TYPE_DROP:
2381                         ret = mlx5_flow_action_drop(actions, flow, remain,
2382                                                     error);
2383                         break;
2384                 case RTE_FLOW_ACTION_TYPE_QUEUE:
2385                         ret = mlx5_flow_action_queue(dev, actions, flow, error);
2386                         break;
2387                 case RTE_FLOW_ACTION_TYPE_RSS:
2388                         ret = mlx5_flow_action_rss(dev, actions, flow, error);
2389                         break;
2390                 case RTE_FLOW_ACTION_TYPE_COUNT:
2391                         ret = mlx5_flow_action_count(dev, actions, flow, remain,
2392                                                      error);
2393                         break;
2394                 default:
2395                         return rte_flow_error_set(error, ENOTSUP,
2396                                                   RTE_FLOW_ERROR_TYPE_ACTION,
2397                                                   actions,
2398                                                   "action not supported");
2399                 }
2400                 if (ret < 0)
2401                         return ret;
2402                 if (remain > ret)
2403                         remain -= ret;
2404                 else
2405                         remain = 0;
2406                 size += ret;
2407         }
2408         if (!flow->fate)
2409                 return rte_flow_error_set(error, ENOTSUP,
2410                                           RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2411                                           NULL,
2412                                           "no fate action found");
2413         return size;
2414 }
2415
2416 /**
2417  * Validate flow rule and fill flow structure accordingly.
2418  *
2419  * @param dev
2420  *   Pointer to Ethernet device.
2421  * @param[out] flow
2422  *   Pointer to flow structure.
2423  * @param flow_size
2424  *   Size of allocated space for @p flow.
2425  * @param[in] attr
2426  *   Flow rule attributes.
2427  * @param[in] pattern
2428  *   Pattern specification (list terminated by the END pattern item).
2429  * @param[in] actions
2430  *   Associated actions (list terminated by the END action).
2431  * @param[out] error
2432  *   Perform verbose error reporting if not NULL.
2433  *
2434  * @return
2435  *   A positive value representing the size of the flow object in bytes
2436  *   regardless of @p flow_size on success, a negative errno value otherwise
2437  *   and rte_errno is set.
2438  */
2439 static int
2440 mlx5_flow_merge_switch(struct rte_eth_dev *dev,
2441                        struct rte_flow *flow,
2442                        size_t flow_size,
2443                        const struct rte_flow_attr *attr,
2444                        const struct rte_flow_item pattern[],
2445                        const struct rte_flow_action actions[],
2446                        struct rte_flow_error *error)
2447 {
2448         unsigned int n = mlx5_dev_to_port_id(dev->device, NULL, 0);
2449         uint16_t port_id[!n + n];
2450         struct mlx5_nl_flow_ptoi ptoi[!n + n + 1];
2451         size_t off = RTE_ALIGN_CEIL(sizeof(*flow), alignof(max_align_t));
2452         unsigned int i;
2453         unsigned int own = 0;
2454         int ret;
2455
2456         /* At least one port is needed when no switch domain is present. */
2457         if (!n) {
2458                 n = 1;
2459                 port_id[0] = dev->data->port_id;
2460         } else {
2461                 n = RTE_MIN(mlx5_dev_to_port_id(dev->device, port_id, n), n);
2462         }
2463         for (i = 0; i != n; ++i) {
2464                 struct rte_eth_dev_info dev_info;
2465
2466                 rte_eth_dev_info_get(port_id[i], &dev_info);
2467                 if (port_id[i] == dev->data->port_id)
2468                         own = i;
2469                 ptoi[i].port_id = port_id[i];
2470                 ptoi[i].ifindex = dev_info.if_index;
2471         }
2472         /* Ensure first entry of ptoi[] is the current device. */
2473         if (own) {
2474                 ptoi[n] = ptoi[0];
2475                 ptoi[0] = ptoi[own];
2476                 ptoi[own] = ptoi[n];
2477         }
2478         /* An entry with zero ifindex terminates ptoi[]. */
2479         ptoi[n].port_id = 0;
2480         ptoi[n].ifindex = 0;
2481         if (flow_size < off)
2482                 flow_size = 0;
2483         ret = mlx5_nl_flow_transpose((uint8_t *)flow + off,
2484                                      flow_size ? flow_size - off : 0,
2485                                      ptoi, attr, pattern, actions, error);
2486         if (ret < 0)
2487                 return ret;
2488         if (flow_size) {
2489                 *flow = (struct rte_flow){
2490                         .attributes = *attr,
2491                         .nl_flow = (uint8_t *)flow + off,
2492                 };
2493                 /*
2494                  * Generate a reasonably unique handle based on the address
2495                  * of the target buffer.
2496                  *
2497                  * This is straightforward on 32-bit systems where the flow
2498                  * pointer can be used directly. Otherwise, its least
2499                  * significant part is taken after shifting it by the
2500                  * previous power of two of the pointed buffer size.
2501                  */
2502                 if (sizeof(flow) <= 4)
2503                         mlx5_nl_flow_brand(flow->nl_flow, (uintptr_t)flow);
2504                 else
2505                         mlx5_nl_flow_brand
2506                                 (flow->nl_flow,
2507                                  (uintptr_t)flow >>
2508                                  rte_log2_u32(rte_align32prevpow2(flow_size)));
2509         }
2510         return off + ret;
2511 }
2512
2513 static unsigned int
2514 mlx5_find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2515 {
2516         const struct rte_flow_item *item;
2517         unsigned int has_vlan = 0;
2518
2519         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2520                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2521                         has_vlan = 1;
2522                         break;
2523                 }
2524         }
2525         if (has_vlan)
2526                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2527                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2528         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2529                                MLX5_EXPANSION_ROOT_OUTER;
2530 }
2531
2532 /**
2533  * Convert the @p attributes, @p pattern, @p action, into an flow for the NIC
2534  * after ensuring the NIC will understand and process it correctly.
2535  * The conversion is only performed item/action per item/action, each of
2536  * them is written into the @p flow if its size is lesser or equal to @p
2537  * flow_size.
2538  * Validation and memory consumption computation are still performed until the
2539  * end, unless an error is encountered.
2540  *
2541  * @param[in] dev
2542  *   Pointer to Ethernet device.
2543  * @param[in, out] flow
2544  *   Pointer to flow structure.
2545  * @param[in] flow_size
2546  *   Size in bytes of the available space in @p flow, if too small some
2547  *   garbage may be present.
2548  * @param[in] attributes
2549  *   Flow rule attributes.
2550  * @param[in] pattern
2551  *   Pattern specification (list terminated by the END pattern item).
