New upstream version 18.08
[deb_dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
38
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41                  uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
42
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
45
46 static __rte_always_inline void
47 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
48                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
49
50 static __rte_always_inline void
51 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
52
53 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
54         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
55 };
56
57 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
58 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
59
60 /**
61  * Build a table to translate Rx completion flags to packet type.
62  *
63  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
64  */
65 void
66 mlx5_set_ptype_table(void)
67 {
68         unsigned int i;
69         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
70
71         /* Last entry must not be overwritten, reserved for errored packet. */
72         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
73                 (*p)[i] = RTE_PTYPE_UNKNOWN;
74         /*
75          * The index to the array should have:
76          * bit[1:0] = l3_hdr_type
77          * bit[4:2] = l4_hdr_type
78          * bit[5] = ip_frag
79          * bit[6] = tunneled
80          * bit[7] = outer_l3_type
81          */
82         /* L2 */
83         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
84         /* L3 */
85         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86                      RTE_PTYPE_L4_NONFRAG;
87         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88                      RTE_PTYPE_L4_NONFRAG;
89         /* Fragmented */
90         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91                      RTE_PTYPE_L4_FRAG;
92         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93                      RTE_PTYPE_L4_FRAG;
94         /* TCP */
95         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
96                      RTE_PTYPE_L4_TCP;
97         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98                      RTE_PTYPE_L4_TCP;
99         (*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
100                      RTE_PTYPE_L4_TCP;
101         (*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_TCP;
103         (*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_TCP;
105         (*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_TCP;
107         /* UDP */
108         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_UDP;
110         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_UDP;
112         /* Repeat with outer_l3_type being set. Just in case. */
113         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_NONFRAG;
115         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_NONFRAG;
117         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118                      RTE_PTYPE_L4_FRAG;
119         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
120                      RTE_PTYPE_L4_FRAG;
121         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
122                      RTE_PTYPE_L4_TCP;
123         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_TCP;
125         (*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_TCP;
127         (*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_TCP;
129         (*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_TCP;
131         (*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_UDP;
135         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         /* Tunneled - L3 */
138         (*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
139         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L4_NONFRAG;
142         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L4_NONFRAG;
145         (*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         (*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L4_TCP;
181         (*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L4_TCP;
184         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L4_TCP;
187         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L4_TCP;
190         (*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
191                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L4_TCP;
193         (*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
194                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L4_TCP;
196         (*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L4_TCP;
199         (*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L4_TCP;
202         /* Tunneled - UDP */
203         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
205                      RTE_PTYPE_INNER_L4_UDP;
206         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
208                      RTE_PTYPE_INNER_L4_UDP;
209         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L4_UDP;
212         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L4_UDP;
215 }
216
217 /**
218  * Build a table to translate packet to checksum type of Verbs.
219  */
220 void
221 mlx5_set_cksum_table(void)
222 {
223         unsigned int i;
224         uint8_t v;
225
226         /*
227          * The index should have:
228          * bit[0] = PKT_TX_TCP_SEG
229          * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
230          * bit[4] = PKT_TX_IP_CKSUM
231          * bit[8] = PKT_TX_OUTER_IP_CKSUM
232          * bit[9] = tunnel
233          */
234         for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
235                 v = 0;
236                 if (i & (1 << 9)) {
237                         /* Tunneled packet. */
238                         if (i & (1 << 8)) /* Outer IP. */
239                                 v |= MLX5_ETH_WQE_L3_CSUM;
240                         if (i & (1 << 4)) /* Inner IP. */
241                                 v |= MLX5_ETH_WQE_L3_INNER_CSUM;
242                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
243                                 v |= MLX5_ETH_WQE_L4_INNER_CSUM;
244                 } else {
245                         /* No tunnel. */
246                         if (i & (1 << 4)) /* IP. */
247                                 v |= MLX5_ETH_WQE_L3_CSUM;
248                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
249                                 v |= MLX5_ETH_WQE_L4_CSUM;
250                 }
251                 mlx5_cksum_table[i] = v;
252         }
253 }
254
255 /**
256  * Build a table to translate packet type of mbuf to SWP type of Verbs.
257  */
258 void
259 mlx5_set_swp_types_table(void)
260 {
261         unsigned int i;
262         uint8_t v;
263
264         /*
265          * The index should have:
266          * bit[0:1] = PKT_TX_L4_MASK
267          * bit[4] = PKT_TX_IPV6
268          * bit[8] = PKT_TX_OUTER_IPV6
269          * bit[9] = PKT_TX_OUTER_UDP
270          */
271         for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
272                 v = 0;
273                 if (i & (1 << 8))
274                         v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
275                 if (i & (1 << 9))
276                         v |= MLX5_ETH_WQE_L4_OUTER_UDP;
277                 if (i & (1 << 4))
278                         v |= MLX5_ETH_WQE_L3_INNER_IPV6;
279                 if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
280                         v |= MLX5_ETH_WQE_L4_INNER_UDP;
281                 mlx5_swp_types_table[i] = v;
282         }
283 }
284
285 /**
286  * Return the size of tailroom of WQ.
287  *
288  * @param txq
289  *   Pointer to TX queue structure.
290  * @param addr
291  *   Pointer to tail of WQ.
292  *
293  * @return
294  *   Size of tailroom.
295  */
296 static inline size_t
297 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
298 {
299         size_t tailroom;
300         tailroom = (uintptr_t)(txq->wqes) +
301                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
302                    (uintptr_t)addr;
303         return tailroom;
304 }
305
306 /**
307  * Copy data to tailroom of circular queue.
308  *
309  * @param dst
310  *   Pointer to destination.
311  * @param src
312  *   Pointer to source.
313  * @param n
314  *   Number of bytes to copy.
315  * @param base
316  *   Pointer to head of queue.
317  * @param tailroom
318  *   Size of tailroom from dst.
319  *
320  * @return
321  *   Pointer after copied data.
322  */
323 static inline void *
324 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
325                 void *base, size_t tailroom)
326 {
327         void *ret;
328
329         if (n > tailroom) {
330                 rte_memcpy(dst, src, tailroom);
331                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
332                            n - tailroom);
333                 ret = (uint8_t *)base + n - tailroom;
334         } else {
335                 rte_memcpy(dst, src, n);
336                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
337         }
338         return ret;
339 }
340
341 /**
342  * Inline TSO headers into WQE.
343  *
344  * @return
345  *   0 on success, negative errno value on failure.
346  */
347 static int
348 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
349            uint32_t *length,
350            uintptr_t *addr,
351            uint16_t *pkt_inline_sz,
352            uint8_t **raw,
353            uint16_t *max_wqe,
354            uint16_t *tso_segsz,
355            uint16_t *tso_header_sz)
356 {
357         uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
358                                     (1 << txq->wqe_n) * MLX5_WQE_SIZE);
359         unsigned int copy_b;
360         uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
361         const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
362                                  PKT_TX_TUNNEL_MASK);
363         uint16_t n_wqe;
364
365         *tso_segsz = buf->tso_segsz;
366         *tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
367         if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
368                 txq->stats.oerrors++;
369                 return -EINVAL;
370         }
371         if (tunneled)
372                 *tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
373         /* First seg must contain all TSO headers. */
374         if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
375                      *tso_header_sz > DATA_LEN(buf)) {
376                 txq->stats.oerrors++;
377                 return -EINVAL;
378         }
379         copy_b = *tso_header_sz - *pkt_inline_sz;
380         if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
381                 return -EAGAIN;
382         n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
383         if (unlikely(*max_wqe < n_wqe))
384                 return -EINVAL;
385         *max_wqe -= n_wqe;
386         rte_memcpy((void *)*raw, (void *)*addr, copy_b);
387         *length -= copy_b;
388         *addr += copy_b;
389         copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
390         *pkt_inline_sz += copy_b;
391         *raw += copy_b;
392         return 0;
393 }
394
395 /**
396  * DPDK callback to check the status of a tx descriptor.
397  *
398  * @param tx_queue
399  *   The tx queue.
400  * @param[in] offset
401  *   The index of the descriptor in the ring.
402  *
403  * @return
404  *   The status of the tx descriptor.
405  */
406 int
407 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
408 {
409         struct mlx5_txq_data *txq = tx_queue;
410         uint16_t used;
411
412         mlx5_tx_complete(txq);
413         used = txq->elts_head - txq->elts_tail;
414         if (offset < used)
415                 return RTE_ETH_TX_DESC_FULL;
416         return RTE_ETH_TX_DESC_DONE;
417 }
418
419 /**
420  * DPDK callback to check the status of a rx descriptor.
421  *
422  * @param rx_queue
423  *   The rx queue.
424  * @param[in] offset
425  *   The index of the descriptor in the ring.
426  *
427  * @return
428  *   The status of the tx descriptor.
