New upstream version 18.11-rc1
[deb_dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
38
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41                  uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
42
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
45
46 static __rte_always_inline void
47 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
48                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
49
50 static __rte_always_inline void
51 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
52
53 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
54         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
55 };
56
57 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
58 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
59
60 /**
61  * Build a table to translate Rx completion flags to packet type.
62  *
63  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
64  */
65 void
66 mlx5_set_ptype_table(void)
67 {
68         unsigned int i;
69         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
70
71         /* Last entry must not be overwritten, reserved for errored packet. */
72         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
73                 (*p)[i] = RTE_PTYPE_UNKNOWN;
74         /*
75          * The index to the array should have:
76          * bit[1:0] = l3_hdr_type
77          * bit[4:2] = l4_hdr_type
78          * bit[5] = ip_frag
79          * bit[6] = tunneled
80          * bit[7] = outer_l3_type
81          */
82         /* L2 */
83         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
84         /* L3 */
85         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86                      RTE_PTYPE_L4_NONFRAG;
87         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88                      RTE_PTYPE_L4_NONFRAG;
89         /* Fragmented */
90         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91                      RTE_PTYPE_L4_FRAG;
92         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93                      RTE_PTYPE_L4_FRAG;
94         /* TCP */
95         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
96                      RTE_PTYPE_L4_TCP;
97         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98                      RTE_PTYPE_L4_TCP;
99         (*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
100                      RTE_PTYPE_L4_TCP;
101         (*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_TCP;
103         (*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_TCP;
105         (*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_TCP;
107         /* UDP */
108         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_UDP;
110         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_UDP;
112         /* Repeat with outer_l3_type being set. Just in case. */
113         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_NONFRAG;
115         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_NONFRAG;
117         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118                      RTE_PTYPE_L4_FRAG;
119         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
120                      RTE_PTYPE_L4_FRAG;
121         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
122                      RTE_PTYPE_L4_TCP;
123         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_TCP;
125         (*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_TCP;
127         (*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_TCP;
129         (*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_TCP;
131         (*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_UDP;
135         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         /* Tunneled - L3 */
138         (*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
139         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L4_NONFRAG;
142         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L4_NONFRAG;
145         (*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         (*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L4_TCP;
181         (*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L4_TCP;
184         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L4_TCP;
187         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L4_TCP;
190         (*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
191                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L4_TCP;
193         (*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
194                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L4_TCP;
196         (*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L4_TCP;
199         (*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L4_TCP;
202         /* Tunneled - UDP */
203         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
205                      RTE_PTYPE_INNER_L4_UDP;
206         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
208                      RTE_PTYPE_INNER_L4_UDP;
209         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L4_UDP;
212         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L4_UDP;
215 }
216
217 /**
218  * Build a table to translate packet to checksum type of Verbs.
219  */
220 void
221 mlx5_set_cksum_table(void)
222 {
223         unsigned int i;
224         uint8_t v;
225
226         /*
227          * The index should have:
228          * bit[0] = PKT_TX_TCP_SEG
229          * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
230          * bit[4] = PKT_TX_IP_CKSUM
231          * bit[8] = PKT_TX_OUTER_IP_CKSUM
232          * bit[9] = tunnel
233          */
234         for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
235                 v = 0;
236                 if (i & (1 << 9)) {
237                         /* Tunneled packet. */
238                         if (i & (1 << 8)) /* Outer IP. */
239                                 v |= MLX5_ETH_WQE_L3_CSUM;
240                         if (i & (1 << 4)) /* Inner IP. */
241                                 v |= MLX5_ETH_WQE_L3_INNER_CSUM;
242                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
243                                 v |= MLX5_ETH_WQE_L4_INNER_CSUM;
244                 } else {
245                         /* No tunnel. */
246                         if (i & (1 << 4)) /* IP. */
247                                 v |= MLX5_ETH_WQE_L3_CSUM;
248                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
249                                 v |= MLX5_ETH_WQE_L4_CSUM;
250                 }
251                 mlx5_cksum_table[i] = v;
252         }
253 }
254
255 /**
256  * Build a table to translate packet type of mbuf to SWP type of Verbs.
257  */
258 void
259 mlx5_set_swp_types_table(void)
260 {
261         unsigned int i;
262         uint8_t v;
263
264         /*
265          * The index should have:
266          * bit[0:1] = PKT_TX_L4_MASK
267          * bit[4] = PKT_TX_IPV6
268          * bit[8] = PKT_TX_OUTER_IPV6
269          * bit[9] = PKT_TX_OUTER_UDP
270          */
271         for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
272                 v = 0;
273                 if (i & (1 << 8))
274                         v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
275                 if (i & (1 << 9))
276                         v |= MLX5_ETH_WQE_L4_OUTER_UDP;
277                 if (i & (1 << 4))
278                         v |= MLX5_ETH_WQE_L3_INNER_IPV6;
279                 if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
280                         v |= MLX5_ETH_WQE_L4_INNER_UDP;
281                 mlx5_swp_types_table[i] = v;
282         }
283 }
284
285 /**
286  * Return the size of tailroom of WQ.
287  *
288  * @param txq
289  *   Pointer to TX queue structure.
290  * @param addr
291  *   Pointer to tail of WQ.
292  *
293  * @return
294  *   Size of tailroom.
295  */
296 static inline size_t
297 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
298 {
299         size_t tailroom;
300         tailroom = (uintptr_t)(txq->wqes) +
301                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
302                    (uintptr_t)addr;
303         return tailroom;
304 }
305
306 /**
307  * Copy data to tailroom of circular queue.
308  *
309  * @param dst
310  *   Pointer to destination.
311  * @param src
312  *   Pointer to source.
313  * @param n
314  *   Number of bytes to copy.
315  * @param base
316  *   Pointer to head of queue.
317  * @param tailroom
318  *   Size of tailroom from dst.
319  *
320  * @return
321  *   Pointer after copied data.
322  */
323 static inline void *
324 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
325                 void *base, size_t tailroom)
326 {
327         void *ret;
328
329         if (n > tailroom) {
330                 rte_memcpy(dst, src, tailroom);
331                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
332                            n - tailroom);
333                 ret = (uint8_t *)base + n - tailroom;
334         } else {
335                 rte_memcpy(dst, src, n);
336                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
337         }
338         return ret;
339 }
340
341 /**
342  * Inline TSO headers into WQE.
343  *
344  * @return
345  *   0 on success, negative errno value on failure.
346  */
347 static int
348 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
349            uint32_t *length,
350            uintptr_t *addr,
351            uint16_t *pkt_inline_sz,
352            uint8_t **raw,
353            uint16_t *max_wqe,
354            uint16_t *tso_segsz,
355            uint16_t *tso_header_sz)
356 {
357         uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
358                                     (1 << txq->wqe_n) * MLX5_WQE_SIZE);
359         unsigned int copy_b;
360         uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
361         const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
362                                  PKT_TX_TUNNEL_MASK);
363         uint16_t n_wqe;
364
365         *tso_segsz = buf->tso_segsz;
366         *tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
367         if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
368                 txq->stats.oerrors++;
369                 return -EINVAL;
370         }
371         if (tunneled)
372                 *tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
373         /* First seg must contain all TSO headers. */
374         if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
375                      *tso_header_sz > DATA_LEN(buf)) {
376                 txq->stats.oerrors++;
377                 return -EINVAL;
378         }
379         copy_b = *tso_header_sz - *pkt_inline_sz;
380         if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
381                 return -EAGAIN;
382         n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
383         if (unlikely(*max_wqe < n_wqe))
384                 return -EINVAL;
385         *max_wqe -= n_wqe;
386         rte_memcpy((void *)*raw, (void *)*addr, copy_b);
387         *length -= copy_b;
388         *addr += copy_b;
389         copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
390         *pkt_inline_sz += copy_b;
391         *raw += copy_b;
392         return 0;
393 }
394
395 /**
396  * DPDK callback to check the status of a tx descriptor.
397  *
398  * @param tx_queue
399  *   The tx queue.
400  * @param[in] offset
401  *   The index of the descriptor in the ring.
402  *
403  * @return
404  *   The status of the tx descriptor.
405  */
406 int
407 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
408 {
409         struct mlx5_txq_data *txq = tx_queue;
410         uint16_t used;
411
412         mlx5_tx_complete(txq);
413         used = txq->elts_head - txq->elts_tail;
414         if (offset < used)
415                 return RTE_ETH_TX_DESC_FULL;
416         return RTE_ETH_TX_DESC_DONE;
417 }
418
419 /**
420  * DPDK callback to check the status of a rx descriptor.
421  *
422  * @param rx_queue
423  *   The rx queue.
424  * @param[in] offset
425  *   The index of the descriptor in the ring.
426  *
427  * @return
428  *   The status of the tx descriptor.