2552  * @param[in] actions
2553  *   Associated actions (list terminated by the END action).
2554  * @param[out] error
2555  *   Perform verbose error reporting if not NULL.
2556  *
2557  * @return
2558  *   On success the number of bytes consumed/necessary, if the returned value
2559  *   is lesser or equal to @p flow_size, the flow has fully been converted and
2560  *   can be applied, otherwise another call with this returned memory size
2561  *   should be done.
2562  *   On error, a negative errno value is returned and rte_errno is set.
2563  */
2564 static int
2565 mlx5_flow_merge(struct rte_eth_dev *dev, struct rte_flow *flow,
2566                 const size_t flow_size,
2567                 const struct rte_flow_attr *attributes,
2568                 const struct rte_flow_item pattern[],
2569                 const struct rte_flow_action actions[],
2570                 struct rte_flow_error *error)
2571 {
2572         struct rte_flow local_flow = { .layers = 0, };
2573         size_t size = sizeof(*flow);
2574         union {
2575                 struct rte_flow_expand_rss buf;
2576                 uint8_t buffer[2048];
2577         } expand_buffer;
2578         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2579         struct mlx5_flow_verbs *original_verbs = NULL;
2580         size_t original_verbs_size = 0;
2581         uint32_t original_layers = 0;
2582         int expanded_pattern_idx = 0;
2583         int ret;
2584         uint32_t i;
2585
2586         if (attributes->transfer)
2587                 return mlx5_flow_merge_switch(dev, flow, flow_size,
2588                                               attributes, pattern,
2589                                               actions, error);
2590         if (size > flow_size)
2591                 flow = &local_flow;
2592         ret = mlx5_flow_attributes(dev, attributes, flow, error);
2593         if (ret < 0)
2594                 return ret;
2595         ret = mlx5_flow_actions(dev, actions, &local_flow, 0, error);
2596         if (ret < 0)
2597                 return ret;
2598         if (local_flow.rss.types) {
2599                 unsigned int graph_root;
2600
2601                 graph_root = mlx5_find_graph_root(pattern,
2602                                                   local_flow.rss.level);
2603                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2604                                           pattern, local_flow.rss.types,
2605                                           mlx5_support_expansion,
2606                                           graph_root);
2607                 assert(ret > 0 &&
2608                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2609         } else {
2610                 buf->entries = 1;
2611                 buf->entry[0].pattern = (void *)(uintptr_t)pattern;
2612         }
2613         size += RTE_ALIGN_CEIL(local_flow.rss.queue_num * sizeof(uint16_t),
2614                                sizeof(void *));
2615         if (size <= flow_size)
2616                 flow->queue = (void *)(flow + 1);
2617         LIST_INIT(&flow->verbs);
2618         flow->layers = 0;
2619         flow->modifier = 0;
2620         flow->fate = 0;
2621         for (i = 0; i != buf->entries; ++i) {
2622                 size_t off = size;
2623                 size_t off2;
2624
2625                 flow->layers = original_layers;
2626                 size += sizeof(struct ibv_flow_attr) +
2627                         sizeof(struct mlx5_flow_verbs);
2628                 off2 = size;
2629                 if (size < flow_size) {
2630                         flow->cur_verbs = (void *)((uintptr_t)flow + off);
2631                         flow->cur_verbs->attr = (void *)(flow->cur_verbs + 1);
2632                         flow->cur_verbs->specs =
2633                                 (void *)(flow->cur_verbs->attr + 1);
2634                 }
2635                 /* First iteration convert the pattern into Verbs. */
2636                 if (i == 0) {
2637                         /* Actions don't need to be converted several time. */
2638                         ret = mlx5_flow_actions(dev, actions, flow,
2639                                                 (size < flow_size) ?
2640                                                 flow_size - size : 0,
2641                                                 error);
2642                         if (ret < 0)
2643                                 return ret;
2644                         size += ret;
2645                 } else {
2646                         /*
2647                          * Next iteration means the pattern has already been
2648                          * converted and an expansion is necessary to match
2649                          * the user RSS request.  For that only the expanded
2650                          * items will be converted, the common part with the
2651                          * user pattern are just copied into the next buffer
2652                          * zone.
2653                          */
2654                         size += original_verbs_size;
2655                         if (size < flow_size) {
2656                                 rte_memcpy(flow->cur_verbs->attr,
2657                                            original_verbs->attr,
2658                                            original_verbs_size +
2659                                            sizeof(struct ibv_flow_attr));
2660                                 flow->cur_verbs->size = original_verbs_size;
2661                         }
2662                 }
2663                 ret = mlx5_flow_items
2664                         (dev,
2665                          (const struct rte_flow_item *)
2666                          &buf->entry[i].pattern[expanded_pattern_idx],
2667                          flow,
2668                          (size < flow_size) ? flow_size - size : 0, error);
2669                 if (ret < 0)
2670                         return ret;
2671                 size += ret;
2672                 if (size <= flow_size) {
2673                         mlx5_flow_adjust_priority(dev, flow);
2674                         LIST_INSERT_HEAD(&flow->verbs, flow->cur_verbs, next);
2675                 }
2676                 /*
2677                  * Keep a pointer of the first verbs conversion and the layers
2678                  * it has encountered.
2679                  */
2680                 if (i == 0) {
2681                         original_verbs = flow->cur_verbs;
2682                         original_verbs_size = size - off2;
2683                         original_layers = flow->layers;
2684                         /*
2685                          * move the index of the expanded pattern to the
2686                          * first item not addressed yet.
2687                          */
2688                         if (pattern->type == RTE_FLOW_ITEM_TYPE_END) {
2689                                 expanded_pattern_idx++;
2690                         } else {
2691                                 const struct rte_flow_item *item = pattern;
2692
2693                                 for (item = pattern;
2694                                      item->type != RTE_FLOW_ITEM_TYPE_END;
2695                                      ++item)
2696                                         expanded_pattern_idx++;
2697                         }
2698                 }
2699         }
2700         /* Restore the origin layers in the flow. */
2701         flow->layers = original_layers;
2702         return size;
2703 }
2704
2705 /**
2706  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
2707  * if several tunnel rules are used on this queue, the tunnel ptype will be
2708  * cleared.
2709  *
2710  * @param rxq_ctrl
2711  *   Rx queue to update.
