New upstream version 17.11.1
[deb_dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2015 6WIND S.A.
5  *   Copyright 2015 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 /* Verbs header. */
40 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
41 #ifdef PEDANTIC
42 #pragma GCC diagnostic ignored "-Wpedantic"
43 #endif
44 #include <infiniband/verbs.h>
45 #include <infiniband/mlx5dv.h>
46 #ifdef PEDANTIC
47 #pragma GCC diagnostic error "-Wpedantic"
48 #endif
49
50 #include <rte_mbuf.h>
51 #include <rte_mempool.h>
52 #include <rte_prefetch.h>
53 #include <rte_common.h>
54 #include <rte_branch_prediction.h>
55 #include <rte_ether.h>
56
57 #include "mlx5.h"
58 #include "mlx5_utils.h"
59 #include "mlx5_rxtx.h"
60 #include "mlx5_autoconf.h"
61 #include "mlx5_defs.h"
62 #include "mlx5_prm.h"
63
64 static __rte_always_inline uint32_t
65 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
66
67 static __rte_always_inline int
68 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
69                  uint16_t cqe_cnt, uint32_t *rss_hash);
70
71 static __rte_always_inline uint32_t
72 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
73
74 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
75         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
76 };
77
78 /**
79  * Build a table to translate Rx completion flags to packet type.
80  *
81  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
82  */
83 void
84 mlx5_set_ptype_table(void)
85 {
86         unsigned int i;
87         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
88
89         /* Last entry must not be overwritten, reserved for errored packet. */
90         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
91                 (*p)[i] = RTE_PTYPE_UNKNOWN;
92         /*
93          * The index to the array should have:
94          * bit[1:0] = l3_hdr_type
95          * bit[4:2] = l4_hdr_type
96          * bit[5] = ip_frag
97          * bit[6] = tunneled
98          * bit[7] = outer_l3_type
99          */
100         /* L2 */
101         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
102         /* L3 */
103         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_NONFRAG;
105         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_NONFRAG;
107         /* Fragmented */
108         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_FRAG;
110         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_FRAG;
112         /* TCP */
113         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_TCP;
115         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_TCP;
117         /* UDP */
118         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
119                      RTE_PTYPE_L4_UDP;
120         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
121                      RTE_PTYPE_L4_UDP;
122         /* Repeat with outer_l3_type being set. Just in case. */
123         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_NONFRAG;
125         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_NONFRAG;
127         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_FRAG;
129         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_FRAG;
131         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_TCP;
135         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
138                      RTE_PTYPE_L4_UDP;
139         /* Tunneled - L3 */
140         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L4_NONFRAG;
143         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_NONFRAG;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         /* Tunneled - UDP */
179         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
181                      RTE_PTYPE_INNER_L4_UDP;
182         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
184                      RTE_PTYPE_INNER_L4_UDP;
185         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
187                      RTE_PTYPE_INNER_L4_UDP;
188         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L4_UDP;
191 }
192
193 /**
194  * Return the size of tailroom of WQ.
195  *
196  * @param txq
197  *   Pointer to TX queue structure.
198  * @param addr
199  *   Pointer to tail of WQ.
200  *
201  * @return
202  *   Size of tailroom.
203  */
204 static inline size_t
205 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
206 {
207         size_t tailroom;
208         tailroom = (uintptr_t)(txq->wqes) +
209                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
210                    (uintptr_t)addr;
211         return tailroom;
212 }
213
214 /**
215  * Copy data to tailroom of circular queue.
216  *
217  * @param dst
218  *   Pointer to destination.
219  * @param src
220  *   Pointer to source.
221  * @param n
222  *   Number of bytes to copy.
223  * @param base
224  *   Pointer to head of queue.
225  * @param tailroom
226  *   Size of tailroom from dst.
227  *
228  * @return
229  *   Pointer after copied data.
230  */
231 static inline void *
232 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
233                 void *base, size_t tailroom)
234 {
235         void *ret;
236
237         if (n > tailroom) {
238                 rte_memcpy(dst, src, tailroom);
239                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
240                            n - tailroom);
241                 ret = (uint8_t *)base + n - tailroom;
242         } else {
243                 rte_memcpy(dst, src, n);
244                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
245         }
246         return ret;
247 }
248
249 /**
250  * DPDK callback to check the status of a tx descriptor.
251  *
252  * @param tx_queue
253  *   The tx queue.
254  * @param[in] offset
255  *   The index of the descriptor in the ring.
256  *
257  * @return
258  *   The status of the tx descriptor.
259  */
260 int
261 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
262 {
263         struct mlx5_txq_data *txq = tx_queue;
264         uint16_t used;
265
266         mlx5_tx_complete(txq);
267         used = txq->elts_head - txq->elts_tail;
268         if (offset < used)
269                 return RTE_ETH_TX_DESC_FULL;
270         return RTE_ETH_TX_DESC_DONE;
271 }
272
273 /**
274  * DPDK callback to check the status of a rx descriptor.
275  *
276  * @param rx_queue
277  *   The rx queue.
278  * @param[in] offset
279  *   The index of the descriptor in the ring.
280  *
281  * @return
282  *   The status of the tx descriptor.
283  */
284 int
285 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
286 {
287         struct mlx5_rxq_data *rxq = rx_queue;
288         struct rxq_zip *zip = &rxq->zip;
289         volatile struct mlx5_cqe *cqe;
290         const unsigned int cqe_n = (1 << rxq->cqe_n);
291         const unsigned int cqe_cnt = cqe_n - 1;
292         unsigned int cq_ci;
293         unsigned int used;
294
295         /* if we are processing a compressed cqe */
296         if (zip->ai) {
297                 used = zip->cqe_cnt - zip->ca;
298                 cq_ci = zip->cq_ci;
299         } else {
300                 used = 0;
301                 cq_ci = rxq->cq_ci;
302         }
303         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
304         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
305                 int8_t op_own;
306                 unsigned int n;
307
308                 op_own = cqe->op_own;
309                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
310                         n = rte_be_to_cpu_32(cqe->byte_cnt);
311                 else
312                         n = 1;
313                 cq_ci += n;
314                 used += n;
315                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
316         }
317         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
318         if (offset < used)
319                 return RTE_ETH_RX_DESC_DONE;
320         return RTE_ETH_RX_DESC_AVAIL;
321 }
322
323 /**
324  * DPDK callback for TX.
325  *
326  * @param dpdk_txq
327  *   Generic pointer to TX queue structure.
328  * @param[in] pkts
329  *   Packets to transmit.
330  * @param pkts_n
331  *   Number of packets in array.
332  *
333  * @return
334  *   Number of packets successfully transmitted (<= pkts_n).
335  */
336 uint16_t
337 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
338 {
339         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
340         uint16_t elts_head = txq->elts_head;
341         const uint16_t elts_n = 1 << txq->elts_n;
342         const uint16_t elts_m = elts_n - 1;
343         unsigned int i = 0;
344         unsigned int j = 0;
345         unsigned int k = 0;
346         uint16_t max_elts;
347         unsigned int max_inline = txq->max_inline;
348         const unsigned int inline_en = !!max_inline && txq->inline_en;
349         uint16_t max_wqe;
350         unsigned int comp;
351         volatile struct mlx5_wqe_v *wqe = NULL;
352         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
353         unsigned int segs_n = 0;
354         struct rte_mbuf *buf = NULL;
355         uint8_t *raw;
356
357         if (unlikely(!pkts_n))
358                 return 0;
359         /* Prefetch first packet cacheline. */
360         rte_prefetch0(*pkts);
361         /* Start processing. */
362         mlx5_tx_complete(txq);
363         max_elts = (elts_n - (elts_head - txq->elts_tail));
364         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
365         if (unlikely(!max_wqe))
366                 return 0;
367         do {
368                 volatile rte_v128u32_t *dseg = NULL;
369                 uint32_t length;
370                 unsigned int ds = 0;
371                 unsigned int sg = 0; /* counter of additional segs attached. */
372                 uintptr_t addr;
373                 uint64_t naddr;
374                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
375                 uint16_t tso_header_sz = 0;
376                 uint16_t ehdr;
377                 uint8_t cs_flags;
378                 uint64_t tso = 0;
379                 uint16_t tso_segsz = 0;
380 #ifdef MLX5_PMD_SOFT_COUNTERS
381                 uint32_t total_length = 0;
382 #endif
383
384                 /* first_seg */
385                 buf = *pkts;
386                 segs_n = buf->nb_segs;
387                 /*
388                  * Make sure there is enough room to store this packet and
389                  * that one ring entry remains unused.
