b07bcd118cc65fe144db9e02a3370aedea2f6e07
[deb_dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2015 6WIND S.A.
5  *   Copyright 2015 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 /* Verbs header. */
40 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
41 #ifdef PEDANTIC
42 #pragma GCC diagnostic ignored "-Wpedantic"
43 #endif
44 #include <infiniband/verbs.h>
45 #include <infiniband/mlx5_hw.h>
46 #include <infiniband/arch.h>
47 #ifdef PEDANTIC
48 #pragma GCC diagnostic error "-Wpedantic"
49 #endif
50
51 /* DPDK headers don't like -pedantic. */
52 #ifdef PEDANTIC
53 #pragma GCC diagnostic ignored "-Wpedantic"
54 #endif
55 #include <rte_mbuf.h>
56 #include <rte_mempool.h>
57 #include <rte_prefetch.h>
58 #include <rte_common.h>
59 #include <rte_branch_prediction.h>
60 #include <rte_ether.h>
61 #ifdef PEDANTIC
62 #pragma GCC diagnostic error "-Wpedantic"
63 #endif
64
65 #include "mlx5.h"
66 #include "mlx5_utils.h"
67 #include "mlx5_rxtx.h"
68 #include "mlx5_autoconf.h"
69 #include "mlx5_defs.h"
70 #include "mlx5_prm.h"
71
72 static __rte_always_inline uint32_t
73 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
74
75 static __rte_always_inline int
76 mlx5_rx_poll_len(struct rxq *rxq, volatile struct mlx5_cqe *cqe,
77                  uint16_t cqe_cnt, uint32_t *rss_hash);
78
79 static __rte_always_inline uint32_t
80 rxq_cq_to_ol_flags(struct rxq *rxq, volatile struct mlx5_cqe *cqe);
81
82 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
83         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
84 };
85
86 /**
87  * Build a table to translate Rx completion flags to packet type.
88  *
89  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
90  */
91 void
92 mlx5_set_ptype_table(void)
93 {
94         unsigned int i;
95         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
96
97         /* Last entry must not be overwritten, reserved for errored packet. */
98         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
99                 (*p)[i] = RTE_PTYPE_UNKNOWN;
100         /*
101          * The index to the array should have:
102          * bit[1:0] = l3_hdr_type
103          * bit[4:2] = l4_hdr_type
104          * bit[5] = ip_frag
105          * bit[6] = tunneled
106          * bit[7] = outer_l3_type
107          */
108         /* L3 */
109         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
110                      RTE_PTYPE_L4_NONFRAG;
111         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
112                      RTE_PTYPE_L4_NONFRAG;
113         /* Fragmented */
114         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
115                      RTE_PTYPE_L4_FRAG;
116         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
117                      RTE_PTYPE_L4_FRAG;
118         /* TCP */
119         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
120                      RTE_PTYPE_L4_TCP;
121         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
122                      RTE_PTYPE_L4_TCP;
123         /* UDP */
124         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
125                      RTE_PTYPE_L4_UDP;
126         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
127                      RTE_PTYPE_L4_UDP;
128         /* Repeat with outer_l3_type being set. Just in case. */
129         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_NONFRAG;
131         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_NONFRAG;
133         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_FRAG;
135         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_FRAG;
137         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
138                      RTE_PTYPE_L4_TCP;
139         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140                      RTE_PTYPE_L4_TCP;
141         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
142                      RTE_PTYPE_L4_UDP;
143         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_L4_UDP;
145         /* Tunneled - L3 */
146         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
153                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L4_NONFRAG;
155         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L4_NONFRAG;
158         /* Tunneled - Fragmented */
159         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
166                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L4_FRAG;
168         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L4_FRAG;
171         /* Tunneled - TCP */
172         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_L4_TCP;
175         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_L4_TCP;
178         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_L4_TCP;
181         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_L4_TCP;
184         /* Tunneled - UDP */
185         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
187                      RTE_PTYPE_L4_UDP;
188         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_L4_UDP;
191         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
193                      RTE_PTYPE_L4_UDP;
194         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
196                      RTE_PTYPE_L4_UDP;
197 }
198
199 /**
200  * Return the size of tailroom of WQ.
201  *
202  * @param txq
203  *   Pointer to TX queue structure.
204  * @param addr
205  *   Pointer to tail of WQ.
206  *
207  * @return
208  *   Size of tailroom.
209  */
210 static inline size_t
211 tx_mlx5_wq_tailroom(struct txq *txq, void *addr)
212 {
213         size_t tailroom;
214         tailroom = (uintptr_t)(txq->wqes) +
215                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
216                    (uintptr_t)addr;
217         return tailroom;
218 }
219
220 /**
221  * Copy data to tailroom of circular queue.
222  *
223  * @param dst
224  *   Pointer to destination.
225  * @param src
226  *   Pointer to source.
227  * @param n
228  *   Number of bytes to copy.
229  * @param base
230  *   Pointer to head of queue.
231  * @param tailroom
232  *   Size of tailroom from dst.
233  *
234  * @return
235  *   Pointer after copied data.
236  */
237 static inline void *
238 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
239                 void *base, size_t tailroom)
240 {
241         void *ret;
242
243         if (n > tailroom) {
244                 rte_memcpy(dst, src, tailroom);
245                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
246                            n - tailroom);
247                 ret = (uint8_t *)base + n - tailroom;
248         } else {
249                 rte_memcpy(dst, src, n);
250                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
251         }
252         return ret;
253 }
254
255 /**
256  * DPDK callback to check the status of a tx descriptor.
257  *
258  * @param tx_queue
259  *   The tx queue.
260  * @param[in] offset
261  *   The index of the descriptor in the ring.
262  *
263  * @return
264  *   The status of the tx descriptor.
265  */
266 int
267 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
268 {
269         struct txq *txq = tx_queue;
270         uint16_t used;
271
272         mlx5_tx_complete(txq);
273         used = txq->elts_head - txq->elts_tail;
274         if (offset < used)
275                 return RTE_ETH_TX_DESC_FULL;
276         return RTE_ETH_TX_DESC_DONE;
277 }
278
279 /**
280  * DPDK callback to check the status of a rx descriptor.
281  *
282  * @param rx_queue
283  *   The rx queue.
284  * @param[in] offset
285  *   The index of the descriptor in the ring.
286  *
287  * @return
288  *   The status of the tx descriptor.
289  */
290 int
291 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
292 {
293         struct rxq *rxq = rx_queue;
294         struct rxq_zip *zip = &rxq->zip;
295         volatile struct mlx5_cqe *cqe;
296         const unsigned int cqe_n = (1 << rxq->cqe_n);
297         const unsigned int cqe_cnt = cqe_n - 1;
298         unsigned int cq_ci;
299         unsigned int used;
300
301         /* if we are processing a compressed cqe */
302         if (zip->ai) {
303                 used = zip->cqe_cnt - zip->ca;
304                 cq_ci = zip->cq_ci;
305         } else {
306                 used = 0;
307                 cq_ci = rxq->cq_ci;
308         }
309         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
310         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
311                 int8_t op_own;
312                 unsigned int n;
313
314                 op_own = cqe->op_own;
315                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
316                         n = ntohl(cqe->byte_cnt);
317                 else
318                         n = 1;
319                 cq_ci += n;
320                 used += n;
321                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
322         }
323         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
324         if (offset < used)
325                 return RTE_ETH_RX_DESC_DONE;
326         return RTE_ETH_RX_DESC_AVAIL;
327 }
328
329 /**
330  * DPDK callback for TX.
331  *
332  * @param dpdk_txq
333  *   Generic pointer to TX queue structure.
334  * @param[in] pkts
335  *   Packets to transmit.
336  * @param pkts_n
337  *   Number of packets in array.
338  *
339  * @return
340  *   Number of packets successfully transmitted (<= pkts_n).