2712  */
2713 static void
2714 mlx5_flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
2715 {
2716         unsigned int i;
2717         uint32_t tunnel_ptype = 0;
2718
2719         /* Look up for the ptype to use. */
2720         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
2721                 if (!rxq_ctrl->flow_tunnels_n[i])
2722                         continue;
2723                 if (!tunnel_ptype) {
2724                         tunnel_ptype = tunnels_info[i].ptype;
2725                 } else {
2726                         tunnel_ptype = 0;
2727                         break;
2728                 }
2729         }
2730         rxq_ctrl->rxq.tunnel = tunnel_ptype;
2731 }
2732
2733 /**
2734  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the flow.
2735  *
2736  * @param[in] dev
2737  *   Pointer to Ethernet device.
2738  * @param[in] flow
2739  *   Pointer to flow structure.
2740  */
2741 static void
2742 mlx5_flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
2743 {
2744         struct priv *priv = dev->data->dev_private;
2745         const int mark = !!(flow->modifier &
2746                             (MLX5_FLOW_MOD_FLAG | MLX5_FLOW_MOD_MARK));
2747         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
2748         unsigned int i;
2749
2750         for (i = 0; i != flow->rss.queue_num; ++i) {
2751                 int idx = (*flow->queue)[i];
2752                 struct mlx5_rxq_ctrl *rxq_ctrl =
2753                         container_of((*priv->rxqs)[idx],
2754                                      struct mlx5_rxq_ctrl, rxq);
2755
2756                 if (mark) {
2757                         rxq_ctrl->rxq.mark = 1;
2758                         rxq_ctrl->flow_mark_n++;
2759                 }
2760                 if (tunnel) {
2761                         unsigned int j;
2762
2763                         /* Increase the counter matching the flow. */
2764                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
2765                                 if ((tunnels_info[j].tunnel & flow->layers) ==
2766                                     tunnels_info[j].tunnel) {
2767                                         rxq_ctrl->flow_tunnels_n[j]++;
2768                                         break;
2769                                 }
2770                         }
2771                         mlx5_flow_rxq_tunnel_ptype_update(rxq_ctrl);
2772                 }
2773         }
2774 }
2775
2776 /**
2777  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
2778  * @p flow if no other flow uses it with the same kind of request.
2779  *
2780  * @param dev
2781  *   Pointer to Ethernet device.
2782  * @param[in] flow
2783  *   Pointer to the flow.
2784  */
2785 static void
2786 mlx5_flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
2787 {
2788         struct priv *priv = dev->data->dev_private;
2789         const int mark = !!(flow->modifier &
2790                             (MLX5_FLOW_MOD_FLAG | MLX5_FLOW_MOD_MARK));
2791         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
2792         unsigned int i;
2793
2794         assert(dev->data->dev_started);
2795         for (i = 0; i != flow->rss.queue_num; ++i) {
2796                 int idx = (*flow->queue)[i];
2797                 struct mlx5_rxq_ctrl *rxq_ctrl =
2798                         container_of((*priv->rxqs)[idx],
2799                                      struct mlx5_rxq_ctrl, rxq);
2800
2801                 if (mark) {
2802                         rxq_ctrl->flow_mark_n--;
2803                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
2804                 }
2805                 if (tunnel) {
2806                         unsigned int j;
2807
2808                         /* Decrease the counter matching the flow. */
2809                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
2810                                 if ((tunnels_info[j].tunnel & flow->layers) ==
2811                                     tunnels_info[j].tunnel) {
2812                                         rxq_ctrl->flow_tunnels_n[j]--;
2813                                         break;
2814                                 }
2815                         }
2816                         mlx5_flow_rxq_tunnel_ptype_update(rxq_ctrl);
2817                 }
2818         }
2819 }
2820
2821 /**
2822  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
2823  *
2824  * @param dev
2825  *   Pointer to Ethernet device.
2826  */
2827 static void
2828 mlx5_flow_rxq_flags_clear(struct rte_eth_dev *dev)
2829 {
2830         struct priv *priv = dev->data->dev_private;
2831         unsigned int i;
2832
2833         for (i = 0; i != priv->rxqs_n; ++i) {
2834                 struct mlx5_rxq_ctrl *rxq_ctrl;
2835                 unsigned int j;
2836
2837                 if (!(*priv->rxqs)[i])
2838                         continue;
2839                 rxq_ctrl = container_of((*priv->rxqs)[i],
2840                                         struct mlx5_rxq_ctrl, rxq);
2841                 rxq_ctrl->flow_mark_n = 0;
2842                 rxq_ctrl->rxq.mark = 0;
2843                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
2844                         rxq_ctrl->flow_tunnels_n[j] = 0;
2845                 rxq_ctrl->rxq.tunnel = 0;
2846         }
2847 }
2848
2849 /**
2850  * Validate a flow supported by the NIC.
2851  *
2852  * @see rte_flow_validate()
2853  * @see rte_flow_ops
2854  */
2855 int
2856 mlx5_flow_validate(struct rte_eth_dev *dev,
2857                    const struct rte_flow_attr *attr,
2858                    const struct rte_flow_item items[],
2859                    const struct rte_flow_action actions[],
2860                    struct rte_flow_error *error)
2861 {
2862         int ret = mlx5_flow_merge(dev, NULL, 0, attr, items, actions, error);
2863
2864         if (ret < 0)
2865                 return ret;
2866         return 0;
2867 }
2868
2869 /**
2870  * Remove the flow.
2871  *
2872  * @param[in] dev
2873  *   Pointer to Ethernet device.
2874  * @param[in, out] flow
2875  *   Pointer to flow structure.
2876  */
2877 static void
2878 mlx5_flow_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2879 {
2880         struct priv *priv = dev->data->dev_private;
2881         struct mlx5_flow_verbs *verbs;
2882
2883         if (flow->nl_flow && priv->mnl_socket)
2884                 mlx5_nl_flow_destroy(priv->mnl_socket, flow->nl_flow, NULL);
2885         LIST_FOREACH(verbs, &flow->verbs, next) {
2886                 if (verbs->flow) {
2887                         claim_zero(mlx5_glue->destroy_flow(verbs->flow));
2888                         verbs->flow = NULL;
2889                 }
2890                 if (verbs->hrxq) {
2891                         if (flow->fate & MLX5_FLOW_FATE_DROP)
2892                                 mlx5_hrxq_drop_release(dev);
2893                         else
2894                                 mlx5_hrxq_release(dev, verbs->hrxq);
2895                         verbs->hrxq = NULL;
2896                 }
2897         }
2898         if (flow->counter) {
2899                 mlx5_flow_counter_release(flow->counter);
2900                 flow->counter = NULL;
2901         }
2902 }
2903
2904 /**
2905  * Apply the flow.