390                  */
391                 assert(segs_n);
392                 if (max_elts < segs_n)
393                         break;
394                 max_elts -= segs_n;
395                 --segs_n;
396                 if (unlikely(--max_wqe == 0))
397                         break;
398                 wqe = (volatile struct mlx5_wqe_v *)
399                         tx_mlx5_wqe(txq, txq->wqe_ci);
400                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
401                 if (pkts_n - i > 1)
402                         rte_prefetch0(*(pkts + 1));
403                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
404                 length = DATA_LEN(buf);
405                 ehdr = (((uint8_t *)addr)[1] << 8) |
406                        ((uint8_t *)addr)[0];
407 #ifdef MLX5_PMD_SOFT_COUNTERS
408                 total_length = length;
409 #endif
410                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
411                         txq->stats.oerrors++;
412                         break;
413                 }
414                 /* Update element. */
415                 (*txq->elts)[elts_head & elts_m] = buf;
416                 /* Prefetch next buffer data. */
417                 if (pkts_n - i > 1)
418                         rte_prefetch0(
419                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
420                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
421                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
422                 /* Replace the Ethernet type by the VLAN if necessary. */
423                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
424                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
425                                                          buf->vlan_tci);
426                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
427
428                         addr += 2;
429                         length -= 2;
430                         /* Copy Destination and source mac address. */
431                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
432                         /* Copy VLAN. */
433                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
434                         /* Copy missing two bytes to end the DSeg. */
435                         memcpy((uint8_t *)raw + len + sizeof(vlan),
436                                ((uint8_t *)addr) + len, 2);
437                         addr += len + 2;
438                         length -= (len + 2);
439                 } else {
440                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
441                                MLX5_WQE_DWORD_SIZE);
442                         length -= pkt_inline_sz;
443                         addr += pkt_inline_sz;
444                 }
445                 raw += MLX5_WQE_DWORD_SIZE;
446                 if (txq->tso_en) {
447                         tso = buf->ol_flags & PKT_TX_TCP_SEG;
448                         if (tso) {
449                                 uintptr_t end = (uintptr_t)
450                                                 (((uintptr_t)txq->wqes) +
451                                                 (1 << txq->wqe_n) *
452                                                 MLX5_WQE_SIZE);
453                                 unsigned int copy_b;
454                                 uint8_t vlan_sz = (buf->ol_flags &
455                                                   PKT_TX_VLAN_PKT) ? 4 : 0;
456                                 const uint64_t is_tunneled =
457                                                         buf->ol_flags &
458                                                         (PKT_TX_TUNNEL_GRE |
459                                                          PKT_TX_TUNNEL_VXLAN);
460
461                                 tso_header_sz = buf->l2_len + vlan_sz +
462                                                 buf->l3_len + buf->l4_len;
463                                 tso_segsz = buf->tso_segsz;
464                                 if (unlikely(tso_segsz == 0)) {
465                                         txq->stats.oerrors++;
466                                         break;
467                                 }
468                                 if (is_tunneled && txq->tunnel_en) {
469                                         tso_header_sz += buf->outer_l2_len +
470                                                          buf->outer_l3_len;
471                                         cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
472                                 } else {
473                                         cs_flags |= MLX5_ETH_WQE_L4_CSUM;
474                                 }
475                                 if (unlikely(tso_header_sz >
476                                              MLX5_MAX_TSO_HEADER)) {
477                                         txq->stats.oerrors++;
478                                         break;
479                                 }
480                                 copy_b = tso_header_sz - pkt_inline_sz;
481                                 /* First seg must contain all headers. */
482                                 assert(copy_b <= length);
483                                 if (copy_b &&
484                                    ((end - (uintptr_t)raw) > copy_b)) {
485                                         uint16_t n = (MLX5_WQE_DS(copy_b) -
486                                                       1 + 3) / 4;
487
488                                         if (unlikely(max_wqe < n))
489                                                 break;
490                                         max_wqe -= n;
491                                         rte_memcpy((void *)raw,
492                                                    (void *)addr, copy_b);
493                                         addr += copy_b;
494                                         length -= copy_b;
495                                         /* Include padding for TSO header. */
496                                         copy_b = MLX5_WQE_DS(copy_b) *
497                                                  MLX5_WQE_DWORD_SIZE;
498                                         pkt_inline_sz += copy_b;
499                                         raw += copy_b;
500                                 } else {
501                                         /* NOP WQE. */
502                                         wqe->ctrl = (rte_v128u32_t){
503                                                      rte_cpu_to_be_32(
504                                                         txq->wqe_ci << 8),
505                                                      rte_cpu_to_be_32(
506                                                         txq->qp_num_8s | 1),
507                                                      0,
508                                                      0,
509                                         };
510                                         ds = 1;
511 #ifdef MLX5_PMD_SOFT_COUNTERS
512                                         total_length = 0;
513 #endif
514                                         k++;
515                                         goto next_wqe;
516                                 }
517                         }
518                 }
519                 /* Inline if enough room. */
520                 if (inline_en || tso) {
521                         uint32_t inl;
522                         uintptr_t end = (uintptr_t)
523                                 (((uintptr_t)txq->wqes) +
524                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
525                         unsigned int inline_room = max_inline *
526                                                    RTE_CACHE_LINE_SIZE -
527                                                    (pkt_inline_sz - 2) -
528                                                    !!tso * sizeof(inl);
529                         uintptr_t addr_end = (addr + inline_room) &
530                                              ~(RTE_CACHE_LINE_SIZE - 1);
531                         unsigned int copy_b = (addr_end > addr) ?
532                                 RTE_MIN((addr_end - addr), length) :
533                                 0;
534
535                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
536                                 /*
537                                  * One Dseg remains in the current WQE.  To
538                                  * keep the computation positive, it is
539                                  * removed after the bytes to Dseg conversion.
540                                  */
541                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
542
543                                 if (unlikely(max_wqe < n))
544                                         break;
545                                 max_wqe -= n;
546                                 if (tso) {
547                                         inl = rte_cpu_to_be_32(copy_b |
548                                                                MLX5_INLINE_SEG);
549                                         rte_memcpy((void *)raw,
550                                                    (void *)&inl, sizeof(inl));
551                                         raw += sizeof(inl);
552                                         pkt_inline_sz += sizeof(inl);
553                                 }
554                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
555                                 addr += copy_b;
556                                 length -= copy_b;
557                                 pkt_inline_sz += copy_b;
558                         }
559                         /*
560                          * 2 DWORDs consumed by the WQE header + ETH segment +
561                          * the size of the inline part of the packet.
562                          */
563                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
564                         if (length > 0) {
565                                 if (ds % (MLX5_WQE_SIZE /
566                                           MLX5_WQE_DWORD_SIZE) == 0) {
567                                         if (unlikely(--max_wqe == 0))
568                                                 break;
569                                         dseg = (volatile rte_v128u32_t *)
570                                                tx_mlx5_wqe(txq, txq->wqe_ci +
571                                                            ds / 4);
572                                 } else {
573                                         dseg = (volatile rte_v128u32_t *)
574                                                 ((uintptr_t)wqe +
575                                                  (ds * MLX5_WQE_DWORD_SIZE));
576                                 }
577                                 goto use_dseg;
578                         } else if (!segs_n) {
579                                 goto next_pkt;
580                         } else {
581                                 /* dseg will be advance as part of next_seg */
582                                 dseg = (volatile rte_v128u32_t *)
583                                         ((uintptr_t)wqe +
584                                          ((ds - 1) * MLX5_WQE_DWORD_SIZE));
585                                 goto next_seg;
586                         }
587                 } else {
588                         /*
589                          * No inline has been done in the packet, only the
590                          * Ethernet Header as been stored.