341  */
342 uint16_t
343 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
344 {
345         struct txq *txq = (struct txq *)dpdk_txq;
346         uint16_t elts_head = txq->elts_head;
347         const uint16_t elts_n = 1 << txq->elts_n;
348         const uint16_t elts_m = elts_n - 1;
349         unsigned int i = 0;
350         unsigned int j = 0;
351         unsigned int k = 0;
352         uint16_t max_elts;
353         unsigned int max_inline = txq->max_inline;
354         const unsigned int inline_en = !!max_inline && txq->inline_en;
355         uint16_t max_wqe;
356         unsigned int comp;
357         volatile struct mlx5_wqe_v *wqe = NULL;
358         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
359         unsigned int segs_n = 0;
360         struct rte_mbuf *buf = NULL;
361         uint8_t *raw;
362
363         if (unlikely(!pkts_n))
364                 return 0;
365         /* Prefetch first packet cacheline. */
366         rte_prefetch0(*pkts);
367         /* Start processing. */
368         mlx5_tx_complete(txq);
369         max_elts = (elts_n - (elts_head - txq->elts_tail));
370         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
371         if (unlikely(!max_wqe))
372                 return 0;
373         do {
374                 volatile rte_v128u32_t *dseg = NULL;
375                 uint32_t length;
376                 unsigned int ds = 0;
377                 unsigned int sg = 0; /* counter of additional segs attached. */
378                 uintptr_t addr;
379                 uint64_t naddr;
380                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
381                 uint16_t tso_header_sz = 0;
382                 uint16_t ehdr;
383                 uint8_t cs_flags = 0;
384                 uint64_t tso = 0;
385                 uint16_t tso_segsz = 0;
386 #ifdef MLX5_PMD_SOFT_COUNTERS
387                 uint32_t total_length = 0;
388 #endif
389
390                 /* first_seg */
391                 buf = *pkts;
392                 segs_n = buf->nb_segs;
393                 /*
394                  * Make sure there is enough room to store this packet and
395                  * that one ring entry remains unused.
396                  */
397                 assert(segs_n);
398                 if (max_elts < segs_n)
399                         break;
400                 max_elts -= segs_n;
401                 --segs_n;
402                 if (unlikely(--max_wqe == 0))
403                         break;
404                 wqe = (volatile struct mlx5_wqe_v *)
405                         tx_mlx5_wqe(txq, txq->wqe_ci);
406                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
407                 if (pkts_n - i > 1)
408                         rte_prefetch0(*(pkts + 1));
409                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
410                 length = DATA_LEN(buf);
411                 ehdr = (((uint8_t *)addr)[1] << 8) |
412                        ((uint8_t *)addr)[0];
413 #ifdef MLX5_PMD_SOFT_COUNTERS
414                 total_length = length;
415 #endif
416                 if (length < (MLX5_WQE_DWORD_SIZE + 2))
417                         break;
418                 /* Update element. */
419                 (*txq->elts)[elts_head & elts_m] = buf;
420                 /* Prefetch next buffer data. */
421                 if (pkts_n - i > 1)
422                         rte_prefetch0(
423                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
424                 /* Should we enable HW CKSUM offload */
425                 if (buf->ol_flags &
426                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
427                         const uint64_t is_tunneled = buf->ol_flags &
428                                                      (PKT_TX_TUNNEL_GRE |
429                                                       PKT_TX_TUNNEL_VXLAN);
430
431                         if (is_tunneled && txq->tunnel_en) {
432                                 cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
433                                            MLX5_ETH_WQE_L4_INNER_CSUM;
434                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
435                                         cs_flags |= MLX5_ETH_WQE_L3_CSUM;
436                         } else {
437                                 cs_flags = MLX5_ETH_WQE_L3_CSUM |
438                                            MLX5_ETH_WQE_L4_CSUM;
439                         }
440                 }
441                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
442                 /* Replace the Ethernet type by the VLAN if necessary. */
443                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
444                         uint32_t vlan = htonl(0x81000000 | buf->vlan_tci);
445                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
446
447                         addr += 2;
448                         length -= 2;
449                         /* Copy Destination and source mac address. */
450                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
451                         /* Copy VLAN. */
452                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
453                         /* Copy missing two bytes to end the DSeg. */
454                         memcpy((uint8_t *)raw + len + sizeof(vlan),
455                                ((uint8_t *)addr) + len, 2);
456                         addr += len + 2;
457                         length -= (len + 2);
458                 } else {
459                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
460                                MLX5_WQE_DWORD_SIZE);
461                         length -= pkt_inline_sz;
462                         addr += pkt_inline_sz;
463                 }
464                 if (txq->tso_en) {
465                         tso = buf->ol_flags & PKT_TX_TCP_SEG;
466                         if (tso) {
467                                 uintptr_t end = (uintptr_t)
468                                                 (((uintptr_t)txq->wqes) +
469                                                 (1 << txq->wqe_n) *
470                                                 MLX5_WQE_SIZE);
471                                 unsigned int copy_b;
472                                 uint8_t vlan_sz = (buf->ol_flags &
473                                                   PKT_TX_VLAN_PKT) ? 4 : 0;
474                                 const uint64_t is_tunneled =
475                                                         buf->ol_flags &
476                                                         (PKT_TX_TUNNEL_GRE |
477                                                          PKT_TX_TUNNEL_VXLAN);
478
479                                 tso_header_sz = buf->l2_len + vlan_sz +
480                                                 buf->l3_len + buf->l4_len;
481                                 tso_segsz = buf->tso_segsz;
482
483                                 if (is_tunneled && txq->tunnel_en) {
484                                         tso_header_sz += buf->outer_l2_len +
485                                                          buf->outer_l3_len;
486                                         cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
487                                 } else {
488                                         cs_flags |= MLX5_ETH_WQE_L4_CSUM;
489                                 }
490                                 if (unlikely(tso_header_sz >
491                                              MLX5_MAX_TSO_HEADER))
492                                         break;
493                                 copy_b = tso_header_sz - pkt_inline_sz;
494                                 /* First seg must contain all headers. */
495                                 assert(copy_b <= length);
496                                 raw += MLX5_WQE_DWORD_SIZE;
497                                 if (copy_b &&
498                                    ((end - (uintptr_t)raw) > copy_b)) {
499                                         uint16_t n = (MLX5_WQE_DS(copy_b) -
500                                                       1 + 3) / 4;
501
502                                         if (unlikely(max_wqe < n))
503                                                 break;
504                                         max_wqe -= n;
505                                         rte_memcpy((void *)raw,
506                                                    (void *)addr, copy_b);
507                                         addr += copy_b;
508                                         length -= copy_b;
509                                         pkt_inline_sz += copy_b;
510                                         /*
511                                          * Another DWORD will be added
512                                          * in the inline part.
513                                          */
514                                         raw += MLX5_WQE_DS(copy_b) *
515                                                MLX5_WQE_DWORD_SIZE -
516                                                MLX5_WQE_DWORD_SIZE;
517                                 } else {
518                                         /* NOP WQE. */
519                                         wqe->ctrl = (rte_v128u32_t){
520                                                      htonl(txq->wqe_ci << 8),
521                                                      htonl(txq->qp_num_8s | 1),
522                                                      0,
523                                                      0,
524                                         };
525                                         ds = 1;
526                                         total_length = 0;
527                                         k++;
528                                         goto next_wqe;
529                                 }
530                         }
531                 }
532                 /* Inline if enough room. */
533                 if (inline_en || tso) {
534                         uintptr_t end = (uintptr_t)
535                                 (((uintptr_t)txq->wqes) +
536                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
537                         unsigned int inline_room = max_inline *
538                                                    RTE_CACHE_LINE_SIZE -
539                                                    (pkt_inline_sz - 2);
540                         uintptr_t addr_end = (addr + inline_room) &
541                                              ~(RTE_CACHE_LINE_SIZE - 1);
542                         unsigned int copy_b = (addr_end > addr) ?
543                                 RTE_MIN((addr_end - addr), length) :
544                                 0;
545
546                         raw += MLX5_WQE_DWORD_SIZE;
547                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
548                                 /*
549                                  * One Dseg remains in the current WQE.  To
550                                  * keep the computation positive, it is
551                                  * removed after the bytes to Dseg conversion.
552                                  */
553                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
554
555                                 if (unlikely(max_wqe < n))
556                                         break;
557                                 max_wqe -= n;
558                                 if (tso) {
559                                         uint32_t inl =
560                                                 htonl(copy_b | MLX5_INLINE_SEG);
561
562                                         pkt_inline_sz =
563                                                 MLX5_WQE_DS(tso_header_sz) *
564                                                 MLX5_WQE_DWORD_SIZE;
565                                         rte_memcpy((void *)raw,
566                                                    (void *)&inl, sizeof(inl));
567                                         raw += sizeof(inl);
568                                         pkt_inline_sz += sizeof(inl);
569                                 }
570                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
571                                 addr += copy_b;
572                                 length -= copy_b;
573                                 pkt_inline_sz += copy_b;
574                         }
575                         /*
576                          * 2 DWORDs consumed by the WQE header + ETH segment +
577                          * the size of the inline part of the packet.