429  */
430 int
431 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
432 {
433         struct mlx5_rxq_data *rxq = rx_queue;
434         struct rxq_zip *zip = &rxq->zip;
435         volatile struct mlx5_cqe *cqe;
436         const unsigned int cqe_n = (1 << rxq->cqe_n);
437         const unsigned int cqe_cnt = cqe_n - 1;
438         unsigned int cq_ci;
439         unsigned int used;
440
441         /* if we are processing a compressed cqe */
442         if (zip->ai) {
443                 used = zip->cqe_cnt - zip->ca;
444                 cq_ci = zip->cq_ci;
445         } else {
446                 used = 0;
447                 cq_ci = rxq->cq_ci;
448         }
449         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
450         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
451                 int8_t op_own;
452                 unsigned int n;
453
454                 op_own = cqe->op_own;
455                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
456                         n = rte_be_to_cpu_32(cqe->byte_cnt);
457                 else
458                         n = 1;
459                 cq_ci += n;
460                 used += n;
461                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
462         }
463         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
464         if (offset < used)
465                 return RTE_ETH_RX_DESC_DONE;
466         return RTE_ETH_RX_DESC_AVAIL;
467 }
468
469 /**
470  * DPDK callback for TX.
471  *
472  * @param dpdk_txq
473  *   Generic pointer to TX queue structure.
474  * @param[in] pkts
475  *   Packets to transmit.
476  * @param pkts_n
477  *   Number of packets in array.
478  *
479  * @return
480  *   Number of packets successfully transmitted (<= pkts_n).
481  */
482 uint16_t
483 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
484 {
485         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
486         uint16_t elts_head = txq->elts_head;
487         const uint16_t elts_n = 1 << txq->elts_n;
488         const uint16_t elts_m = elts_n - 1;
489         unsigned int i = 0;
490         unsigned int j = 0;
491         unsigned int k = 0;
492         uint16_t max_elts;
493         uint16_t max_wqe;
494         unsigned int comp;
495         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
496         unsigned int segs_n = 0;
497         const unsigned int max_inline = txq->max_inline;
498         uint64_t addr_64;
499
500         if (unlikely(!pkts_n))
501                 return 0;
502         /* Prefetch first packet cacheline. */
503         rte_prefetch0(*pkts);
504         /* Start processing. */
505         mlx5_tx_complete(txq);
506         max_elts = (elts_n - (elts_head - txq->elts_tail));
507         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
508         if (unlikely(!max_wqe))
509                 return 0;
510         do {
511                 struct rte_mbuf *buf = *pkts; /* First_seg. */
512                 uint8_t *raw;
513                 volatile struct mlx5_wqe_v *wqe = NULL;
514                 volatile rte_v128u32_t *dseg = NULL;
515                 uint32_t length;
516                 unsigned int ds = 0;
517                 unsigned int sg = 0; /* counter of additional segs attached. */
518                 uintptr_t addr;
519                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
520                 uint16_t tso_header_sz = 0;
521                 uint16_t ehdr;
522                 uint8_t cs_flags;
523                 uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
524                 uint32_t swp_offsets = 0;
525                 uint8_t swp_types = 0;
526                 uint16_t tso_segsz = 0;
527 #ifdef MLX5_PMD_SOFT_COUNTERS
528                 uint32_t total_length = 0;
529 #endif
530                 int ret;
531
532                 segs_n = buf->nb_segs;
533                 /*
534                  * Make sure there is enough room to store this packet and
535                  * that one ring entry remains unused.
536                  */
537                 assert(segs_n);
538                 if (max_elts < segs_n)
539                         break;
540                 max_elts -= segs_n;
541                 sg = --segs_n;
542                 if (unlikely(--max_wqe == 0))
543                         break;
544                 wqe = (volatile struct mlx5_wqe_v *)
545                         tx_mlx5_wqe(txq, txq->wqe_ci);
546                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
547                 if (pkts_n - i > 1)
548                         rte_prefetch0(*(pkts + 1));
549                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
550                 length = DATA_LEN(buf);
551                 ehdr = (((uint8_t *)addr)[1] << 8) |
552                        ((uint8_t *)addr)[0];
553 #ifdef MLX5_PMD_SOFT_COUNTERS
554                 total_length = length;
555 #endif
556                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
557                         txq->stats.oerrors++;
558                         break;
559                 }
560                 /* Update element. */
561                 (*txq->elts)[elts_head & elts_m] = buf;
562                 /* Prefetch next buffer data. */
563                 if (pkts_n - i > 1)
564                         rte_prefetch0(
565                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
566                 cs_flags = txq_ol_cksum_to_cs(buf);
567                 txq_mbuf_to_swp(txq, buf, (uint8_t *)&swp_offsets, &swp_types);
568                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
569                 /* Replace the Ethernet type by the VLAN if necessary. */
570                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
571                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
572                                                          buf->vlan_tci);
573                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
574
575                         addr += 2;
576                         length -= 2;
577                         /* Copy Destination and source mac address. */
578                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
579                         /* Copy VLAN. */
580                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
581                         /* Copy missing two bytes to end the DSeg. */
582                         memcpy((uint8_t *)raw + len + sizeof(vlan),
583                                ((uint8_t *)addr) + len, 2);
584                         addr += len + 2;
585                         length -= (len + 2);
586                 } else {
587                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
588                                MLX5_WQE_DWORD_SIZE);
589                         length -= pkt_inline_sz;
590                         addr += pkt_inline_sz;
591                 }
592                 raw += MLX5_WQE_DWORD_SIZE;
593                 if (tso) {
594                         ret = inline_tso(txq, buf, &length,
595                                          &addr, &pkt_inline_sz,
596                                          &raw, &max_wqe,
597                                          &tso_segsz, &tso_header_sz);
598                         if (ret == -EINVAL) {
599                                 break;
600                         } else if (ret == -EAGAIN) {
601                                 /* NOP WQE. */
602                                 wqe->ctrl = (rte_v128u32_t){
603                                         rte_cpu_to_be_32(txq->wqe_ci << 8),
604                                         rte_cpu_to_be_32(txq->qp_num_8s | 1),
605                                         0,
606                                         0,
607                                 };
608                                 ds = 1;
609 #ifdef MLX5_PMD_SOFT_COUNTERS
610                                 total_length = 0;
611 #endif
612                                 k++;
613                                 goto next_wqe;
614                         }
615                 }
616                 /* Inline if enough room. */
617                 if (max_inline || tso) {
618                         uint32_t inl = 0;
619                         uintptr_t end = (uintptr_t)
620                                 (((uintptr_t)txq->wqes) +
621                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
622                         unsigned int inline_room = max_inline *
623                                                    RTE_CACHE_LINE_SIZE -
624                                                    (pkt_inline_sz - 2) -
625                                                    !!tso * sizeof(inl);
626                         uintptr_t addr_end;
627                         unsigned int copy_b;
628
629 pkt_inline:
630                         addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
631                                                    RTE_CACHE_LINE_SIZE);
632                         copy_b = (addr_end > addr) ?
633                                  RTE_MIN((addr_end - addr), length) : 0;
634                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
635                                 /*
636                                  * One Dseg remains in the current WQE.  To
637                                  * keep the computation positive, it is
638                                  * removed after the bytes to Dseg conversion.
639                                  */
640                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
641
642                                 if (unlikely(max_wqe < n))
643                                         break;
644                                 max_wqe -= n;
645                                 if (tso) {
646                                         assert(inl == 0);
647                                         inl = rte_cpu_to_be_32(copy_b |
648                                                                MLX5_INLINE_SEG);
649                                         rte_memcpy((void *)raw,
650                                                    (void *)&inl, sizeof(inl));
651                                         raw += sizeof(inl);
652                                         pkt_inline_sz += sizeof(inl);
653                                 }
654                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
655                                 addr += copy_b;
656                                 length -= copy_b;
657                                 pkt_inline_sz += copy_b;
658                         }
659                         /*
660                          * 2 DWORDs consumed by the WQE header + ETH segment +
661                          * the size of the inline part of the packet.
662                          */
663                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
664                         if (length > 0) {
665                                 if (ds % (MLX5_WQE_SIZE /
666                                           MLX5_WQE_DWORD_SIZE) == 0) {
667                                         if (unlikely(--max_wqe == 0))
668                                                 break;
669                                         dseg = (volatile rte_v128u32_t *)
670                                                tx_mlx5_wqe(txq, txq->wqe_ci +
671                                                            ds / 4);
672                                 } else {
673                                         dseg = (volatile rte_v128u32_t *)
674                                                 ((uintptr_t)wqe +
675                                                  (ds * MLX5_WQE_DWORD_SIZE));
676                                 }
677                                 goto use_dseg;
678                         } else if (!segs_n) {
679                                 goto next_pkt;
680                         } else {
681                                 /*
682                                  * Further inline the next segment only for
683                                  * non-TSO packets.
684                                  */
685                                 if (!tso) {
686                                         raw += copy_b;
687                                         inline_room -= copy_b;
688                                 } else {
689                                         inline_room = 0;
690                                 }
691                                 /* Move to the next segment. */
692                                 --segs_n;
693                                 buf = buf->next;
694                                 assert(buf);
695                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
696                                 length = DATA_LEN(buf);
697 #ifdef MLX5_PMD_SOFT_COUNTERS
698                                 total_length += length;
699 #endif
700                                 (*txq->elts)[++elts_head & elts_m] = buf;
701                                 goto pkt_inline;
702                         }
703                 } else {
704                         /*
705                          * No inline has been done in the packet, only the
706                          * Ethernet Header as been stored.
