Imported Upstream version 16.11
[deb_dpdk.git] / drivers / net / qede / base / ecore_cxt.c
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8
9 #include "bcm_osal.h"
10 #include "reg_addr.h"
11 #include "ecore_hsi_common.h"
12 #include "ecore_hsi_eth.h"
13 #include "ecore_rt_defs.h"
14 #include "ecore_status.h"
15 #include "ecore.h"
16 #include "ecore_init_ops.h"
17 #include "ecore_init_fw_funcs.h"
18 #include "ecore_cxt.h"
19 #include "ecore_hw.h"
20 #include "ecore_dev_api.h"
21 #include "ecore_sriov.h"
22
23 /* Max number of connection types in HW (DQ/CDU etc.) */
24 #define MAX_CONN_TYPES          PROTOCOLID_COMMON
25 #define NUM_TASK_TYPES          2
26 #define NUM_TASK_PF_SEGMENTS    4
27 #define NUM_TASK_VF_SEGMENTS    1
28
29 /* Doorbell-Queue constants */
30 #define DQ_RANGE_SHIFT  4
31 #define DQ_RANGE_ALIGN  (1 << DQ_RANGE_SHIFT)
32
33 /* Searcher constants */
34 #define SRC_MIN_NUM_ELEMS 256
35
36 /* Timers constants */
37 #define TM_SHIFT        7
38 #define TM_ALIGN        (1 << TM_SHIFT)
39 #define TM_ELEM_SIZE    4
40
41 /* ILT constants */
42 /* If for some reason, HW P size is modified to be less than 32K,
43  * special handling needs to be made for CDU initialization
44  */
45 #define ILT_DEFAULT_HW_P_SIZE   3
46
47 #define ILT_PAGE_IN_BYTES(hw_p_size)    (1U << ((hw_p_size) + 12))
48 #define ILT_CFG_REG(cli, reg)           PSWRQ2_REG_##cli##_##reg##_RT_OFFSET
49
50 /* ILT entry structure */
51 #define ILT_ENTRY_PHY_ADDR_MASK         0x000FFFFFFFFFFFULL
52 #define ILT_ENTRY_PHY_ADDR_SHIFT        0
53 #define ILT_ENTRY_VALID_MASK            0x1ULL
54 #define ILT_ENTRY_VALID_SHIFT           52
55 #define ILT_ENTRY_IN_REGS               2
56 #define ILT_REG_SIZE_IN_BYTES           4
57
58 /* connection context union */
59 union conn_context {
60         struct core_conn_context core_ctx;
61         struct eth_conn_context eth_ctx;
62 };
63
64 /* TYPE-0 task context - iSCSI, FCOE */
65 union type0_task_context {
66 };
67
68 /* TYPE-1 task context - ROCE */
69 union type1_task_context {
70 };
71
72 struct src_ent {
73         u8 opaque[56];
74         u64 next;
75 };
76
77 #define CDUT_SEG_ALIGNMET 3     /* in 4k chunks */
78 #define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12))
79
80 #define CONN_CXT_SIZE(p_hwfn) \
81         ALIGNED_TYPE_SIZE(union conn_context, p_hwfn)
82
83 #define SRQ_CXT_SIZE (sizeof(struct regpair) * 8) /* @DPDK */
84
85 #define TYPE0_TASK_CXT_SIZE(p_hwfn) \
86         ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn)
87
88 /* Alignment is inherent to the type1_task_context structure */
89 #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context)
90
91 /* PF per protocl configuration object */
92 #define TASK_SEGMENTS   (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS)
93 #define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS)
94
95 struct ecore_tid_seg {
96         u32 count;
97         u8 type;
98         bool has_fl_mem;
99 };
100
101 struct ecore_conn_type_cfg {
102         u32 cid_count;
103         u32 cid_start;
104         u32 cids_per_vf;
105         struct ecore_tid_seg tid_seg[TASK_SEGMENTS];
106 };
107
108 /* ILT Client configuration,
109  * Per connection type (protocol) resources (cids, tis, vf cids etc.)