429  */
430 int
431 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
432 {
433         struct mlx5_rxq_data *rxq = rx_queue;
434         struct rxq_zip *zip = &rxq->zip;
435         volatile struct mlx5_cqe *cqe;
436         const unsigned int cqe_n = (1 << rxq->cqe_n);
437         const unsigned int cqe_cnt = cqe_n - 1;
438         unsigned int cq_ci;
439         unsigned int used;
440
441         /* if we are processing a compressed cqe */
442         if (zip->ai) {
443                 used = zip->cqe_cnt - zip->ca;
444                 cq_ci = zip->cq_ci;
445         } else {
446                 used = 0;
447                 cq_ci = rxq->cq_ci;
448         }
449         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
450         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
451                 int8_t op_own;
452                 unsigned int n;
453
454                 op_own = cqe->op_own;
455                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
456                         n = rte_be_to_cpu_32(cqe->byte_cnt);
457                 else
458                         n = 1;
459                 cq_ci += n;
460                 used += n;
461                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
462         }
463         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
464         if (offset < used)
465                 return RTE_ETH_RX_DESC_DONE;
466         return RTE_ETH_RX_DESC_AVAIL;
467 }
468
469 /**
470  * DPDK callback for TX.
471  *
472  * @param dpdk_txq
473  *   Generic pointer to TX queue structure.
474  * @param[in] pkts
475  *   Packets to transmit.
476  * @param pkts_n
477  *   Number of packets in array.
478  *
479  * @return
480  *   Number of packets successfully transmitted (<= pkts_n).
481  */
482 uint16_t
483 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
484 {
485         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
486         uint16_t elts_head = txq->elts_head;
487         const uint16_t elts_n = 1 << txq->elts_n;
488         const uint16_t elts_m = elts_n - 1;
489         unsigned int i = 0;
490         unsigned int j = 0;
491         unsigned int k = 0;
492         uint16_t max_elts;
493         uint16_t max_wqe;
494         unsigned int comp;
495         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
496         unsigned int segs_n = 0;
497         const unsigned int max_inline = txq->max_inline;
498         uint64_t addr_64;
499
500         if (unlikely(!pkts_n))
501                 return 0;
502         /* Prefetch first packet cacheline. */
503         rte_prefetch0(*pkts);
504         /* Start processing. */
505         mlx5_tx_complete(txq);
506         max_elts = (elts_n - (elts_head - txq->elts_tail));
507         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
508         if (unlikely(!max_wqe))
509                 return 0;
510         do {
511                 struct rte_mbuf *buf = *pkts; /* First_seg. */
512                 uint8_t *raw;
513                 volatile struct mlx5_wqe_v *wqe = NULL;
514                 volatile rte_v128u32_t *dseg = NULL;
515                 uint32_t length;
516                 unsigned int ds = 0;
517                 unsigned int sg = 0; /* counter of additional segs attached. */
518                 uintptr_t addr;
519                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
520                 uint16_t tso_header_sz = 0;
521                 uint16_t ehdr;
522                 uint8_t cs_flags;
523                 uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
524                 uint32_t swp_offsets = 0;
525                 uint8_t swp_types = 0;
526                 rte_be32_t metadata;
527                 uint16_t tso_segsz = 0;
528 #ifdef MLX5_PMD_SOFT_COUNTERS
529                 uint32_t total_length = 0;
530 #endif
531                 int ret;
532
533                 segs_n = buf->nb_segs;
534                 /*
535                  * Make sure there is enough room to store this packet and
536                  * that one ring entry remains unused.
537                  */
538                 assert(segs_n);
539                 if (max_elts < segs_n)
540                         break;
541                 max_elts -= segs_n;
542                 sg = --segs_n;
543                 if (unlikely(--max_wqe == 0))
544                         break;
545                 wqe = (volatile struct mlx5_wqe_v *)
546                         tx_mlx5_wqe(txq, txq->wqe_ci);
547                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
548                 if (pkts_n - i > 1)
549                         rte_prefetch0(*(pkts + 1));
550                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
551                 length = DATA_LEN(buf);
552                 ehdr = (((uint8_t *)addr)[1] << 8) |
553                        ((uint8_t *)addr)[0];
554 #ifdef MLX5_PMD_SOFT_COUNTERS
555                 total_length = length;
556 #endif
557                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
558                         txq->stats.oerrors++;
559                         break;
560                 }
561                 /* Update element. */
562                 (*txq->elts)[elts_head & elts_m] = buf;
563                 /* Prefetch next buffer data. */
564                 if (pkts_n - i > 1)
565                         rte_prefetch0(
566                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
567                 cs_flags = txq_ol_cksum_to_cs(buf);
568                 txq_mbuf_to_swp(txq, buf, (uint8_t *)&swp_offsets, &swp_types);
569                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
570                 /* Copy metadata from mbuf if valid */
571                 metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
572                                                              0;
573                 /* Replace the Ethernet type by the VLAN if necessary. */
574                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
575                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
576                                                          buf->vlan_tci);
577                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
578
579                         addr += 2;
580                         length -= 2;
581                         /* Copy Destination and source mac address. */
582                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
583                         /* Copy VLAN. */
584                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
585                         /* Copy missing two bytes to end the DSeg. */
586                         memcpy((uint8_t *)raw + len + sizeof(vlan),
587                                ((uint8_t *)addr) + len, 2);
588                         addr += len + 2;
589                         length -= (len + 2);
590                 } else {
591                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
592                                MLX5_WQE_DWORD_SIZE);
593                         length -= pkt_inline_sz;
594                         addr += pkt_inline_sz;
595                 }
596                 raw += MLX5_WQE_DWORD_SIZE;
597                 if (tso) {
598                         ret = inline_tso(txq, buf, &length,
599                                          &addr, &pkt_inline_sz,
600                                          &raw, &max_wqe,
601                                          &tso_segsz, &tso_header_sz);
602                         if (ret == -EINVAL) {
603                                 break;
604                         } else if (ret == -EAGAIN) {
605                                 /* NOP WQE. */
606                                 wqe->ctrl = (rte_v128u32_t){
607                                         rte_cpu_to_be_32(txq->wqe_ci << 8),
608                                         rte_cpu_to_be_32(txq->qp_num_8s | 1),
609                                         0,
610                                         0,
611                                 };
612                                 ds = 1;
613 #ifdef MLX5_PMD_SOFT_COUNTERS
614                                 total_length = 0;
615 #endif
616                                 k++;
617                                 goto next_wqe;
618                         }
619                 }
620                 /* Inline if enough room. */
621                 if (max_inline || tso) {
622                         uint32_t inl = 0;
623                         uintptr_t end = (uintptr_t)
624                                 (((uintptr_t)txq->wqes) +
625                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
626                         unsigned int inline_room = max_inline *
627                                                    RTE_CACHE_LINE_SIZE -
628                                                    (pkt_inline_sz - 2) -
629                                                    !!tso * sizeof(inl);
630                         uintptr_t addr_end;
631                         unsigned int copy_b;
632
633 pkt_inline:
634                         addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
635                                                    RTE_CACHE_LINE_SIZE);
636                         copy_b = (addr_end > addr) ?
637                                  RTE_MIN((addr_end - addr), length) : 0;
638                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
639                                 /*
640                                  * One Dseg remains in the current WQE.  To
641                                  * keep the computation positive, it is
642                                  * removed after the bytes to Dseg conversion.
643                                  */
644                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
645
646                                 if (unlikely(max_wqe < n))
647                                         break;
648                                 max_wqe -= n;
649                                 if (tso) {
650                                         assert(inl == 0);
651                                         inl = rte_cpu_to_be_32(copy_b |
652                                                                MLX5_INLINE_SEG);
653                                         rte_memcpy((void *)raw,
654                                                    (void *)&inl, sizeof(inl));
655                                         raw += sizeof(inl);
656                                         pkt_inline_sz += sizeof(inl);
657                                 }
658                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
659                                 addr += copy_b;
660                                 length -= copy_b;
661                                 pkt_inline_sz += copy_b;
662                         }
663                         /*
664                          * 2 DWORDs consumed by the WQE header + ETH segment +
665                          * the size of the inline part of the packet.
666                          */
667                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
668                         if (length > 0) {
669                                 if (ds % (MLX5_WQE_SIZE /
670                                           MLX5_WQE_DWORD_SIZE) == 0) {
671                                         if (unlikely(--max_wqe == 0))
672                                                 break;
673                                         dseg = (volatile rte_v128u32_t *)
674                                                tx_mlx5_wqe(txq, txq->wqe_ci +
675                                                            ds / 4);
676                                 } else {
677                                         dseg = (volatile rte_v128u32_t *)
678                                                 ((uintptr_t)wqe +
679                                                  (ds * MLX5_WQE_DWORD_SIZE));
680                                 }
681                                 goto use_dseg;
682                         } else if (!segs_n) {
683                                 goto next_pkt;
684                         } else {
685                                 /*
686                                  * Further inline the next segment only for
687                                  * non-TSO packets.
688                                  */
689                                 if (!tso) {
690                                         raw += copy_b;
691                                         inline_room -= copy_b;
692                                 } else {
693                                         inline_room = 0;
694                                 }
695                                 /* Move to the next segment. */
696                                 --segs_n;
697                                 buf = buf->next;
698                                 assert(buf);
699                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
700                                 length = DATA_LEN(buf);
701 #ifdef MLX5_PMD_SOFT_COUNTERS
702                                 total_length += length;
703 #endif
704                                 (*txq->elts)[++elts_head & elts_m] = buf;
705                                 goto pkt_inline;
706                         }
707                 } else {
708                         /*
709                          * No inline has been done in the packet, only the
710                          * Ethernet Header as been stored.