578                          */
579                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
580                         if (length > 0) {
581                                 if (ds % (MLX5_WQE_SIZE /
582                                           MLX5_WQE_DWORD_SIZE) == 0) {
583                                         if (unlikely(--max_wqe == 0))
584                                                 break;
585                                         dseg = (volatile rte_v128u32_t *)
586                                                tx_mlx5_wqe(txq, txq->wqe_ci +
587                                                            ds / 4);
588                                 } else {
589                                         dseg = (volatile rte_v128u32_t *)
590                                                 ((uintptr_t)wqe +
591                                                  (ds * MLX5_WQE_DWORD_SIZE));
592                                 }
593                                 goto use_dseg;
594                         } else if (!segs_n) {
595                                 goto next_pkt;
596                         } else {
597                                 /* dseg will be advance as part of next_seg */
598                                 dseg = (volatile rte_v128u32_t *)
599                                         ((uintptr_t)wqe +
600                                          ((ds - 1) * MLX5_WQE_DWORD_SIZE));
601                                 goto next_seg;
602                         }
603                 } else {
604                         /*
605                          * No inline has been done in the packet, only the
606                          * Ethernet Header as been stored.
607                          */
608                         dseg = (volatile rte_v128u32_t *)
609                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
610                         ds = 3;
611 use_dseg:
612                         /* Add the remaining packet as a simple ds. */
613                         naddr = htonll(addr);
614                         *dseg = (rte_v128u32_t){
615                                 htonl(length),
616                                 mlx5_tx_mb2mr(txq, buf),
617                                 naddr,
618                                 naddr >> 32,
619                         };
620                         ++ds;
621                         if (!segs_n)
622                                 goto next_pkt;
623                 }
624 next_seg:
625                 assert(buf);
626                 assert(ds);
627                 assert(wqe);
628                 /*
629                  * Spill on next WQE when the current one does not have
630                  * enough room left. Size of WQE must a be a multiple
631                  * of data segment size.
632                  */
633                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
634                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
635                         if (unlikely(--max_wqe == 0))
636                                 break;
637                         dseg = (volatile rte_v128u32_t *)
638                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
639                         rte_prefetch0(tx_mlx5_wqe(txq,
640                                                   txq->wqe_ci + ds / 4 + 1));
641                 } else {
642                         ++dseg;
643                 }
644                 ++ds;
645                 buf = buf->next;
646                 assert(buf);
647                 length = DATA_LEN(buf);
648 #ifdef MLX5_PMD_SOFT_COUNTERS
649                 total_length += length;
650 #endif
651                 /* Store segment information. */
652                 naddr = htonll(rte_pktmbuf_mtod(buf, uintptr_t));
653                 *dseg = (rte_v128u32_t){
654                         htonl(length),
655                         mlx5_tx_mb2mr(txq, buf),
656                         naddr,
657                         naddr >> 32,
658                 };
659                 (*txq->elts)[++elts_head & elts_m] = buf;
660                 ++sg;
661                 /* Advance counter only if all segs are successfully posted. */
662                 if (sg < segs_n)
663                         goto next_seg;
664                 else
665                         j += sg;
666 next_pkt:
667                 ++elts_head;
668                 ++pkts;
669                 ++i;
670                 /* Initialize known and common part of the WQE structure. */
671                 if (tso) {
672                         wqe->ctrl = (rte_v128u32_t){
673                                 htonl((txq->wqe_ci << 8) | MLX5_OPCODE_TSO),
674                                 htonl(txq->qp_num_8s | ds),
675                                 0,
676                                 0,
677                         };
678                         wqe->eseg = (rte_v128u32_t){
679                                 0,
680                                 cs_flags | (htons(tso_segsz) << 16),
681                                 0,
682                                 (ehdr << 16) | htons(tso_header_sz),
683                         };
684                 } else {
685                         wqe->ctrl = (rte_v128u32_t){
686                                 htonl((txq->wqe_ci << 8) | MLX5_OPCODE_SEND),
687                                 htonl(txq->qp_num_8s | ds),
688                                 0,
689                                 0,
690                         };
691                         wqe->eseg = (rte_v128u32_t){
692                                 0,
693                                 cs_flags,
694                                 0,
695                                 (ehdr << 16) | htons(pkt_inline_sz),
696                         };
697                 }
698 next_wqe:
699                 txq->wqe_ci += (ds + 3) / 4;
700                 /* Save the last successful WQE for completion request */
701                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
702 #ifdef MLX5_PMD_SOFT_COUNTERS
703                 /* Increment sent bytes counter. */
704                 txq->stats.obytes += total_length;
705 #endif
706         } while (i < pkts_n);
707         /* Take a shortcut if nothing must be sent. */
708         if (unlikely((i + k) == 0))
709                 return 0;
710         txq->elts_head += (i + j);
711         /* Check whether completion threshold has been reached. */
712         comp = txq->elts_comp + i + j + k;
713         if (comp >= MLX5_TX_COMP_THRESH) {
714                 /* Request completion on last WQE. */
715                 last_wqe->ctrl2 = htonl(8);
716                 /* Save elts_head in unused "immediate" field of WQE. */
717                 last_wqe->ctrl3 = txq->elts_head;
718                 txq->elts_comp = 0;
719         } else {
720                 txq->elts_comp = comp;
721         }
722 #ifdef MLX5_PMD_SOFT_COUNTERS
723         /* Increment sent packets counter. */
724         txq->stats.opackets += i;
725 #endif
726         /* Ring QP doorbell. */
727         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
728         return i;
729 }
730
731 /**
732  * Open a MPW session.
733  *
734  * @param txq
735  *   Pointer to TX queue structure.
736  * @param mpw
737  *   Pointer to MPW session structure.
738  * @param length
739  *   Packet length.
740  */
741 static inline void
742 mlx5_mpw_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
743 {
744         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
745         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
746                 (volatile struct mlx5_wqe_data_seg (*)[])
747                 tx_mlx5_wqe(txq, idx + 1);
748
749         mpw->state = MLX5_MPW_STATE_OPENED;
750         mpw->pkts_n = 0;
751         mpw->len = length;
752         mpw->total_len = 0;
753         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
754         mpw->wqe->eseg.mss = htons(length);
755         mpw->wqe->eseg.inline_hdr_sz = 0;
756         mpw->wqe->eseg.rsvd0 = 0;
757         mpw->wqe->eseg.rsvd1 = 0;
758         mpw->wqe->eseg.rsvd2 = 0;
759         mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
760                                   (txq->wqe_ci << 8) | MLX5_OPCODE_TSO);
761         mpw->wqe->ctrl[2] = 0;
762         mpw->wqe->ctrl[3] = 0;
763         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
764                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
765         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
766                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
767         mpw->data.dseg[2] = &(*dseg)[0];
768         mpw->data.dseg[3] = &(*dseg)[1];
769         mpw->data.dseg[4] = &(*dseg)[2];
770 }
771
772 /**
773  * Close a MPW session.
774  *
775  * @param txq
776  *   Pointer to TX queue structure.
777  * @param mpw
778  *   Pointer to MPW session structure.
779  */
780 static inline void
781 mlx5_mpw_close(struct txq *txq, struct mlx5_mpw *mpw)
782 {
783         unsigned int num = mpw->pkts_n;
784
785         /*
786          * Store size in multiple of 16 bytes. Control and Ethernet segments
787          * count as 2.
788          */
789         mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | (2 + num));
790         mpw->state = MLX5_MPW_STATE_CLOSED;
791         if (num < 3)
792                 ++txq->wqe_ci;
793         else
794                 txq->wqe_ci += 2;
795         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
796         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
797 }
798
799 /**
800  * DPDK callback for TX with MPW support.
801  *
802  * @param dpdk_txq
803  *   Generic pointer to TX queue structure.
804  * @param[in] pkts
805  *   Packets to transmit.
806  * @param pkts_n
807  *   Number of packets in array.
808  *
809  * @return
810  *   Number of packets successfully transmitted (<= pkts_n).
811  */
812 uint16_t
813 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
814 {
815         struct txq *txq = (struct txq *)dpdk_txq;
816         uint16_t elts_head = txq->elts_head;
817         const uint16_t elts_n = 1 << txq->elts_n;
818         const uint16_t elts_m = elts_n - 1;
819         unsigned int i = 0;
820         unsigned int j = 0;
821         uint16_t max_elts;
822         uint16_t max_wqe;
823         unsigned int comp;
824         struct mlx5_mpw mpw = {
825                 .state = MLX5_MPW_STATE_CLOSED,
826         };
827
828         if (unlikely(!pkts_n))
829                 return 0;
830         /* Prefetch first packet cacheline. */
831         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
832         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
833         /* Start processing. */
834         mlx5_tx_complete(txq);
835         max_elts = (elts_n - (elts_head - txq->elts_tail));
836         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
837         if (unlikely(!max_wqe))
838                 return 0;
839         do {
840                 struct rte_mbuf *buf = *(pkts++);
841                 uint32_t length;
842                 unsigned int segs_n = buf->nb_segs;
843                 uint32_t cs_flags = 0;
844
845                 /*
846                  * Make sure there is enough room to store this packet and
847                  * that one ring entry remains unused.