110  * 1 - for connection context (CDUC) and for each task context we need two
111  * values, for regular task context and for force load memory
112  */
113 #define ILT_CLI_PF_BLOCKS       (1 + NUM_TASK_PF_SEGMENTS * 2)
114 #define ILT_CLI_VF_BLOCKS       (1 + NUM_TASK_VF_SEGMENTS * 2)
115 #define CDUC_BLK                (0)
116 #define SRQ_BLK                 (0)
117 #define CDUT_SEG_BLK(n)         (1 + (u8)(n))
118 #define CDUT_FL_SEG_BLK(n, X)   (1 + (n) + NUM_TASK_##X##_SEGMENTS)
119
120 enum ilt_clients {
121         ILT_CLI_CDUC,
122         ILT_CLI_CDUT,
123         ILT_CLI_QM,
124         ILT_CLI_TM,
125         ILT_CLI_SRC,
126         ILT_CLI_TSDM,
127         ILT_CLI_MAX
128 };
129
130 struct ilt_cfg_pair {
131         u32 reg;
132         u32 val;
133 };
134
135 struct ecore_ilt_cli_blk {
136         u32 total_size;         /* 0 means not active */
137         u32 real_size_in_page;
138         u32 start_line;
139         u32 dynamic_line_cnt;
140 };
141
142 struct ecore_ilt_client_cfg {
143         bool active;
144
145         /* ILT boundaries */
146         struct ilt_cfg_pair first;
147         struct ilt_cfg_pair last;
148         struct ilt_cfg_pair p_size;
149
150         /* ILT client blocks for PF */
151         struct ecore_ilt_cli_blk pf_blks[ILT_CLI_PF_BLOCKS];
152         u32 pf_total_lines;
153
154         /* ILT client blocks for VFs */
155         struct ecore_ilt_cli_blk vf_blks[ILT_CLI_VF_BLOCKS];
156         u32 vf_total_lines;
157 };
158
159 /* Per Path -
160  *      ILT shadow table
161  *      Protocol acquired CID lists
162  *      PF start line in ILT
163  */
164 struct ecore_dma_mem {
165         dma_addr_t p_phys;
166         void *p_virt;
167         osal_size_t size;
168 };
169
170 #define MAP_WORD_SIZE           sizeof(unsigned long)
171 #define BITS_PER_MAP_WORD       (MAP_WORD_SIZE * 8)
172
173 struct ecore_cid_acquired_map {
174         u32 start_cid;
175         u32 max_count;
176         unsigned long *cid_map;
177 };
178
179 struct ecore_cxt_mngr {
180         /* Per protocl configuration */
181         struct ecore_conn_type_cfg conn_cfg[MAX_CONN_TYPES];
182
183         /* computed ILT structure */
184         struct ecore_ilt_client_cfg clients[ILT_CLI_MAX];
185
186         /* Task type sizes */
187         u32 task_type_size[NUM_TASK_TYPES];
188
189         /* total number of VFs for this hwfn -
190          * ALL VFs are symmetric in terms of HW resources
191          */
192         u32 vf_count;
193
194         /* total number of SRQ's for this hwfn */
195         u32                             srq_count;
196
197         /* Acquired CIDs */
198         struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES];
199
200         /* ILT  shadow table */
201         struct ecore_dma_mem *ilt_shadow;
202         u32 pf_start_line;
203
204         /* Mutex for a dynamic ILT allocation */
205         osal_mutex_t mutex;
206
207         /* SRC T2 */
208         struct ecore_dma_mem *t2;
209         u32 t2_num_pages;
210         u64 first_free;
211         u64 last_free;
212 };
213
214 /* check if resources/configuration is required according to protocol type */
215 static OSAL_INLINE bool src_proto(enum protocol_type type)
216 {
217         return type == PROTOCOLID_TOE;
218 }
219
220 static OSAL_INLINE bool tm_cid_proto(enum protocol_type type)
221 {
222         return type == PROTOCOLID_TOE;
223 }
224
225 static bool tm_tid_proto(enum protocol_type type)
226 {
227         return type == PROTOCOLID_FCOE;
228 }
229
230 /* counts the iids for the CDU/CDUC ILT client configuration */
231 struct ecore_cdu_iids {
232         u32 pf_cids;
233         u32 per_vf_cids;
234 };
235
236 static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr *p_mngr,
237                                struct ecore_cdu_iids *iids)
238 {
239         u32 type;
240
241         for (type = 0; type < MAX_CONN_TYPES; type++) {
242                 iids->pf_cids += p_mngr->conn_cfg[type].cid_count;
243                 iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
244         }
245 }
246
247 /* counts the iids for the Searcher block configuration */
248 struct ecore_src_iids {
249         u32 pf_cids;
250         u32 per_vf_cids;
251 };
252
253 static OSAL_INLINE void ecore_cxt_src_iids(struct ecore_cxt_mngr *p_mngr,
254                                            struct ecore_src_iids *iids)
255 {
256         u32 i;
257
258         for (i = 0; i < MAX_CONN_TYPES; i++) {
259                 if (!src_proto(i))
260                         continue;
261
262                 iids->pf_cids += p_mngr->conn_cfg[i].cid_count;
263                 iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf;
264         }
265 }
266
267 /* counts the iids for the Timers block configuration */
268 struct ecore_tm_iids {
269         u32 pf_cids;
270         u32 pf_tids[NUM_TASK_PF_SEGMENTS];      /* per segment */
271         u32 pf_tids_total;
272         u32 per_vf_cids;
273         u32 per_vf_tids;
274 };
275
276 static OSAL_INLINE void ecore_cxt_tm_iids(struct ecore_cxt_mngr *p_mngr,
277                                           struct ecore_tm_iids *iids)
278 {
279         u32 i, j;
280
281         for (i = 0; i < MAX_CONN_TYPES; i++) {
282                 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i];
283
284                 if (tm_cid_proto(i)) {
285                         iids->pf_cids += p_cfg->cid_count;
286                         iids->per_vf_cids += p_cfg->cids_per_vf;
287                 }
288
289                 if (tm_tid_proto(i)) {
290                         struct ecore_tid_seg *segs = p_cfg->tid_seg;
291
292                         /* for each segment there is at most one
293                          * protocol for which count is not 0.