707                          */
708                         dseg = (volatile rte_v128u32_t *)
709                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
710                         ds = 3;
711 use_dseg:
712                         /* Add the remaining packet as a simple ds. */
713                         addr_64 = rte_cpu_to_be_64(addr);
714                         *dseg = (rte_v128u32_t){
715                                 rte_cpu_to_be_32(length),
716                                 mlx5_tx_mb2mr(txq, buf),
717                                 addr_64,
718                                 addr_64 >> 32,
719                         };
720                         ++ds;
721                         if (!segs_n)
722                                 goto next_pkt;
723                 }
724 next_seg:
725                 assert(buf);
726                 assert(ds);
727                 assert(wqe);
728                 /*
729                  * Spill on next WQE when the current one does not have
730                  * enough room left. Size of WQE must a be a multiple
731                  * of data segment size.
732                  */
733                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
734                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
735                         if (unlikely(--max_wqe == 0))
736                                 break;
737                         dseg = (volatile rte_v128u32_t *)
738                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
739                         rte_prefetch0(tx_mlx5_wqe(txq,
740                                                   txq->wqe_ci + ds / 4 + 1));
741                 } else {
742                         ++dseg;
743                 }
744                 ++ds;
745                 buf = buf->next;
746                 assert(buf);
747                 length = DATA_LEN(buf);
748 #ifdef MLX5_PMD_SOFT_COUNTERS
749                 total_length += length;
750 #endif
751                 /* Store segment information. */
752                 addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
753                 *dseg = (rte_v128u32_t){
754                         rte_cpu_to_be_32(length),
755                         mlx5_tx_mb2mr(txq, buf),
756                         addr_64,
757                         addr_64 >> 32,
758                 };
759                 (*txq->elts)[++elts_head & elts_m] = buf;
760                 if (--segs_n)
761                         goto next_seg;
762 next_pkt:
763                 if (ds > MLX5_DSEG_MAX) {
764                         txq->stats.oerrors++;
765                         break;
766                 }
767                 ++elts_head;
768                 ++pkts;
769                 ++i;
770                 j += sg;
771                 /* Initialize known and common part of the WQE structure. */
772                 if (tso) {
773                         wqe->ctrl = (rte_v128u32_t){
774                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
775                                                  MLX5_OPCODE_TSO),
776                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
777                                 0,
778                                 0,
779                         };
780                         wqe->eseg = (rte_v128u32_t){
781                                 swp_offsets,
782                                 cs_flags | (swp_types << 8) |
783                                 (rte_cpu_to_be_16(tso_segsz) << 16),
784                                 0,
785                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
786                         };
787                 } else {
788                         wqe->ctrl = (rte_v128u32_t){
789                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
790                                                  MLX5_OPCODE_SEND),
791                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
792                                 0,
793                                 0,
794                         };
795                         wqe->eseg = (rte_v128u32_t){
796                                 swp_offsets,
797                                 cs_flags | (swp_types << 8),
798                                 0,
799                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
800                         };
801                 }
802 next_wqe:
803                 txq->wqe_ci += (ds + 3) / 4;
804                 /* Save the last successful WQE for completion request */
805                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
806 #ifdef MLX5_PMD_SOFT_COUNTERS
807                 /* Increment sent bytes counter. */
808                 txq->stats.obytes += total_length;
809 #endif
810         } while (i < pkts_n);
811         /* Take a shortcut if nothing must be sent. */
812         if (unlikely((i + k) == 0))
813                 return 0;
814         txq->elts_head += (i + j);
815         /* Check whether completion threshold has been reached. */
816         comp = txq->elts_comp + i + j + k;
817         if (comp >= MLX5_TX_COMP_THRESH) {
818                 /* A CQE slot must always be available. */
819                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
820                 /* Request completion on last WQE. */
821                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
822                 /* Save elts_head in unused "immediate" field of WQE. */
823                 last_wqe->ctrl3 = txq->elts_head;
824                 txq->elts_comp = 0;
825         } else {
826                 txq->elts_comp = comp;
827         }
828 #ifdef MLX5_PMD_SOFT_COUNTERS
829         /* Increment sent packets counter. */
830         txq->stats.opackets += i;
831 #endif
832         /* Ring QP doorbell. */
833         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
834         return i;
835 }
836
837 /**
838  * Open a MPW session.
839  *
840  * @param txq
841  *   Pointer to TX queue structure.
842  * @param mpw
843  *   Pointer to MPW session structure.
844  * @param length
845  *   Packet length.
846  */
847 static inline void
848 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
849 {
850         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
851         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
852                 (volatile struct mlx5_wqe_data_seg (*)[])
853                 tx_mlx5_wqe(txq, idx + 1);
854
855         mpw->state = MLX5_MPW_STATE_OPENED;
856         mpw->pkts_n = 0;
857         mpw->len = length;
858         mpw->total_len = 0;
859         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
860         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
861         mpw->wqe->eseg.inline_hdr_sz = 0;
862         mpw->wqe->eseg.rsvd0 = 0;
863         mpw->wqe->eseg.rsvd1 = 0;
864         mpw->wqe->eseg.rsvd2 = 0;
865         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
866                                              (txq->wqe_ci << 8) |
867                                              MLX5_OPCODE_TSO);
868         mpw->wqe->ctrl[2] = 0;
869         mpw->wqe->ctrl[3] = 0;
870         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
871                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
872         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
873                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
874         mpw->data.dseg[2] = &(*dseg)[0];
875         mpw->data.dseg[3] = &(*dseg)[1];
876         mpw->data.dseg[4] = &(*dseg)[2];
877 }
878
879 /**
880  * Close a MPW session.
881  *
882  * @param txq
883  *   Pointer to TX queue structure.
884  * @param mpw
885  *   Pointer to MPW session structure.
886  */
887 static inline void
888 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
889 {
890         unsigned int num = mpw->pkts_n;
891
892         /*
893          * Store size in multiple of 16 bytes. Control and Ethernet segments
894          * count as 2.
895          */
896         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
897         mpw->state = MLX5_MPW_STATE_CLOSED;
898         if (num < 3)
899                 ++txq->wqe_ci;
900         else
901                 txq->wqe_ci += 2;
902         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
903         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
904 }
905
906 /**
907  * DPDK callback for TX with MPW support.
908  *
909  * @param dpdk_txq
910  *   Generic pointer to TX queue structure.
911  * @param[in] pkts
912  *   Packets to transmit.
913  * @param pkts_n
914  *   Number of packets in array.
915  *
916  * @return
917  *   Number of packets successfully transmitted (<= pkts_n).
918  */
919 uint16_t
920 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
921 {
922         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
923         uint16_t elts_head = txq->elts_head;
924         const uint16_t elts_n = 1 << txq->elts_n;
925         const uint16_t elts_m = elts_n - 1;
926         unsigned int i = 0;
927         unsigned int j = 0;
928         uint16_t max_elts;
929         uint16_t max_wqe;
930         unsigned int comp;
931         struct mlx5_mpw mpw = {
932                 .state = MLX5_MPW_STATE_CLOSED,
933         };
934
935         if (unlikely(!pkts_n))
936                 return 0;
937         /* Prefetch first packet cacheline. */
938         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
939         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
940         /* Start processing. */
941         mlx5_tx_complete(txq);
942         max_elts = (elts_n - (elts_head - txq->elts_tail));
943         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
944         if (unlikely(!max_wqe))
945                 return 0;
946         do {
947                 struct rte_mbuf *buf = *(pkts++);
948                 uint32_t length;
949                 unsigned int segs_n = buf->nb_segs;
950                 uint32_t cs_flags;
951
952                 /*
953                  * Make sure there is enough room to store this packet and
954                  * that one ring entry remains unused.
955                  */
956                 assert(segs_n);
957                 if (max_elts < segs_n)
958                         break;
959                 /* Do not bother with large packets MPW cannot handle. */
960                 if (segs_n > MLX5_MPW_DSEG_MAX) {
961                         txq->stats.oerrors++;
962                         break;
963                 }
964                 max_elts -= segs_n;
965                 --pkts_n;
966                 cs_flags = txq_ol_cksum_to_cs(buf);
967                 /* Retrieve packet information. */
968                 length = PKT_LEN(buf);
969                 assert(length);
970                 /* Start new session if packet differs. */
971                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
972                     ((mpw.len != length) ||
973                      (segs_n != 1) ||
974                      (mpw.wqe->eseg.cs_flags != cs_flags)))
975                         mlx5_mpw_close(txq, &mpw);
976                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
977                         /*
978                          * Multi-Packet WQE consumes at most two WQE.
979                          * mlx5_mpw_new() expects to be able to use such
980                          * resources.