591                          */
592                         dseg = (volatile rte_v128u32_t *)
593                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
594                         ds = 3;
595 use_dseg:
596                         /* Add the remaining packet as a simple ds. */
597                         naddr = rte_cpu_to_be_64(addr);
598                         *dseg = (rte_v128u32_t){
599                                 rte_cpu_to_be_32(length),
600                                 mlx5_tx_mb2mr(txq, buf),
601                                 naddr,
602                                 naddr >> 32,
603                         };
604                         ++ds;
605                         if (!segs_n)
606                                 goto next_pkt;
607                 }
608 next_seg:
609                 assert(buf);
610                 assert(ds);
611                 assert(wqe);
612                 /*
613                  * Spill on next WQE when the current one does not have
614                  * enough room left. Size of WQE must a be a multiple
615                  * of data segment size.
616                  */
617                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
618                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
619                         if (unlikely(--max_wqe == 0))
620                                 break;
621                         dseg = (volatile rte_v128u32_t *)
622                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
623                         rte_prefetch0(tx_mlx5_wqe(txq,
624                                                   txq->wqe_ci + ds / 4 + 1));
625                 } else {
626                         ++dseg;
627                 }
628                 ++ds;
629                 buf = buf->next;
630                 assert(buf);
631                 length = DATA_LEN(buf);
632 #ifdef MLX5_PMD_SOFT_COUNTERS
633                 total_length += length;
634 #endif
635                 /* Store segment information. */
636                 naddr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
637                 *dseg = (rte_v128u32_t){
638                         rte_cpu_to_be_32(length),
639                         mlx5_tx_mb2mr(txq, buf),
640                         naddr,
641                         naddr >> 32,
642                 };
643                 (*txq->elts)[++elts_head & elts_m] = buf;
644                 ++sg;
645                 /* Advance counter only if all segs are successfully posted. */
646                 if (sg < segs_n)
647                         goto next_seg;
648                 else
649                         j += sg;
650 next_pkt:
651                 if (ds > MLX5_DSEG_MAX) {
652                         txq->stats.oerrors++;
653                         break;
654                 }
655                 ++elts_head;
656                 ++pkts;
657                 ++i;
658                 /* Initialize known and common part of the WQE structure. */
659                 if (tso) {
660                         wqe->ctrl = (rte_v128u32_t){
661                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
662                                                  MLX5_OPCODE_TSO),
663                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
664                                 0,
665                                 0,
666                         };
667                         wqe->eseg = (rte_v128u32_t){
668                                 0,
669                                 cs_flags | (rte_cpu_to_be_16(tso_segsz) << 16),
670                                 0,
671                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
672                         };
673                 } else {
674                         wqe->ctrl = (rte_v128u32_t){
675                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
676                                                  MLX5_OPCODE_SEND),
677                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
678                                 0,
679                                 0,
680                         };
681                         wqe->eseg = (rte_v128u32_t){
682                                 0,
683                                 cs_flags,
684                                 0,
685                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
686                         };
687                 }
688 next_wqe:
689                 txq->wqe_ci += (ds + 3) / 4;
690                 /* Save the last successful WQE for completion request */
691                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
692 #ifdef MLX5_PMD_SOFT_COUNTERS
693                 /* Increment sent bytes counter. */
694                 txq->stats.obytes += total_length;
695 #endif
696         } while (i < pkts_n);
697         /* Take a shortcut if nothing must be sent. */
698         if (unlikely((i + k) == 0))
699                 return 0;
700         txq->elts_head += (i + j);
701         /* Check whether completion threshold has been reached. */
702         comp = txq->elts_comp + i + j + k;
703         if (comp >= MLX5_TX_COMP_THRESH) {
704                 /* Request completion on last WQE. */
705                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
706                 /* Save elts_head in unused "immediate" field of WQE. */
707                 last_wqe->ctrl3 = txq->elts_head;
708                 txq->elts_comp = 0;
709         } else {
710                 txq->elts_comp = comp;
711         }
712 #ifdef MLX5_PMD_SOFT_COUNTERS
713         /* Increment sent packets counter. */
714         txq->stats.opackets += i;
715 #endif
716         /* Ring QP doorbell. */
717         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
718         return i;
719 }
720
721 /**
722  * Open a MPW session.
723  *
724  * @param txq
725  *   Pointer to TX queue structure.
726  * @param mpw
727  *   Pointer to MPW session structure.
728  * @param length
729  *   Packet length.
730  */
731 static inline void
732 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
733 {
734         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
735         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
736                 (volatile struct mlx5_wqe_data_seg (*)[])
737                 tx_mlx5_wqe(txq, idx + 1);
738
739         mpw->state = MLX5_MPW_STATE_OPENED;
740         mpw->pkts_n = 0;
741         mpw->len = length;
742         mpw->total_len = 0;
743         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
744         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
745         mpw->wqe->eseg.inline_hdr_sz = 0;
746         mpw->wqe->eseg.rsvd0 = 0;
747         mpw->wqe->eseg.rsvd1 = 0;
748         mpw->wqe->eseg.rsvd2 = 0;
749         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
750                                              (txq->wqe_ci << 8) |
751                                              MLX5_OPCODE_TSO);
752         mpw->wqe->ctrl[2] = 0;
753         mpw->wqe->ctrl[3] = 0;
754         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
755                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
756         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
757                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
758         mpw->data.dseg[2] = &(*dseg)[0];
759         mpw->data.dseg[3] = &(*dseg)[1];
760         mpw->data.dseg[4] = &(*dseg)[2];
761 }
762
763 /**
764  * Close a MPW session.
765  *
766  * @param txq
767  *   Pointer to TX queue structure.
768  * @param mpw
769  *   Pointer to MPW session structure.
770  */
771 static inline void
772 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
773 {
774         unsigned int num = mpw->pkts_n;
775
776         /*
777          * Store size in multiple of 16 bytes. Control and Ethernet segments
778          * count as 2.
779          */
780         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
781         mpw->state = MLX5_MPW_STATE_CLOSED;
782         if (num < 3)
783                 ++txq->wqe_ci;
784         else
785                 txq->wqe_ci += 2;
786         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
787         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
788 }
789
790 /**
791  * DPDK callback for TX with MPW support.
792  *
793  * @param dpdk_txq
794  *   Generic pointer to TX queue structure.
795  * @param[in] pkts
796  *   Packets to transmit.
797  * @param pkts_n
798  *   Number of packets in array.
799  *
800  * @return
801  *   Number of packets successfully transmitted (<= pkts_n).
802  */
803 uint16_t
804 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
805 {
806         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
807         uint16_t elts_head = txq->elts_head;
808         const uint16_t elts_n = 1 << txq->elts_n;
809         const uint16_t elts_m = elts_n - 1;
810         unsigned int i = 0;
811         unsigned int j = 0;
812         uint16_t max_elts;
813         uint16_t max_wqe;
814         unsigned int comp;
815         struct mlx5_mpw mpw = {
816                 .state = MLX5_MPW_STATE_CLOSED,
817         };
818
819         if (unlikely(!pkts_n))
820                 return 0;
821         /* Prefetch first packet cacheline. */
822         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
823         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
824         /* Start processing. */
825         mlx5_tx_complete(txq);
826         max_elts = (elts_n - (elts_head - txq->elts_tail));
827         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
828         if (unlikely(!max_wqe))
829                 return 0;
830         do {
831                 struct rte_mbuf *buf = *(pkts++);
832                 uint32_t length;
833                 unsigned int segs_n = buf->nb_segs;
834                 uint32_t cs_flags;
835
836                 /*
837                  * Make sure there is enough room to store this packet and
838                  * that one ring entry remains unused.