294                          */
295                         for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
296                                 iids->pf_tids[j] += segs[j].count;
297
298                         /* The last array elelment is for the VFs. As for PF
299                          * segments there can be only one protocol for
300                          * which this value is not 0.
301                          */
302                         iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
303                 }
304         }
305
306         iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN);
307         iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN);
308         iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN);
309
310         for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) {
311                 iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN);
312                 iids->pf_tids_total += iids->pf_tids[j];
313         }
314 }
315
316 void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn, struct ecore_qm_iids *iids)
317 {
318         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
319         struct ecore_tid_seg *segs;
320         u32 vf_cids = 0, type, j;
321         u32 vf_tids = 0;
322
323         for (type = 0; type < MAX_CONN_TYPES; type++) {
324                 iids->cids += p_mngr->conn_cfg[type].cid_count;
325                 vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
326
327                 segs = p_mngr->conn_cfg[type].tid_seg;
328                 /* for each segment there is at most one
329                  * protocol for which count is not 0.
330                  */
331                 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
332                         iids->tids += segs[j].count;
333
334                 /* The last array elelment is for the VFs. As for PF
335                  * segments there can be only one protocol for
336                  * which this value is not 0.
337                  */
338                 vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
339         }
340
341         iids->vf_cids += vf_cids * p_mngr->vf_count;
342         iids->tids += vf_tids * p_mngr->vf_count;
343
344         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
345                    "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n",
346                    iids->cids, iids->vf_cids, iids->tids, vf_tids);
347 }
348
349 static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn *p_hwfn,
350                                                     u32 seg)
351 {
352         struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr;
353         u32 i;
354
355         /* Find the protocol with tid count > 0 for this segment.
356          * Note: there can only be one and this is already validated.
357          */
358         for (i = 0; i < MAX_CONN_TYPES; i++) {
359                 if (p_cfg->conn_cfg[i].tid_seg[seg].count)
360                         return &p_cfg->conn_cfg[i].tid_seg[seg];
361         }
362         return OSAL_NULL;
363 }
364
365 /* set the iids (cid/tid) count per protocol */
366 static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn,
367                                    enum protocol_type type,
368                                    u32 cid_count, u32 vf_cid_cnt)
369 {
370         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
371         struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type];
372
373         p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN);
374         p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN);
375 }
376
377 u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn *p_hwfn,
378                                   enum protocol_type type, u32 *vf_cid)
379 {
380         if (vf_cid)
381                 *vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf;
382
383         return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
384 }
385
386 u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn *p_hwfn,
387                                   enum protocol_type type)
388 {
389         return p_hwfn->p_cxt_mngr->acquired[type].start_cid;
390 }
391
392 u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn,
393                                          enum protocol_type type)
394 {
395         u32 cnt = 0;
396         int i;
397
398         for (i = 0; i < TASK_SEGMENTS; i++)
399                 cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count;
400
401         return cnt;
402 }
403
404 static OSAL_INLINE void
405 ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn,
406                               enum protocol_type proto,
407                               u8 seg, u8 seg_type, u32 count, bool has_fl)
408 {
409         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
410         struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg];
411
412         p_seg->count = count;
413         p_seg->has_fl_mem = has_fl;
414         p_seg->type = seg_type;
415 }
416
417 /* the *p_line parameter must be either 0 for the first invocation or the
418  * value returned in the previous invocation.
419  */
420 static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg *p_cli,
421                                    struct ecore_ilt_cli_blk *p_blk,
422                                    u32 start_line,
423                                    u32 total_size, u32 elem_size)
424 {
425         u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
426
427         /* verify that it's called once for each block */
428         if (p_blk->total_size)
429                 return;
430
431         p_blk->total_size = total_size;
432         p_blk->real_size_in_page = 0;
433         if (elem_size)
434                 p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size;
435         p_blk->start_line = start_line;
436 }
437
438 static void ecore_ilt_cli_adv_line(struct ecore_hwfn *p_hwfn,
439                                    struct ecore_ilt_client_cfg *p_cli,
440                                    struct ecore_ilt_cli_blk *p_blk,
441                                    u32 *p_line, enum ilt_clients client_id)
442 {
443         if (!p_blk->total_size)
444                 return;
445
446         if (!p_cli->active)
447                 p_cli->first.val = *p_line;
448
449         p_cli->active = true;
450         *p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
451         p_cli->last.val = *p_line - 1;
452
453         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
454                    "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x"
455                    " [Real %08x] Start line %d\n",
456                    client_id, p_cli->first.val, p_cli->last.val,
457                    p_blk->total_size, p_blk->real_size_in_page,
458                    p_blk->start_line);
459 }
460
461 static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn,
462                                           enum ilt_clients ilt_client)
463 {
464         u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count;
465         struct ecore_ilt_client_cfg *p_cli;
466         u32 lines_to_skip = 0;
467         u32 cxts_per_p;
468
469         /* TBD MK: ILT code should be simplified once PROTO enum is changed */
470
471         if (ilt_client == ILT_CLI_CDUC) {
472                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
473
474                 cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) /
475                     (u32)CONN_CXT_SIZE(p_hwfn);
476
477                 lines_to_skip = cid_count / cxts_per_p;
478         }
479
480         return lines_to_skip;
481 }
482
483 enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn)
484 {
485         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
486         u32 curr_line, total, i, task_size, line;
487         struct ecore_ilt_client_cfg *p_cli;
488         struct ecore_ilt_cli_blk *p_blk;
489         struct ecore_cdu_iids cdu_iids;
490         struct ecore_src_iids src_iids;
491         struct ecore_qm_iids qm_iids;
492         struct ecore_tm_iids tm_iids;
493         struct ecore_tid_seg *p_seg;
494
495         OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids));
496         OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids));
497         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
498         OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
499
500         p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT);
501