981                          */
982                         if (unlikely(max_wqe < 2))
983                                 break;
984                         max_wqe -= 2;
985                         mlx5_mpw_new(txq, &mpw, length);
986                         mpw.wqe->eseg.cs_flags = cs_flags;
987                 }
988                 /* Multi-segment packets must be alone in their MPW. */
989                 assert((segs_n == 1) || (mpw.pkts_n == 0));
990 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
991                 length = 0;
992 #endif
993                 do {
994                         volatile struct mlx5_wqe_data_seg *dseg;
995                         uintptr_t addr;
996
997                         assert(buf);
998                         (*txq->elts)[elts_head++ & elts_m] = buf;
999                         dseg = mpw.data.dseg[mpw.pkts_n];
1000                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1001                         *dseg = (struct mlx5_wqe_data_seg){
1002                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
1003                                 .lkey = mlx5_tx_mb2mr(txq, buf),
1004                                 .addr = rte_cpu_to_be_64(addr),
1005                         };
1006 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1007                         length += DATA_LEN(buf);
1008 #endif
1009                         buf = buf->next;
1010                         ++mpw.pkts_n;
1011                         ++j;
1012                 } while (--segs_n);
1013                 assert(length == mpw.len);
1014                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1015                         mlx5_mpw_close(txq, &mpw);
1016 #ifdef MLX5_PMD_SOFT_COUNTERS
1017                 /* Increment sent bytes counter. */
1018                 txq->stats.obytes += length;
1019 #endif
1020                 ++i;
1021         } while (pkts_n);
1022         /* Take a shortcut if nothing must be sent. */
1023         if (unlikely(i == 0))
1024                 return 0;
1025         /* Check whether completion threshold has been reached. */
1026         /* "j" includes both packets and segments. */
1027         comp = txq->elts_comp + j;
1028         if (comp >= MLX5_TX_COMP_THRESH) {
1029                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1030
1031                 /* A CQE slot must always be available. */
1032                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1033                 /* Request completion on last WQE. */
1034                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1035                 /* Save elts_head in unused "immediate" field of WQE. */
1036                 wqe->ctrl[3] = elts_head;
1037                 txq->elts_comp = 0;
1038         } else {
1039                 txq->elts_comp = comp;
1040         }
1041 #ifdef MLX5_PMD_SOFT_COUNTERS
1042         /* Increment sent packets counter. */
1043         txq->stats.opackets += i;
1044 #endif
1045         /* Ring QP doorbell. */
1046         if (mpw.state == MLX5_MPW_STATE_OPENED)
1047                 mlx5_mpw_close(txq, &mpw);
1048         mlx5_tx_dbrec(txq, mpw.wqe);
1049         txq->elts_head = elts_head;
1050         return i;
1051 }
1052
1053 /**
1054  * Open a MPW inline session.
1055  *
1056  * @param txq
1057  *   Pointer to TX queue structure.
1058  * @param mpw
1059  *   Pointer to MPW session structure.
1060  * @param length
1061  *   Packet length.
1062  */
1063 static inline void
1064 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1065                     uint32_t length)
1066 {
1067         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1068         struct mlx5_wqe_inl_small *inl;
1069
1070         mpw->state = MLX5_MPW_INL_STATE_OPENED;
1071         mpw->pkts_n = 0;
1072         mpw->len = length;
1073         mpw->total_len = 0;
1074         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1075         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1076                                              (txq->wqe_ci << 8) |
1077                                              MLX5_OPCODE_TSO);
1078         mpw->wqe->ctrl[2] = 0;
1079         mpw->wqe->ctrl[3] = 0;
1080         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1081         mpw->wqe->eseg.inline_hdr_sz = 0;
1082         mpw->wqe->eseg.cs_flags = 0;
1083         mpw->wqe->eseg.rsvd0 = 0;
1084         mpw->wqe->eseg.rsvd1 = 0;
1085         mpw->wqe->eseg.rsvd2 = 0;
1086         inl = (struct mlx5_wqe_inl_small *)
1087                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1088         mpw->data.raw = (uint8_t *)&inl->raw;
1089 }
1090
1091 /**
1092  * Close a MPW inline session.
1093  *
1094  * @param txq
1095  *   Pointer to TX queue structure.
1096  * @param mpw
1097  *   Pointer to MPW session structure.
1098  */
1099 static inline void
1100 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1101 {
1102         unsigned int size;
1103         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1104                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1105
1106         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1107         /*
1108          * Store size in multiple of 16 bytes. Control and Ethernet segments
1109          * count as 2.
1110          */
1111         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1112                                              MLX5_WQE_DS(size));
1113         mpw->state = MLX5_MPW_STATE_CLOSED;
1114         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1115         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1116 }
1117
1118 /**
1119  * DPDK callback for TX with MPW inline support.
1120  *
1121  * @param dpdk_txq
1122  *   Generic pointer to TX queue structure.
1123  * @param[in] pkts
1124  *   Packets to transmit.
1125  * @param pkts_n
1126  *   Number of packets in array.
1127  *
1128  * @return
1129  *   Number of packets successfully transmitted (<= pkts_n).
1130  */
1131 uint16_t
1132 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1133                          uint16_t pkts_n)
1134 {
1135         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1136         uint16_t elts_head = txq->elts_head;
1137         const uint16_t elts_n = 1 << txq->elts_n;
1138         const uint16_t elts_m = elts_n - 1;
1139         unsigned int i = 0;
1140         unsigned int j = 0;
1141         uint16_t max_elts;
1142         uint16_t max_wqe;
1143         unsigned int comp;
1144         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1145         struct mlx5_mpw mpw = {
1146                 .state = MLX5_MPW_STATE_CLOSED,
1147         };
1148         /*
1149          * Compute the maximum number of WQE which can be consumed by inline
1150          * code.
1151          * - 2 DSEG for:
1152          *   - 1 control segment,
1153          *   - 1 Ethernet segment,
1154          * - N Dseg from the inline request.
1155          */
1156         const unsigned int wqe_inl_n =
1157                 ((2 * MLX5_WQE_DWORD_SIZE +
1158                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1159                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1160
1161         if (unlikely(!pkts_n))
1162                 return 0;
1163         /* Prefetch first packet cacheline. */
1164         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1165         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1166         /* Start processing. */
1167         mlx5_tx_complete(txq);
1168         max_elts = (elts_n - (elts_head - txq->elts_tail));
1169         do {
1170                 struct rte_mbuf *buf = *(pkts++);
1171                 uintptr_t addr;
1172                 uint32_t length;
1173                 unsigned int segs_n = buf->nb_segs;
1174                 uint8_t cs_flags;
1175
1176                 /*
1177                  * Make sure there is enough room to store this packet and
1178                  * that one ring entry remains unused.
1179                  */
1180                 assert(segs_n);
1181                 if (max_elts < segs_n)
1182                         break;
1183                 /* Do not bother with large packets MPW cannot handle. */
1184                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1185                         txq->stats.oerrors++;
1186                         break;
1187                 }
1188                 max_elts -= segs_n;
1189                 --pkts_n;
1190                 /*
1191                  * Compute max_wqe in case less WQE were consumed in previous
1192                  * iteration.
1193                  */
1194                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1195                 cs_flags = txq_ol_cksum_to_cs(buf);
1196                 /* Retrieve packet information. */
1197                 length = PKT_LEN(buf);
1198                 /* Start new session if packet differs. */
1199                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1200                         if ((mpw.len != length) ||
1201                             (segs_n != 1) ||
1202                             (mpw.wqe->eseg.cs_flags != cs_flags))
1203                                 mlx5_mpw_close(txq, &mpw);
1204                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1205                         if ((mpw.len != length) ||
1206                             (segs_n != 1) ||
1207                             (length > inline_room) ||
1208                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1209                                 mlx5_mpw_inline_close(txq, &mpw);
1210                                 inline_room =
1211                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1212                         }
1213                 }
1214                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1215                         if ((segs_n != 1) ||
1216                             (length > inline_room)) {
1217                                 /*
1218                                  * Multi-Packet WQE consumes at most two WQE.
1219                                  * mlx5_mpw_new() expects to be able to use
1220                                  * such resources.