839                  */
840                 assert(segs_n);
841                 if (max_elts < segs_n)
842                         break;
843                 /* Do not bother with large packets MPW cannot handle. */
844                 if (segs_n > MLX5_MPW_DSEG_MAX) {
845                         txq->stats.oerrors++;
846                         break;
847                 }
848                 max_elts -= segs_n;
849                 --pkts_n;
850                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
851                 /* Retrieve packet information. */
852                 length = PKT_LEN(buf);
853                 assert(length);
854                 /* Start new session if packet differs. */
855                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
856                     ((mpw.len != length) ||
857                      (segs_n != 1) ||
858                      (mpw.wqe->eseg.cs_flags != cs_flags)))
859                         mlx5_mpw_close(txq, &mpw);
860                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
861                         /*
862                          * Multi-Packet WQE consumes at most two WQE.
863                          * mlx5_mpw_new() expects to be able to use such
864                          * resources.
865                          */
866                         if (unlikely(max_wqe < 2))
867                                 break;
868                         max_wqe -= 2;
869                         mlx5_mpw_new(txq, &mpw, length);
870                         mpw.wqe->eseg.cs_flags = cs_flags;
871                 }
872                 /* Multi-segment packets must be alone in their MPW. */
873                 assert((segs_n == 1) || (mpw.pkts_n == 0));
874 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
875                 length = 0;
876 #endif
877                 do {
878                         volatile struct mlx5_wqe_data_seg *dseg;
879                         uintptr_t addr;
880
881                         assert(buf);
882                         (*txq->elts)[elts_head++ & elts_m] = buf;
883                         dseg = mpw.data.dseg[mpw.pkts_n];
884                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
885                         *dseg = (struct mlx5_wqe_data_seg){
886                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
887                                 .lkey = mlx5_tx_mb2mr(txq, buf),
888                                 .addr = rte_cpu_to_be_64(addr),
889                         };
890 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
891                         length += DATA_LEN(buf);
892 #endif
893                         buf = buf->next;
894                         ++mpw.pkts_n;
895                         ++j;
896                 } while (--segs_n);
897                 assert(length == mpw.len);
898                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
899                         mlx5_mpw_close(txq, &mpw);
900 #ifdef MLX5_PMD_SOFT_COUNTERS
901                 /* Increment sent bytes counter. */
902                 txq->stats.obytes += length;
903 #endif
904                 ++i;
905         } while (pkts_n);
906         /* Take a shortcut if nothing must be sent. */
907         if (unlikely(i == 0))
908                 return 0;
909         /* Check whether completion threshold has been reached. */
910         /* "j" includes both packets and segments. */
911         comp = txq->elts_comp + j;
912         if (comp >= MLX5_TX_COMP_THRESH) {
913                 volatile struct mlx5_wqe *wqe = mpw.wqe;
914
915                 /* Request completion on last WQE. */
916                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
917                 /* Save elts_head in unused "immediate" field of WQE. */
918                 wqe->ctrl[3] = elts_head;
919                 txq->elts_comp = 0;
920         } else {
921                 txq->elts_comp = comp;
922         }
923 #ifdef MLX5_PMD_SOFT_COUNTERS
924         /* Increment sent packets counter. */
925         txq->stats.opackets += i;
926 #endif
927         /* Ring QP doorbell. */
928         if (mpw.state == MLX5_MPW_STATE_OPENED)
929                 mlx5_mpw_close(txq, &mpw);
930         mlx5_tx_dbrec(txq, mpw.wqe);
931         txq->elts_head = elts_head;
932         return i;
933 }
934
935 /**
936  * Open a MPW inline session.
937  *
938  * @param txq
939  *   Pointer to TX queue structure.
940  * @param mpw
941  *   Pointer to MPW session structure.
942  * @param length
943  *   Packet length.
944  */
945 static inline void
946 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
947                     uint32_t length)
948 {
949         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
950         struct mlx5_wqe_inl_small *inl;
951
952         mpw->state = MLX5_MPW_INL_STATE_OPENED;
953         mpw->pkts_n = 0;
954         mpw->len = length;
955         mpw->total_len = 0;
956         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
957         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
958                                              (txq->wqe_ci << 8) |
959                                              MLX5_OPCODE_TSO);
960         mpw->wqe->ctrl[2] = 0;
961         mpw->wqe->ctrl[3] = 0;
962         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
963         mpw->wqe->eseg.inline_hdr_sz = 0;
964         mpw->wqe->eseg.cs_flags = 0;
965         mpw->wqe->eseg.rsvd0 = 0;
966         mpw->wqe->eseg.rsvd1 = 0;
967         mpw->wqe->eseg.rsvd2 = 0;
968         inl = (struct mlx5_wqe_inl_small *)
969                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
970         mpw->data.raw = (uint8_t *)&inl->raw;
971 }
972
973 /**
974  * Close a MPW inline session.
975  *
976  * @param txq
977  *   Pointer to TX queue structure.
978  * @param mpw
979  *   Pointer to MPW session structure.
980  */
981 static inline void
982 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
983 {
984         unsigned int size;
985         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
986                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
987
988         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
989         /*
990          * Store size in multiple of 16 bytes. Control and Ethernet segments
991          * count as 2.
992          */
993         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
994                                              MLX5_WQE_DS(size));
995         mpw->state = MLX5_MPW_STATE_CLOSED;
996         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
997         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
998 }
999
1000 /**
1001  * DPDK callback for TX with MPW inline support.
1002  *
1003  * @param dpdk_txq
1004  *   Generic pointer to TX queue structure.
1005  * @param[in] pkts
1006  *   Packets to transmit.
1007  * @param pkts_n
1008  *   Number of packets in array.
1009  *
1010  * @return
1011  *   Number of packets successfully transmitted (<= pkts_n).
1012  */
1013 uint16_t
1014 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1015                          uint16_t pkts_n)
1016 {
1017         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1018         uint16_t elts_head = txq->elts_head;
1019         const uint16_t elts_n = 1 << txq->elts_n;
1020         const uint16_t elts_m = elts_n - 1;
1021         unsigned int i = 0;
1022         unsigned int j = 0;
1023         uint16_t max_elts;
1024         uint16_t max_wqe;
1025         unsigned int comp;
1026         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1027         struct mlx5_mpw mpw = {
1028                 .state = MLX5_MPW_STATE_CLOSED,
1029         };
1030         /*
1031          * Compute the maximum number of WQE which can be consumed by inline
1032          * code.
1033          * - 2 DSEG for:
1034          *   - 1 control segment,
1035          *   - 1 Ethernet segment,
1036          * - N Dseg from the inline request.
1037          */
1038         const unsigned int wqe_inl_n =
1039                 ((2 * MLX5_WQE_DWORD_SIZE +
1040                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1041                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1042
1043         if (unlikely(!pkts_n))
1044                 return 0;
1045         /* Prefetch first packet cacheline. */
1046         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1047         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1048         /* Start processing. */
1049         mlx5_tx_complete(txq);
1050         max_elts = (elts_n - (elts_head - txq->elts_tail));
1051         do {
1052                 struct rte_mbuf *buf = *(pkts++);
1053                 uintptr_t addr;
1054                 uint32_t length;
1055                 unsigned int segs_n = buf->nb_segs;
1056                 uint8_t cs_flags;
1057
1058                 /*
1059                  * Make sure there is enough room to store this packet and
1060                  * that one ring entry remains unused.
1061                  */
1062                 assert(segs_n);
1063                 if (max_elts < segs_n)
1064                         break;
1065                 /* Do not bother with large packets MPW cannot handle. */
1066                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1067                         txq->stats.oerrors++;
1068                         break;
1069                 }
1070                 max_elts -= segs_n;
1071                 --pkts_n;
1072                 /*
1073                  * Compute max_wqe in case less WQE were consumed in previous
1074                  * iteration.