502         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
503                    "hwfn [%d] - Set context mngr starting line to be 0x%08x\n",
504                    p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line);
505
506         /* CDUC */
507         p_cli = &p_mngr->clients[ILT_CLI_CDUC];
508
509         curr_line = p_mngr->pf_start_line;
510
511         /* CDUC PF */
512         p_cli->pf_total_lines = 0;
513
514         /* get the counters for the CDUC,CDUC and QM clients  */
515         ecore_cxt_cdu_iids(p_mngr, &cdu_iids);
516
517         p_blk = &p_cli->pf_blks[CDUC_BLK];
518
519         total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn);
520
521         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
522                                total, CONN_CXT_SIZE(p_hwfn));
523
524         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
525         p_cli->pf_total_lines = curr_line - p_blk->start_line;
526
527         p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn,
528                                                                  ILT_CLI_CDUC);
529
530         /* CDUC VF */
531         p_blk = &p_cli->vf_blks[CDUC_BLK];
532         total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn);
533
534         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
535                                total, CONN_CXT_SIZE(p_hwfn));
536
537         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
538         p_cli->vf_total_lines = curr_line - p_blk->start_line;
539
540         for (i = 1; i < p_mngr->vf_count; i++)
541                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
542                                        ILT_CLI_CDUC);
543
544         /* CDUT PF */
545         p_cli = &p_mngr->clients[ILT_CLI_CDUT];
546         p_cli->first.val = curr_line;
547
548         /* first the 'working' task memory */
549         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
550                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
551                 if (!p_seg || p_seg->count == 0)
552                         continue;
553
554                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(i)];
555                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
556                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total,
557                                        p_mngr->task_type_size[p_seg->type]);
558
559                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
560                                        ILT_CLI_CDUT);
561         }
562
563         /* next the 'init' task memory (forced load memory) */
564         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
565                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
566                 if (!p_seg || p_seg->count == 0)
567                         continue;
568
569                 p_blk = &p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)];
570
571                 if (!p_seg->has_fl_mem) {
572                         /* The segment is active (total size pf 'working'
573                          * memory is > 0) but has no FL (forced-load, Init)
574                          * memory. Thus:
575                          *
576                          * 1.   The total-size in the corrsponding FL block of
577                          *      the ILT client is set to 0 - No ILT line are
578                          *      provisioned and no ILT memory allocated.
579                          *
580                          * 2.   The start-line of said block is set to the
581                          *      start line of the matching working memory
582                          *      block in the ILT client. This is later used to
583                          *      configure the CDU segment offset registers and
584                          *      results in an FL command for TIDs of this
585                          *      segment behaves as regular load commands
586                          *      (loading TIDs from the working memory).
587                          */
588                         line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line;
589
590                         ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
591                         continue;
592                 }
593                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
594
595                 ecore_ilt_cli_blk_fill(p_cli, p_blk,
596                                        curr_line, total,
597                                        p_mngr->task_type_size[p_seg->type]);
598
599                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
600                                        ILT_CLI_CDUT);
601         }
602         p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line;
603
604         /* CDUT VF */
605         p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF);
606         if (p_seg && p_seg->count) {
607                 /* Stricly speaking we need to iterate over all VF
608                  * task segment types, but a VF has only 1 segment
609                  */
610
611                 /* 'working' memory */
612                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
613
614                 p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
615                 ecore_ilt_cli_blk_fill(p_cli, p_blk,
616                                        curr_line, total,
617                                        p_mngr->task_type_size[p_seg->type]);
618
619                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
620                                        ILT_CLI_CDUT);
621
622                 /* 'init' memory */
623                 p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
624                 if (!p_seg->has_fl_mem) {
625                         /* see comment above */
626                         line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line;
627                         ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
628                 } else {
629                         task_size = p_mngr->task_type_size[p_seg->type];
630                         ecore_ilt_cli_blk_fill(p_cli, p_blk,
631                                                curr_line, total, task_size);
632                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
633                                                ILT_CLI_CDUT);
634                 }
635                 p_cli->vf_total_lines = curr_line -
636                     p_cli->vf_blks[0].start_line;
637
638                 /* Now for the rest of the VFs */
639                 for (i = 1; i < p_mngr->vf_count; i++) {
640                         p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
641                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
642                                                ILT_CLI_CDUT);
643
644                         p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
645                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
646                                                ILT_CLI_CDUT);
647                 }
648         }
649
650         /* QM */
651         p_cli = &p_mngr->clients[ILT_CLI_QM];
652         p_blk = &p_cli->pf_blks[0];
653
654         ecore_cxt_qm_iids(p_hwfn, &qm_iids);
655         total = ecore_qm_pf_mem_size(p_hwfn->rel_pf_id, qm_iids.cids,
656                                      qm_iids.vf_cids, qm_iids.tids,
657                                      p_hwfn->qm_info.num_pqs,
658                                      p_hwfn->qm_info.num_vf_pqs);
659
660         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
661                    "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d,"
662                    " num_vf_pqs=%d, memory_size=%d)\n",
663                    qm_iids.cids, qm_iids.vf_cids, qm_iids.tids,
664                    p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total);
665
666         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000,
667                                QM_PQ_ELEMENT_SIZE);
668
669         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM);
670         p_cli->pf_total_lines = curr_line - p_blk->start_line;
671
672         /* SRC */
673         p_cli = &p_mngr->clients[ILT_CLI_SRC];
674         ecore_cxt_src_iids(p_mngr, &src_iids);
675
676         /* Both the PF and VFs searcher connections are stored in the per PF
677          * database. Thus sum the PF searcher cids and all the VFs searcher
678          * cids.