711                          */
712                         dseg = (volatile rte_v128u32_t *)
713                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
714                         ds = 3;
715 use_dseg:
716                         /* Add the remaining packet as a simple ds. */
717                         addr_64 = rte_cpu_to_be_64(addr);
718                         *dseg = (rte_v128u32_t){
719                                 rte_cpu_to_be_32(length),
720                                 mlx5_tx_mb2mr(txq, buf),
721                                 addr_64,
722                                 addr_64 >> 32,
723                         };
724                         ++ds;
725                         if (!segs_n)
726                                 goto next_pkt;
727                 }
728 next_seg:
729                 assert(buf);
730                 assert(ds);
731                 assert(wqe);
732                 /*
733                  * Spill on next WQE when the current one does not have
734                  * enough room left. Size of WQE must a be a multiple
735                  * of data segment size.
736                  */
737                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
738                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
739                         if (unlikely(--max_wqe == 0))
740                                 break;
741                         dseg = (volatile rte_v128u32_t *)
742                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
743                         rte_prefetch0(tx_mlx5_wqe(txq,
744                                                   txq->wqe_ci + ds / 4 + 1));
745                 } else {
746                         ++dseg;
747                 }
748                 ++ds;
749                 buf = buf->next;
750                 assert(buf);
751                 length = DATA_LEN(buf);
752 #ifdef MLX5_PMD_SOFT_COUNTERS
753                 total_length += length;
754 #endif
755                 /* Store segment information. */
756                 addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
757                 *dseg = (rte_v128u32_t){
758                         rte_cpu_to_be_32(length),
759                         mlx5_tx_mb2mr(txq, buf),
760                         addr_64,
761                         addr_64 >> 32,
762                 };
763                 (*txq->elts)[++elts_head & elts_m] = buf;
764                 if (--segs_n)
765                         goto next_seg;
766 next_pkt:
767                 if (ds > MLX5_DSEG_MAX) {
768                         txq->stats.oerrors++;
769                         break;
770                 }
771                 ++elts_head;
772                 ++pkts;
773                 ++i;
774                 j += sg;
775                 /* Initialize known and common part of the WQE structure. */
776                 if (tso) {
777                         wqe->ctrl = (rte_v128u32_t){
778                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
779                                                  MLX5_OPCODE_TSO),
780                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
781                                 0,
782                                 0,
783                         };
784                         wqe->eseg = (rte_v128u32_t){
785                                 swp_offsets,
786                                 cs_flags | (swp_types << 8) |
787                                 (rte_cpu_to_be_16(tso_segsz) << 16),
788                                 metadata,
789                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
790                         };
791                 } else {
792                         wqe->ctrl = (rte_v128u32_t){
793                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
794                                                  MLX5_OPCODE_SEND),
795                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
796                                 0,
797                                 0,
798                         };
799                         wqe->eseg = (rte_v128u32_t){
800                                 swp_offsets,
801                                 cs_flags | (swp_types << 8),
802                                 metadata,
803                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
804                         };
805                 }
806 next_wqe:
807                 txq->wqe_ci += (ds + 3) / 4;
808                 /* Save the last successful WQE for completion request */
809                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
810 #ifdef MLX5_PMD_SOFT_COUNTERS
811                 /* Increment sent bytes counter. */
812                 txq->stats.obytes += total_length;
813 #endif
814         } while (i < pkts_n);
815         /* Take a shortcut if nothing must be sent. */
816         if (unlikely((i + k) == 0))
817                 return 0;
818         txq->elts_head += (i + j);
819         /* Check whether completion threshold has been reached. */
820         comp = txq->elts_comp + i + j + k;
821         if (comp >= MLX5_TX_COMP_THRESH) {
822                 /* A CQE slot must always be available. */
823                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
824                 /* Request completion on last WQE. */
825                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
826                 /* Save elts_head in unused "immediate" field of WQE. */
827                 last_wqe->ctrl3 = txq->elts_head;
828                 txq->elts_comp = 0;
829         } else {
830                 txq->elts_comp = comp;
831         }
832 #ifdef MLX5_PMD_SOFT_COUNTERS
833         /* Increment sent packets counter. */
834         txq->stats.opackets += i;
835 #endif
836         /* Ring QP doorbell. */
837         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
838         return i;
839 }
840
841 /**
842  * Open a MPW session.
843  *
844  * @param txq
845  *   Pointer to TX queue structure.
846  * @param mpw
847  *   Pointer to MPW session structure.
848  * @param length
849  *   Packet length.
850  */
851 static inline void
852 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
853 {
854         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
855         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
856                 (volatile struct mlx5_wqe_data_seg (*)[])
857                 tx_mlx5_wqe(txq, idx + 1);
858
859         mpw->state = MLX5_MPW_STATE_OPENED;
860         mpw->pkts_n = 0;
861         mpw->len = length;
862         mpw->total_len = 0;
863         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
864         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
865         mpw->wqe->eseg.inline_hdr_sz = 0;
866         mpw->wqe->eseg.rsvd0 = 0;
867         mpw->wqe->eseg.rsvd1 = 0;
868         mpw->wqe->eseg.flow_table_metadata = 0;
869         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
870                                              (txq->wqe_ci << 8) |
871                                              MLX5_OPCODE_TSO);
872         mpw->wqe->ctrl[2] = 0;
873         mpw->wqe->ctrl[3] = 0;
874         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
875                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
876         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
877                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
878         mpw->data.dseg[2] = &(*dseg)[0];
879         mpw->data.dseg[3] = &(*dseg)[1];
880         mpw->data.dseg[4] = &(*dseg)[2];
881 }
882
883 /**
884  * Close a MPW session.
885  *
886  * @param txq
887  *   Pointer to TX queue structure.
888  * @param mpw
889  *   Pointer to MPW session structure.
890  */
891 static inline void
892 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
893 {
894         unsigned int num = mpw->pkts_n;
895
896         /*
897          * Store size in multiple of 16 bytes. Control and Ethernet segments
898          * count as 2.
899          */
900         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
901         mpw->state = MLX5_MPW_STATE_CLOSED;
902         if (num < 3)
903                 ++txq->wqe_ci;
904         else
905                 txq->wqe_ci += 2;
906         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
907         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
908 }
909
910 /**
911  * DPDK callback for TX with MPW support.
912  *
913  * @param dpdk_txq
914  *   Generic pointer to TX queue structure.
915  * @param[in] pkts
916  *   Packets to transmit.
917  * @param pkts_n
918  *   Number of packets in array.
919  *
920  * @return
921  *   Number of packets successfully transmitted (<= pkts_n).
922  */
923 uint16_t
924 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
925 {
926         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
927         uint16_t elts_head = txq->elts_head;
928         const uint16_t elts_n = 1 << txq->elts_n;
929         const uint16_t elts_m = elts_n - 1;
930         unsigned int i = 0;
931         unsigned int j = 0;
932         uint16_t max_elts;
933         uint16_t max_wqe;
934         unsigned int comp;
935         struct mlx5_mpw mpw = {
936                 .state = MLX5_MPW_STATE_CLOSED,
937         };
938
939         if (unlikely(!pkts_n))
940                 return 0;
941         /* Prefetch first packet cacheline. */
942         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
943         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
944         /* Start processing. */
945         mlx5_tx_complete(txq);
946         max_elts = (elts_n - (elts_head - txq->elts_tail));
947         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
948         if (unlikely(!max_wqe))
949                 return 0;
950         do {
951                 struct rte_mbuf *buf = *(pkts++);
952                 uint32_t length;
953                 unsigned int segs_n = buf->nb_segs;
954                 uint32_t cs_flags;
955                 rte_be32_t metadata;
956
957                 /*
958                  * Make sure there is enough room to store this packet and
959                  * that one ring entry remains unused.
960                  */
961                 assert(segs_n);
962                 if (max_elts < segs_n)
963                         break;
964                 /* Do not bother with large packets MPW cannot handle. */
965                 if (segs_n > MLX5_MPW_DSEG_MAX) {
966                         txq->stats.oerrors++;
967                         break;
968                 }
969                 max_elts -= segs_n;
970                 --pkts_n;
971                 cs_flags = txq_ol_cksum_to_cs(buf);
972                 /* Copy metadata from mbuf if valid */
973                 metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
974                                                              0;
975                 /* Retrieve packet information. */
976                 length = PKT_LEN(buf);
977                 assert(length);
978                 /* Start new session if packet differs. */
979                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
980                     ((mpw.len != length) ||
981                      (segs_n != 1) ||
982                      (mpw.wqe->eseg.flow_table_metadata != metadata) ||
983                      (mpw.wqe->eseg.cs_flags != cs_flags)))
984                         mlx5_mpw_close(txq, &mpw);
985                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
986                         /*
987                          * Multi-Packet WQE consumes at most two WQE.
988                          * mlx5_mpw_new() expects to be able to use such
989                          * resources.