2906  *
2907  * @param[in] dev
2908  *   Pointer to Ethernet device structure.
2909  * @param[in, out] flow
2910  *   Pointer to flow structure.
2911  * @param[out] error
2912  *   Pointer to error structure.
2913  *
2914  * @return
2915  *   0 on success, a negative errno value otherwise and rte_errno is set.
2916  */
2917 static int
2918 mlx5_flow_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2919                 struct rte_flow_error *error)
2920 {
2921         struct priv *priv = dev->data->dev_private;
2922         struct mlx5_flow_verbs *verbs;
2923         int err;
2924
2925         LIST_FOREACH(verbs, &flow->verbs, next) {
2926                 if (flow->fate & MLX5_FLOW_FATE_DROP) {
2927                         verbs->hrxq = mlx5_hrxq_drop_new(dev);
2928                         if (!verbs->hrxq) {
2929                                 rte_flow_error_set
2930                                         (error, errno,
2931                                          RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2932                                          NULL,
2933                                          "cannot get drop hash queue");
2934                                 goto error;
2935                         }
2936                 } else {
2937                         struct mlx5_hrxq *hrxq;
2938
2939                         hrxq = mlx5_hrxq_get(dev, flow->key,
2940                                              MLX5_RSS_HASH_KEY_LEN,
2941                                              verbs->hash_fields,
2942                                              (*flow->queue),
2943                                              flow->rss.queue_num);
2944                         if (!hrxq)
2945                                 hrxq = mlx5_hrxq_new(dev, flow->key,
2946                                                      MLX5_RSS_HASH_KEY_LEN,
2947                                                      verbs->hash_fields,
2948                                                      (*flow->queue),
2949                                                      flow->rss.queue_num,
2950                                                      !!(flow->layers &
2951                                                       MLX5_FLOW_LAYER_TUNNEL));
2952                         if (!hrxq) {
2953                                 rte_flow_error_set
2954                                         (error, rte_errno,
2955                                          RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2956                                          NULL,
2957                                          "cannot get hash queue");
2958                                 goto error;
2959                         }
2960                         verbs->hrxq = hrxq;
2961                 }
2962                 verbs->flow =
2963                         mlx5_glue->create_flow(verbs->hrxq->qp, verbs->attr);
2964                 if (!verbs->flow) {
2965                         rte_flow_error_set(error, errno,
2966                                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2967                                            NULL,
2968                                            "hardware refuses to create flow");
2969                         goto error;
2970                 }
2971         }
2972         if (flow->nl_flow &&
2973             priv->mnl_socket &&
2974             mlx5_nl_flow_create(priv->mnl_socket, flow->nl_flow, error))
2975                 goto error;
2976         return 0;
2977 error:
2978         err = rte_errno; /* Save rte_errno before cleanup. */
2979         LIST_FOREACH(verbs, &flow->verbs, next) {
2980                 if (verbs->hrxq) {
2981                         if (flow->fate & MLX5_FLOW_FATE_DROP)
2982                                 mlx5_hrxq_drop_release(dev);
2983                         else
2984                                 mlx5_hrxq_release(dev, verbs->hrxq);
2985                         verbs->hrxq = NULL;
2986                 }
2987         }
2988         rte_errno = err; /* Restore rte_errno. */
2989         return -rte_errno;
2990 }
2991
2992 /**
2993  * Create a flow and add it to @p list.
2994  *
2995  * @param dev
2996  *   Pointer to Ethernet device.
2997  * @param list
2998  *   Pointer to a TAILQ flow list.
2999  * @param[in] attr
3000  *   Flow rule attributes.
3001  * @param[in] items
3002  *   Pattern specification (list terminated by the END pattern item).
3003  * @param[in] actions
3004  *   Associated actions (list terminated by the END action).
3005  * @param[out] error
3006  *   Perform verbose error reporting if not NULL.
3007  *
3008  * @return
3009  *   A flow on success, NULL otherwise and rte_errno is set.
3010  */
3011 static struct rte_flow *
3012 mlx5_flow_list_create(struct rte_eth_dev *dev,
3013                       struct mlx5_flows *list,
3014                       const struct rte_flow_attr *attr,
3015                       const struct rte_flow_item items[],
3016                       const struct rte_flow_action actions[],
3017                       struct rte_flow_error *error)
3018 {
3019         struct rte_flow *flow = NULL;
3020         size_t size = 0;
3021         int ret;
3022
3023         ret = mlx5_flow_merge(dev, flow, size, attr, items, actions, error);
3024         if (ret < 0)
3025                 return NULL;
3026         size = ret;
3027         flow = rte_calloc(__func__, 1, size, 0);
3028         if (!flow) {
3029                 rte_flow_error_set(error, ENOMEM,
3030                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3031                                    NULL,
3032                                    "not enough memory to create flow");
3033                 return NULL;
3034         }
3035         ret = mlx5_flow_merge(dev, flow, size, attr, items, actions, error);
3036         if (ret < 0) {
3037                 rte_free(flow);
3038                 return NULL;
3039         }
3040         assert((size_t)ret == size);
3041         if (dev->data->dev_started) {
3042                 ret = mlx5_flow_apply(dev, flow, error);
3043                 if (ret < 0) {
3044                         ret = rte_errno; /* Save rte_errno before cleanup. */
3045                         if (flow) {
3046                                 mlx5_flow_remove(dev, flow);
3047                                 rte_free(flow);
3048                         }
3049                         rte_errno = ret; /* Restore rte_errno. */
3050                         return NULL;
3051                 }
3052         }
3053         TAILQ_INSERT_TAIL(list, flow, next);
3054         mlx5_flow_rxq_flags_set(dev, flow);
3055         return flow;
3056 }
3057
3058 /**
3059  * Create a flow.
3060  *
3061  * @see rte_flow_create()
3062  * @see rte_flow_ops
3063  */
3064 struct rte_flow *
3065 mlx5_flow_create(struct rte_eth_dev *dev,
3066                  const struct rte_flow_attr *attr,
3067                  const struct rte_flow_item items[],
3068                  const struct rte_flow_action actions[],
3069                  struct rte_flow_error *error)
3070 {
3071         return mlx5_flow_list_create
3072                 (dev, &((struct priv *)dev->data->dev_private)->flows,
3073                  attr, items, actions, error);
3074 }
3075
3076 /**
3077  * Destroy a flow in a list.
3078  *
3079  * @param dev
3080  *   Pointer to Ethernet device.
3081  * @param list
3082  *   Pointer to a TAILQ flow list.
3083  * @param[in] flow
3084  *   Flow to destroy.