679          */
680         total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
681         if (total) {
682                 u32 local_max = OSAL_MAX_T(u32, total,
683                                            SRC_MIN_NUM_ELEMS);
684
685                 total = OSAL_ROUNDUP_POW_OF_TWO(local_max);
686
687                 p_blk = &p_cli->pf_blks[0];
688                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
689                                        total * sizeof(struct src_ent),
690                                        sizeof(struct src_ent));
691
692                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
693                                        ILT_CLI_SRC);
694                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
695         }
696
697         /* TM PF */
698         p_cli = &p_mngr->clients[ILT_CLI_TM];
699         ecore_cxt_tm_iids(p_mngr, &tm_iids);
700         total = tm_iids.pf_cids + tm_iids.pf_tids_total;
701         if (total) {
702                 p_blk = &p_cli->pf_blks[0];
703                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
704                                        total * TM_ELEM_SIZE, TM_ELEM_SIZE);
705
706                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
707                                        ILT_CLI_TM);
708                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
709         }
710
711         /* TM VF */
712         total = tm_iids.per_vf_cids + tm_iids.per_vf_tids;
713         if (total) {
714                 p_blk = &p_cli->vf_blks[0];
715                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
716                                        total * TM_ELEM_SIZE, TM_ELEM_SIZE);
717
718                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
719                                        ILT_CLI_TM);
720
721                 for (i = 1; i < p_mngr->vf_count; i++) {
722                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
723                                                ILT_CLI_TM);
724                 }
725
726                 p_cli->vf_total_lines = curr_line - p_blk->start_line;
727         }
728
729         /* TSDM (SRQ CONTEXT) */
730         total = ecore_cxt_get_srq_count(p_hwfn);
731
732         if (total) {
733                 p_cli = &p_mngr->clients[ILT_CLI_TSDM];
734                 p_blk = &p_cli->pf_blks[SRQ_BLK];
735                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
736                                        total * SRQ_CXT_SIZE, SRQ_CXT_SIZE);
737
738                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
739                                        ILT_CLI_TSDM);
740                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
741         }
742
743         if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line >
744             RESC_NUM(p_hwfn, ECORE_ILT)) {
745                 DP_ERR(p_hwfn, "too many ilt lines...#lines=%d\n",
746                        curr_line - p_hwfn->p_cxt_mngr->pf_start_line);
747                 return ECORE_INVAL;
748         }
749
750         return ECORE_SUCCESS;
751 }
752
753 static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn)
754 {
755         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
756         u32 i;
757
758         if (!p_mngr->t2)
759                 return;
760
761         for (i = 0; i < p_mngr->t2_num_pages; i++)
762                 if (p_mngr->t2[i].p_virt)
763                         OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
764                                                p_mngr->t2[i].p_virt,
765                                                p_mngr->t2[i].p_phys,
766                                                p_mngr->t2[i].size);
767
768         OSAL_FREE(p_hwfn->p_dev, p_mngr->t2);
769         p_mngr->t2 = OSAL_NULL;
770 }
771
772 static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn)
773 {
774         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
775         u32 conn_num, total_size, ent_per_page, psz, i;
776         struct ecore_ilt_client_cfg *p_src;
777         struct ecore_src_iids src_iids;
778         struct ecore_dma_mem *p_t2;
779         enum _ecore_status_t rc;
780
781         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
782
783         /* if the SRC ILT client is inactive - there are no connection
784          * requiring the searcer, leave.