990                          */
991                         if (unlikely(max_wqe < 2))
992                                 break;
993                         max_wqe -= 2;
994                         mlx5_mpw_new(txq, &mpw, length);
995                         mpw.wqe->eseg.cs_flags = cs_flags;
996                         mpw.wqe->eseg.flow_table_metadata = metadata;
997                 }
998                 /* Multi-segment packets must be alone in their MPW. */
999                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1000 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1001                 length = 0;
1002 #endif
1003                 do {
1004                         volatile struct mlx5_wqe_data_seg *dseg;
1005                         uintptr_t addr;
1006
1007                         assert(buf);
1008                         (*txq->elts)[elts_head++ & elts_m] = buf;
1009                         dseg = mpw.data.dseg[mpw.pkts_n];
1010                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1011                         *dseg = (struct mlx5_wqe_data_seg){
1012                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
1013                                 .lkey = mlx5_tx_mb2mr(txq, buf),
1014                                 .addr = rte_cpu_to_be_64(addr),
1015                         };
1016 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1017                         length += DATA_LEN(buf);
1018 #endif
1019                         buf = buf->next;
1020                         ++mpw.pkts_n;
1021                         ++j;
1022                 } while (--segs_n);
1023                 assert(length == mpw.len);
1024                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1025                         mlx5_mpw_close(txq, &mpw);
1026 #ifdef MLX5_PMD_SOFT_COUNTERS
1027                 /* Increment sent bytes counter. */
1028                 txq->stats.obytes += length;
1029 #endif
1030                 ++i;
1031         } while (pkts_n);
1032         /* Take a shortcut if nothing must be sent. */
1033         if (unlikely(i == 0))
1034                 return 0;
1035         /* Check whether completion threshold has been reached. */
1036         /* "j" includes both packets and segments. */
1037         comp = txq->elts_comp + j;
1038         if (comp >= MLX5_TX_COMP_THRESH) {
1039                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1040
1041                 /* A CQE slot must always be available. */
1042                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1043                 /* Request completion on last WQE. */
1044                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1045                 /* Save elts_head in unused "immediate" field of WQE. */
1046                 wqe->ctrl[3] = elts_head;
1047                 txq->elts_comp = 0;
1048         } else {
1049                 txq->elts_comp = comp;
1050         }
1051 #ifdef MLX5_PMD_SOFT_COUNTERS
1052         /* Increment sent packets counter. */
1053         txq->stats.opackets += i;
1054 #endif
1055         /* Ring QP doorbell. */
1056         if (mpw.state == MLX5_MPW_STATE_OPENED)
1057                 mlx5_mpw_close(txq, &mpw);
1058         mlx5_tx_dbrec(txq, mpw.wqe);
1059         txq->elts_head = elts_head;
1060         return i;
1061 }
1062
1063 /**
1064  * Open a MPW inline session.
1065  *
1066  * @param txq
1067  *   Pointer to TX queue structure.
1068  * @param mpw
1069  *   Pointer to MPW session structure.
1070  * @param length
1071  *   Packet length.
1072  */
1073 static inline void
1074 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1075                     uint32_t length)
1076 {
1077         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1078         struct mlx5_wqe_inl_small *inl;
1079
1080         mpw->state = MLX5_MPW_INL_STATE_OPENED;
1081         mpw->pkts_n = 0;
1082         mpw->len = length;
1083         mpw->total_len = 0;
1084         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1085         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1086                                              (txq->wqe_ci << 8) |
1087                                              MLX5_OPCODE_TSO);
1088         mpw->wqe->ctrl[2] = 0;
1089         mpw->wqe->ctrl[3] = 0;
1090         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1091         mpw->wqe->eseg.inline_hdr_sz = 0;
1092         mpw->wqe->eseg.cs_flags = 0;
1093         mpw->wqe->eseg.rsvd0 = 0;
1094         mpw->wqe->eseg.rsvd1 = 0;
1095         mpw->wqe->eseg.flow_table_metadata = 0;
1096         inl = (struct mlx5_wqe_inl_small *)
1097                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1098         mpw->data.raw = (uint8_t *)&inl->raw;
1099 }
1100
1101 /**
1102  * Close a MPW inline session.
1103  *
1104  * @param txq
1105  *   Pointer to TX queue structure.
1106  * @param mpw
1107  *   Pointer to MPW session structure.
1108  */
1109 static inline void
1110 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1111 {
1112         unsigned int size;
1113         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1114                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1115
1116         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1117         /*
1118          * Store size in multiple of 16 bytes. Control and Ethernet segments
1119          * count as 2.
1120          */
1121         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1122                                              MLX5_WQE_DS(size));
1123         mpw->state = MLX5_MPW_STATE_CLOSED;
1124         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1125         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1126 }
1127
1128 /**
1129  * DPDK callback for TX with MPW inline support.
1130  *
1131  * @param dpdk_txq
1132  *   Generic pointer to TX queue structure.
1133  * @param[in] pkts
1134  *   Packets to transmit.
1135  * @param pkts_n
1136  *   Number of packets in array.
1137  *
1138  * @return
1139  *   Number of packets successfully transmitted (<= pkts_n).
1140  */
1141 uint16_t
1142 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1143                          uint16_t pkts_n)
1144 {
1145         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1146         uint16_t elts_head = txq->elts_head;
1147         const uint16_t elts_n = 1 << txq->elts_n;
1148         const uint16_t elts_m = elts_n - 1;
1149         unsigned int i = 0;
1150         unsigned int j = 0;
1151         uint16_t max_elts;
1152         uint16_t max_wqe;
1153         unsigned int comp;
1154         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1155         struct mlx5_mpw mpw = {
1156                 .state = MLX5_MPW_STATE_CLOSED,
1157         };
1158         /*
1159          * Compute the maximum number of WQE which can be consumed by inline
1160          * code.
1161          * - 2 DSEG for:
1162          *   - 1 control segment,
1163          *   - 1 Ethernet segment,
1164          * - N Dseg from the inline request.
1165          */
1166         const unsigned int wqe_inl_n =
1167                 ((2 * MLX5_WQE_DWORD_SIZE +
1168                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1169                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1170
1171         if (unlikely(!pkts_n))
1172                 return 0;
1173         /* Prefetch first packet cacheline. */
1174         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1175         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1176         /* Start processing. */
1177         mlx5_tx_complete(txq);
1178         max_elts = (elts_n - (elts_head - txq->elts_tail));
1179         do {
1180                 struct rte_mbuf *buf = *(pkts++);
1181                 uintptr_t addr;
1182                 uint32_t length;
1183                 unsigned int segs_n = buf->nb_segs;
1184                 uint8_t cs_flags;
1185                 rte_be32_t metadata;
1186
1187                 /*
1188                  * Make sure there is enough room to store this packet and
1189                  * that one ring entry remains unused.
1190                  */
1191                 assert(segs_n);
1192                 if (max_elts < segs_n)
1193                         break;
1194                 /* Do not bother with large packets MPW cannot handle. */
1195                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1196                         txq->stats.oerrors++;
1197                         break;
1198                 }
1199                 max_elts -= segs_n;
1200                 --pkts_n;
1201                 /*
1202                  * Compute max_wqe in case less WQE were consumed in previous
1203                  * iteration.
1204                  */
1205                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1206                 cs_flags = txq_ol_cksum_to_cs(buf);
1207                 /* Copy metadata from mbuf if valid */
1208                 metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1209                                                              0;
1210                 /* Retrieve packet information. */
1211                 length = PKT_LEN(buf);
1212                 /* Start new session if packet differs. */
1213                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1214                         if ((mpw.len != length) ||
1215                             (segs_n != 1) ||
1216                             (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1217                             (mpw.wqe->eseg.cs_flags != cs_flags))
1218                                 mlx5_mpw_close(txq, &mpw);
1219                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1220                         if ((mpw.len != length) ||
1221                             (segs_n != 1) ||
1222                             (length > inline_room) ||
1223                             (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1224                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1225                                 mlx5_mpw_inline_close(txq, &mpw);
1226                                 inline_room =
1227                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1228                         }
1229                 }
1230                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1231                         if ((segs_n != 1) ||
1232                             (length > inline_room)) {
1233                                 /*
1234                                  * Multi-Packet WQE consumes at most two WQE.
1235                                  * mlx5_mpw_new() expects to be able to use
1236                                  * such resources.