1221                                  */
1222                                 if (unlikely(max_wqe < 2))
1223                                         break;
1224                                 max_wqe -= 2;
1225                                 mlx5_mpw_new(txq, &mpw, length);
1226                                 mpw.wqe->eseg.cs_flags = cs_flags;
1227                         } else {
1228                                 if (unlikely(max_wqe < wqe_inl_n))
1229                                         break;
1230                                 max_wqe -= wqe_inl_n;
1231                                 mlx5_mpw_inline_new(txq, &mpw, length);
1232                                 mpw.wqe->eseg.cs_flags = cs_flags;
1233                         }
1234                 }
1235                 /* Multi-segment packets must be alone in their MPW. */
1236                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1237                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1238                         assert(inline_room ==
1239                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1240 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1241                         length = 0;
1242 #endif
1243                         do {
1244                                 volatile struct mlx5_wqe_data_seg *dseg;
1245
1246                                 assert(buf);
1247                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1248                                 dseg = mpw.data.dseg[mpw.pkts_n];
1249                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1250                                 *dseg = (struct mlx5_wqe_data_seg){
1251                                         .byte_count =
1252                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1253                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1254                                         .addr = rte_cpu_to_be_64(addr),
1255                                 };
1256 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1257                                 length += DATA_LEN(buf);
1258 #endif
1259                                 buf = buf->next;
1260                                 ++mpw.pkts_n;
1261                                 ++j;
1262                         } while (--segs_n);
1263                         assert(length == mpw.len);
1264                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1265                                 mlx5_mpw_close(txq, &mpw);
1266                 } else {
1267                         unsigned int max;
1268
1269                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1270                         assert(length <= inline_room);
1271                         assert(length == DATA_LEN(buf));
1272                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1273                         (*txq->elts)[elts_head++ & elts_m] = buf;
1274                         /* Maximum number of bytes before wrapping. */
1275                         max = ((((uintptr_t)(txq->wqes)) +
1276                                 (1 << txq->wqe_n) *
1277                                 MLX5_WQE_SIZE) -
1278                                (uintptr_t)mpw.data.raw);
1279                         if (length > max) {
1280                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1281                                            (void *)addr,
1282                                            max);
1283                                 mpw.data.raw = (volatile void *)txq->wqes;
1284                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1285                                            (void *)(addr + max),
1286                                            length - max);
1287                                 mpw.data.raw += length - max;
1288                         } else {
1289                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1290                                            (void *)addr,
1291                                            length);
1292
1293                                 if (length == max)
1294                                         mpw.data.raw =
1295                                                 (volatile void *)txq->wqes;
1296                                 else
1297                                         mpw.data.raw += length;
1298                         }
1299                         ++mpw.pkts_n;
1300                         mpw.total_len += length;
1301                         ++j;
1302                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1303                                 mlx5_mpw_inline_close(txq, &mpw);
1304                                 inline_room =
1305                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1306                         } else {
1307                                 inline_room -= length;
1308                         }
1309                 }
1310 #ifdef MLX5_PMD_SOFT_COUNTERS
1311                 /* Increment sent bytes counter. */
1312                 txq->stats.obytes += length;
1313 #endif
1314                 ++i;
1315         } while (pkts_n);
1316         /* Take a shortcut if nothing must be sent. */
1317         if (unlikely(i == 0))
1318                 return 0;
1319         /* Check whether completion threshold has been reached. */
1320         /* "j" includes both packets and segments. */
1321         comp = txq->elts_comp + j;
1322         if (comp >= MLX5_TX_COMP_THRESH) {
1323                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1324
1325                 /* A CQE slot must always be available. */
1326                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1327                 /* Request completion on last WQE. */
1328                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1329                 /* Save elts_head in unused "immediate" field of WQE. */
1330                 wqe->ctrl[3] = elts_head;
1331                 txq->elts_comp = 0;
1332         } else {
1333                 txq->elts_comp = comp;
1334         }
1335 #ifdef MLX5_PMD_SOFT_COUNTERS
1336         /* Increment sent packets counter. */
1337         txq->stats.opackets += i;
1338 #endif
1339         /* Ring QP doorbell. */
1340         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1341                 mlx5_mpw_inline_close(txq, &mpw);
1342         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1343                 mlx5_mpw_close(txq, &mpw);
1344         mlx5_tx_dbrec(txq, mpw.wqe);
1345         txq->elts_head = elts_head;
1346         return i;
1347 }
1348
1349 /**
1350  * Open an Enhanced MPW session.
1351  *
1352  * @param txq
1353  *   Pointer to TX queue structure.
1354  * @param mpw
1355  *   Pointer to MPW session structure.
1356  * @param length
1357  *   Packet length.
1358  */
1359 static inline void
1360 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1361 {
1362         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1363
1364         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1365         mpw->pkts_n = 0;
1366         mpw->total_len = sizeof(struct mlx5_wqe);
1367         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1368         mpw->wqe->ctrl[0] =
1369                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1370                                  (txq->wqe_ci << 8) |
1371                                  MLX5_OPCODE_ENHANCED_MPSW);
1372         mpw->wqe->ctrl[2] = 0;
1373         mpw->wqe->ctrl[3] = 0;
1374         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1375         if (unlikely(padding)) {
1376                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1377
1378                 /* Pad the first 2 DWORDs with zero-length inline header. */
1379                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1380                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1381                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1382                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1383                 /* Start from the next WQEBB. */
1384                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1385         } else {
1386                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1387         }
1388 }
1389
1390 /**
1391  * Close an Enhanced MPW session.
1392  *
1393  * @param txq
1394  *   Pointer to TX queue structure.
1395  * @param mpw
1396  *   Pointer to MPW session structure.
1397  *
1398  * @return
1399  *   Number of consumed WQEs.
1400  */
1401 static inline uint16_t
1402 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1403 {
1404         uint16_t ret;
1405
1406         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1407          * count as 2.
1408          */
1409         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1410                                              MLX5_WQE_DS(mpw->total_len));
1411         mpw->state = MLX5_MPW_STATE_CLOSED;
1412         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1413         txq->wqe_ci += ret;
1414         return ret;
1415 }
1416
1417 /**
1418  * TX with Enhanced MPW support.
1419  *
1420  * @param txq
1421  *   Pointer to TX queue structure.
1422  * @param[in] pkts
1423  *   Packets to transmit.
1424  * @param pkts_n
1425  *   Number of packets in array.
1426  *
1427  * @return
1428  *   Number of packets successfully transmitted (<= pkts_n).
1429  */
1430 static inline uint16_t
1431 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1432                uint16_t pkts_n)
1433 {
1434         uint16_t elts_head = txq->elts_head;
1435         const uint16_t elts_n = 1 << txq->elts_n;
1436         const uint16_t elts_m = elts_n - 1;
1437         unsigned int i = 0;
1438         unsigned int j = 0;
1439         uint16_t max_elts;
1440         uint16_t max_wqe;
1441         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1442         unsigned int mpw_room = 0;
1443         unsigned int inl_pad = 0;
1444         uint32_t inl_hdr;
1445         uint64_t addr_64;
1446         struct mlx5_mpw mpw = {
1447                 .state = MLX5_MPW_STATE_CLOSED,
1448         };
1449
1450         if (unlikely(!pkts_n))
1451                 return 0;
1452         /* Start processing. */
1453         mlx5_tx_complete(txq);
1454         max_elts = (elts_n - (elts_head - txq->elts_tail));
1455         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1456         if (unlikely(!max_wqe))
1457                 return 0;
1458         do {
1459                 struct rte_mbuf *buf = *(pkts++);
1460                 uintptr_t addr;
1461                 unsigned int do_inline = 0; /* Whether inline is possible. */
1462                 uint32_t length;
1463                 uint8_t cs_flags;
1464
1465                 /* Multi-segmented packet is handled in slow-path outside. */
1466                 assert(NB_SEGS(buf) == 1);
1467                 /* Make sure there is enough room to store this packet. */
1468                 if (max_elts - j == 0)
1469                         break;
1470                 cs_flags = txq_ol_cksum_to_cs(buf);
1471                 /* Retrieve packet information. */
1472                 length = PKT_LEN(buf);
1473                 /* Start new session if:
1474                  * - multi-segment packet
1475                  * - no space left even for a dseg
1476                  * - next packet can be inlined with a new WQE
1477                  * - cs_flag differs
1478                  */
1479                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1480                         if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1481                              mpw_room) ||
1482                             (length <= txq->inline_max_packet_sz &&
1483                              inl_pad + sizeof(inl_hdr) + length >
1484                              mpw_room) ||
1485                             (mpw.wqe->eseg.cs_flags != cs_flags))
1486                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1487                 }
1488                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1489                         /* In Enhanced MPW, inline as much as the budget is
1490                          * allowed. The remaining space is to be filled with
1491                          * dsegs. If the title WQEBB isn't padded, it will have
1492                          * 2 dsegs there.
1493                          */
1494                         mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1495                                            (max_inline ? max_inline :
1496                                             pkts_n * MLX5_WQE_DWORD_SIZE) +
1497                                            MLX5_WQE_SIZE);
1498                         if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1499                                 break;
1500                         /* Don't pad the title WQEBB to not waste WQ. */
1501                         mlx5_empw_new(txq, &mpw, 0);
1502                         mpw_room -= mpw.total_len;
1503                         inl_pad = 0;
1504                         do_inline = length <= txq->inline_max_packet_sz &&
1505                                     sizeof(inl_hdr) + length <= mpw_room &&
1506                                     !txq->mpw_hdr_dseg;
1507                         mpw.wqe->eseg.cs_flags = cs_flags;
1508                 } else {
1509                         /* Evaluate whether the next packet can be inlined.
1510                          * Inlininig is possible when:
1511                          * - length is less than configured value
1512                          * - length fits for remaining space
1513                          * - not required to fill the title WQEBB with dsegs
1514                          */
1515                         do_inline =
1516                                 length <= txq->inline_max_packet_sz &&
1517                                 inl_pad + sizeof(inl_hdr) + length <=
1518                                  mpw_room &&
1519                                 (!txq->mpw_hdr_dseg ||
1520                                  mpw.total_len >= MLX5_WQE_SIZE);
1521                 }
1522                 if (max_inline && do_inline) {
1523                         /* Inline packet into WQE. */
1524                         unsigned int max;
1525
1526                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1527                         assert(length == DATA_LEN(buf));
1528                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1529                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1530                         mpw.data.raw = (volatile void *)
1531                                 ((uintptr_t)mpw.data.raw + inl_pad);
1532                         max = tx_mlx5_wq_tailroom(txq,
1533                                         (void *)(uintptr_t)mpw.data.raw);
1534                         /* Copy inline header. */
1535                         mpw.data.raw = (volatile void *)
1536                                 mlx5_copy_to_wq(
1537                                           (void *)(uintptr_t)mpw.data.raw,
1538                                           &inl_hdr,
1539                                           sizeof(inl_hdr),
1540                                           (void *)(uintptr_t)txq->wqes,
1541                                           max);
1542                         max = tx_mlx5_wq_tailroom(txq,
1543                                         (void *)(uintptr_t)mpw.data.raw);
1544                         /* Copy packet data. */
1545                         mpw.data.raw = (volatile void *)
1546                                 mlx5_copy_to_wq(
1547                                           (void *)(uintptr_t)mpw.data.raw,
1548                                           (void *)addr,
1549                                           length,
1550                                           (void *)(uintptr_t)txq->wqes,
1551                                           max);
1552                         ++mpw.pkts_n;
1553                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1554                         /* No need to get completion as the entire packet is
1555                          * copied to WQ. Free the buf right away.