1075                  */
1076                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1077                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
1078                 /* Retrieve packet information. */
1079                 length = PKT_LEN(buf);
1080                 /* Start new session if packet differs. */
1081                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1082                         if ((mpw.len != length) ||
1083                             (segs_n != 1) ||
1084                             (mpw.wqe->eseg.cs_flags != cs_flags))
1085                                 mlx5_mpw_close(txq, &mpw);
1086                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1087                         if ((mpw.len != length) ||
1088                             (segs_n != 1) ||
1089                             (length > inline_room) ||
1090                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1091                                 mlx5_mpw_inline_close(txq, &mpw);
1092                                 inline_room =
1093                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1094                         }
1095                 }
1096                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1097                         if ((segs_n != 1) ||
1098                             (length > inline_room)) {
1099                                 /*
1100                                  * Multi-Packet WQE consumes at most two WQE.
1101                                  * mlx5_mpw_new() expects to be able to use
1102                                  * such resources.
1103                                  */
1104                                 if (unlikely(max_wqe < 2))
1105                                         break;
1106                                 max_wqe -= 2;
1107                                 mlx5_mpw_new(txq, &mpw, length);
1108                                 mpw.wqe->eseg.cs_flags = cs_flags;
1109                         } else {
1110                                 if (unlikely(max_wqe < wqe_inl_n))
1111                                         break;
1112                                 max_wqe -= wqe_inl_n;
1113                                 mlx5_mpw_inline_new(txq, &mpw, length);
1114                                 mpw.wqe->eseg.cs_flags = cs_flags;
1115                         }
1116                 }
1117                 /* Multi-segment packets must be alone in their MPW. */
1118                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1119                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1120                         assert(inline_room ==
1121                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1122 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1123                         length = 0;
1124 #endif
1125                         do {
1126                                 volatile struct mlx5_wqe_data_seg *dseg;
1127
1128                                 assert(buf);
1129                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1130                                 dseg = mpw.data.dseg[mpw.pkts_n];
1131                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1132                                 *dseg = (struct mlx5_wqe_data_seg){
1133                                         .byte_count =
1134                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1135                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1136                                         .addr = rte_cpu_to_be_64(addr),
1137                                 };
1138 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1139                                 length += DATA_LEN(buf);
1140 #endif
1141                                 buf = buf->next;
1142                                 ++mpw.pkts_n;
1143                                 ++j;
1144                         } while (--segs_n);
1145                         assert(length == mpw.len);
1146                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1147                                 mlx5_mpw_close(txq, &mpw);
1148                 } else {
1149                         unsigned int max;
1150
1151                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1152                         assert(length <= inline_room);
1153                         assert(length == DATA_LEN(buf));
1154                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1155                         (*txq->elts)[elts_head++ & elts_m] = buf;
1156                         /* Maximum number of bytes before wrapping. */
1157                         max = ((((uintptr_t)(txq->wqes)) +
1158                                 (1 << txq->wqe_n) *
1159                                 MLX5_WQE_SIZE) -
1160                                (uintptr_t)mpw.data.raw);
1161                         if (length > max) {
1162                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1163                                            (void *)addr,
1164                                            max);
1165                                 mpw.data.raw = (volatile void *)txq->wqes;
1166                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1167                                            (void *)(addr + max),
1168                                            length - max);
1169                                 mpw.data.raw += length - max;
1170                         } else {
1171                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1172                                            (void *)addr,
1173                                            length);
1174
1175                                 if (length == max)
1176                                         mpw.data.raw =
1177                                                 (volatile void *)txq->wqes;
1178                                 else
1179                                         mpw.data.raw += length;
1180                         }
1181                         ++mpw.pkts_n;
1182                         mpw.total_len += length;
1183                         ++j;
1184                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1185                                 mlx5_mpw_inline_close(txq, &mpw);
1186                                 inline_room =
1187                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1188                         } else {
1189                                 inline_room -= length;
1190                         }
1191                 }
1192 #ifdef MLX5_PMD_SOFT_COUNTERS
1193                 /* Increment sent bytes counter. */
1194                 txq->stats.obytes += length;
1195 #endif
1196                 ++i;
1197         } while (pkts_n);
1198         /* Take a shortcut if nothing must be sent. */
1199         if (unlikely(i == 0))
1200                 return 0;
1201         /* Check whether completion threshold has been reached. */
1202         /* "j" includes both packets and segments. */
1203         comp = txq->elts_comp + j;
1204         if (comp >= MLX5_TX_COMP_THRESH) {
1205                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1206
1207                 /* Request completion on last WQE. */
1208                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1209                 /* Save elts_head in unused "immediate" field of WQE. */
1210                 wqe->ctrl[3] = elts_head;
1211                 txq->elts_comp = 0;
1212         } else {
1213                 txq->elts_comp = comp;
1214         }
1215 #ifdef MLX5_PMD_SOFT_COUNTERS
1216         /* Increment sent packets counter. */
1217         txq->stats.opackets += i;
1218 #endif
1219         /* Ring QP doorbell. */
1220         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1221                 mlx5_mpw_inline_close(txq, &mpw);
1222         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1223                 mlx5_mpw_close(txq, &mpw);
1224         mlx5_tx_dbrec(txq, mpw.wqe);
1225         txq->elts_head = elts_head;
1226         return i;
1227 }
1228
1229 /**
1230  * Open an Enhanced MPW session.
1231  *
1232  * @param txq
1233  *   Pointer to TX queue structure.
1234  * @param mpw
1235  *   Pointer to MPW session structure.
1236  * @param length
1237  *   Packet length.
1238  */
1239 static inline void
1240 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1241 {
1242         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1243
1244         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1245         mpw->pkts_n = 0;
1246         mpw->total_len = sizeof(struct mlx5_wqe);
1247         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1248         mpw->wqe->ctrl[0] =
1249                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1250                                  (txq->wqe_ci << 8) |
1251                                  MLX5_OPCODE_ENHANCED_MPSW);
1252         mpw->wqe->ctrl[2] = 0;
1253         mpw->wqe->ctrl[3] = 0;
1254         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1255         if (unlikely(padding)) {
1256                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1257
1258                 /* Pad the first 2 DWORDs with zero-length inline header. */
1259                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1260                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1261                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1262                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1263                 /* Start from the next WQEBB. */
1264                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1265         } else {
1266                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1267         }
1268 }
1269
1270 /**
1271  * Close an Enhanced MPW session.
1272  *
1273  * @param txq
1274  *   Pointer to TX queue structure.
1275  * @param mpw
1276  *   Pointer to MPW session structure.
1277  *
1278  * @return
1279  *   Number of consumed WQEs.
1280  */
1281 static inline uint16_t
1282 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1283 {
1284         uint16_t ret;
1285
1286         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1287          * count as 2.
1288          */
1289         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1290                                              MLX5_WQE_DS(mpw->total_len));
1291         mpw->state = MLX5_MPW_STATE_CLOSED;
1292         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1293         txq->wqe_ci += ret;
1294         return ret;
1295 }
1296
1297 /**
1298  * DPDK callback for TX with Enhanced MPW support.
1299  *
1300  * @param dpdk_txq
1301  *   Generic pointer to TX queue structure.
1302  * @param[in] pkts
1303  *   Packets to transmit.
1304  * @param pkts_n
1305  *   Number of packets in array.
1306  *
1307  * @return
1308  *   Number of packets successfully transmitted (<= pkts_n).
1309  */
1310 uint16_t
1311 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1312 {
1313         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1314         uint16_t elts_head = txq->elts_head;
1315         const uint16_t elts_n = 1 << txq->elts_n;
1316         const uint16_t elts_m = elts_n - 1;
1317         unsigned int i = 0;
1318         unsigned int j = 0;
1319         uint16_t max_elts;
1320         uint16_t max_wqe;
1321         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1322         unsigned int mpw_room = 0;
1323         unsigned int inl_pad = 0;
1324         uint32_t inl_hdr;
1325         struct mlx5_mpw mpw = {
1326                 .state = MLX5_MPW_STATE_CLOSED,
1327         };
1328
1329         if (unlikely(!pkts_n))
1330                 return 0;
1331         /* Start processing. */
1332         mlx5_tx_complete(txq);
1333         max_elts = (elts_n - (elts_head - txq->elts_tail));
1334         /* A CQE slot must always be available. */
1335         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1336         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1337         if (unlikely(!max_wqe))
1338                 return 0;
1339         do {
1340                 struct rte_mbuf *buf = *(pkts++);
1341                 uintptr_t addr;
1342                 uint64_t naddr;
1343                 unsigned int n;
1344                 unsigned int do_inline = 0; /* Whether inline is possible. */
1345                 uint32_t length;
1346                 unsigned int segs_n = buf->nb_segs;
1347                 uint8_t cs_flags;
1348
1349                 /*
1350                  * Make sure there is enough room to store this packet and
1351                  * that one ring entry remains unused.