3085  */
3086 static void
3087 mlx5_flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
3088                        struct rte_flow *flow)
3089 {
3090         mlx5_flow_remove(dev, flow);
3091         TAILQ_REMOVE(list, flow, next);
3092         /*
3093          * Update RX queue flags only if port is started, otherwise it is
3094          * already clean.
3095          */
3096         if (dev->data->dev_started)
3097                 mlx5_flow_rxq_flags_trim(dev, flow);
3098         rte_free(flow);
3099 }
3100
3101 /**
3102  * Destroy all flows.
3103  *
3104  * @param dev
3105  *   Pointer to Ethernet device.
3106  * @param list
3107  *   Pointer to a TAILQ flow list.
3108  */
3109 void
3110 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
3111 {
3112         while (!TAILQ_EMPTY(list)) {
3113                 struct rte_flow *flow;
3114
3115                 flow = TAILQ_FIRST(list);
3116                 mlx5_flow_list_destroy(dev, list, flow);
3117         }
3118 }
3119
3120 /**
3121  * Remove all flows.
3122  *
3123  * @param dev
3124  *   Pointer to Ethernet device.
3125  * @param list
3126  *   Pointer to a TAILQ flow list.
3127  */
3128 void
3129 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
3130 {
3131         struct rte_flow *flow;
3132
3133         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
3134                 mlx5_flow_remove(dev, flow);
3135         mlx5_flow_rxq_flags_clear(dev);
3136 }
3137
3138 /**
3139  * Add all flows.
3140  *
3141  * @param dev
3142  *   Pointer to Ethernet device.
3143  * @param list
3144  *   Pointer to a TAILQ flow list.
3145  *
3146  * @return
3147  *   0 on success, a negative errno value otherwise and rte_errno is set.
3148  */
3149 int
3150 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
3151 {
3152         struct rte_flow *flow;
3153         struct rte_flow_error error;
3154         int ret = 0;
3155
3156         TAILQ_FOREACH(flow, list, next) {
3157                 ret = mlx5_flow_apply(dev, flow, &error);
3158                 if (ret < 0)
3159                         goto error;
3160                 mlx5_flow_rxq_flags_set(dev, flow);
3161         }
3162         return 0;
3163 error:
3164         ret = rte_errno; /* Save rte_errno before cleanup. */
3165         mlx5_flow_stop(dev, list);
3166         rte_errno = ret; /* Restore rte_errno. */
3167         return -rte_errno;
3168 }
3169
3170 /**
3171  * Verify the flow list is empty
3172  *
3173  * @param dev
3174  *  Pointer to Ethernet device.
3175  *
3176  * @return the number of flows not released.
3177  */
3178 int
3179 mlx5_flow_verify(struct rte_eth_dev *dev)
3180 {
3181         struct priv *priv = dev->data->dev_private;
3182         struct rte_flow *flow;
3183         int ret = 0;
3184
3185         TAILQ_FOREACH(flow, &priv->flows, next) {
3186                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
3187                         dev->data->port_id, (void *)flow);
3188                 ++ret;
3189         }
3190         return ret;
3191 }
3192
3193 /**
3194  * Enable a control flow configured from the control plane.
3195  *
3196  * @param dev
3197  *   Pointer to Ethernet device.
3198  * @param eth_spec
3199  *   An Ethernet flow spec to apply.
3200  * @param eth_mask
3201  *   An Ethernet flow mask to apply.
3202  * @param vlan_spec
3203  *   A VLAN flow spec to apply.
3204  * @param vlan_mask
3205  *   A VLAN flow mask to apply.
3206  *
3207  * @return
3208  *   0 on success, a negative errno value otherwise and rte_errno is set.
3209  */
3210 int
3211 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
3212                     struct rte_flow_item_eth *eth_spec,
3213                     struct rte_flow_item_eth *eth_mask,
3214                     struct rte_flow_item_vlan *vlan_spec,
3215                     struct rte_flow_item_vlan *vlan_mask)
3216 {
3217         struct priv *priv = dev->data->dev_private;
3218         const struct rte_flow_attr attr = {
3219                 .ingress = 1,
3220                 .priority = MLX5_FLOW_PRIO_RSVD,
3221         };
3222         struct rte_flow_item items[] = {
3223                 {
3224                         .type = RTE_FLOW_ITEM_TYPE_ETH,
3225                         .spec = eth_spec,
3226                         .last = NULL,
3227                         .mask = eth_mask,
3228                 },
3229                 {
3230                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
3231                                 RTE_FLOW_ITEM_TYPE_END,
3232                         .spec = vlan_spec,
3233                         .last = NULL,
3234                         .mask = vlan_mask,
3235                 },
3236                 {
3237                         .type = RTE_FLOW_ITEM_TYPE_END,
3238                 },
3239         };
3240         uint16_t queue[priv->reta_idx_n];
3241         struct rte_flow_action_rss action_rss = {
3242                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3243                 .level = 0,
3244                 .types = priv->rss_conf.rss_hf,
3245                 .key_len = priv->rss_conf.rss_key_len,
3246                 .queue_num = priv->reta_idx_n,
3247                 .key = priv->rss_conf.rss_key,
3248                 .queue = queue,
3249         };
3250         struct rte_flow_action actions[] = {
3251                 {
3252                         .type = RTE_FLOW_ACTION_TYPE_RSS,
3253                         .conf = &action_rss,
3254                 },
3255                 {
3256                         .type = RTE_FLOW_ACTION_TYPE_END,
3257                 },
3258         };
3259         struct rte_flow *flow;
3260         struct rte_flow_error error;
3261         unsigned int i;
3262
3263         if (!priv->reta_idx_n) {
3264                 rte_errno = EINVAL;
3265                 return -rte_errno;
3266         }
3267         for (i = 0; i != priv->reta_idx_n; ++i)
3268                 queue[i] = (*priv->reta_idx)[i];
3269         flow = mlx5_flow_list_create(dev, &priv->ctrl_flows, &attr, items,
3270                                      actions, &error);
3271         if (!flow)
3272                 return -rte_errno;
3273         return 0;
3274 }
3275
3276 /**
3277  * Enable a flow control configured from the control plane.
3278  *
3279  * @param dev
3280  *   Pointer to Ethernet device.
3281  * @param eth_spec
3282  *   An Ethernet flow spec to apply.
3283  * @param eth_mask
3284  *   An Ethernet flow mask to apply.
3285  *
3286  * @return
3287  *   0 on success, a negative errno value otherwise and rte_errno is set.