1237                                  */
1238                                 if (unlikely(max_wqe < 2))
1239                                         break;
1240                                 max_wqe -= 2;
1241                                 mlx5_mpw_new(txq, &mpw, length);
1242                                 mpw.wqe->eseg.cs_flags = cs_flags;
1243                                 mpw.wqe->eseg.flow_table_metadata = metadata;
1244                         } else {
1245                                 if (unlikely(max_wqe < wqe_inl_n))
1246                                         break;
1247                                 max_wqe -= wqe_inl_n;
1248                                 mlx5_mpw_inline_new(txq, &mpw, length);
1249                                 mpw.wqe->eseg.cs_flags = cs_flags;
1250                                 mpw.wqe->eseg.flow_table_metadata = metadata;
1251                         }
1252                 }
1253                 /* Multi-segment packets must be alone in their MPW. */
1254                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1255                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1256                         assert(inline_room ==
1257                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1258 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1259                         length = 0;
1260 #endif
1261                         do {
1262                                 volatile struct mlx5_wqe_data_seg *dseg;
1263
1264                                 assert(buf);
1265                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1266                                 dseg = mpw.data.dseg[mpw.pkts_n];
1267                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1268                                 *dseg = (struct mlx5_wqe_data_seg){
1269                                         .byte_count =
1270                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1271                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1272                                         .addr = rte_cpu_to_be_64(addr),
1273                                 };
1274 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1275                                 length += DATA_LEN(buf);
1276 #endif
1277                                 buf = buf->next;
1278                                 ++mpw.pkts_n;
1279                                 ++j;
1280                         } while (--segs_n);
1281                         assert(length == mpw.len);
1282                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1283                                 mlx5_mpw_close(txq, &mpw);
1284                 } else {
1285                         unsigned int max;
1286
1287                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1288                         assert(length <= inline_room);
1289                         assert(length == DATA_LEN(buf));
1290                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1291                         (*txq->elts)[elts_head++ & elts_m] = buf;
1292                         /* Maximum number of bytes before wrapping. */
1293                         max = ((((uintptr_t)(txq->wqes)) +
1294                                 (1 << txq->wqe_n) *
1295                                 MLX5_WQE_SIZE) -
1296                                (uintptr_t)mpw.data.raw);
1297                         if (length > max) {
1298                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1299                                            (void *)addr,
1300                                            max);
1301                                 mpw.data.raw = (volatile void *)txq->wqes;
1302                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1303                                            (void *)(addr + max),
1304                                            length - max);
1305                                 mpw.data.raw += length - max;
1306                         } else {
1307                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1308                                            (void *)addr,
1309                                            length);
1310
1311                                 if (length == max)
1312                                         mpw.data.raw =
1313                                                 (volatile void *)txq->wqes;
1314                                 else
1315                                         mpw.data.raw += length;
1316                         }
1317                         ++mpw.pkts_n;
1318                         mpw.total_len += length;
1319                         ++j;
1320                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1321                                 mlx5_mpw_inline_close(txq, &mpw);
1322                                 inline_room =
1323                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1324                         } else {
1325                                 inline_room -= length;
1326                         }
1327                 }
1328 #ifdef MLX5_PMD_SOFT_COUNTERS
1329                 /* Increment sent bytes counter. */
1330                 txq->stats.obytes += length;
1331 #endif
1332                 ++i;
1333         } while (pkts_n);
1334         /* Take a shortcut if nothing must be sent. */
1335         if (unlikely(i == 0))
1336                 return 0;
1337         /* Check whether completion threshold has been reached. */
1338         /* "j" includes both packets and segments. */
1339         comp = txq->elts_comp + j;
1340         if (comp >= MLX5_TX_COMP_THRESH) {
1341                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1342
1343                 /* A CQE slot must always be available. */
1344                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1345                 /* Request completion on last WQE. */
1346                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1347                 /* Save elts_head in unused "immediate" field of WQE. */
1348                 wqe->ctrl[3] = elts_head;
1349                 txq->elts_comp = 0;
1350         } else {
1351                 txq->elts_comp = comp;
1352         }
1353 #ifdef MLX5_PMD_SOFT_COUNTERS
1354         /* Increment sent packets counter. */
1355         txq->stats.opackets += i;
1356 #endif
1357         /* Ring QP doorbell. */
1358         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1359                 mlx5_mpw_inline_close(txq, &mpw);
1360         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1361                 mlx5_mpw_close(txq, &mpw);
1362         mlx5_tx_dbrec(txq, mpw.wqe);
1363         txq->elts_head = elts_head;
1364         return i;
1365 }
1366
1367 /**
1368  * Open an Enhanced MPW session.
1369  *
1370  * @param txq
1371  *   Pointer to TX queue structure.
1372  * @param mpw
1373  *   Pointer to MPW session structure.
1374  * @param length
1375  *   Packet length.
1376  */
1377 static inline void
1378 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1379 {
1380         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1381
1382         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1383         mpw->pkts_n = 0;
1384         mpw->total_len = sizeof(struct mlx5_wqe);
1385         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1386         mpw->wqe->ctrl[0] =
1387                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1388                                  (txq->wqe_ci << 8) |
1389                                  MLX5_OPCODE_ENHANCED_MPSW);
1390         mpw->wqe->ctrl[2] = 0;
1391         mpw->wqe->ctrl[3] = 0;
1392         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1393         if (unlikely(padding)) {
1394                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1395
1396                 /* Pad the first 2 DWORDs with zero-length inline header. */
1397                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1398                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1399                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1400                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1401                 /* Start from the next WQEBB. */
1402                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1403         } else {
1404                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1405         }
1406 }
1407
1408 /**
1409  * Close an Enhanced MPW session.
1410  *
1411  * @param txq
1412  *   Pointer to TX queue structure.
1413  * @param mpw
1414  *   Pointer to MPW session structure.
1415  *
1416  * @return
1417  *   Number of consumed WQEs.
1418  */
1419 static inline uint16_t
1420 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1421 {
1422         uint16_t ret;
1423
1424         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1425          * count as 2.
1426          */
1427         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1428                                              MLX5_WQE_DS(mpw->total_len));
1429         mpw->state = MLX5_MPW_STATE_CLOSED;
1430         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1431         txq->wqe_ci += ret;
1432         return ret;
1433 }
1434
1435 /**
1436  * TX with Enhanced MPW support.
1437  *
1438  * @param txq
1439  *   Pointer to TX queue structure.
1440  * @param[in] pkts
1441  *   Packets to transmit.
1442  * @param pkts_n
1443  *   Number of packets in array.
1444  *
1445  * @return
1446  *   Number of packets successfully transmitted (<= pkts_n).
1447  */
1448 static inline uint16_t
1449 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1450                uint16_t pkts_n)
1451 {
1452         uint16_t elts_head = txq->elts_head;
1453         const uint16_t elts_n = 1 << txq->elts_n;
1454         const uint16_t elts_m = elts_n - 1;
1455         unsigned int i = 0;
1456         unsigned int j = 0;
1457         uint16_t max_elts;
1458         uint16_t max_wqe;
1459         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1460         unsigned int mpw_room = 0;
1461         unsigned int inl_pad = 0;
1462         uint32_t inl_hdr;
1463         uint64_t addr_64;
1464         struct mlx5_mpw mpw = {
1465                 .state = MLX5_MPW_STATE_CLOSED,
1466         };
1467
1468         if (unlikely(!pkts_n))
1469                 return 0;
1470         /* Start processing. */
1471         mlx5_tx_complete(txq);
1472         max_elts = (elts_n - (elts_head - txq->elts_tail));
1473         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1474         if (unlikely(!max_wqe))
1475                 return 0;
1476         do {
1477                 struct rte_mbuf *buf = *(pkts++);
1478                 uintptr_t addr;
1479                 unsigned int do_inline = 0; /* Whether inline is possible. */
1480                 uint32_t length;
1481                 uint8_t cs_flags;
1482                 rte_be32_t metadata;
1483
1484                 /* Multi-segmented packet is handled in slow-path outside. */
1485                 assert(NB_SEGS(buf) == 1);
1486                 /* Make sure there is enough room to store this packet. */
1487                 if (max_elts - j == 0)
1488                         break;
1489                 cs_flags = txq_ol_cksum_to_cs(buf);
1490                 /* Copy metadata from mbuf if valid */
1491                 metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1492                                                              0;
1493                 /* Retrieve packet information. */
1494                 length = PKT_LEN(buf);
1495                 /* Start new session if:
1496                  * - multi-segment packet
1497                  * - no space left even for a dseg
1498                  * - next packet can be inlined with a new WQE
1499                  * - cs_flag differs
1500                  */
1501                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1502                         if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1503                              mpw_room) ||
1504                             (length <= txq->inline_max_packet_sz &&
1505                              inl_pad + sizeof(inl_hdr) + length >
1506                              mpw_room) ||
1507                              (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1508                             (mpw.wqe->eseg.cs_flags != cs_flags))
1509                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1510                 }
1511                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1512                         /* In Enhanced MPW, inline as much as the budget is
1513                          * allowed. The remaining space is to be filled with
1514                          * dsegs. If the title WQEBB isn't padded, it will have
1515                          * 2 dsegs there.
1516                          */
1517                         mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1518                                            (max_inline ? max_inline :
1519                                             pkts_n * MLX5_WQE_DWORD_SIZE) +
1520                                            MLX5_WQE_SIZE);
1521                         if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1522                                 break;
1523                         /* Don't pad the title WQEBB to not waste WQ. */
1524                         mlx5_empw_new(txq, &mpw, 0);
1525                         mpw_room -= mpw.total_len;
1526                         inl_pad = 0;
1527                         do_inline = length <= txq->inline_max_packet_sz &&
1528                                     sizeof(inl_hdr) + length <= mpw_room &&
1529                                     !txq->mpw_hdr_dseg;
1530                         mpw.wqe->eseg.cs_flags = cs_flags;
1531                         mpw.wqe->eseg.flow_table_metadata = metadata;
1532                 } else {
1533                         /* Evaluate whether the next packet can be inlined.