848                  */
849                 assert(segs_n);
850                 if (max_elts < segs_n)
851                         break;
852                 /* Do not bother with large packets MPW cannot handle. */
853                 if (segs_n > MLX5_MPW_DSEG_MAX)
854                         break;
855                 max_elts -= segs_n;
856                 --pkts_n;
857                 /* Should we enable HW CKSUM offload */
858                 if (buf->ol_flags &
859                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
860                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
861                 /* Retrieve packet information. */
862                 length = PKT_LEN(buf);
863                 assert(length);
864                 /* Start new session if packet differs. */
865                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
866                     ((mpw.len != length) ||
867                      (segs_n != 1) ||
868                      (mpw.wqe->eseg.cs_flags != cs_flags)))
869                         mlx5_mpw_close(txq, &mpw);
870                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
871                         /*
872                          * Multi-Packet WQE consumes at most two WQE.
873                          * mlx5_mpw_new() expects to be able to use such
874                          * resources.
875                          */
876                         if (unlikely(max_wqe < 2))
877                                 break;
878                         max_wqe -= 2;
879                         mlx5_mpw_new(txq, &mpw, length);
880                         mpw.wqe->eseg.cs_flags = cs_flags;
881                 }
882                 /* Multi-segment packets must be alone in their MPW. */
883                 assert((segs_n == 1) || (mpw.pkts_n == 0));
884 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
885                 length = 0;
886 #endif
887                 do {
888                         volatile struct mlx5_wqe_data_seg *dseg;
889                         uintptr_t addr;
890
891                         assert(buf);
892                         (*txq->elts)[elts_head++ & elts_m] = buf;
893                         dseg = mpw.data.dseg[mpw.pkts_n];
894                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
895                         *dseg = (struct mlx5_wqe_data_seg){
896                                 .byte_count = htonl(DATA_LEN(buf)),
897                                 .lkey = mlx5_tx_mb2mr(txq, buf),
898                                 .addr = htonll(addr),
899                         };
900 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
901                         length += DATA_LEN(buf);
902 #endif
903                         buf = buf->next;
904                         ++mpw.pkts_n;
905                         ++j;
906                 } while (--segs_n);
907                 assert(length == mpw.len);
908                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
909                         mlx5_mpw_close(txq, &mpw);
910 #ifdef MLX5_PMD_SOFT_COUNTERS
911                 /* Increment sent bytes counter. */
912                 txq->stats.obytes += length;
913 #endif
914                 ++i;
915         } while (pkts_n);
916         /* Take a shortcut if nothing must be sent. */
917         if (unlikely(i == 0))
918                 return 0;
919         /* Check whether completion threshold has been reached. */
920         /* "j" includes both packets and segments. */
921         comp = txq->elts_comp + j;
922         if (comp >= MLX5_TX_COMP_THRESH) {
923                 volatile struct mlx5_wqe *wqe = mpw.wqe;
924
925                 /* Request completion on last WQE. */
926                 wqe->ctrl[2] = htonl(8);
927                 /* Save elts_head in unused "immediate" field of WQE. */
928                 wqe->ctrl[3] = elts_head;
929                 txq->elts_comp = 0;
930         } else {
931                 txq->elts_comp = comp;
932         }
933 #ifdef MLX5_PMD_SOFT_COUNTERS
934         /* Increment sent packets counter. */
935         txq->stats.opackets += i;
936 #endif
937         /* Ring QP doorbell. */
938         if (mpw.state == MLX5_MPW_STATE_OPENED)
939                 mlx5_mpw_close(txq, &mpw);
940         mlx5_tx_dbrec(txq, mpw.wqe);
941         txq->elts_head = elts_head;
942         return i;
943 }
944
945 /**
946  * Open a MPW inline session.
947  *
948  * @param txq
949  *   Pointer to TX queue structure.
950  * @param mpw
951  *   Pointer to MPW session structure.
952  * @param length
953  *   Packet length.
954  */
955 static inline void
956 mlx5_mpw_inline_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
957 {
958         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
959         struct mlx5_wqe_inl_small *inl;
960
961         mpw->state = MLX5_MPW_INL_STATE_OPENED;
962         mpw->pkts_n = 0;
963         mpw->len = length;
964         mpw->total_len = 0;
965         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
966         mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
967                                   (txq->wqe_ci << 8) |
968                                   MLX5_OPCODE_TSO);
969         mpw->wqe->ctrl[2] = 0;
970         mpw->wqe->ctrl[3] = 0;
971         mpw->wqe->eseg.mss = htons(length);
972         mpw->wqe->eseg.inline_hdr_sz = 0;
973         mpw->wqe->eseg.cs_flags = 0;
974         mpw->wqe->eseg.rsvd0 = 0;
975         mpw->wqe->eseg.rsvd1 = 0;
976         mpw->wqe->eseg.rsvd2 = 0;
977         inl = (struct mlx5_wqe_inl_small *)
978                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
979         mpw->data.raw = (uint8_t *)&inl->raw;
980 }
981
982 /**
983  * Close a MPW inline session.
984  *
985  * @param txq
986  *   Pointer to TX queue structure.
987  * @param mpw
988  *   Pointer to MPW session structure.
989  */
990 static inline void
991 mlx5_mpw_inline_close(struct txq *txq, struct mlx5_mpw *mpw)
992 {
993         unsigned int size;
994         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
995                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
996
997         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
998         /*
999          * Store size in multiple of 16 bytes. Control and Ethernet segments
1000          * count as 2.
1001          */
1002         mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | MLX5_WQE_DS(size));
1003         mpw->state = MLX5_MPW_STATE_CLOSED;
1004         inl->byte_cnt = htonl(mpw->total_len | MLX5_INLINE_SEG);
1005         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1006 }
1007
1008 /**
1009  * DPDK callback for TX with MPW inline support.
1010  *
1011  * @param dpdk_txq
1012  *   Generic pointer to TX queue structure.
1013  * @param[in] pkts
1014  *   Packets to transmit.
1015  * @param pkts_n
1016  *   Number of packets in array.
1017  *
1018  * @return
1019  *   Number of packets successfully transmitted (<= pkts_n).
1020  */
1021 uint16_t
1022 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1023                          uint16_t pkts_n)
1024 {
1025         struct txq *txq = (struct txq *)dpdk_txq;
1026         uint16_t elts_head = txq->elts_head;
1027         const uint16_t elts_n = 1 << txq->elts_n;
1028         const uint16_t elts_m = elts_n - 1;
1029         unsigned int i = 0;
1030         unsigned int j = 0;
1031         uint16_t max_elts;
1032         uint16_t max_wqe;
1033         unsigned int comp;
1034         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1035         struct mlx5_mpw mpw = {
1036                 .state = MLX5_MPW_STATE_CLOSED,
1037         };
1038         /*
1039          * Compute the maximum number of WQE which can be consumed by inline
1040          * code.
1041          * - 2 DSEG for:
1042          *   - 1 control segment,
1043          *   - 1 Ethernet segment,
1044          * - N Dseg from the inline request.
1045          */
1046         const unsigned int wqe_inl_n =
1047                 ((2 * MLX5_WQE_DWORD_SIZE +
1048                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1049                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1050
1051         if (unlikely(!pkts_n))
1052                 return 0;
1053         /* Prefetch first packet cacheline. */
1054         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1055         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1056         /* Start processing. */
1057         mlx5_tx_complete(txq);
1058         max_elts = (elts_n - (elts_head - txq->elts_tail));
1059         do {
1060                 struct rte_mbuf *buf = *(pkts++);
1061                 uintptr_t addr;
1062                 uint32_t length;
1063                 unsigned int segs_n = buf->nb_segs;
1064                 uint32_t cs_flags = 0;
1065
1066                 /*
1067                  * Make sure there is enough room to store this packet and
1068                  * that one ring entry remains unused.