785          */
786         p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC];
787         if (!p_src->active)
788                 return ECORE_SUCCESS;
789
790         ecore_cxt_src_iids(p_mngr, &src_iids);
791         conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
792         total_size = conn_num * sizeof(struct src_ent);
793
794         /* use the same page size as the SRC ILT client */
795         psz = ILT_PAGE_IN_BYTES(p_src->p_size.val);
796         p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz);
797
798         /* allocate t2 */
799         p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
800                                  p_mngr->t2_num_pages *
801                                  sizeof(struct ecore_dma_mem));
802         if (!p_mngr->t2) {
803                 DP_NOTICE(p_hwfn, true, "Failed to allocate t2 table\n");
804                 rc = ECORE_NOMEM;
805                 goto t2_fail;
806         }
807
808         /* allocate t2 pages */
809         for (i = 0; i < p_mngr->t2_num_pages; i++) {
810                 u32 size = OSAL_MIN_T(u32, total_size, psz);
811                 void **p_virt = &p_mngr->t2[i].p_virt;
812
813                 *p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
814                                                   &p_mngr->t2[i].p_phys, size);
815                 if (!p_mngr->t2[i].p_virt) {
816                         rc = ECORE_NOMEM;
817                         goto t2_fail;
818                 }
819                 OSAL_MEM_ZERO(*p_virt, size);
820                 p_mngr->t2[i].size = size;
821                 total_size -= size;
822         }
823
824         /* Set the t2 pointers */
825
826         /* entries per page - must be a power of two */
827         ent_per_page = psz / sizeof(struct src_ent);
828
829         p_mngr->first_free = (u64)p_mngr->t2[0].p_phys;
830
831         p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page];
832         p_mngr->last_free = (u64)p_t2->p_phys +
833             ((conn_num - 1) & (ent_per_page - 1)) * sizeof(struct src_ent);
834
835         for (i = 0; i < p_mngr->t2_num_pages; i++) {
836                 u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num);
837                 struct src_ent *entries = p_mngr->t2[i].p_virt;
838                 u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val;
839                 u32 j;
840
841                 for (j = 0; j < ent_num - 1; j++) {
842                         val = p_ent_phys + (j + 1) * sizeof(struct src_ent);
843                         entries[j].next = OSAL_CPU_TO_BE64(val);
844                 }
845
846                 if (i < p_mngr->t2_num_pages - 1)
847                         val = (u64)p_mngr->t2[i + 1].p_phys;
848                 else
849                         val = 0;
850                 entries[j].next = OSAL_CPU_TO_BE64(val);
851
852                 conn_num -= ent_num;
853         }
854
855         return ECORE_SUCCESS;
856
857 t2_fail:
858         ecore_cxt_src_t2_free(p_hwfn);
859         return rc;
860 }
861
862 #define for_each_ilt_valid_client(pos, clients)         \
863         for (pos = 0; pos < ILT_CLI_MAX; pos++)         \
864                 if (!clients[pos].active) {             \
865                         continue;                       \
866                 } else                                  \
867
868
869 /* Total number of ILT lines used by this PF */
870 static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients)
871 {
872         u32 size = 0;
873         u32 i;
874
875         for_each_ilt_valid_client(i, ilt_clients)
876                 size += (ilt_clients[i].last.val -
877                          ilt_clients[i].first.val + 1);
878
879         return size;
880 }
881
882 static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn)
883 {
884         struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients;
885         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
886         u32 ilt_size, i;
887
888         ilt_size = ecore_cxt_ilt_shadow_size(p_cli);
889
890         for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) {
891                 struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i];
892
893                 if (p_dma->p_virt)
894                         OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
895                                                p_dma->p_virt,
896                                                p_dma->p_phys, p_dma->size);
897                 p_dma->p_virt = OSAL_NULL;
898         }
899         OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow);
900 }
901
902 static enum _ecore_status_t
903 ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn,
904                     struct ecore_ilt_cli_blk *p_blk,
905                     enum ilt_clients ilt_client, u32 start_line_offset)
906 {
907         struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow;
908         u32 lines, line, sz_left, lines_to_skip = 0;
909
910         /* Special handling for RoCE that supports dynamic allocation */
911         if (ilt_client == ILT_CLI_CDUT || ilt_client == ILT_CLI_TSDM)
912                 return ECORE_SUCCESS;
913
914         lines_to_skip = p_blk->dynamic_line_cnt;
915
916         if (!p_blk->total_size)
917                 return ECORE_SUCCESS;
918
919         sz_left = p_blk->total_size;
920         lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) - lines_to_skip;
921         line = p_blk->start_line + start_line_offset -
922             p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip;
923
924         for (; lines; lines--) {
925                 dma_addr_t p_phys;
926                 void *p_virt;
927                 u32 size;
928
929                 size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page);
930
931 /* @DPDK */
932 #define ILT_BLOCK_ALIGN_SIZE 0x1000
933                 p_virt = OSAL_DMA_ALLOC_COHERENT_ALIGNED(p_hwfn->p_dev,
934                                                          &p_phys, size,
935                                                          ILT_BLOCK_ALIGN_SIZE);
936                 if (!p_virt)
937                         return ECORE_NOMEM;
938                 OSAL_MEM_ZERO(p_virt, size);
939
940                 ilt_shadow[line].p_phys = p_phys;
941                 ilt_shadow[line].p_virt = p_virt;
942                 ilt_shadow[line].size = size;
943
944                 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
945                            "ILT shadow: Line [%d] Physical 0x%lx"
946                            " Virtual %p Size %d\n",