1534                          * Inlininig is possible when:
1535                          * - length is less than configured value
1536                          * - length fits for remaining space
1537                          * - not required to fill the title WQEBB with dsegs
1538                          */
1539                         do_inline =
1540                                 length <= txq->inline_max_packet_sz &&
1541                                 inl_pad + sizeof(inl_hdr) + length <=
1542                                  mpw_room &&
1543                                 (!txq->mpw_hdr_dseg ||
1544                                  mpw.total_len >= MLX5_WQE_SIZE);
1545                 }
1546                 if (max_inline && do_inline) {
1547                         /* Inline packet into WQE. */
1548                         unsigned int max;
1549
1550                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1551                         assert(length == DATA_LEN(buf));
1552                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1553                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1554                         mpw.data.raw = (volatile void *)
1555                                 ((uintptr_t)mpw.data.raw + inl_pad);
1556                         max = tx_mlx5_wq_tailroom(txq,
1557                                         (void *)(uintptr_t)mpw.data.raw);
1558                         /* Copy inline header. */
1559                         mpw.data.raw = (volatile void *)
1560                                 mlx5_copy_to_wq(
1561                                           (void *)(uintptr_t)mpw.data.raw,
1562                                           &inl_hdr,
1563                                           sizeof(inl_hdr),
1564                                           (void *)(uintptr_t)txq->wqes,
1565                                           max);
1566                         max = tx_mlx5_wq_tailroom(txq,
1567                                         (void *)(uintptr_t)mpw.data.raw);
1568                         /* Copy packet data. */
1569                         mpw.data.raw = (volatile void *)
1570                                 mlx5_copy_to_wq(
1571                                           (void *)(uintptr_t)mpw.data.raw,
1572                                           (void *)addr,
1573                                           length,
1574                                           (void *)(uintptr_t)txq->wqes,
1575                                           max);
1576                         ++mpw.pkts_n;
1577                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1578                         /* No need to get completion as the entire packet is
1579                          * copied to WQ. Free the buf right away.
1580                          */
1581                         rte_pktmbuf_free_seg(buf);
1582                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1583                         /* Add pad in the next packet if any. */
1584                         inl_pad = (((uintptr_t)mpw.data.raw +
1585                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1586                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1587                                   (uintptr_t)mpw.data.raw;
1588                 } else {
1589                         /* No inline. Load a dseg of packet pointer. */
1590                         volatile rte_v128u32_t *dseg;
1591
1592                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1593                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1594                         assert(length == DATA_LEN(buf));
1595                         if (!tx_mlx5_wq_tailroom(txq,
1596                                         (void *)((uintptr_t)mpw.data.raw
1597                                                 + inl_pad)))
1598                                 dseg = (volatile void *)txq->wqes;
1599                         else
1600                                 dseg = (volatile void *)
1601                                         ((uintptr_t)mpw.data.raw +
1602                                          inl_pad);
1603                         (*txq->elts)[elts_head++ & elts_m] = buf;
1604                         addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1605                                                                     uintptr_t));
1606                         *dseg = (rte_v128u32_t) {
1607                                 rte_cpu_to_be_32(length),
1608                                 mlx5_tx_mb2mr(txq, buf),
1609                                 addr_64,
1610                                 addr_64 >> 32,
1611                         };
1612                         mpw.data.raw = (volatile void *)(dseg + 1);
1613                         mpw.total_len += (inl_pad + sizeof(*dseg));
1614                         ++j;
1615                         ++mpw.pkts_n;
1616                         mpw_room -= (inl_pad + sizeof(*dseg));
1617                         inl_pad = 0;
1618                 }
1619 #ifdef MLX5_PMD_SOFT_COUNTERS
1620                 /* Increment sent bytes counter. */
1621                 txq->stats.obytes += length;
1622 #endif
1623                 ++i;
1624         } while (i < pkts_n);
1625         /* Take a shortcut if nothing must be sent. */
1626         if (unlikely(i == 0))
1627                 return 0;
1628         /* Check whether completion threshold has been reached. */
1629         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1630                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1631                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1632                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1633
1634                 /* A CQE slot must always be available. */
1635                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1636                 /* Request completion on last WQE. */
1637                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1638                 /* Save elts_head in unused "immediate" field of WQE. */
1639                 wqe->ctrl[3] = elts_head;
1640                 txq->elts_comp = 0;
1641                 txq->mpw_comp = txq->wqe_ci;
1642         } else {
1643                 txq->elts_comp += j;
1644         }
1645 #ifdef MLX5_PMD_SOFT_COUNTERS
1646         /* Increment sent packets counter. */
1647         txq->stats.opackets += i;
1648 #endif
1649         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1650                 mlx5_empw_close(txq, &mpw);
1651         /* Ring QP doorbell. */
1652         mlx5_tx_dbrec(txq, mpw.wqe);
1653         txq->elts_head = elts_head;
1654         return i;
1655 }
1656
1657 /**
1658  * DPDK callback for TX with Enhanced MPW support.
1659  *
1660  * @param dpdk_txq
1661  *   Generic pointer to TX queue structure.
1662  * @param[in] pkts
1663  *   Packets to transmit.
1664  * @param pkts_n
1665  *   Number of packets in array.
1666  *
1667  * @return
1668  *   Number of packets successfully transmitted (<= pkts_n).
1669  */
1670 uint16_t
1671 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1672 {
1673         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1674         uint16_t nb_tx = 0;
1675
1676         while (pkts_n > nb_tx) {
1677                 uint16_t n;
1678                 uint16_t ret;
1679
1680                 n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1681                 if (n) {
1682                         ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1683                         if (!ret)
1684                                 break;
1685                         nb_tx += ret;
1686                 }
1687                 n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1688                 if (n) {
1689                         ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1690                         if (!ret)
1691                                 break;
1692                         nb_tx += ret;
1693                 }
1694         }
1695         return nb_tx;
1696 }
1697
1698 /**
1699  * Translate RX completion flags to packet type.
1700  *
1701  * @param[in] rxq
1702  *   Pointer to RX queue structure.
1703  * @param[in] cqe
1704  *   Pointer to CQE.
1705  *
1706  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1707  *
1708  * @return
1709  *   Packet type for struct rte_mbuf.
1710  */
1711 static inline uint32_t
1712 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1713 {
1714         uint8_t idx;
1715         uint8_t pinfo = cqe->pkt_info;
1716         uint16_t ptype = cqe->hdr_type_etc;
1717
1718         /*
1719          * The index to the array should have:
1720          * bit[1:0] = l3_hdr_type
1721          * bit[4:2] = l4_hdr_type
1722          * bit[5] = ip_frag
1723          * bit[6] = tunneled
1724          * bit[7] = outer_l3_type
1725          */
1726         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1727         return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1728 }
1729
1730 /**
1731  * Get size of the next packet for a given CQE. For compressed CQEs, the
1732  * consumer index is updated only once all packets of the current one have
1733  * been processed.
1734  *
1735  * @param rxq
1736  *   Pointer to RX queue.
1737  * @param cqe
1738  *   CQE to process.
1739  * @param[out] mcqe
1740  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
1741  *   written.
1742  *
1743  * @return
1744  *   Packet size in bytes (0 if there is none), -1 in case of completion
1745  *   with error.
1746  */
1747 static inline int
1748 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1749                  uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
1750 {
1751         struct rxq_zip *zip = &rxq->zip;
1752         uint16_t cqe_n = cqe_cnt + 1;
1753         int len = 0;
1754         uint16_t idx, end;
1755
1756         /* Process compressed data in the CQE and mini arrays. */
1757         if (zip->ai) {
1758                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1759                         (volatile struct mlx5_mini_cqe8 (*)[8])
1760                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1761
1762                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1763                 *mcqe = &(*mc)[zip->ai & 7];
1764                 if ((++zip->ai & 7) == 0) {
1765                         /* Invalidate consumed CQEs */
1766                         idx = zip->ca;
1767                         end = zip->na;
1768                         while (idx != end) {
1769                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1770                                         MLX5_CQE_INVALIDATE;
1771                                 ++idx;
1772                         }
1773                         /*
1774                          * Increment consumer index to skip the number of
1775                          * CQEs consumed. Hardware leaves holes in the CQ
1776                          * ring for software use.
1777                          */
1778                         zip->ca = zip->na;
1779                         zip->na += 8;
1780                 }
1781                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1782                         /* Invalidate the rest */
1783                         idx = zip->ca;
1784                         end = zip->cq_ci;
1785
1786                         while (idx != end) {
1787                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1788                                         MLX5_CQE_INVALIDATE;
1789                                 ++idx;
1790                         }
1791                         rxq->cq_ci = zip->cq_ci;
1792                         zip->ai = 0;
1793                 }
1794         /* No compressed data, get next CQE and verify if it is compressed. */
1795         } else {
1796                 int ret;
1797                 int8_t op_own;
1798
1799                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1800                 if (unlikely(ret == 1))
1801                         return 0;
1802                 ++rxq->cq_ci;
1803                 op_own = cqe->op_own;
1804                 rte_cio_rmb();
1805                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1806                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1807                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1808                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1809                                                           cqe_cnt].pkt_info);
1810
1811                         /* Fix endianness. */
1812                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1813                         /*
1814                          * Current mini array position is the one returned by
1815                          * check_cqe64().
1816                          *
1817                          * If completion comprises several mini arrays, as a
1818                          * special case the second one is located 7 CQEs after
1819                          * the initial CQE instead of 8 for subsequent ones.
1820                          */
1821                         zip->ca = rxq->cq_ci;
1822                         zip->na = zip->ca + 7;
1823                         /* Compute the next non compressed CQE. */
1824                         --rxq->cq_ci;
1825                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1826                         /* Get packet size to return. */
1827                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1828                         *mcqe = &(*mc)[0];
1829                         zip->ai = 1;
1830                         /* Prefetch all the entries to be invalidated */
1831                         idx = zip->ca;
1832                         end = zip->cq_ci;
1833                         while (idx != end) {
1834                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1835                                 ++idx;
1836                         }
1837                 } else {
1838                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1839                 }
1840                 /* Error while receiving packet. */
1841                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1842                         return -1;
1843         }
1844         return len;
1845 }
1846
1847 /**
1848  * Translate RX completion flags to offload flags.