1352                  */
1353                 assert(segs_n);
1354                 if (max_elts - j < segs_n)
1355                         break;
1356                 /* Do not bother with large packets MPW cannot handle. */
1357                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1358                         txq->stats.oerrors++;
1359                         break;
1360                 }
1361                 cs_flags = txq_ol_cksum_to_cs(txq, buf);
1362                 /* Retrieve packet information. */
1363                 length = PKT_LEN(buf);
1364                 /* Start new session if:
1365                  * - multi-segment packet
1366                  * - no space left even for a dseg
1367                  * - next packet can be inlined with a new WQE
1368                  * - cs_flag differs
1369                  * It can't be MLX5_MPW_STATE_OPENED as always have a single
1370                  * segmented packet.
1371                  */
1372                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1373                         if ((segs_n != 1) ||
1374                             (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1375                               mpw_room) ||
1376                             (length <= txq->inline_max_packet_sz &&
1377                              inl_pad + sizeof(inl_hdr) + length >
1378                               mpw_room) ||
1379                             (mpw.wqe->eseg.cs_flags != cs_flags))
1380                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1381                 }
1382                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1383                         if (unlikely(segs_n != 1)) {
1384                                 /* Fall back to legacy MPW.
1385                                  * A MPW session consumes 2 WQEs at most to
1386                                  * include MLX5_MPW_DSEG_MAX pointers.
1387                                  */
1388                                 if (unlikely(max_wqe < 2))
1389                                         break;
1390                                 mlx5_mpw_new(txq, &mpw, length);
1391                         } else {
1392                                 /* In Enhanced MPW, inline as much as the budget
1393                                  * is allowed. The remaining space is to be
1394                                  * filled with dsegs. If the title WQEBB isn't
1395                                  * padded, it will have 2 dsegs there.
1396                                  */
1397                                 mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1398                                             (max_inline ? max_inline :
1399                                              pkts_n * MLX5_WQE_DWORD_SIZE) +
1400                                             MLX5_WQE_SIZE);
1401                                 if (unlikely(max_wqe * MLX5_WQE_SIZE <
1402                                               mpw_room))
1403                                         break;
1404                                 /* Don't pad the title WQEBB to not waste WQ. */
1405                                 mlx5_empw_new(txq, &mpw, 0);
1406                                 mpw_room -= mpw.total_len;
1407                                 inl_pad = 0;
1408                                 do_inline =
1409                                         length <= txq->inline_max_packet_sz &&
1410                                         sizeof(inl_hdr) + length <= mpw_room &&
1411                                         !txq->mpw_hdr_dseg;
1412                         }
1413                         mpw.wqe->eseg.cs_flags = cs_flags;
1414                 } else {
1415                         /* Evaluate whether the next packet can be inlined.
1416                          * Inlininig is possible when:
1417                          * - length is less than configured value
1418                          * - length fits for remaining space
1419                          * - not required to fill the title WQEBB with dsegs
1420                          */
1421                         do_inline =
1422                                 length <= txq->inline_max_packet_sz &&
1423                                 inl_pad + sizeof(inl_hdr) + length <=
1424                                  mpw_room &&
1425                                 (!txq->mpw_hdr_dseg ||
1426                                  mpw.total_len >= MLX5_WQE_SIZE);
1427                 }
1428                 /* Multi-segment packets must be alone in their MPW. */
1429                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1430                 if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
1431 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1432                         length = 0;
1433 #endif
1434                         do {
1435                                 volatile struct mlx5_wqe_data_seg *dseg;
1436
1437                                 assert(buf);
1438                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1439                                 dseg = mpw.data.dseg[mpw.pkts_n];
1440                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1441                                 *dseg = (struct mlx5_wqe_data_seg){
1442                                         .byte_count = rte_cpu_to_be_32(
1443                                                                 DATA_LEN(buf)),
1444                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1445                                         .addr = rte_cpu_to_be_64(addr),
1446                                 };
1447 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1448                                 length += DATA_LEN(buf);
1449 #endif
1450                                 buf = buf->next;
1451                                 ++j;
1452                                 ++mpw.pkts_n;
1453                         } while (--segs_n);
1454                         /* A multi-segmented packet takes one MPW session.
1455                          * TODO: Pack more multi-segmented packets if possible.
1456                          */
1457                         mlx5_mpw_close(txq, &mpw);
1458                         if (mpw.pkts_n < 3)
1459                                 max_wqe--;
1460                         else
1461                                 max_wqe -= 2;
1462                 } else if (do_inline) {
1463                         /* Inline packet into WQE. */
1464                         unsigned int max;
1465
1466                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1467                         assert(length == DATA_LEN(buf));
1468                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1469                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1470                         mpw.data.raw = (volatile void *)
1471                                 ((uintptr_t)mpw.data.raw + inl_pad);
1472                         max = tx_mlx5_wq_tailroom(txq,
1473                                         (void *)(uintptr_t)mpw.data.raw);
1474                         /* Copy inline header. */
1475                         mpw.data.raw = (volatile void *)
1476                                 mlx5_copy_to_wq(
1477                                           (void *)(uintptr_t)mpw.data.raw,
1478                                           &inl_hdr,
1479                                           sizeof(inl_hdr),
1480                                           (void *)(uintptr_t)txq->wqes,
1481                                           max);
1482                         max = tx_mlx5_wq_tailroom(txq,
1483                                         (void *)(uintptr_t)mpw.data.raw);
1484                         /* Copy packet data. */
1485                         mpw.data.raw = (volatile void *)
1486                                 mlx5_copy_to_wq(
1487                                           (void *)(uintptr_t)mpw.data.raw,
1488                                           (void *)addr,
1489                                           length,
1490                                           (void *)(uintptr_t)txq->wqes,
1491                                           max);
1492                         ++mpw.pkts_n;
1493                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1494                         /* No need to get completion as the entire packet is
1495                          * copied to WQ. Free the buf right away.