1069                  */
1070                 assert(segs_n);
1071                 if (max_elts < segs_n)
1072                         break;
1073                 /* Do not bother with large packets MPW cannot handle. */
1074                 if (segs_n > MLX5_MPW_DSEG_MAX)
1075                         break;
1076                 max_elts -= segs_n;
1077                 --pkts_n;
1078                 /*
1079                  * Compute max_wqe in case less WQE were consumed in previous
1080                  * iteration.
1081                  */
1082                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1083                 /* Should we enable HW CKSUM offload */
1084                 if (buf->ol_flags &
1085                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1086                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1087                 /* Retrieve packet information. */
1088                 length = PKT_LEN(buf);
1089                 /* Start new session if packet differs. */
1090                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1091                         if ((mpw.len != length) ||
1092                             (segs_n != 1) ||
1093                             (mpw.wqe->eseg.cs_flags != cs_flags))
1094                                 mlx5_mpw_close(txq, &mpw);
1095                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1096                         if ((mpw.len != length) ||
1097                             (segs_n != 1) ||
1098                             (length > inline_room) ||
1099                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1100                                 mlx5_mpw_inline_close(txq, &mpw);
1101                                 inline_room =
1102                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1103                         }
1104                 }
1105                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1106                         if ((segs_n != 1) ||
1107                             (length > inline_room)) {
1108                                 /*
1109                                  * Multi-Packet WQE consumes at most two WQE.
1110                                  * mlx5_mpw_new() expects to be able to use
1111                                  * such resources.
1112                                  */
1113                                 if (unlikely(max_wqe < 2))
1114                                         break;
1115                                 max_wqe -= 2;
1116                                 mlx5_mpw_new(txq, &mpw, length);
1117                                 mpw.wqe->eseg.cs_flags = cs_flags;
1118                         } else {
1119                                 if (unlikely(max_wqe < wqe_inl_n))
1120                                         break;
1121                                 max_wqe -= wqe_inl_n;
1122                                 mlx5_mpw_inline_new(txq, &mpw, length);
1123                                 mpw.wqe->eseg.cs_flags = cs_flags;
1124                         }
1125                 }
1126                 /* Multi-segment packets must be alone in their MPW. */
1127                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1128                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1129                         assert(inline_room ==
1130                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1131 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1132                         length = 0;
1133 #endif
1134                         do {
1135                                 volatile struct mlx5_wqe_data_seg *dseg;
1136
1137                                 assert(buf);
1138                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1139                                 dseg = mpw.data.dseg[mpw.pkts_n];
1140                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1141                                 *dseg = (struct mlx5_wqe_data_seg){
1142                                         .byte_count = htonl(DATA_LEN(buf)),
1143                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1144                                         .addr = htonll(addr),
1145                                 };
1146 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1147                                 length += DATA_LEN(buf);
1148 #endif
1149                                 buf = buf->next;
1150                                 ++mpw.pkts_n;
1151                                 ++j;
1152                         } while (--segs_n);
1153                         assert(length == mpw.len);
1154                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1155                                 mlx5_mpw_close(txq, &mpw);
1156                 } else {
1157                         unsigned int max;
1158
1159                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1160                         assert(length <= inline_room);
1161                         assert(length == DATA_LEN(buf));
1162                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1163                         (*txq->elts)[elts_head++ & elts_m] = buf;
1164                         /* Maximum number of bytes before wrapping. */
1165                         max = ((((uintptr_t)(txq->wqes)) +
1166                                 (1 << txq->wqe_n) *
1167                                 MLX5_WQE_SIZE) -
1168                                (uintptr_t)mpw.data.raw);
1169                         if (length > max) {
1170                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1171                                            (void *)addr,
1172                                            max);
1173                                 mpw.data.raw = (volatile void *)txq->wqes;
1174                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1175                                            (void *)(addr + max),
1176                                            length - max);
1177                                 mpw.data.raw += length - max;
1178                         } else {
1179                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1180                                            (void *)addr,
1181                                            length);
1182
1183                                 if (length == max)
1184                                         mpw.data.raw =
1185                                                 (volatile void *)txq->wqes;
1186                                 else
1187                                         mpw.data.raw += length;
1188                         }
1189                         ++mpw.pkts_n;
1190                         mpw.total_len += length;
1191                         ++j;
1192                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1193                                 mlx5_mpw_inline_close(txq, &mpw);
1194                                 inline_room =
1195                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1196                         } else {
1197                                 inline_room -= length;
1198                         }
1199                 }
1200 #ifdef MLX5_PMD_SOFT_COUNTERS
1201                 /* Increment sent bytes counter. */
1202                 txq->stats.obytes += length;
1203 #endif
1204                 ++i;
1205         } while (pkts_n);
1206         /* Take a shortcut if nothing must be sent. */
1207         if (unlikely(i == 0))
1208                 return 0;
1209         /* Check whether completion threshold has been reached. */
1210         /* "j" includes both packets and segments. */
1211         comp = txq->elts_comp + j;
1212         if (comp >= MLX5_TX_COMP_THRESH) {
1213                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1214
1215                 /* Request completion on last WQE. */
1216                 wqe->ctrl[2] = htonl(8);
1217                 /* Save elts_head in unused "immediate" field of WQE. */
1218                 wqe->ctrl[3] = elts_head;
1219                 txq->elts_comp = 0;
1220         } else {
1221                 txq->elts_comp = comp;
1222         }
1223 #ifdef MLX5_PMD_SOFT_COUNTERS
1224         /* Increment sent packets counter. */
1225         txq->stats.opackets += i;
1226 #endif
1227         /* Ring QP doorbell. */
1228         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1229                 mlx5_mpw_inline_close(txq, &mpw);
1230         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1231                 mlx5_mpw_close(txq, &mpw);
1232         mlx5_tx_dbrec(txq, mpw.wqe);
1233         txq->elts_head = elts_head;
1234         return i;
1235 }
1236
1237 /**
1238  * Open an Enhanced MPW session.
1239  *
1240  * @param txq
1241  *   Pointer to TX queue structure.
1242  * @param mpw
1243  *   Pointer to MPW session structure.
1244  * @param length
1245  *   Packet length.
1246  */
1247 static inline void
1248 mlx5_empw_new(struct txq *txq, struct mlx5_mpw *mpw, int padding)
1249 {
1250         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1251
1252         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1253         mpw->pkts_n = 0;
1254         mpw->total_len = sizeof(struct mlx5_wqe);
1255         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1256         mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1257                                   (txq->wqe_ci << 8) |
1258                                   MLX5_OPCODE_ENHANCED_MPSW);
1259         mpw->wqe->ctrl[2] = 0;
1260         mpw->wqe->ctrl[3] = 0;
1261         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1262         if (unlikely(padding)) {
1263                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1264
1265                 /* Pad the first 2 DWORDs with zero-length inline header. */
1266                 *(volatile uint32_t *)addr = htonl(MLX5_INLINE_SEG);
1267                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1268                         htonl(MLX5_INLINE_SEG);
1269                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1270                 /* Start from the next WQEBB. */
1271                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1272         } else {
1273                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1274         }
1275 }
1276
1277 /**
1278  * Close an Enhanced MPW session.
1279  *
1280  * @param txq
1281  *   Pointer to TX queue structure.
1282  * @param mpw
1283  *   Pointer to MPW session structure.
1284  *
1285  * @return
1286  *   Number of consumed WQEs.
1287  */
1288 static inline uint16_t
1289 mlx5_empw_close(struct txq *txq, struct mlx5_mpw *mpw)
1290 {
1291         uint16_t ret;
1292
1293         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1294          * count as 2.
1295          */
1296         mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | MLX5_WQE_DS(mpw->total_len));
1297         mpw->state = MLX5_MPW_STATE_CLOSED;
1298         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1299         txq->wqe_ci += ret;
1300         return ret;
1301 }
1302
1303 /**
1304  * DPDK callback for TX with Enhanced MPW support.
1305  *
1306  * @param dpdk_txq
1307  *   Generic pointer to TX queue structure.
1308  * @param[in] pkts
1309  *   Packets to transmit.
1310  * @param pkts_n
1311  *   Number of packets in array.
1312  *
1313  * @return
1314  *   Number of packets successfully transmitted (<= pkts_n).