1849  *
1850  * @param[in] cqe
1851  *   Pointer to CQE.
1852  *
1853  * @return
1854  *   Offload flags (ol_flags) for struct rte_mbuf.
1855  */
1856 static inline uint32_t
1857 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1858 {
1859         uint32_t ol_flags = 0;
1860         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1861
1862         ol_flags =
1863                 TRANSPOSE(flags,
1864                           MLX5_CQE_RX_L3_HDR_VALID,
1865                           PKT_RX_IP_CKSUM_GOOD) |
1866                 TRANSPOSE(flags,
1867                           MLX5_CQE_RX_L4_HDR_VALID,
1868                           PKT_RX_L4_CKSUM_GOOD);
1869         return ol_flags;
1870 }
1871
1872 /**
1873  * Fill in mbuf fields from RX completion flags.
1874  * Note that pkt->ol_flags should be initialized outside of this function.
1875  *
1876  * @param rxq
1877  *   Pointer to RX queue.
1878  * @param pkt
1879  *   mbuf to fill.
1880  * @param cqe
1881  *   CQE to process.
1882  * @param rss_hash_res
1883  *   Packet RSS Hash result.
1884  */
1885 static inline void
1886 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1887                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
1888 {
1889         /* Update packet information. */
1890         pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
1891         if (rss_hash_res && rxq->rss_hash) {
1892                 pkt->hash.rss = rss_hash_res;
1893                 pkt->ol_flags |= PKT_RX_RSS_HASH;
1894         }
1895         if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1896                 pkt->ol_flags |= PKT_RX_FDIR;
1897                 if (cqe->sop_drop_qpn !=
1898                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1899                         uint32_t mark = cqe->sop_drop_qpn;
1900
1901                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1902                         pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1903                 }
1904         }
1905         if (rxq->csum)
1906                 pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1907         if (rxq->vlan_strip &&
1908             (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1909                 pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1910                 pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1911         }
1912         if (rxq->hw_timestamp) {
1913                 pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
1914                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1915         }
1916 }
1917
1918 /**
1919  * DPDK callback for RX.
1920  *
1921  * @param dpdk_rxq
1922  *   Generic pointer to RX queue structure.
1923  * @param[out] pkts
1924  *   Array to store received packets.
1925  * @param pkts_n
1926  *   Maximum number of packets in array.
1927  *
1928  * @return
1929  *   Number of packets successfully received (<= pkts_n).
1930  */
1931 uint16_t
1932 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1933 {
1934         struct mlx5_rxq_data *rxq = dpdk_rxq;
1935         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1936         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1937         const unsigned int sges_n = rxq->sges_n;
1938         struct rte_mbuf *pkt = NULL;
1939         struct rte_mbuf *seg = NULL;
1940         volatile struct mlx5_cqe *cqe =
1941                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1942         unsigned int i = 0;
1943         unsigned int rq_ci = rxq->rq_ci << sges_n;
1944         int len = 0; /* keep its value across iterations. */
1945
1946         while (pkts_n) {
1947                 unsigned int idx = rq_ci & wqe_cnt;
1948                 volatile struct mlx5_wqe_data_seg *wqe =
1949                         &((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
1950                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1951                 volatile struct mlx5_mini_cqe8 *mcqe = NULL;
1952                 uint32_t rss_hash_res;
1953
1954                 if (pkt)
1955                         NEXT(seg) = rep;
1956                 seg = rep;
1957                 rte_prefetch0(seg);
1958                 rte_prefetch0(cqe);
1959                 rte_prefetch0(wqe);
1960                 rep = rte_mbuf_raw_alloc(rxq->mp);
1961                 if (unlikely(rep == NULL)) {
1962                         ++rxq->stats.rx_nombuf;
1963                         if (!pkt) {
1964                                 /*
1965                                  * no buffers before we even started,
1966                                  * bail out silently.
1967                                  */
1968                                 break;
1969                         }
1970                         while (pkt != seg) {
1971                                 assert(pkt != (*rxq->elts)[idx]);
1972                                 rep = NEXT(pkt);
1973                                 NEXT(pkt) = NULL;
1974                                 NB_SEGS(pkt) = 1;
1975                                 rte_mbuf_raw_free(pkt);
1976                                 pkt = rep;
1977                         }
1978                         break;
1979                 }
1980                 if (!pkt) {
1981                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1982                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
1983                         if (!len) {
1984                                 rte_mbuf_raw_free(rep);
1985                                 break;
1986                         }
1987                         if (unlikely(len == -1)) {
1988                                 /* RX error, packet is likely too large. */
1989                                 rte_mbuf_raw_free(rep);
1990                                 ++rxq->stats.idropped;
1991                                 goto skip;
1992                         }
1993                         pkt = seg;
1994                         assert(len >= (rxq->crc_present << 2));
1995                         pkt->ol_flags = 0;
1996                         /* If compressed, take hash result from mini-CQE. */
1997                         rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
1998                                                         cqe->rx_hash_res :
1999                                                         mcqe->rx_hash_result);
2000                         rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2001                         if (rxq->crc_present)
2002                                 len -= ETHER_CRC_LEN;
2003                         PKT_LEN(pkt) = len;
2004                 }
2005                 DATA_LEN(rep) = DATA_LEN(seg);
2006                 PKT_LEN(rep) = PKT_LEN(seg);
2007                 SET_DATA_OFF(rep, DATA_OFF(seg));
2008                 PORT(rep) = PORT(seg);
2009                 (*rxq->elts)[idx] = rep;
2010                 /*
2011                  * Fill NIC descriptor with the new buffer.  The lkey and size
2012                  * of the buffers are already known, only the buffer address
2013                  * changes.
2014                  */
2015                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
2016                 /* If there's only one MR, no need to replace LKey in WQE. */
2017                 if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2018                         wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
2019                 if (len > DATA_LEN(seg)) {
2020                         len -= DATA_LEN(seg);
2021                         ++NB_SEGS(pkt);
2022                         ++rq_ci;
2023                         continue;
2024                 }
2025                 DATA_LEN(seg) = len;
2026 #ifdef MLX5_PMD_SOFT_COUNTERS
2027                 /* Increment bytes counter. */
2028                 rxq->stats.ibytes += PKT_LEN(pkt);
2029 #endif
2030                 /* Return packet. */
2031                 *(pkts++) = pkt;
2032                 pkt = NULL;
2033                 --pkts_n;
2034                 ++i;
2035 skip:
2036                 /* Align consumer index to the next stride. */
2037                 rq_ci >>= sges_n;
2038                 ++rq_ci;
2039                 rq_ci <<= sges_n;
2040         }
2041         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2042                 return 0;
2043         /* Update the consumer index. */
2044         rxq->rq_ci = rq_ci >> sges_n;
2045         rte_cio_wmb();
2046         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2047         rte_cio_wmb();
2048         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2049 #ifdef MLX5_PMD_SOFT_COUNTERS
2050         /* Increment packets counter. */
2051         rxq->stats.ipackets += i;
2052 #endif
2053         return i;
2054 }
2055
2056 void
2057 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
2058 {
2059         struct mlx5_mprq_buf *buf = opaque;
2060
2061         if (rte_atomic16_read(&buf->refcnt) == 1) {
2062                 rte_mempool_put(buf->mp, buf);
2063         } else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
2064                 rte_atomic16_set(&buf->refcnt, 1);
2065                 rte_mempool_put(buf->mp, buf);
2066         }
2067 }
2068
2069 void
2070 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
2071 {
2072         mlx5_mprq_buf_free_cb(NULL, buf);
2073 }
2074
2075 static inline void
2076 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
2077 {
2078         struct mlx5_mprq_buf *rep = rxq->mprq_repl;
2079         volatile struct mlx5_wqe_data_seg *wqe =
2080                 &((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
2081         void *addr;
2082
2083         assert(rep != NULL);
2084         /* Replace MPRQ buf. */
2085         (*rxq->mprq_bufs)[rq_idx] = rep;
2086         /* Replace WQE. */
2087         addr = mlx5_mprq_buf_addr(rep);
2088         wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
2089         /* If there's only one MR, no need to replace LKey in WQE. */
2090         if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2091                 wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
2092         /* Stash a mbuf for next replacement. */
2093         if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
2094                 rxq->mprq_repl = rep;
2095         else
2096                 rxq->mprq_repl = NULL;
2097 }
2098
2099 /**
2100  * DPDK callback for RX with Multi-Packet RQ support.
2101  *
2102  * @param dpdk_rxq
2103  *   Generic pointer to RX queue structure.
2104  * @param[out] pkts
2105  *   Array to store received packets.
2106  * @param pkts_n
2107  *   Maximum number of packets in array.
2108  *
2109  * @return
2110  *   Number of packets successfully received (<= pkts_n).