3288  */
3289 int
3290 mlx5_ctrl_flow(struct rte_eth_dev *dev,
3291                struct rte_flow_item_eth *eth_spec,
3292                struct rte_flow_item_eth *eth_mask)
3293 {
3294         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
3295 }
3296
3297 /**
3298  * Destroy a flow.
3299  *
3300  * @see rte_flow_destroy()
3301  * @see rte_flow_ops
3302  */
3303 int
3304 mlx5_flow_destroy(struct rte_eth_dev *dev,
3305                   struct rte_flow *flow,
3306                   struct rte_flow_error *error __rte_unused)
3307 {
3308         struct priv *priv = dev->data->dev_private;
3309
3310         mlx5_flow_list_destroy(dev, &priv->flows, flow);
3311         return 0;
3312 }
3313
3314 /**
3315  * Destroy all flows.
3316  *
3317  * @see rte_flow_flush()
3318  * @see rte_flow_ops
3319  */
3320 int
3321 mlx5_flow_flush(struct rte_eth_dev *dev,
3322                 struct rte_flow_error *error __rte_unused)
3323 {
3324         struct priv *priv = dev->data->dev_private;
3325
3326         mlx5_flow_list_flush(dev, &priv->flows);
3327         return 0;
3328 }
3329
3330 /**
3331  * Isolated mode.
3332  *
3333  * @see rte_flow_isolate()
3334  * @see rte_flow_ops
3335  */
3336 int
3337 mlx5_flow_isolate(struct rte_eth_dev *dev,
3338                   int enable,
3339                   struct rte_flow_error *error)
3340 {
3341         struct priv *priv = dev->data->dev_private;
3342
3343         if (dev->data->dev_started) {
3344                 rte_flow_error_set(error, EBUSY,
3345                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3346                                    NULL,
3347                                    "port must be stopped first");
3348                 return -rte_errno;
3349         }
3350         priv->isolated = !!enable;
3351         if (enable)
3352                 dev->dev_ops = &mlx5_dev_ops_isolate;
3353         else
3354                 dev->dev_ops = &mlx5_dev_ops;
3355         return 0;
3356 }
3357
3358 /**
3359  * Query flow counter.
3360  *
3361  * @param flow
3362  *   Pointer to the flow.
3363  *
3364  * @return
3365  *   0 on success, a negative errno value otherwise and rte_errno is set.
3366  */
3367 static int
3368 mlx5_flow_query_count(struct rte_flow *flow __rte_unused,
3369                       void *data __rte_unused,
3370                       struct rte_flow_error *error)
3371 {
3372 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
3373         if (flow->modifier & MLX5_FLOW_MOD_COUNT) {
3374                 struct rte_flow_query_count *qc = data;
3375                 uint64_t counters[2] = {0, 0};
3376                 struct ibv_query_counter_set_attr query_cs_attr = {
3377                         .cs = flow->counter->cs,
3378                         .query_flags = IBV_COUNTER_SET_FORCE_UPDATE,
3379                 };
3380                 struct ibv_counter_set_data query_out = {
3381                         .out = counters,
3382                         .outlen = 2 * sizeof(uint64_t),
3383                 };
3384                 int err = mlx5_glue->query_counter_set(&query_cs_attr,
3385                                                        &query_out);
3386
3387                 if (err)
3388                         return rte_flow_error_set
3389                                 (error, err,
3390                                  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3391                                  NULL,
3392                                  "cannot read counter");
3393                 qc->hits_set = 1;
3394                 qc->bytes_set = 1;
3395                 qc->hits = counters[0] - flow->counter->hits;
3396                 qc->bytes = counters[1] - flow->counter->bytes;
3397                 if (qc->reset) {
3398                         flow->counter->hits = counters[0];
3399                         flow->counter->bytes = counters[1];
3400                 }
3401                 return 0;
3402         }
3403         return rte_flow_error_set(error, ENOTSUP,
3404                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3405                                   NULL,
3406                                   "flow does not have counter");
3407 #endif
3408         return rte_flow_error_set(error, ENOTSUP,
3409                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3410                                   NULL,
3411                                   "counters are not available");
3412 }
3413
3414 /**
3415  * Query a flows.
3416  *
3417  * @see rte_flow_query()
3418  * @see rte_flow_ops
3419  */
3420 int
3421 mlx5_flow_query(struct rte_eth_dev *dev __rte_unused,
3422                 struct rte_flow *flow,
3423                 const struct rte_flow_action *actions,
3424                 void *data,
3425                 struct rte_flow_error *error)
3426 {
3427         int ret = 0;
3428
3429         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3430                 switch (actions->type) {
3431                 case RTE_FLOW_ACTION_TYPE_VOID:
3432                         break;
3433                 case RTE_FLOW_ACTION_TYPE_COUNT:
3434                         ret = mlx5_flow_query_count(flow, data, error);
3435                         break;
3436                 default:
3437                         return rte_flow_error_set(error, ENOTSUP,
3438                                                   RTE_FLOW_ERROR_TYPE_ACTION,
3439                                                   actions,
3440                                                   "action not supported");
3441                 }
3442                 if (ret < 0)
3443                         return ret;
3444         }
3445         return 0;
3446 }
3447
3448 /**
3449  * Convert a flow director filter to a generic flow.
3450  *
3451  * @param dev
3452  *   Pointer to Ethernet device.
3453  * @param fdir_filter
3454  *   Flow director filter to add.
3455  * @param attributes
3456  *   Generic flow parameters structure.
3457  *
3458  * @return
3459  *   0 on success, a negative errno value otherwise and rte_errno is set.