1315  */
1316 uint16_t
1317 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1318 {
1319         struct txq *txq = (struct txq *)dpdk_txq;
1320         uint16_t elts_head = txq->elts_head;
1321         const uint16_t elts_n = 1 << txq->elts_n;
1322         const uint16_t elts_m = elts_n - 1;
1323         unsigned int i = 0;
1324         unsigned int j = 0;
1325         uint16_t max_elts;
1326         uint16_t max_wqe;
1327         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1328         unsigned int mpw_room = 0;
1329         unsigned int inl_pad = 0;
1330         uint32_t inl_hdr;
1331         struct mlx5_mpw mpw = {
1332                 .state = MLX5_MPW_STATE_CLOSED,
1333         };
1334
1335         if (unlikely(!pkts_n))
1336                 return 0;
1337         /* Start processing. */
1338         mlx5_tx_complete(txq);
1339         max_elts = (elts_n - (elts_head - txq->elts_tail));
1340         /* A CQE slot must always be available. */
1341         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1342         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1343         if (unlikely(!max_wqe))
1344                 return 0;
1345         do {
1346                 struct rte_mbuf *buf = *(pkts++);
1347                 uintptr_t addr;
1348                 uint64_t naddr;
1349                 unsigned int n;
1350                 unsigned int do_inline = 0; /* Whether inline is possible. */
1351                 uint32_t length;
1352                 unsigned int segs_n = buf->nb_segs;
1353                 uint32_t cs_flags = 0;
1354
1355                 /*
1356                  * Make sure there is enough room to store this packet and
1357                  * that one ring entry remains unused.
1358                  */
1359                 assert(segs_n);
1360                 if (max_elts - j < segs_n)
1361                         break;
1362                 /* Do not bother with large packets MPW cannot handle. */
1363                 if (segs_n > MLX5_MPW_DSEG_MAX)
1364                         break;
1365                 /* Should we enable HW CKSUM offload. */
1366                 if (buf->ol_flags &
1367                     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
1368                         cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
1369                 /* Retrieve packet information. */
1370                 length = PKT_LEN(buf);
1371                 /* Start new session if:
1372                  * - multi-segment packet
1373                  * - no space left even for a dseg
1374                  * - next packet can be inlined with a new WQE
1375                  * - cs_flag differs
1376                  * It can't be MLX5_MPW_STATE_OPENED as always have a single
1377                  * segmented packet.
1378                  */
1379                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1380                         if ((segs_n != 1) ||
1381                             (inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1382                               mpw_room) ||
1383                             (length <= txq->inline_max_packet_sz &&
1384                              inl_pad + sizeof(inl_hdr) + length >
1385                               mpw_room) ||
1386                             (mpw.wqe->eseg.cs_flags != cs_flags))
1387                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1388                 }
1389                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1390                         if (unlikely(segs_n != 1)) {
1391                                 /* Fall back to legacy MPW.
1392                                  * A MPW session consumes 2 WQEs at most to
1393                                  * include MLX5_MPW_DSEG_MAX pointers.
1394                                  */
1395                                 if (unlikely(max_wqe < 2))
1396                                         break;
1397                                 mlx5_mpw_new(txq, &mpw, length);
1398                         } else {
1399                                 /* In Enhanced MPW, inline as much as the budget
1400                                  * is allowed. The remaining space is to be
1401                                  * filled with dsegs. If the title WQEBB isn't
1402                                  * padded, it will have 2 dsegs there.
1403                                  */
1404                                 mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1405                                             (max_inline ? max_inline :
1406                                              pkts_n * MLX5_WQE_DWORD_SIZE) +
1407                                             MLX5_WQE_SIZE);
1408                                 if (unlikely(max_wqe * MLX5_WQE_SIZE <
1409                                               mpw_room))
1410                                         break;
1411                                 /* Don't pad the title WQEBB to not waste WQ. */
1412                                 mlx5_empw_new(txq, &mpw, 0);
1413                                 mpw_room -= mpw.total_len;
1414                                 inl_pad = 0;
1415                                 do_inline =
1416                                         length <= txq->inline_max_packet_sz &&
1417                                         sizeof(inl_hdr) + length <= mpw_room &&
1418                                         !txq->mpw_hdr_dseg;
1419                         }
1420                         mpw.wqe->eseg.cs_flags = cs_flags;
1421                 } else {
1422                         /* Evaluate whether the next packet can be inlined.
1423                          * Inlininig is possible when:
1424                          * - length is less than configured value
1425                          * - length fits for remaining space
1426                          * - not required to fill the title WQEBB with dsegs
1427                          */
1428                         do_inline =
1429                                 length <= txq->inline_max_packet_sz &&
1430                                 inl_pad + sizeof(inl_hdr) + length <=
1431                                  mpw_room &&
1432                                 (!txq->mpw_hdr_dseg ||
1433                                  mpw.total_len >= MLX5_WQE_SIZE);
1434                 }
1435                 /* Multi-segment packets must be alone in their MPW. */
1436                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1437                 if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
1438 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1439                         length = 0;
1440 #endif
1441                         do {
1442                                 volatile struct mlx5_wqe_data_seg *dseg;
1443
1444                                 assert(buf);
1445                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1446                                 dseg = mpw.data.dseg[mpw.pkts_n];
1447                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1448                                 *dseg = (struct mlx5_wqe_data_seg){
1449                                         .byte_count = htonl(DATA_LEN(buf)),
1450                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1451                                         .addr = htonll(addr),
1452                                 };
1453 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1454                                 length += DATA_LEN(buf);
1455 #endif
1456                                 buf = buf->next;
1457                                 ++j;
1458                                 ++mpw.pkts_n;
1459                         } while (--segs_n);
1460                         /* A multi-segmented packet takes one MPW session.
1461                          * TODO: Pack more multi-segmented packets if possible.
1462                          */
1463                         mlx5_mpw_close(txq, &mpw);
1464                         if (mpw.pkts_n < 3)
1465                                 max_wqe--;
1466                         else
1467                                 max_wqe -= 2;
1468                 } else if (do_inline) {
1469                         /* Inline packet into WQE. */
1470                         unsigned int max;
1471
1472                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1473                         assert(length == DATA_LEN(buf));
1474                         inl_hdr = htonl(length | MLX5_INLINE_SEG);
1475                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1476                         mpw.data.raw = (volatile void *)
1477                                 ((uintptr_t)mpw.data.raw + inl_pad);
1478                         max = tx_mlx5_wq_tailroom(txq,
1479                                         (void *)(uintptr_t)mpw.data.raw);
1480                         /* Copy inline header. */
1481                         mpw.data.raw = (volatile void *)
1482                                 mlx5_copy_to_wq(
1483                                           (void *)(uintptr_t)mpw.data.raw,
1484                                           &inl_hdr,
1485                                           sizeof(inl_hdr),
1486                                           (void *)(uintptr_t)txq->wqes,
1487                                           max);
1488                         max = tx_mlx5_wq_tailroom(txq,
1489                                         (void *)(uintptr_t)mpw.data.raw);
1490                         /* Copy packet data. */
1491                         mpw.data.raw = (volatile void *)
1492                                 mlx5_copy_to_wq(
1493                                           (void *)(uintptr_t)mpw.data.raw,
1494                                           (void *)addr,
1495                                           length,
1496                                           (void *)(uintptr_t)txq->wqes,
1497                                           max);
1498                         ++mpw.pkts_n;
1499                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1500                         /* No need to get completion as the entire packet is
1501                          * copied to WQ. Free the buf right away.