1556                          */
1557                         rte_pktmbuf_free_seg(buf);
1558                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1559                         /* Add pad in the next packet if any. */
1560                         inl_pad = (((uintptr_t)mpw.data.raw +
1561                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1562                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1563                                   (uintptr_t)mpw.data.raw;
1564                 } else {
1565                         /* No inline. Load a dseg of packet pointer. */
1566                         volatile rte_v128u32_t *dseg;
1567
1568                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1569                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1570                         assert(length == DATA_LEN(buf));
1571                         if (!tx_mlx5_wq_tailroom(txq,
1572                                         (void *)((uintptr_t)mpw.data.raw
1573                                                 + inl_pad)))
1574                                 dseg = (volatile void *)txq->wqes;
1575                         else
1576                                 dseg = (volatile void *)
1577                                         ((uintptr_t)mpw.data.raw +
1578                                          inl_pad);
1579                         (*txq->elts)[elts_head++ & elts_m] = buf;
1580                         addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1581                                                                     uintptr_t));
1582                         *dseg = (rte_v128u32_t) {
1583                                 rte_cpu_to_be_32(length),
1584                                 mlx5_tx_mb2mr(txq, buf),
1585                                 addr_64,
1586                                 addr_64 >> 32,
1587                         };
1588                         mpw.data.raw = (volatile void *)(dseg + 1);
1589                         mpw.total_len += (inl_pad + sizeof(*dseg));
1590                         ++j;
1591                         ++mpw.pkts_n;
1592                         mpw_room -= (inl_pad + sizeof(*dseg));
1593                         inl_pad = 0;
1594                 }
1595 #ifdef MLX5_PMD_SOFT_COUNTERS
1596                 /* Increment sent bytes counter. */
1597                 txq->stats.obytes += length;
1598 #endif
1599                 ++i;
1600         } while (i < pkts_n);
1601         /* Take a shortcut if nothing must be sent. */
1602         if (unlikely(i == 0))
1603                 return 0;
1604         /* Check whether completion threshold has been reached. */
1605         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1606                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1607                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1608                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1609
1610                 /* A CQE slot must always be available. */
1611                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1612                 /* Request completion on last WQE. */
1613                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1614                 /* Save elts_head in unused "immediate" field of WQE. */
1615                 wqe->ctrl[3] = elts_head;
1616                 txq->elts_comp = 0;
1617                 txq->mpw_comp = txq->wqe_ci;
1618         } else {
1619                 txq->elts_comp += j;
1620         }
1621 #ifdef MLX5_PMD_SOFT_COUNTERS
1622         /* Increment sent packets counter. */
1623         txq->stats.opackets += i;
1624 #endif
1625         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1626                 mlx5_empw_close(txq, &mpw);
1627         /* Ring QP doorbell. */
1628         mlx5_tx_dbrec(txq, mpw.wqe);
1629         txq->elts_head = elts_head;
1630         return i;
1631 }
1632
1633 /**
1634  * DPDK callback for TX with Enhanced MPW support.
1635  *
1636  * @param dpdk_txq
1637  *   Generic pointer to TX queue structure.
1638  * @param[in] pkts
1639  *   Packets to transmit.
1640  * @param pkts_n
1641  *   Number of packets in array.
1642  *
1643  * @return
1644  *   Number of packets successfully transmitted (<= pkts_n).
1645  */
1646 uint16_t
1647 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1648 {
1649         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1650         uint16_t nb_tx = 0;
1651
1652         while (pkts_n > nb_tx) {
1653                 uint16_t n;
1654                 uint16_t ret;
1655
1656                 n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1657                 if (n) {
1658                         ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1659                         if (!ret)
1660                                 break;
1661                         nb_tx += ret;
1662                 }
1663                 n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1664                 if (n) {
1665                         ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1666                         if (!ret)
1667                                 break;
1668                         nb_tx += ret;
1669                 }
1670         }
1671         return nb_tx;
1672 }
1673
1674 /**
1675  * Translate RX completion flags to packet type.
1676  *
1677  * @param[in] rxq
1678  *   Pointer to RX queue structure.
1679  * @param[in] cqe
1680  *   Pointer to CQE.
1681  *
1682  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1683  *
1684  * @return
1685  *   Packet type for struct rte_mbuf.
1686  */
1687 static inline uint32_t
1688 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1689 {
1690         uint8_t idx;
1691         uint8_t pinfo = cqe->pkt_info;
1692         uint16_t ptype = cqe->hdr_type_etc;
1693
1694         /*
1695          * The index to the array should have:
1696          * bit[1:0] = l3_hdr_type
1697          * bit[4:2] = l4_hdr_type
1698          * bit[5] = ip_frag
1699          * bit[6] = tunneled
1700          * bit[7] = outer_l3_type
1701          */
1702         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1703         return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1704 }
1705
1706 /**
1707  * Get size of the next packet for a given CQE. For compressed CQEs, the
1708  * consumer index is updated only once all packets of the current one have
1709  * been processed.
1710  *
1711  * @param rxq
1712  *   Pointer to RX queue.
1713  * @param cqe
1714  *   CQE to process.
1715  * @param[out] mcqe
1716  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
1717  *   written.
1718  *
1719  * @return
1720  *   Packet size in bytes (0 if there is none), -1 in case of completion
1721  *   with error.
1722  */
1723 static inline int
1724 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1725                  uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
1726 {
1727         struct rxq_zip *zip = &rxq->zip;
1728         uint16_t cqe_n = cqe_cnt + 1;
1729         int len = 0;
1730         uint16_t idx, end;
1731
1732         /* Process compressed data in the CQE and mini arrays. */
1733         if (zip->ai) {
1734                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1735                         (volatile struct mlx5_mini_cqe8 (*)[8])
1736                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1737
1738                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1739                 *mcqe = &(*mc)[zip->ai & 7];
1740                 if ((++zip->ai & 7) == 0) {
1741                         /* Invalidate consumed CQEs */
1742                         idx = zip->ca;
1743                         end = zip->na;
1744                         while (idx != end) {
1745                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1746                                         MLX5_CQE_INVALIDATE;
1747                                 ++idx;
1748                         }
1749                         /*
1750                          * Increment consumer index to skip the number of
1751                          * CQEs consumed. Hardware leaves holes in the CQ
1752                          * ring for software use.
1753                          */
1754                         zip->ca = zip->na;
1755                         zip->na += 8;
1756                 }
1757                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1758                         /* Invalidate the rest */
1759                         idx = zip->ca;
1760                         end = zip->cq_ci;
1761
1762                         while (idx != end) {
1763                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1764                                         MLX5_CQE_INVALIDATE;
1765                                 ++idx;
1766                         }
1767                         rxq->cq_ci = zip->cq_ci;
1768                         zip->ai = 0;
1769                 }
1770         /* No compressed data, get next CQE and verify if it is compressed. */
1771         } else {
1772                 int ret;
1773                 int8_t op_own;
1774
1775                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1776                 if (unlikely(ret == 1))
1777                         return 0;
1778                 ++rxq->cq_ci;
1779                 op_own = cqe->op_own;
1780                 rte_cio_rmb();
1781                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1782                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1783                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1784                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1785                                                           cqe_cnt].pkt_info);
1786
1787                         /* Fix endianness. */
1788                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1789                         /*
1790                          * Current mini array position is the one returned by
1791                          * check_cqe64().
1792                          *
1793                          * If completion comprises several mini arrays, as a
1794                          * special case the second one is located 7 CQEs after
1795                          * the initial CQE instead of 8 for subsequent ones.
1796                          */
1797                         zip->ca = rxq->cq_ci;
1798                         zip->na = zip->ca + 7;
1799                         /* Compute the next non compressed CQE. */
1800                         --rxq->cq_ci;
1801                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1802                         /* Get packet size to return. */
1803                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1804                         *mcqe = &(*mc)[0];
1805                         zip->ai = 1;
1806                         /* Prefetch all the entries to be invalidated */
1807                         idx = zip->ca;
1808                         end = zip->cq_ci;
1809                         while (idx != end) {
1810                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1811                                 ++idx;
1812                         }
1813                 } else {
1814                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1815                 }
1816                 /* Error while receiving packet. */
1817                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1818                         return -1;
1819         }
1820         return len;
1821 }
1822
1823 /**
1824  * Translate RX completion flags to offload flags.
1825  *
1826  * @param[in] cqe
1827  *   Pointer to CQE.