1496                          */
1497                         rte_pktmbuf_free_seg(buf);
1498                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1499                         /* Add pad in the next packet if any. */
1500                         inl_pad = (((uintptr_t)mpw.data.raw +
1501                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1502                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1503                                   (uintptr_t)mpw.data.raw;
1504                 } else {
1505                         /* No inline. Load a dseg of packet pointer. */
1506                         volatile rte_v128u32_t *dseg;
1507
1508                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1509                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1510                         assert(length == DATA_LEN(buf));
1511                         if (!tx_mlx5_wq_tailroom(txq,
1512                                         (void *)((uintptr_t)mpw.data.raw
1513                                                 + inl_pad)))
1514                                 dseg = (volatile void *)txq->wqes;
1515                         else
1516                                 dseg = (volatile void *)
1517                                         ((uintptr_t)mpw.data.raw +
1518                                          inl_pad);
1519                         (*txq->elts)[elts_head++ & elts_m] = buf;
1520                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1521                         for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
1522                                 rte_prefetch2((void *)(addr +
1523                                                 n * RTE_CACHE_LINE_SIZE));
1524                         naddr = rte_cpu_to_be_64(addr);
1525                         *dseg = (rte_v128u32_t) {
1526                                 rte_cpu_to_be_32(length),
1527                                 mlx5_tx_mb2mr(txq, buf),
1528                                 naddr,
1529                                 naddr >> 32,
1530                         };
1531                         mpw.data.raw = (volatile void *)(dseg + 1);
1532                         mpw.total_len += (inl_pad + sizeof(*dseg));
1533                         ++j;
1534                         ++mpw.pkts_n;
1535                         mpw_room -= (inl_pad + sizeof(*dseg));
1536                         inl_pad = 0;
1537                 }
1538 #ifdef MLX5_PMD_SOFT_COUNTERS
1539                 /* Increment sent bytes counter. */
1540                 txq->stats.obytes += length;
1541 #endif
1542                 ++i;
1543         } while (i < pkts_n);
1544         /* Take a shortcut if nothing must be sent. */
1545         if (unlikely(i == 0))
1546                 return 0;
1547         /* Check whether completion threshold has been reached. */
1548         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1549                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1550                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1551                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1552
1553                 /* Request completion on last WQE. */
1554                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1555                 /* Save elts_head in unused "immediate" field of WQE. */
1556                 wqe->ctrl[3] = elts_head;
1557                 txq->elts_comp = 0;
1558                 txq->mpw_comp = txq->wqe_ci;
1559                 txq->cq_pi++;
1560         } else {
1561                 txq->elts_comp += j;
1562         }
1563 #ifdef MLX5_PMD_SOFT_COUNTERS
1564         /* Increment sent packets counter. */
1565         txq->stats.opackets += i;
1566 #endif
1567         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1568                 mlx5_empw_close(txq, &mpw);
1569         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1570                 mlx5_mpw_close(txq, &mpw);
1571         /* Ring QP doorbell. */
1572         mlx5_tx_dbrec(txq, mpw.wqe);
1573         txq->elts_head = elts_head;
1574         return i;
1575 }
1576
1577 /**
1578  * Translate RX completion flags to packet type.
1579  *
1580  * @param[in] cqe
1581  *   Pointer to CQE.
1582  *
1583  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1584  *
1585  * @return
1586  *   Packet type for struct rte_mbuf.
1587  */
1588 static inline uint32_t
1589 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1590 {
1591         uint8_t idx;
1592         uint8_t pinfo = cqe->pkt_info;
1593         uint16_t ptype = cqe->hdr_type_etc;
1594
1595         /*
1596          * The index to the array should have:
1597          * bit[1:0] = l3_hdr_type
1598          * bit[4:2] = l4_hdr_type
1599          * bit[5] = ip_frag
1600          * bit[6] = tunneled
1601          * bit[7] = outer_l3_type
1602          */
1603         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1604         return mlx5_ptype_table[idx];
1605 }
1606
1607 /**
1608  * Get size of the next packet for a given CQE. For compressed CQEs, the
1609  * consumer index is updated only once all packets of the current one have
1610  * been processed.
1611  *
1612  * @param rxq
1613  *   Pointer to RX queue.
1614  * @param cqe
1615  *   CQE to process.
1616  * @param[out] rss_hash
1617  *   Packet RSS Hash result.
1618  *
1619  * @return
1620  *   Packet size in bytes (0 if there is none), -1 in case of completion
1621  *   with error.
1622  */
1623 static inline int
1624 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1625                  uint16_t cqe_cnt, uint32_t *rss_hash)
1626 {
1627         struct rxq_zip *zip = &rxq->zip;
1628         uint16_t cqe_n = cqe_cnt + 1;
1629         int len = 0;
1630         uint16_t idx, end;
1631
1632         /* Process compressed data in the CQE and mini arrays. */
1633         if (zip->ai) {
1634                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1635                         (volatile struct mlx5_mini_cqe8 (*)[8])
1636                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1637
1638                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1639                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1640                 if ((++zip->ai & 7) == 0) {
1641                         /* Invalidate consumed CQEs */
1642                         idx = zip->ca;
1643                         end = zip->na;
1644                         while (idx != end) {
1645                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1646                                         MLX5_CQE_INVALIDATE;
1647                                 ++idx;
1648                         }
1649                         /*
1650                          * Increment consumer index to skip the number of
1651                          * CQEs consumed. Hardware leaves holes in the CQ
1652                          * ring for software use.
1653                          */
1654                         zip->ca = zip->na;
1655                         zip->na += 8;
1656                 }
1657                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1658                         /* Invalidate the rest */
1659                         idx = zip->ca;
1660                         end = zip->cq_ci;
1661
1662                         while (idx != end) {
1663                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1664                                         MLX5_CQE_INVALIDATE;
1665                                 ++idx;
1666                         }
1667                         rxq->cq_ci = zip->cq_ci;
1668                         zip->ai = 0;
1669                 }
1670         /* No compressed data, get next CQE and verify if it is compressed. */
1671         } else {
1672                 int ret;
1673                 int8_t op_own;
1674
1675                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1676                 if (unlikely(ret == 1))
1677                         return 0;
1678                 ++rxq->cq_ci;
1679                 op_own = cqe->op_own;
1680                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1681                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1682                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1683                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1684                                                           cqe_cnt].pkt_info);
1685
1686                         /* Fix endianness. */
1687                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1688                         /*
1689                          * Current mini array position is the one returned by
1690                          * check_cqe64().
1691                          *
1692                          * If completion comprises several mini arrays, as a
1693                          * special case the second one is located 7 CQEs after
1694                          * the initial CQE instead of 8 for subsequent ones.
1695                          */
1696                         zip->ca = rxq->cq_ci;
1697                         zip->na = zip->ca + 7;
1698                         /* Compute the next non compressed CQE. */
1699                         --rxq->cq_ci;
1700                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1701                         /* Get packet size to return. */
1702                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1703                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1704                         zip->ai = 1;
1705                         /* Prefetch all the entries to be invalidated */
1706                         idx = zip->ca;
1707                         end = zip->cq_ci;
1708                         while (idx != end) {
1709                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1710                                 ++idx;
1711                         }
1712                 } else {
1713                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1714                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1715                 }
1716                 /* Error while receiving packet. */
1717                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1718                         return -1;
1719         }
1720         return len;
1721 }
1722
1723 /**
1724  * Translate RX completion flags to offload flags.
1725  *
1726  * @param[in] rxq
1727  *   Pointer to RX queue structure.
1728  * @param[in] cqe
1729  *   Pointer to CQE.
1730  *
1731  * @return
1732  *   Offload flags (ol_flags) for struct rte_mbuf.
1733  */
1734 static inline uint32_t
1735 rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1736 {
1737         uint32_t ol_flags = 0;
1738         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1739
1740         ol_flags =
1741                 TRANSPOSE(flags,
1742                           MLX5_CQE_RX_L3_HDR_VALID,
1743                           PKT_RX_IP_CKSUM_GOOD) |
1744                 TRANSPOSE(flags,
1745                           MLX5_CQE_RX_L4_HDR_VALID,
1746                           PKT_RX_L4_CKSUM_GOOD);
1747         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1748                 ol_flags |=
1749                         TRANSPOSE(flags,
1750                                   MLX5_CQE_RX_L3_HDR_VALID,
1751                                   PKT_RX_IP_CKSUM_GOOD) |
1752                         TRANSPOSE(flags,
1753                                   MLX5_CQE_RX_L4_HDR_VALID,
1754                                   PKT_RX_L4_CKSUM_GOOD);
1755         return ol_flags;
1756 }
1757
1758 /**
1759  * DPDK callback for RX.
1760  *
1761  * @param dpdk_rxq
1762  *   Generic pointer to RX queue structure.
1763  * @param[out] pkts
1764  *   Array to store received packets.
1765  * @param pkts_n
1766  *   Maximum number of packets in array.
1767  *
1768  * @return
1769  *   Number of packets successfully received (<= pkts_n).