1502                          */
1503                         rte_pktmbuf_free_seg(buf);
1504                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1505                         /* Add pad in the next packet if any. */
1506                         inl_pad = (((uintptr_t)mpw.data.raw +
1507                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1508                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1509                                   (uintptr_t)mpw.data.raw;
1510                 } else {
1511                         /* No inline. Load a dseg of packet pointer. */
1512                         volatile rte_v128u32_t *dseg;
1513
1514                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1515                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1516                         assert(length == DATA_LEN(buf));
1517                         if (!tx_mlx5_wq_tailroom(txq,
1518                                         (void *)((uintptr_t)mpw.data.raw
1519                                                 + inl_pad)))
1520                                 dseg = (volatile void *)txq->wqes;
1521                         else
1522                                 dseg = (volatile void *)
1523                                         ((uintptr_t)mpw.data.raw +
1524                                          inl_pad);
1525                         (*txq->elts)[elts_head++ & elts_m] = buf;
1526                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1527                         for (n = 0; n * RTE_CACHE_LINE_SIZE < length; n++)
1528                                 rte_prefetch2((void *)(addr +
1529                                                 n * RTE_CACHE_LINE_SIZE));
1530                         naddr = htonll(addr);
1531                         *dseg = (rte_v128u32_t) {
1532                                 htonl(length),
1533                                 mlx5_tx_mb2mr(txq, buf),
1534                                 naddr,
1535                                 naddr >> 32,
1536                         };
1537                         mpw.data.raw = (volatile void *)(dseg + 1);
1538                         mpw.total_len += (inl_pad + sizeof(*dseg));
1539                         ++j;
1540                         ++mpw.pkts_n;
1541                         mpw_room -= (inl_pad + sizeof(*dseg));
1542                         inl_pad = 0;
1543                 }
1544 #ifdef MLX5_PMD_SOFT_COUNTERS
1545                 /* Increment sent bytes counter. */
1546                 txq->stats.obytes += length;
1547 #endif
1548                 ++i;
1549         } while (i < pkts_n);
1550         /* Take a shortcut if nothing must be sent. */
1551         if (unlikely(i == 0))
1552                 return 0;
1553         /* Check whether completion threshold has been reached. */
1554         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1555                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1556                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1557                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1558
1559                 /* Request completion on last WQE. */
1560                 wqe->ctrl[2] = htonl(8);
1561                 /* Save elts_head in unused "immediate" field of WQE. */
1562                 wqe->ctrl[3] = elts_head;
1563                 txq->elts_comp = 0;
1564                 txq->mpw_comp = txq->wqe_ci;
1565                 txq->cq_pi++;
1566         } else {
1567                 txq->elts_comp += j;
1568         }
1569 #ifdef MLX5_PMD_SOFT_COUNTERS
1570         /* Increment sent packets counter. */
1571         txq->stats.opackets += i;
1572 #endif
1573         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1574                 mlx5_empw_close(txq, &mpw);
1575         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1576                 mlx5_mpw_close(txq, &mpw);
1577         /* Ring QP doorbell. */
1578         mlx5_tx_dbrec(txq, mpw.wqe);
1579         txq->elts_head = elts_head;
1580         return i;
1581 }
1582
1583 /**
1584  * Translate RX completion flags to packet type.
1585  *
1586  * @param[in] cqe
1587  *   Pointer to CQE.
1588  *
1589  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1590  *
1591  * @return
1592  *   Packet type for struct rte_mbuf.
1593  */
1594 static inline uint32_t
1595 rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
1596 {
1597         uint8_t idx;
1598         uint8_t pinfo = cqe->pkt_info;
1599         uint16_t ptype = cqe->hdr_type_etc;
1600
1601         /*
1602          * The index to the array should have:
1603          * bit[1:0] = l3_hdr_type
1604          * bit[4:2] = l4_hdr_type
1605          * bit[5] = ip_frag
1606          * bit[6] = tunneled
1607          * bit[7] = outer_l3_type
1608          */
1609         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1610         return mlx5_ptype_table[idx];
1611 }
1612
1613 /**
1614  * Get size of the next packet for a given CQE. For compressed CQEs, the
1615  * consumer index is updated only once all packets of the current one have
1616  * been processed.
1617  *
1618  * @param rxq
1619  *   Pointer to RX queue.
1620  * @param cqe
1621  *   CQE to process.
1622  * @param[out] rss_hash
1623  *   Packet RSS Hash result.
1624  *
1625  * @return
1626  *   Packet size in bytes (0 if there is none), -1 in case of completion
1627  *   with error.
1628  */
1629 static inline int
1630 mlx5_rx_poll_len(struct rxq *rxq, volatile struct mlx5_cqe *cqe,
1631                  uint16_t cqe_cnt, uint32_t *rss_hash)
1632 {
1633         struct rxq_zip *zip = &rxq->zip;
1634         uint16_t cqe_n = cqe_cnt + 1;
1635         int len = 0;
1636         uint16_t idx, end;
1637
1638         /* Process compressed data in the CQE and mini arrays. */
1639         if (zip->ai) {
1640                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1641                         (volatile struct mlx5_mini_cqe8 (*)[8])
1642                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1643
1644                 len = ntohl((*mc)[zip->ai & 7].byte_cnt);
1645                 *rss_hash = ntohl((*mc)[zip->ai & 7].rx_hash_result);
1646                 if ((++zip->ai & 7) == 0) {
1647                         /* Invalidate consumed CQEs */
1648                         idx = zip->ca;
1649                         end = zip->na;
1650                         while (idx != end) {
1651                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1652                                         MLX5_CQE_INVALIDATE;
1653                                 ++idx;
1654                         }
1655                         /*
1656                          * Increment consumer index to skip the number of
1657                          * CQEs consumed. Hardware leaves holes in the CQ
1658                          * ring for software use.
1659                          */
1660                         zip->ca = zip->na;
1661                         zip->na += 8;
1662                 }
1663                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1664                         /* Invalidate the rest */
1665                         idx = zip->ca;
1666                         end = zip->cq_ci;
1667
1668                         while (idx != end) {
1669                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1670                                         MLX5_CQE_INVALIDATE;
1671                                 ++idx;
1672                         }
1673                         rxq->cq_ci = zip->cq_ci;
1674                         zip->ai = 0;
1675                 }
1676         /* No compressed data, get next CQE and verify if it is compressed. */
1677         } else {
1678                 int ret;
1679                 int8_t op_own;
1680
1681                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1682                 if (unlikely(ret == 1))
1683                         return 0;
1684                 ++rxq->cq_ci;
1685                 op_own = cqe->op_own;
1686                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1687                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1688                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1689                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1690                                                           cqe_cnt].pkt_info);
1691
1692                         /* Fix endianness. */
1693                         zip->cqe_cnt = ntohl(cqe->byte_cnt);
1694                         /*
1695                          * Current mini array position is the one returned by
1696                          * check_cqe64().
1697                          *
1698                          * If completion comprises several mini arrays, as a
1699                          * special case the second one is located 7 CQEs after
1700                          * the initial CQE instead of 8 for subsequent ones.
1701                          */
1702                         zip->ca = rxq->cq_ci;
1703                         zip->na = zip->ca + 7;
1704                         /* Compute the next non compressed CQE. */
1705                         --rxq->cq_ci;
1706                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1707                         /* Get packet size to return. */
1708                         len = ntohl((*mc)[0].byte_cnt);
1709                         *rss_hash = ntohl((*mc)[0].rx_hash_result);
1710                         zip->ai = 1;
1711                         /* Prefetch all the entries to be invalidated */
1712                         idx = zip->ca;
1713                         end = zip->cq_ci;
1714                         while (idx != end) {
1715                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1716                                 ++idx;
1717                         }
1718                 } else {
1719                         len = ntohl(cqe->byte_cnt);
1720                         *rss_hash = ntohl(cqe->rx_hash_res);
1721                 }
1722                 /* Error while receiving packet. */
1723                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1724                         return -1;
1725         }
1726         return len;
1727 }
1728
1729 /**
1730  * Translate RX completion flags to offload flags.
1731  *
1732  * @param[in] rxq
1733  *   Pointer to RX queue structure.
1734  * @param[in] cqe
1735  *   Pointer to CQE.
1736  *
1737  * @return
1738  *   Offload flags (ol_flags) for struct rte_mbuf.
1739  */
1740 static inline uint32_t
1741 rxq_cq_to_ol_flags(struct rxq *rxq, volatile struct mlx5_cqe *cqe)
1742 {
1743         uint32_t ol_flags = 0;
1744         uint16_t flags = ntohs(cqe->hdr_type_etc);
1745
1746         ol_flags =
1747                 TRANSPOSE(flags,
1748                           MLX5_CQE_RX_L3_HDR_VALID,
1749                           PKT_RX_IP_CKSUM_GOOD) |
1750                 TRANSPOSE(flags,
1751                           MLX5_CQE_RX_L4_HDR_VALID,
1752                           PKT_RX_L4_CKSUM_GOOD);
1753         if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
1754                 ol_flags |=
1755                         TRANSPOSE(flags,
1756                                   MLX5_CQE_RX_L3_HDR_VALID,
1757                                   PKT_RX_IP_CKSUM_GOOD) |
1758                         TRANSPOSE(flags,
1759                                   MLX5_CQE_RX_L4_HDR_VALID,
1760                                   PKT_RX_L4_CKSUM_GOOD);
1761         return ol_flags;
1762 }
1763
1764 /**
1765  * DPDK callback for RX.
1766  *
1767  * @param dpdk_rxq
1768  *   Generic pointer to RX queue structure.
1769  * @param[out] pkts
1770  *   Array to store received packets.
1771  * @param pkts_n
1772  *   Maximum number of packets in array.
1773  *
1774  * @return
1775  *   Number of packets successfully received (<= pkts_n).