947                            line, (unsigned long)p_phys, p_virt, size);
948
949                 sz_left -= size;
950                 line++;
951         }
952
953         return ECORE_SUCCESS;
954 }
955
956 static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn)
957 {
958         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
959         struct ecore_ilt_client_cfg *clients = p_mngr->clients;
960         struct ecore_ilt_cli_blk *p_blk;
961         u32 size, i, j, k;
962         enum _ecore_status_t rc;
963
964         size = ecore_cxt_ilt_shadow_size(clients);
965         p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
966                                          size * sizeof(struct ecore_dma_mem));
967
968         if (!p_mngr->ilt_shadow) {
969                 DP_NOTICE(p_hwfn, true,
970                           "Failed to allocate ilt shadow table\n");
971                 rc = ECORE_NOMEM;
972                 goto ilt_shadow_fail;
973         }
974
975         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
976                    "Allocated 0x%x bytes for ilt shadow\n",
977                    (u32)(size * sizeof(struct ecore_dma_mem)));
978
979         for_each_ilt_valid_client(i, clients) {
980                 for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) {
981                         p_blk = &clients[i].pf_blks[j];
982                         rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0);
983                         if (rc != ECORE_SUCCESS)
984                                 goto ilt_shadow_fail;
985                 }
986                 for (k = 0; k < p_mngr->vf_count; k++) {
987                         for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) {
988                                 u32 lines = clients[i].vf_total_lines * k;
989
990                                 p_blk = &clients[i].vf_blks[j];
991                                 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk,
992                                                          i, lines);
993                                 if (rc != ECORE_SUCCESS)
994                                         goto ilt_shadow_fail;
995                         }
996                 }
997         }
998
999         return ECORE_SUCCESS;
1000
1001 ilt_shadow_fail:
1002         ecore_ilt_shadow_free(p_hwfn);
1003         return rc;
1004 }
1005
1006 static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn)
1007 {
1008         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1009         u32 type;
1010
1011         for (type = 0; type < MAX_CONN_TYPES; type++) {
1012                 OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map);
1013                 p_mngr->acquired[type].max_count = 0;
1014                 p_mngr->acquired[type].start_cid = 0;
1015         }
1016 }
1017
1018 static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn)
1019 {
1020         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1021         u32 start_cid = 0;
1022         u32 type;
1023
1024         for (type = 0; type < MAX_CONN_TYPES; type++) {
1025                 u32 cid_cnt = p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
1026                 u32 size;
1027
1028                 if (cid_cnt == 0)
1029                         continue;
1030
1031                 size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_cnt, BITS_PER_MAP_WORD);
1032                 p_mngr->acquired[type].cid_map = OSAL_ZALLOC(p_hwfn->p_dev,
1033                                                              GFP_KERNEL, size);
1034                 if (!p_mngr->acquired[type].cid_map)
1035                         goto cid_map_fail;
1036
1037                 p_mngr->acquired[type].max_count = cid_cnt;
1038                 p_mngr->acquired[type].start_cid = start_cid;
1039
1040                 p_hwfn->p_cxt_mngr->conn_cfg[type].cid_start = start_cid;
1041
1042                 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1043                            "Type %08x start: %08x count %08x\n",
1044                            type, p_mngr->acquired[type].start_cid,
1045                            p_mngr->acquired[type].max_count);
1046                 start_cid += cid_cnt;
1047         }
1048
1049         return ECORE_SUCCESS;
1050
1051 cid_map_fail:
1052         ecore_cid_map_free(p_hwfn);
1053         return ECORE_NOMEM;
1054 }
1055
1056 enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn)
1057 {
1058         struct ecore_ilt_client_cfg *clients;
1059         struct ecore_cxt_mngr *p_mngr;
1060         u32 i;
1061
1062         p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr));
1063         if (!p_mngr) {
1064                 DP_NOTICE(p_hwfn, true,
1065                           "Failed to allocate `struct ecore_cxt_mngr'\n");
1066                 return ECORE_NOMEM;
1067         }
1068
1069         /* Initialize ILT client registers */
1070         clients = p_mngr->clients;
1071         clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT);
1072         clients[ILT_CLI_CDUC].last.reg  = ILT_CFG_REG(CDUC, LAST_ILT);
1073         clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE);
1074
1075         clients[ILT_CLI_QM].first.reg   = ILT_CFG_REG(QM, FIRST_ILT);
1076         clients[ILT_CLI_QM].last.reg    = ILT_CFG_REG(QM, LAST_ILT);
1077         clients[ILT_CLI_QM].p_size.reg  = ILT_CFG_REG(QM, P_SIZE);
1078
1079         clients[ILT_CLI_TM].first.reg   = ILT_CFG_REG(TM, FIRST_ILT);
1080         clients[ILT_CLI_TM].last.reg    = ILT_CFG_REG(TM, LAST_ILT);
1081         clients[ILT_CLI_TM].p_size.reg  = ILT_CFG_REG(TM, P_SIZE);
1082
1083         clients[ILT_CLI_SRC].first.reg  = ILT_CFG_REG(SRC, FIRST_ILT);
1084         clients[ILT_CLI_SRC].last.reg   = ILT_CFG_REG(SRC, LAST_ILT);
1085         clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE);
1086
1087         clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT);
1088         clients[ILT_CLI_CDUT].last.reg  = ILT_CFG_REG(CDUT, LAST_ILT);
1089         clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE);
1090
1091         clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT);
1092         clients[ILT_CLI_TSDM].last.reg  = ILT_CFG_REG(TSDM, LAST_ILT);
1093         clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE);
1094
1095         /* default ILT page size for all clients is 32K */
1096         for (i = 0; i < ILT_CLI_MAX; i++)
1097                 p_mngr->clients[i].p_size.val = ILT_DEFAULT_HW_P_SIZE;
1098
1099         /* due to removal of ISCSI/FCoE files union type0_task_context
1100          * task_type_size will be 0. So hardcoded for now.