1770  */
1771 uint16_t
1772 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1773 {
1774         struct mlx5_rxq_data *rxq = dpdk_rxq;
1775         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1776         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1777         const unsigned int sges_n = rxq->sges_n;
1778         struct rte_mbuf *pkt = NULL;
1779         struct rte_mbuf *seg = NULL;
1780         volatile struct mlx5_cqe *cqe =
1781                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1782         unsigned int i = 0;
1783         unsigned int rq_ci = rxq->rq_ci << sges_n;
1784         int len = 0; /* keep its value across iterations. */
1785
1786         while (pkts_n) {
1787                 unsigned int idx = rq_ci & wqe_cnt;
1788                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1789                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1790                 uint32_t rss_hash_res = 0;
1791
1792                 if (pkt)
1793                         NEXT(seg) = rep;
1794                 seg = rep;
1795                 rte_prefetch0(seg);
1796                 rte_prefetch0(cqe);
1797                 rte_prefetch0(wqe);
1798                 rep = rte_mbuf_raw_alloc(rxq->mp);
1799                 if (unlikely(rep == NULL)) {
1800                         ++rxq->stats.rx_nombuf;
1801                         if (!pkt) {
1802                                 /*
1803                                  * no buffers before we even started,
1804                                  * bail out silently.
1805                                  */
1806                                 break;
1807                         }
1808                         while (pkt != seg) {
1809                                 assert(pkt != (*rxq->elts)[idx]);
1810                                 rep = NEXT(pkt);
1811                                 NEXT(pkt) = NULL;
1812                                 NB_SEGS(pkt) = 1;
1813                                 rte_mbuf_raw_free(pkt);
1814                                 pkt = rep;
1815                         }
1816                         break;
1817                 }
1818                 if (!pkt) {
1819                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1820                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1821                                                &rss_hash_res);
1822                         if (!len) {
1823                                 rte_mbuf_raw_free(rep);
1824                                 break;
1825                         }
1826                         if (unlikely(len == -1)) {
1827                                 /* RX error, packet is likely too large. */
1828                                 rte_mbuf_raw_free(rep);
1829                                 ++rxq->stats.idropped;
1830                                 goto skip;
1831                         }
1832                         pkt = seg;
1833                         assert(len >= (rxq->crc_present << 2));
1834                         /* Update packet information. */
1835                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1836                         pkt->ol_flags = 0;
1837                         if (rss_hash_res && rxq->rss_hash) {
1838                                 pkt->hash.rss = rss_hash_res;
1839                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1840                         }
1841                         if (rxq->mark &&
1842                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1843                                 pkt->ol_flags |= PKT_RX_FDIR;
1844                                 if (cqe->sop_drop_qpn !=
1845                                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1846                                         uint32_t mark = cqe->sop_drop_qpn;
1847
1848                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1849                                         pkt->hash.fdir.hi =
1850                                                 mlx5_flow_mark_get(mark);
1851                                 }
1852                         }
1853                         if (rxq->csum | rxq->csum_l2tun)
1854                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1855                         if (rxq->vlan_strip &&
1856                             (cqe->hdr_type_etc &
1857                              rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1858                                 pkt->ol_flags |= PKT_RX_VLAN |
1859                                         PKT_RX_VLAN_STRIPPED;
1860                                 pkt->vlan_tci =
1861                                         rte_be_to_cpu_16(cqe->vlan_info);
1862                         }
1863                         if (rxq->hw_timestamp) {
1864                                 pkt->timestamp =
1865                                         rte_be_to_cpu_64(cqe->timestamp);
1866                                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1867                         }
1868                         if (rxq->crc_present)
1869                                 len -= ETHER_CRC_LEN;
1870                         PKT_LEN(pkt) = len;
1871                 }
1872                 DATA_LEN(rep) = DATA_LEN(seg);
1873                 PKT_LEN(rep) = PKT_LEN(seg);
1874                 SET_DATA_OFF(rep, DATA_OFF(seg));
1875                 PORT(rep) = PORT(seg);
1876                 (*rxq->elts)[idx] = rep;
1877                 /*
1878                  * Fill NIC descriptor with the new buffer.  The lkey and size
1879                  * of the buffers are already known, only the buffer address
1880                  * changes.
1881                  */
1882                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1883                 if (len > DATA_LEN(seg)) {
1884                         len -= DATA_LEN(seg);
1885                         ++NB_SEGS(pkt);
1886                         ++rq_ci;
1887                         continue;
1888                 }
1889                 DATA_LEN(seg) = len;
1890 #ifdef MLX5_PMD_SOFT_COUNTERS
1891                 /* Increment bytes counter. */
1892                 rxq->stats.ibytes += PKT_LEN(pkt);
1893 #endif
1894                 /* Return packet. */
1895                 *(pkts++) = pkt;
1896                 pkt = NULL;
1897                 --pkts_n;
1898                 ++i;
1899 skip:
1900                 /* Align consumer index to the next stride. */
1901                 rq_ci >>= sges_n;
1902                 ++rq_ci;
1903                 rq_ci <<= sges_n;
1904         }
1905         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1906                 return 0;
1907         /* Update the consumer index. */
1908         rxq->rq_ci = rq_ci >> sges_n;
1909         rte_io_wmb();
1910         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1911         rte_io_wmb();
1912         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1913 #ifdef MLX5_PMD_SOFT_COUNTERS
1914         /* Increment packets counter. */
1915         rxq->stats.ipackets += i;
1916 #endif
1917         return i;
1918 }
1919
1920 /**
1921  * Dummy DPDK callback for TX.
1922  *
1923  * This function is used to temporarily replace the real callback during
1924  * unsafe control operations on the queue, or in case of error.
1925  *
1926  * @param dpdk_txq
1927  *   Generic pointer to TX queue structure.
1928  * @param[in] pkts
1929  *   Packets to transmit.
1930  * @param pkts_n
1931  *   Number of packets in array.
1932  *
1933  * @return
1934  *   Number of packets successfully transmitted (<= pkts_n).
1935  */
1936 uint16_t
1937 removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1938 {
1939         (void)dpdk_txq;
1940         (void)pkts;
1941         (void)pkts_n;
1942         return 0;
1943 }
1944
1945 /**
1946  * Dummy DPDK callback for RX.
1947  *
1948  * This function is used to temporarily replace the real callback during
1949  * unsafe control operations on the queue, or in case of error.
1950  *
1951  * @param dpdk_rxq
1952  *   Generic pointer to RX queue structure.
1953  * @param[out] pkts
1954  *   Array to store received packets.
1955  * @param pkts_n
1956  *   Maximum number of packets in array.
1957  *
1958  * @return
1959  *   Number of packets successfully received (<= pkts_n).
1960  */
1961 uint16_t
1962 removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1963 {
1964         (void)dpdk_rxq;
1965         (void)pkts;
1966         (void)pkts_n;
1967         return 0;
1968 }
1969
1970 /*
1971  * Vectorized Rx/Tx routines are not compiled in when required vector
1972  * instructions are not supported on a target architecture. The following null
1973  * stubs are needed for linkage when those are not included outside of this file
1974  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1975  */
1976
1977 uint16_t __attribute__((weak))
1978 mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1979 {
1980         (void)dpdk_txq;
1981         (void)pkts;
1982         (void)pkts_n;
1983         return 0;
1984 }
1985
1986 uint16_t __attribute__((weak))
1987 mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1988 {
1989         (void)dpdk_txq;
1990         (void)pkts;
1991         (void)pkts_n;
1992         return 0;
1993 }
1994
1995 uint16_t __attribute__((weak))
1996 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1997 {
1998         (void)dpdk_rxq;
1999         (void)pkts;
2000         (void)pkts_n;
2001         return 0;
2002 }
2003
2004 int __attribute__((weak))
2005 priv_check_raw_vec_tx_support(struct priv *priv)
2006 {
2007         (void)priv;
2008         return -ENOTSUP;
2009 }
2010
2011 int __attribute__((weak))
2012 priv_check_vec_tx_support(struct priv *priv)
2013 {
2014         (void)priv;
2015         return -ENOTSUP;
2016 }
2017
2018 int __attribute__((weak))
2019 rxq_check_vec_support(struct mlx5_rxq_data *rxq)
2020 {
2021         (void)rxq;
2022         return -ENOTSUP;
2023 }
2024
2025 int __attribute__((weak))
2026 priv_check_vec_rx_support(struct priv *priv)
2027 {
2028         (void)priv;
2029         return -ENOTSUP;
2030 }