1776  */
1777 uint16_t
1778 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1779 {
1780         struct rxq *rxq = dpdk_rxq;
1781         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1782         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1783         const unsigned int sges_n = rxq->sges_n;
1784         struct rte_mbuf *pkt = NULL;
1785         struct rte_mbuf *seg = NULL;
1786         volatile struct mlx5_cqe *cqe =
1787                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1788         unsigned int i = 0;
1789         unsigned int rq_ci = rxq->rq_ci << sges_n;
1790         int len = 0; /* keep its value across iterations. */
1791
1792         while (pkts_n) {
1793                 unsigned int idx = rq_ci & wqe_cnt;
1794                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1795                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1796                 uint32_t rss_hash_res = 0;
1797
1798                 if (pkt)
1799                         NEXT(seg) = rep;
1800                 seg = rep;
1801                 rte_prefetch0(seg);
1802                 rte_prefetch0(cqe);
1803                 rte_prefetch0(wqe);
1804                 rep = rte_mbuf_raw_alloc(rxq->mp);
1805                 if (unlikely(rep == NULL)) {
1806                         ++rxq->stats.rx_nombuf;
1807                         if (!pkt) {
1808                                 /*
1809                                  * no buffers before we even started,
1810                                  * bail out silently.
1811                                  */
1812                                 break;
1813                         }
1814                         while (pkt != seg) {
1815                                 assert(pkt != (*rxq->elts)[idx]);
1816                                 rep = NEXT(pkt);
1817                                 NEXT(pkt) = NULL;
1818                                 NB_SEGS(pkt) = 1;
1819                                 rte_mbuf_raw_free(pkt);
1820                                 pkt = rep;
1821                         }
1822                         break;
1823                 }
1824                 if (!pkt) {
1825                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1826                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1827                                                &rss_hash_res);
1828                         if (!len) {
1829                                 rte_mbuf_raw_free(rep);
1830                                 break;
1831                         }
1832                         if (unlikely(len == -1)) {
1833                                 /* RX error, packet is likely too large. */
1834                                 rte_mbuf_raw_free(rep);
1835                                 ++rxq->stats.idropped;
1836                                 goto skip;
1837                         }
1838                         pkt = seg;
1839                         assert(len >= (rxq->crc_present << 2));
1840                         /* Update packet information. */
1841                         pkt->packet_type = rxq_cq_to_pkt_type(cqe);
1842                         pkt->ol_flags = 0;
1843                         if (rss_hash_res && rxq->rss_hash) {
1844                                 pkt->hash.rss = rss_hash_res;
1845                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1846                         }
1847                         if (rxq->mark &&
1848                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1849                                 pkt->ol_flags |= PKT_RX_FDIR;
1850                                 if (cqe->sop_drop_qpn !=
1851                                     htonl(MLX5_FLOW_MARK_DEFAULT)) {
1852                                         uint32_t mark = cqe->sop_drop_qpn;
1853
1854                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1855                                         pkt->hash.fdir.hi =
1856                                                 mlx5_flow_mark_get(mark);
1857                                 }
1858                         }
1859                         if (rxq->csum | rxq->csum_l2tun)
1860                                 pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
1861                         if (rxq->vlan_strip &&
1862                             (cqe->hdr_type_etc &
1863                              htons(MLX5_CQE_VLAN_STRIPPED))) {
1864                                 pkt->ol_flags |= PKT_RX_VLAN_PKT |
1865                                         PKT_RX_VLAN_STRIPPED;
1866                                 pkt->vlan_tci = ntohs(cqe->vlan_info);
1867                         }
1868                         if (rxq->crc_present)
1869                                 len -= ETHER_CRC_LEN;
1870                         PKT_LEN(pkt) = len;
1871                 }
1872                 DATA_LEN(rep) = DATA_LEN(seg);
1873                 PKT_LEN(rep) = PKT_LEN(seg);
1874                 SET_DATA_OFF(rep, DATA_OFF(seg));
1875                 PORT(rep) = PORT(seg);
1876                 (*rxq->elts)[idx] = rep;
1877                 /*
1878                  * Fill NIC descriptor with the new buffer.  The lkey and size
1879                  * of the buffers are already known, only the buffer address
1880                  * changes.
1881                  */
1882                 wqe->addr = htonll(rte_pktmbuf_mtod(rep, uintptr_t));
1883                 if (len > DATA_LEN(seg)) {
1884                         len -= DATA_LEN(seg);
1885                         ++NB_SEGS(pkt);
1886                         ++rq_ci;
1887                         continue;
1888                 }
1889                 DATA_LEN(seg) = len;
1890 #ifdef MLX5_PMD_SOFT_COUNTERS
1891                 /* Increment bytes counter. */
1892                 rxq->stats.ibytes += PKT_LEN(pkt);
1893 #endif
1894                 /* Return packet. */
1895                 *(pkts++) = pkt;
1896                 pkt = NULL;
1897                 --pkts_n;
1898                 ++i;
1899 skip:
1900                 /* Align consumer index to the next stride. */
1901                 rq_ci >>= sges_n;
1902                 ++rq_ci;
1903                 rq_ci <<= sges_n;
1904         }
1905         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1906                 return 0;
1907         /* Update the consumer index. */
1908         rxq->rq_ci = rq_ci >> sges_n;
1909         rte_wmb();
1910         *rxq->cq_db = htonl(rxq->cq_ci);
1911         rte_wmb();
1912         *rxq->rq_db = htonl(rxq->rq_ci);
1913 #ifdef MLX5_PMD_SOFT_COUNTERS
1914         /* Increment packets counter. */
1915         rxq->stats.ipackets += i;
1916 #endif
1917         return i;
1918 }
1919
1920 /**
1921  * Dummy DPDK callback for TX.
1922  *
1923  * This function is used to temporarily replace the real callback during
1924  * unsafe control operations on the queue, or in case of error.
1925  *
1926  * @param dpdk_txq
1927  *   Generic pointer to TX queue structure.
1928  * @param[in] pkts
1929  *   Packets to transmit.
1930  * @param pkts_n
1931  *   Number of packets in array.
1932  *
1933  * @return
1934  *   Number of packets successfully transmitted (<= pkts_n).
1935  */
1936 uint16_t
1937 removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1938 {
1939         (void)dpdk_txq;
1940         (void)pkts;
1941         (void)pkts_n;
1942         return 0;
1943 }
1944
1945 /**
1946  * Dummy DPDK callback for RX.
1947  *
1948  * This function is used to temporarily replace the real callback during
1949  * unsafe control operations on the queue, or in case of error.
1950  *
1951  * @param dpdk_rxq
1952  *   Generic pointer to RX queue structure.
1953  * @param[out] pkts
1954  *   Array to store received packets.
1955  * @param pkts_n
1956  *   Maximum number of packets in array.
1957  *
1958  * @return
1959  *   Number of packets successfully received (<= pkts_n).
1960  */
1961 uint16_t
1962 removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1963 {
1964         (void)dpdk_rxq;
1965         (void)pkts;
1966         (void)pkts_n;
1967         return 0;
1968 }
1969
1970 /*
1971  * Vectorized Rx/Tx routines are not compiled in when required vector
1972  * instructions are not supported on a target architecture. The following null
1973  * stubs are needed for linkage when those are not included outside of this file
1974  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1975  */
1976
1977 uint16_t __attribute__((weak))
1978 mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1979 {
1980         (void)dpdk_txq;
1981         (void)pkts;
1982         (void)pkts_n;
1983         return 0;
1984 }
1985
1986 uint16_t __attribute__((weak))
1987 mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1988 {
1989         (void)dpdk_txq;
1990         (void)pkts;
1991         (void)pkts_n;
1992         return 0;
1993 }
1994
1995 uint16_t __attribute__((weak))
1996 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1997 {
1998         (void)dpdk_rxq;
1999         (void)pkts;
2000         (void)pkts_n;
2001         return 0;
2002 }
2003
2004 int __attribute__((weak))
2005 priv_check_raw_vec_tx_support(struct priv *priv)
2006 {
2007         (void)priv;
2008         return -ENOTSUP;
2009 }
2010
2011 int __attribute__((weak))
2012 priv_check_vec_tx_support(struct priv *priv)
2013 {
2014         (void)priv;
2015         return -ENOTSUP;
2016 }
2017
2018 int __attribute__((weak))
2019 rxq_check_vec_support(struct rxq *rxq)
2020 {
2021         (void)rxq;
2022         return -ENOTSUP;
2023 }
2024
2025 int __attribute__((weak))
2026 priv_check_vec_rx_support(struct priv *priv)
2027 {
2028         (void)priv;
2029         return -ENOTSUP;
2030 }
2031
2032 void __attribute__((weak))
2033 priv_prep_vec_rx_function(struct priv *priv)
2034 {
2035         (void)priv;
2036 }