1828  *
1829  * @return
1830  *   Offload flags (ol_flags) for struct rte_mbuf.
1831  */
1832 static inline uint32_t
1833 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1834 {
1835         uint32_t ol_flags = 0;
1836         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1837
1838         ol_flags =
1839                 TRANSPOSE(flags,
1840                           MLX5_CQE_RX_L3_HDR_VALID,
1841                           PKT_RX_IP_CKSUM_GOOD) |
1842                 TRANSPOSE(flags,
1843                           MLX5_CQE_RX_L4_HDR_VALID,
1844                           PKT_RX_L4_CKSUM_GOOD);
1845         return ol_flags;
1846 }
1847
1848 /**
1849  * Fill in mbuf fields from RX completion flags.
1850  * Note that pkt->ol_flags should be initialized outside of this function.
1851  *
1852  * @param rxq
1853  *   Pointer to RX queue.
1854  * @param pkt
1855  *   mbuf to fill.
1856  * @param cqe
1857  *   CQE to process.
1858  * @param rss_hash_res
1859  *   Packet RSS Hash result.
1860  */
1861 static inline void
1862 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1863                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
1864 {
1865         /* Update packet information. */
1866         pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
1867         if (rss_hash_res && rxq->rss_hash) {
1868                 pkt->hash.rss = rss_hash_res;
1869                 pkt->ol_flags |= PKT_RX_RSS_HASH;
1870         }
1871         if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1872                 pkt->ol_flags |= PKT_RX_FDIR;
1873                 if (cqe->sop_drop_qpn !=
1874                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1875                         uint32_t mark = cqe->sop_drop_qpn;
1876
1877                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1878                         pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1879                 }
1880         }
1881         if (rxq->csum)
1882                 pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1883         if (rxq->vlan_strip &&
1884             (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1885                 pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1886                 pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1887         }
1888         if (rxq->hw_timestamp) {
1889                 pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
1890                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1891         }
1892 }
1893
1894 /**
1895  * DPDK callback for RX.
1896  *
1897  * @param dpdk_rxq
1898  *   Generic pointer to RX queue structure.
1899  * @param[out] pkts
1900  *   Array to store received packets.
1901  * @param pkts_n
1902  *   Maximum number of packets in array.
1903  *
1904  * @return
1905  *   Number of packets successfully received (<= pkts_n).
1906  */
1907 uint16_t
1908 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1909 {
1910         struct mlx5_rxq_data *rxq = dpdk_rxq;
1911         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1912         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1913         const unsigned int sges_n = rxq->sges_n;
1914         struct rte_mbuf *pkt = NULL;
1915         struct rte_mbuf *seg = NULL;
1916         volatile struct mlx5_cqe *cqe =
1917                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1918         unsigned int i = 0;
1919         unsigned int rq_ci = rxq->rq_ci << sges_n;
1920         int len = 0; /* keep its value across iterations. */
1921
1922         while (pkts_n) {
1923                 unsigned int idx = rq_ci & wqe_cnt;
1924                 volatile struct mlx5_wqe_data_seg *wqe =
1925                         &((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
1926                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1927                 volatile struct mlx5_mini_cqe8 *mcqe = NULL;
1928                 uint32_t rss_hash_res;
1929
1930                 if (pkt)
1931                         NEXT(seg) = rep;
1932                 seg = rep;
1933                 rte_prefetch0(seg);
1934                 rte_prefetch0(cqe);
1935                 rte_prefetch0(wqe);
1936                 rep = rte_mbuf_raw_alloc(rxq->mp);
1937                 if (unlikely(rep == NULL)) {
1938                         ++rxq->stats.rx_nombuf;
1939                         if (!pkt) {
1940                                 /*
1941                                  * no buffers before we even started,
1942                                  * bail out silently.
1943                                  */
1944                                 break;
1945                         }
1946                         while (pkt != seg) {
1947                                 assert(pkt != (*rxq->elts)[idx]);
1948                                 rep = NEXT(pkt);
1949                                 NEXT(pkt) = NULL;
1950                                 NB_SEGS(pkt) = 1;
1951                                 rte_mbuf_raw_free(pkt);
1952                                 pkt = rep;
1953                         }
1954                         break;
1955                 }
1956                 if (!pkt) {
1957                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1958                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
1959                         if (!len) {
1960                                 rte_mbuf_raw_free(rep);
1961                                 break;
1962                         }
1963                         if (unlikely(len == -1)) {
1964                                 /* RX error, packet is likely too large. */
1965                                 rte_mbuf_raw_free(rep);
1966                                 ++rxq->stats.idropped;
1967                                 goto skip;
1968                         }
1969                         pkt = seg;
1970                         assert(len >= (rxq->crc_present << 2));
1971                         pkt->ol_flags = 0;
1972                         /* If compressed, take hash result from mini-CQE. */
1973                         rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
1974                                                         cqe->rx_hash_res :
1975                                                         mcqe->rx_hash_result);
1976                         rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
1977                         if (rxq->crc_present)
1978                                 len -= ETHER_CRC_LEN;
1979                         PKT_LEN(pkt) = len;
1980                 }
1981                 DATA_LEN(rep) = DATA_LEN(seg);
1982                 PKT_LEN(rep) = PKT_LEN(seg);
1983                 SET_DATA_OFF(rep, DATA_OFF(seg));
1984                 PORT(rep) = PORT(seg);
1985                 (*rxq->elts)[idx] = rep;
1986                 /*
1987                  * Fill NIC descriptor with the new buffer.  The lkey and size
1988                  * of the buffers are already known, only the buffer address
1989                  * changes.
1990                  */
1991                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1992                 /* If there's only one MR, no need to replace LKey in WQE. */
1993                 if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
1994                         wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
1995                 if (len > DATA_LEN(seg)) {
1996                         len -= DATA_LEN(seg);
1997                         ++NB_SEGS(pkt);
1998                         ++rq_ci;
1999                         continue;
2000                 }
2001                 DATA_LEN(seg) = len;
2002 #ifdef MLX5_PMD_SOFT_COUNTERS
2003                 /* Increment bytes counter. */
2004                 rxq->stats.ibytes += PKT_LEN(pkt);
2005 #endif
2006                 /* Return packet. */
2007                 *(pkts++) = pkt;
2008                 pkt = NULL;
2009                 --pkts_n;
2010                 ++i;
2011 skip:
2012                 /* Align consumer index to the next stride. */
2013                 rq_ci >>= sges_n;
2014                 ++rq_ci;
2015                 rq_ci <<= sges_n;
2016         }
2017         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2018                 return 0;
2019         /* Update the consumer index. */
2020         rxq->rq_ci = rq_ci >> sges_n;
2021         rte_cio_wmb();
2022         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2023         rte_cio_wmb();
2024         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2025 #ifdef MLX5_PMD_SOFT_COUNTERS
2026         /* Increment packets counter. */
2027         rxq->stats.ipackets += i;
2028 #endif
2029         return i;
2030 }
2031
2032 void
2033 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
2034 {
2035         struct mlx5_mprq_buf *buf = opaque;
2036
2037         if (rte_atomic16_read(&buf->refcnt) == 1) {
2038                 rte_mempool_put(buf->mp, buf);
2039         } else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
2040                 rte_atomic16_set(&buf->refcnt, 1);
2041                 rte_mempool_put(buf->mp, buf);
2042         }
2043 }
2044
2045 void
2046 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
2047 {
2048         mlx5_mprq_buf_free_cb(NULL, buf);
2049 }
2050
2051 static inline void
2052 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
2053 {
2054         struct mlx5_mprq_buf *rep = rxq->mprq_repl;
2055         volatile struct mlx5_wqe_data_seg *wqe =
2056                 &((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
2057         void *addr;
2058
2059         assert(rep != NULL);
2060         /* Replace MPRQ buf. */
2061         (*rxq->mprq_bufs)[rq_idx] = rep;
2062         /* Replace WQE. */
2063         addr = mlx5_mprq_buf_addr(rep);
2064         wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
2065         /* If there's only one MR, no need to replace LKey in WQE. */
2066         if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2067                 wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
2068         /* Stash a mbuf for next replacement. */
2069         if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
2070                 rxq->mprq_repl = rep;
2071         else
2072                 rxq->mprq_repl = NULL;
2073 }
2074
2075 /**
2076  * DPDK callback for RX with Multi-Packet RQ support.
2077  *
2078  * @param dpdk_rxq
2079  *   Generic pointer to RX queue structure.
2080  * @param[out] pkts
2081  *   Array to store received packets.
2082  * @param pkts_n
2083  *   Maximum number of packets in array.
2084  *
2085  * @return
2086  *   Number of packets successfully received (<= pkts_n).