2111  */
2112 uint16_t
2113 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2114 {
2115         struct mlx5_rxq_data *rxq = dpdk_rxq;
2116         const unsigned int strd_n = 1 << rxq->strd_num_n;
2117         const unsigned int strd_sz = 1 << rxq->strd_sz_n;
2118         const unsigned int strd_shift =
2119                 MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
2120         const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
2121         const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
2122         volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2123         unsigned int i = 0;
2124         uint32_t rq_ci = rxq->rq_ci;
2125         uint16_t consumed_strd = rxq->consumed_strd;
2126         struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2127
2128         while (i < pkts_n) {
2129                 struct rte_mbuf *pkt;
2130                 void *addr;
2131                 int ret;
2132                 unsigned int len;
2133                 uint16_t strd_cnt;
2134                 uint16_t strd_idx;
2135                 uint32_t offset;
2136                 uint32_t byte_cnt;
2137                 volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2138                 uint32_t rss_hash_res = 0;
2139
2140                 if (consumed_strd == strd_n) {
2141                         /* Replace WQE only if the buffer is still in use. */
2142                         if (rte_atomic16_read(&buf->refcnt) > 1) {
2143                                 mprq_buf_replace(rxq, rq_ci & wq_mask);
2144                                 /* Release the old buffer. */
2145                                 mlx5_mprq_buf_free(buf);
2146                         } else if (unlikely(rxq->mprq_repl == NULL)) {
2147                                 struct mlx5_mprq_buf *rep;
2148
2149                                 /*
2150                                  * Currently, the MPRQ mempool is out of buffer
2151                                  * and doing memcpy regardless of the size of Rx
2152                                  * packet. Retry allocation to get back to
2153                                  * normal.
2154                                  */
2155                                 if (!rte_mempool_get(rxq->mprq_mp,
2156                                                      (void **)&rep))
2157                                         rxq->mprq_repl = rep;
2158                         }
2159                         /* Advance to the next WQE. */
2160                         consumed_strd = 0;
2161                         ++rq_ci;
2162                         buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2163                 }
2164                 cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2165                 ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
2166                 if (!ret)
2167                         break;
2168                 if (unlikely(ret == -1)) {
2169                         /* RX error, packet is likely too large. */
2170                         ++rxq->stats.idropped;
2171                         continue;
2172                 }
2173                 byte_cnt = ret;
2174                 strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
2175                            MLX5_MPRQ_STRIDE_NUM_SHIFT;
2176                 assert(strd_cnt);
2177                 consumed_strd += strd_cnt;
2178                 if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
2179                         continue;
2180                 if (mcqe == NULL) {
2181                         rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
2182                         strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
2183                 } else {
2184                         /* mini-CQE for MPRQ doesn't have hash result. */
2185                         strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
2186                 }
2187                 assert(strd_idx < strd_n);
2188                 assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask));
2189                 /*
2190                  * Currently configured to receive a packet per a stride. But if
2191                  * MTU is adjusted through kernel interface, device could
2192                  * consume multiple strides without raising an error. In this
2193                  * case, the packet should be dropped because it is bigger than
2194                  * the max_rx_pkt_len.
2195                  */
2196                 if (unlikely(strd_cnt > 1)) {
2197                         ++rxq->stats.idropped;
2198                         continue;
2199                 }
2200                 pkt = rte_pktmbuf_alloc(rxq->mp);
2201                 if (unlikely(pkt == NULL)) {
2202                         ++rxq->stats.rx_nombuf;
2203                         break;
2204                 }
2205                 len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
2206                 assert((int)len >= (rxq->crc_present << 2));
2207                 if (rxq->crc_present)
2208                         len -= ETHER_CRC_LEN;
2209                 offset = strd_idx * strd_sz + strd_shift;
2210                 addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
2211                 /* Initialize the offload flag. */
2212                 pkt->ol_flags = 0;
2213                 /*
2214                  * Memcpy packets to the target mbuf if:
2215                  * - The size of packet is smaller than mprq_max_memcpy_len.
2216                  * - Out of buffer in the Mempool for Multi-Packet RQ.
2217                  */
2218                 if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
2219                         /*
2220                          * When memcpy'ing packet due to out-of-buffer, the
2221                          * packet must be smaller than the target mbuf.
2222                          */
2223                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2224                                 rte_pktmbuf_free_seg(pkt);
2225                                 ++rxq->stats.idropped;
2226                                 continue;
2227                         }
2228                         rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
2229                 } else {
2230                         rte_iova_t buf_iova;
2231                         struct rte_mbuf_ext_shared_info *shinfo;
2232                         uint16_t buf_len = strd_cnt * strd_sz;
2233
2234                         /* Increment the refcnt of the whole chunk. */
2235                         rte_atomic16_add_return(&buf->refcnt, 1);
2236                         assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
2237                                strd_n + 1);
2238                         addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
2239                         /*
2240                          * MLX5 device doesn't use iova but it is necessary in a
2241                          * case where the Rx packet is transmitted via a
2242                          * different PMD.
2243                          */
2244                         buf_iova = rte_mempool_virt2iova(buf) +
2245                                    RTE_PTR_DIFF(addr, buf);
2246                         shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
2247                                         &buf_len, mlx5_mprq_buf_free_cb, buf);
2248                         /*
2249                          * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
2250                          * attaching the stride to mbuf and more offload flags
2251                          * will be added below by calling rxq_cq_to_mbuf().
2252                          * Other fields will be overwritten.
2253                          */
2254                         rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
2255                                                   shinfo);
2256                         rte_pktmbuf_reset_headroom(pkt);
2257                         assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
2258                         /*
2259                          * Prevent potential overflow due to MTU change through
2260                          * kernel interface.
2261                          */
2262                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2263                                 rte_pktmbuf_free_seg(pkt);
2264                                 ++rxq->stats.idropped;
2265                                 continue;
2266                         }
2267                 }
2268                 rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2269                 PKT_LEN(pkt) = len;
2270                 DATA_LEN(pkt) = len;
2271                 PORT(pkt) = rxq->port_id;
2272 #ifdef MLX5_PMD_SOFT_COUNTERS
2273                 /* Increment bytes counter. */
2274                 rxq->stats.ibytes += PKT_LEN(pkt);
2275 #endif
2276                 /* Return packet. */
2277                 *(pkts++) = pkt;
2278                 ++i;
2279         }
2280         /* Update the consumer indexes. */
2281         rxq->consumed_strd = consumed_strd;
2282         rte_cio_wmb();
2283         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2284         if (rq_ci != rxq->rq_ci) {
2285                 rxq->rq_ci = rq_ci;
2286                 rte_cio_wmb();
2287                 *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2288         }
2289 #ifdef MLX5_PMD_SOFT_COUNTERS
2290         /* Increment packets counter. */
2291         rxq->stats.ipackets += i;
2292 #endif
2293         return i;
2294 }
2295
2296 /**
2297  * Dummy DPDK callback for TX.
2298  *
2299  * This function is used to temporarily replace the real callback during
2300  * unsafe control operations on the queue, or in case of error.
2301  *
2302  * @param dpdk_txq
2303  *   Generic pointer to TX queue structure.
2304  * @param[in] pkts
2305  *   Packets to transmit.
2306  * @param pkts_n
2307  *   Number of packets in array.
2308  *
2309  * @return
2310  *   Number of packets successfully transmitted (<= pkts_n).
2311  */
2312 uint16_t
2313 removed_tx_burst(void *dpdk_txq __rte_unused,
2314                  struct rte_mbuf **pkts __rte_unused,
2315                  uint16_t pkts_n __rte_unused)
2316 {
2317         return 0;
2318 }
2319
2320 /**
2321  * Dummy DPDK callback for RX.
2322  *
2323  * This function is used to temporarily replace the real callback during
2324  * unsafe control operations on the queue, or in case of error.
2325  *
2326  * @param dpdk_rxq
2327  *   Generic pointer to RX queue structure.
2328  * @param[out] pkts
2329  *   Array to store received packets.
2330  * @param pkts_n
2331  *   Maximum number of packets in array.
2332  *
2333  * @return
2334  *   Number of packets successfully received (<= pkts_n).
2335  */
2336 uint16_t
2337 removed_rx_burst(void *dpdk_txq __rte_unused,
2338                  struct rte_mbuf **pkts __rte_unused,
2339                  uint16_t pkts_n __rte_unused)
2340 {
2341         return 0;
2342 }
2343
2344 /*
2345  * Vectorized Rx/Tx routines are not compiled in when required vector
2346  * instructions are not supported on a target architecture. The following null
2347  * stubs are needed for linkage when those are not included outside of this file
2348  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2349  */
2350
2351 __rte_weak uint16_t
2352 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2353                       struct rte_mbuf **pkts __rte_unused,
2354                       uint16_t pkts_n __rte_unused)
2355 {
2356         return 0;
2357 }
2358
2359 __rte_weak uint16_t
2360 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2361                   struct rte_mbuf **pkts __rte_unused,
2362                   uint16_t pkts_n __rte_unused)
2363 {
2364         return 0;
2365 }
2366
2367 __rte_weak uint16_t
2368 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2369                   struct rte_mbuf **pkts __rte_unused,
2370                   uint16_t pkts_n __rte_unused)
2371 {
2372         return 0;
2373 }
2374
2375 __rte_weak int
2376 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2377 {
2378         return -ENOTSUP;
2379 }
2380
2381 __rte_weak int
2382 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2383 {
2384         return -ENOTSUP;
2385 }
2386
2387 __rte_weak int
2388 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2389 {
2390         return -ENOTSUP;
2391 }
2392
2393 __rte_weak int
2394 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2395 {
2396         return -ENOTSUP;
2397 }