3460  */
3461 static int
3462 mlx5_fdir_filter_convert(struct rte_eth_dev *dev,
3463                          const struct rte_eth_fdir_filter *fdir_filter,
3464                          struct mlx5_fdir *attributes)
3465 {
3466         struct priv *priv = dev->data->dev_private;
3467         const struct rte_eth_fdir_input *input = &fdir_filter->input;
3468         const struct rte_eth_fdir_masks *mask =
3469                 &dev->data->dev_conf.fdir_conf.mask;
3470
3471         /* Validate queue number. */
3472         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
3473                 DRV_LOG(ERR, "port %u invalid queue number %d",
3474                         dev->data->port_id, fdir_filter->action.rx_queue);
3475                 rte_errno = EINVAL;
3476                 return -rte_errno;
3477         }
3478         attributes->attr.ingress = 1;
3479         attributes->items[0] = (struct rte_flow_item) {
3480                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3481                 .spec = &attributes->l2,
3482                 .mask = &attributes->l2_mask,
3483         };
3484         switch (fdir_filter->action.behavior) {
3485         case RTE_ETH_FDIR_ACCEPT:
3486                 attributes->actions[0] = (struct rte_flow_action){
3487                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
3488                         .conf = &attributes->queue,
3489                 };
3490                 break;
3491         case RTE_ETH_FDIR_REJECT:
3492                 attributes->actions[0] = (struct rte_flow_action){
3493                         .type = RTE_FLOW_ACTION_TYPE_DROP,
3494                 };
3495                 break;
3496         default:
3497                 DRV_LOG(ERR, "port %u invalid behavior %d",
3498                         dev->data->port_id,
3499                         fdir_filter->action.behavior);
3500                 rte_errno = ENOTSUP;
3501                 return -rte_errno;
3502         }
3503         attributes->queue.index = fdir_filter->action.rx_queue;
3504         /* Handle L3. */
3505         switch (fdir_filter->input.flow_type) {
3506         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3507         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3508         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3509                 attributes->l3.ipv4.hdr = (struct ipv4_hdr){
3510                         .src_addr = input->flow.ip4_flow.src_ip,
3511                         .dst_addr = input->flow.ip4_flow.dst_ip,
3512                         .time_to_live = input->flow.ip4_flow.ttl,
3513                         .type_of_service = input->flow.ip4_flow.tos,
3514                         .next_proto_id = input->flow.ip4_flow.proto,
3515                 };
3516                 attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
3517                         .src_addr = mask->ipv4_mask.src_ip,
3518                         .dst_addr = mask->ipv4_mask.dst_ip,
3519                         .time_to_live = mask->ipv4_mask.ttl,
3520                         .type_of_service = mask->ipv4_mask.tos,
3521                         .next_proto_id = mask->ipv4_mask.proto,
3522                 };
3523                 attributes->items[1] = (struct rte_flow_item){
3524                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
3525                         .spec = &attributes->l3,
3526                         .mask = &attributes->l3_mask,
3527                 };
3528                 break;
3529         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3530         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3531         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3532                 attributes->l3.ipv6.hdr = (struct ipv6_hdr){
3533                         .hop_limits = input->flow.ipv6_flow.hop_limits,
3534                         .proto = input->flow.ipv6_flow.proto,
3535                 };
3536
3537                 memcpy(attributes->l3.ipv6.hdr.src_addr,
3538                        input->flow.ipv6_flow.src_ip,
3539                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3540                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
3541                        input->flow.ipv6_flow.dst_ip,
3542                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3543                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
3544                        mask->ipv6_mask.src_ip,
3545                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3546                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
3547                        mask->ipv6_mask.dst_ip,
3548                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3549                 attributes->items[1] = (struct rte_flow_item){
3550                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
3551                         .spec = &attributes->l3,
3552                         .mask = &attributes->l3_mask,
3553                 };
3554                 break;
3555         default:
3556                 DRV_LOG(ERR, "port %u invalid flow type%d",
3557                         dev->data->port_id, fdir_filter->input.flow_type);
3558                 rte_errno = ENOTSUP;
3559                 return -rte_errno;
3560         }
3561         /* Handle L4. */
3562         switch (fdir_filter->input.flow_type) {
3563         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3564                 attributes->l4.udp.hdr = (struct udp_hdr){
3565                         .src_port = input->flow.udp4_flow.src_port,
3566                         .dst_port = input->flow.udp4_flow.dst_port,
3567                 };
3568                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
3569                         .src_port = mask->src_port_mask,
3570                         .dst_port = mask->dst_port_mask,
3571                 };
3572                 attributes->items[2] = (struct rte_flow_item){
3573                         .type = RTE_FLOW_ITEM_TYPE_UDP,
3574                         .spec = &attributes->l4,
3575                         .mask = &attributes->l4_mask,
3576                 };
3577                 break;
3578         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3579                 attributes->l4.tcp.hdr = (struct tcp_hdr){
3580                         .src_port = input->flow.tcp4_flow.src_port,
3581                         .dst_port = input->flow.tcp4_flow.dst_port,
3582                 };
3583                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
3584                         .src_port = mask->src_port_mask,
3585                         .dst_port = mask->dst_port_mask,
3586                 };
3587                 attributes->items[2] = (struct rte_flow_item){
3588                         .type = RTE_FLOW_ITEM_TYPE_TCP,
3589                         .spec = &attributes->l4,
3590                         .mask = &attributes->l4_mask,
3591                 };
3592                 break;
3593         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3594                 attributes->l4.udp.hdr = (struct udp_hdr){
3595                         .src_port = input->flow.udp6_flow.src_port,
3596                         .dst_port = input->flow.udp6_flow.dst_port,
3597                 };
3598                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
3599                         .src_port = mask->src_port_mask,
3600                         .dst_port = mask->dst_port_mask,
3601                 };
3602                 attributes->items[2] = (struct rte_flow_item){
3603                         .type = RTE_FLOW_ITEM_TYPE_UDP,
3604                         .spec = &attributes->l4,
3605                         .mask = &attributes->l4_mask,
3606                 };
3607                 break;
3608         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3609                 attributes->l4.tcp.hdr = (struct tcp_hdr){
3610                         .src_port = input->flow.tcp6_flow.src_port,
3611                         .dst_port = input->flow.tcp6_flow.dst_port,
3612                 };
3613                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
3614                         .src_port = mask->src_port_mask,
3615                         .dst_port = mask->dst_port_mask,
3616                 };
3617                 attributes->items[2] = (struct rte_flow_item){
3618                         .type = RTE_FLOW_ITEM_TYPE_TCP,
3619                         .spec = &attributes->l4,
3620                         .mask = &attributes->l4_mask,
3621                 };
3622                 break;
3623         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3624         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3625                 break;
3626         default:
3627                 DRV_LOG(ERR, "port %u invalid flow type%d",
3628                         dev->data->port_id, fdir_filter->input.flow_type);
3629                 rte_errno = ENOTSUP;
3630                 return -rte_errno;
3631         }
3632         return 0;
3633 }
3634
3635 /**
3636  * Add new flow director filter and store it in list.
3637  *
3638  * @param dev
3639  *   Pointer to Ethernet device.
3640  * @param fdir_filter
3641  *   Flow director filter to add.
3642  *
3643  * @return
3644  *   0 on success, a negative errno value otherwise and rte_errno is set.