2087  */
2088 uint16_t
2089 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2090 {
2091         struct mlx5_rxq_data *rxq = dpdk_rxq;
2092         const unsigned int strd_n = 1 << rxq->strd_num_n;
2093         const unsigned int strd_sz = 1 << rxq->strd_sz_n;
2094         const unsigned int strd_shift =
2095                 MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
2096         const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
2097         const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
2098         volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2099         unsigned int i = 0;
2100         uint16_t rq_ci = rxq->rq_ci;
2101         uint16_t consumed_strd = rxq->consumed_strd;
2102         struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2103
2104         while (i < pkts_n) {
2105                 struct rte_mbuf *pkt;
2106                 void *addr;
2107                 int ret;
2108                 unsigned int len;
2109                 uint16_t strd_cnt;
2110                 uint16_t strd_idx;
2111                 uint32_t offset;
2112                 uint32_t byte_cnt;
2113                 volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2114                 uint32_t rss_hash_res = 0;
2115
2116                 if (consumed_strd == strd_n) {
2117                         /* Replace WQE only if the buffer is still in use. */
2118                         if (rte_atomic16_read(&buf->refcnt) > 1) {
2119                                 mprq_buf_replace(rxq, rq_ci & wq_mask);
2120                                 /* Release the old buffer. */
2121                                 mlx5_mprq_buf_free(buf);
2122                         } else if (unlikely(rxq->mprq_repl == NULL)) {
2123                                 struct mlx5_mprq_buf *rep;
2124
2125                                 /*
2126                                  * Currently, the MPRQ mempool is out of buffer
2127                                  * and doing memcpy regardless of the size of Rx
2128                                  * packet. Retry allocation to get back to
2129                                  * normal.
2130                                  */
2131                                 if (!rte_mempool_get(rxq->mprq_mp,
2132                                                      (void **)&rep))
2133                                         rxq->mprq_repl = rep;
2134                         }
2135                         /* Advance to the next WQE. */
2136                         consumed_strd = 0;
2137                         ++rq_ci;
2138                         buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2139                 }
2140                 cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2141                 ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
2142                 if (!ret)
2143                         break;
2144                 if (unlikely(ret == -1)) {
2145                         /* RX error, packet is likely too large. */
2146                         ++rxq->stats.idropped;
2147                         continue;
2148                 }
2149                 byte_cnt = ret;
2150                 strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
2151                            MLX5_MPRQ_STRIDE_NUM_SHIFT;
2152                 assert(strd_cnt);
2153                 consumed_strd += strd_cnt;
2154                 if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
2155                         continue;
2156                 if (mcqe == NULL) {
2157                         rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
2158                         strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
2159                 } else {
2160                         /* mini-CQE for MPRQ doesn't have hash result. */
2161                         strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
2162                 }
2163                 assert(strd_idx < strd_n);
2164                 assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask));
2165                 /*
2166                  * Currently configured to receive a packet per a stride. But if
2167                  * MTU is adjusted through kernel interface, device could
2168                  * consume multiple strides without raising an error. In this
2169                  * case, the packet should be dropped because it is bigger than
2170                  * the max_rx_pkt_len.
2171                  */
2172                 if (unlikely(strd_cnt > 1)) {
2173                         ++rxq->stats.idropped;
2174                         continue;
2175                 }
2176                 pkt = rte_pktmbuf_alloc(rxq->mp);
2177                 if (unlikely(pkt == NULL)) {
2178                         ++rxq->stats.rx_nombuf;
2179                         break;
2180                 }
2181                 len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
2182                 assert((int)len >= (rxq->crc_present << 2));
2183                 if (rxq->crc_present)
2184                         len -= ETHER_CRC_LEN;
2185                 offset = strd_idx * strd_sz + strd_shift;
2186                 addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
2187                 /* Initialize the offload flag. */
2188                 pkt->ol_flags = 0;
2189                 /*
2190                  * Memcpy packets to the target mbuf if:
2191                  * - The size of packet is smaller than mprq_max_memcpy_len.
2192                  * - Out of buffer in the Mempool for Multi-Packet RQ.
2193                  */
2194                 if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
2195                         /*
2196                          * When memcpy'ing packet due to out-of-buffer, the
2197                          * packet must be smaller than the target mbuf.
2198                          */
2199                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2200                                 rte_pktmbuf_free_seg(pkt);
2201                                 ++rxq->stats.idropped;
2202                                 continue;
2203                         }
2204                         rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
2205                 } else {
2206                         rte_iova_t buf_iova;
2207                         struct rte_mbuf_ext_shared_info *shinfo;
2208                         uint16_t buf_len = strd_cnt * strd_sz;
2209
2210                         /* Increment the refcnt of the whole chunk. */
2211                         rte_atomic16_add_return(&buf->refcnt, 1);
2212                         assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
2213                                strd_n + 1);
2214                         addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
2215                         /*
2216                          * MLX5 device doesn't use iova but it is necessary in a
2217                          * case where the Rx packet is transmitted via a
2218                          * different PMD.
2219                          */
2220                         buf_iova = rte_mempool_virt2iova(buf) +
2221                                    RTE_PTR_DIFF(addr, buf);
2222                         shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
2223                                         &buf_len, mlx5_mprq_buf_free_cb, buf);
2224                         /*
2225                          * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
2226                          * attaching the stride to mbuf and more offload flags
2227                          * will be added below by calling rxq_cq_to_mbuf().
2228                          * Other fields will be overwritten.
2229                          */
2230                         rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
2231                                                   shinfo);
2232                         rte_pktmbuf_reset_headroom(pkt);
2233                         assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
2234                         /*
2235                          * Prevent potential overflow due to MTU change through
2236                          * kernel interface.
2237                          */
2238                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2239                                 rte_pktmbuf_free_seg(pkt);
2240                                 ++rxq->stats.idropped;
2241                                 continue;
2242                         }
2243                 }
2244                 rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2245                 PKT_LEN(pkt) = len;
2246                 DATA_LEN(pkt) = len;
2247                 PORT(pkt) = rxq->port_id;
2248 #ifdef MLX5_PMD_SOFT_COUNTERS
2249                 /* Increment bytes counter. */
2250                 rxq->stats.ibytes += PKT_LEN(pkt);
2251 #endif
2252                 /* Return packet. */
2253                 *(pkts++) = pkt;
2254                 ++i;
2255         }
2256         /* Update the consumer indexes. */
2257         rxq->consumed_strd = consumed_strd;
2258         rte_cio_wmb();
2259         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2260         if (rq_ci != rxq->rq_ci) {
2261                 rxq->rq_ci = rq_ci;
2262                 rte_cio_wmb();
2263                 *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2264         }
2265 #ifdef MLX5_PMD_SOFT_COUNTERS
2266         /* Increment packets counter. */
2267         rxq->stats.ipackets += i;
2268 #endif
2269         return i;
2270 }
2271
2272 /**
2273  * Dummy DPDK callback for TX.
2274  *
2275  * This function is used to temporarily replace the real callback during
2276  * unsafe control operations on the queue, or in case of error.
2277  *
2278  * @param dpdk_txq
2279  *   Generic pointer to TX queue structure.
2280  * @param[in] pkts
2281  *   Packets to transmit.
2282  * @param pkts_n
2283  *   Number of packets in array.
2284  *
2285  * @return
2286  *   Number of packets successfully transmitted (<= pkts_n).
2287  */
2288 uint16_t
2289 removed_tx_burst(void *dpdk_txq __rte_unused,
2290                  struct rte_mbuf **pkts __rte_unused,
2291                  uint16_t pkts_n __rte_unused)
2292 {
2293         return 0;
2294 }
2295
2296 /**
2297  * Dummy DPDK callback for RX.
2298  *
2299  * This function is used to temporarily replace the real callback during
2300  * unsafe control operations on the queue, or in case of error.
2301  *
2302  * @param dpdk_rxq
2303  *   Generic pointer to RX queue structure.
2304  * @param[out] pkts
2305  *   Array to store received packets.
2306  * @param pkts_n
2307  *   Maximum number of packets in array.
2308  *
2309  * @return
2310  *   Number of packets successfully received (<= pkts_n).
2311  */
2312 uint16_t
2313 removed_rx_burst(void *dpdk_txq __rte_unused,
2314                  struct rte_mbuf **pkts __rte_unused,
2315                  uint16_t pkts_n __rte_unused)
2316 {
2317         return 0;
2318 }
2319
2320 /*
2321  * Vectorized Rx/Tx routines are not compiled in when required vector
2322  * instructions are not supported on a target architecture. The following null
2323  * stubs are needed for linkage when those are not included outside of this file
2324  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2325  */
2326
2327 uint16_t __attribute__((weak))
2328 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2329                       struct rte_mbuf **pkts __rte_unused,
2330                       uint16_t pkts_n __rte_unused)
2331 {
2332         return 0;
2333 }
2334
2335 uint16_t __attribute__((weak))
2336 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2337                   struct rte_mbuf **pkts __rte_unused,
2338                   uint16_t pkts_n __rte_unused)
2339 {
2340         return 0;
2341 }
2342
2343 uint16_t __attribute__((weak))
2344 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2345                   struct rte_mbuf **pkts __rte_unused,
2346                   uint16_t pkts_n __rte_unused)
2347 {
2348         return 0;
2349 }
2350
2351 int __attribute__((weak))
2352 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2353 {
2354         return -ENOTSUP;
2355 }
2356
2357 int __attribute__((weak))
2358 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2359 {
2360         return -ENOTSUP;
2361 }
2362
2363 int __attribute__((weak))
2364 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2365 {
2366         return -ENOTSUP;
2367 }
2368
2369 int __attribute__((weak))
2370 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2371 {
2372         return -ENOTSUP;
2373 }