3645  */
3646 static int
3647 mlx5_fdir_filter_add(struct rte_eth_dev *dev,
3648                      const struct rte_eth_fdir_filter *fdir_filter)
3649 {
3650         struct priv *priv = dev->data->dev_private;
3651         struct mlx5_fdir attributes = {
3652                 .attr.group = 0,
3653                 .l2_mask = {
3654                         .dst.addr_bytes = "\x00\x00\x00\x00\x00\x00",
3655                         .src.addr_bytes = "\x00\x00\x00\x00\x00\x00",
3656                         .type = 0,
3657                 },
3658         };
3659         struct rte_flow_error error;
3660         struct rte_flow *flow;
3661         int ret;
3662
3663         ret = mlx5_fdir_filter_convert(dev, fdir_filter, &attributes);
3664         if (ret)
3665                 return ret;
3666         flow = mlx5_flow_list_create(dev, &priv->flows, &attributes.attr,
3667                                      attributes.items, attributes.actions,
3668                                      &error);
3669         if (flow) {
3670                 DRV_LOG(DEBUG, "port %u FDIR created %p", dev->data->port_id,
3671                         (void *)flow);
3672                 return 0;
3673         }
3674         return -rte_errno;
3675 }
3676
3677 /**
3678  * Delete specific filter.
3679  *
3680  * @param dev
3681  *   Pointer to Ethernet device.
3682  * @param fdir_filter
3683  *   Filter to be deleted.
3684  *
3685  * @return
3686  *   0 on success, a negative errno value otherwise and rte_errno is set.
3687  */
3688 static int
3689 mlx5_fdir_filter_delete(struct rte_eth_dev *dev __rte_unused,
3690                         const struct rte_eth_fdir_filter *fdir_filter
3691                         __rte_unused)
3692 {
3693         rte_errno = ENOTSUP;
3694         return -rte_errno;
3695 }
3696
3697 /**
3698  * Update queue for specific filter.
3699  *
3700  * @param dev
3701  *   Pointer to Ethernet device.
3702  * @param fdir_filter
3703  *   Filter to be updated.
3704  *
3705  * @return
3706  *   0 on success, a negative errno value otherwise and rte_errno is set.
3707  */
3708 static int
3709 mlx5_fdir_filter_update(struct rte_eth_dev *dev,
3710                         const struct rte_eth_fdir_filter *fdir_filter)
3711 {
3712         int ret;
3713
3714         ret = mlx5_fdir_filter_delete(dev, fdir_filter);
3715         if (ret)
3716                 return ret;
3717         return mlx5_fdir_filter_add(dev, fdir_filter);
3718 }
3719
3720 /**
3721  * Flush all filters.
3722  *
3723  * @param dev
3724  *   Pointer to Ethernet device.
3725  */
3726 static void
3727 mlx5_fdir_filter_flush(struct rte_eth_dev *dev)
3728 {
3729         struct priv *priv = dev->data->dev_private;
3730
3731         mlx5_flow_list_flush(dev, &priv->flows);
3732 }
3733
3734 /**
3735  * Get flow director information.
3736  *
3737  * @param dev
3738  *   Pointer to Ethernet device.
3739  * @param[out] fdir_info
3740  *   Resulting flow director information.
3741  */
3742 static void
3743 mlx5_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3744 {
3745         struct rte_eth_fdir_masks *mask =
3746                 &dev->data->dev_conf.fdir_conf.mask;
3747
3748         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3749         fdir_info->guarant_spc = 0;
3750         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3751         fdir_info->max_flexpayload = 0;
3752         fdir_info->flow_types_mask[0] = 0;
3753         fdir_info->flex_payload_unit = 0;
3754         fdir_info->max_flex_payload_segment_num = 0;
3755         fdir_info->flex_payload_limit = 0;
3756         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3757 }
3758
3759 /**
3760  * Deal with flow director operations.
3761  *
3762  * @param dev
3763  *   Pointer to Ethernet device.
3764  * @param filter_op
3765  *   Operation to perform.
3766  * @param arg
3767  *   Pointer to operation-specific structure.
3768  *
3769  * @return
3770  *   0 on success, a negative errno value otherwise and rte_errno is set.
3771  */
3772 static int
3773 mlx5_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3774                     void *arg)
3775 {
3776         enum rte_fdir_mode fdir_mode =
3777                 dev->data->dev_conf.fdir_conf.mode;
3778
3779         if (filter_op == RTE_ETH_FILTER_NOP)
3780                 return 0;
3781         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3782             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3783                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
3784                         dev->data->port_id, fdir_mode);
3785                 rte_errno = EINVAL;
3786                 return -rte_errno;
3787         }
3788         switch (filter_op) {
3789         case RTE_ETH_FILTER_ADD:
3790                 return mlx5_fdir_filter_add(dev, arg);
3791         case RTE_ETH_FILTER_UPDATE:
3792                 return mlx5_fdir_filter_update(dev, arg);
3793         case RTE_ETH_FILTER_DELETE:
3794                 return mlx5_fdir_filter_delete(dev, arg);
3795         case RTE_ETH_FILTER_FLUSH:
3796                 mlx5_fdir_filter_flush(dev);
3797                 break;
3798         case RTE_ETH_FILTER_INFO:
3799                 mlx5_fdir_info_get(dev, arg);
3800                 break;
3801         default:
3802                 DRV_LOG(DEBUG, "port %u unknown operation %u",
3803                         dev->data->port_id, filter_op);
3804                 rte_errno = EINVAL;
3805                 return -rte_errno;
3806         }
3807         return 0;
3808 }
3809
3810 /**
3811  * Manage filter operations.
3812  *
3813  * @param dev
3814  *   Pointer to Ethernet device structure.
3815  * @param filter_type
3816  *   Filter type.
3817  * @param filter_op
3818  *   Operation to perform.
3819  * @param arg
3820  *   Pointer to operation-specific structure.
3821  *
3822  * @return
3823  *   0 on success, a negative errno value otherwise and rte_errno is set.
3824  */
3825 int
3826 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3827                      enum rte_filter_type filter_type,
3828                      enum rte_filter_op filter_op,
3829                      void *arg)
3830 {
3831         switch (filter_type) {
3832         case RTE_ETH_FILTER_GENERIC:
3833                 if (filter_op != RTE_ETH_FILTER_GET) {
3834                         rte_errno = EINVAL;
3835                         return -rte_errno;
3836                 }
3837                 *(const void **)arg = &mlx5_flow_ops;
3838                 return 0;
3839         case RTE_ETH_FILTER_FDIR:
3840                 return mlx5_fdir_ctrl_func(dev, filter_op, arg);
3841         default:
3842                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
3843                         dev->data->port_id, filter_type);
3844                 rte_errno = ENOTSUP;
3845                 return -rte_errno;
3846         }
3847         return 0;
3848 }