1101          */
1102         p_mngr->task_type_size[0] = 512; /* @DPDK */
1103         p_mngr->task_type_size[1] = 128; /* @DPDK */
1104
1105         if (p_hwfn->p_dev->p_iov_info)
1106                 p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs;
1107
1108         /* Initialize the dynamic ILT allocation mutex */
1109         OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex);
1110         OSAL_MUTEX_INIT(&p_mngr->mutex);
1111
1112         /* Set the cxt mangr pointer priori to further allocations */
1113         p_hwfn->p_cxt_mngr = p_mngr;
1114
1115         return ECORE_SUCCESS;
1116 }
1117
1118 enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn)
1119 {
1120         enum _ecore_status_t rc;
1121
1122         /* Allocate the ILT shadow table */
1123         rc = ecore_ilt_shadow_alloc(p_hwfn);
1124         if (rc) {
1125                 DP_NOTICE(p_hwfn, true, "Failed to allocate ilt memory\n");
1126                 goto tables_alloc_fail;
1127         }
1128
1129         /* Allocate the T2  table */
1130         rc = ecore_cxt_src_t2_alloc(p_hwfn);
1131         if (rc) {
1132                 DP_NOTICE(p_hwfn, true, "Failed to allocate T2 memory\n");
1133                 goto tables_alloc_fail;
1134         }
1135
1136         /* Allocate and initialize the acquired cids bitmaps */
1137         rc = ecore_cid_map_alloc(p_hwfn);
1138         if (rc) {
1139                 DP_NOTICE(p_hwfn, true, "Failed to allocate cid maps\n");
1140                 goto tables_alloc_fail;
1141         }
1142
1143         return ECORE_SUCCESS;
1144
1145 tables_alloc_fail:
1146         ecore_cxt_mngr_free(p_hwfn);
1147         return rc;
1148 }
1149
1150 void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn)
1151 {
1152         if (!p_hwfn->p_cxt_mngr)
1153                 return;
1154
1155         ecore_cid_map_free(p_hwfn);
1156         ecore_cxt_src_t2_free(p_hwfn);
1157         ecore_ilt_shadow_free(p_hwfn);
1158         OSAL_MUTEX_DEALLOC(&p_mngr->mutex);
1159         OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr);
1160
1161         p_hwfn->p_cxt_mngr = OSAL_NULL;
1162 }
1163
1164 void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn)
1165 {
1166         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1167         int type;
1168
1169         /* Reset acquired cids */
1170         for (type = 0; type < MAX_CONN_TYPES; type++) {
1171                 u32 cid_cnt = p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
1172                 u32 i;
1173
1174                 if (cid_cnt == 0)
1175                         continue;
1176
1177                 for (i = 0; i < DIV_ROUND_UP(cid_cnt, BITS_PER_MAP_WORD); i++)
1178                         p_mngr->acquired[type].cid_map[i] = 0;
1179         }
1180 }
1181
1182 /* HW initialization helper (per Block, per phase) */
1183
1184 /* CDU Common */
1185 #define CDUC_CXT_SIZE_SHIFT                                             \
1186         CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT
1187
1188 #define CDUC_CXT_SIZE_MASK                                              \
1189         (CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT)
1190
1191 #define CDUC_BLOCK_WASTE_SHIFT                                          \
1192         CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT
1193
1194 #define CDUC_BLOCK_WASTE_MASK                                           \
1195         (CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT)
1196
1197 #define CDUC_NCIB_SHIFT                                                 \
1198         CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT
1199
1200 #define CDUC_NCIB_MASK                                                  \
1201         (CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT)
1202
1203 #define CDUT_TYPE0_CXT_SIZE_SHIFT                                       \
1204         CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT
1205
1206 #define CDUT_TYPE0_CXT_SIZE_MASK                                        \
1207         (CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >>                         \
1208         CDUT_TYPE0_CXT_SIZE_SHIFT)
1209
1210 #define CDUT_TYPE0_BLOCK_WASTE_SHIFT                                    \
1211         CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT
1212
1213 #define CDUT_TYPE0_BLOCK_WASTE_MASK                                     \
1214         (CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >>                  \
1215         CDUT_TYPE0_BLOCK_WASTE_SHIFT)
1216
1217 #define CDUT_TYPE0_NCIB_SHIFT                                           \
1218         CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT
1219
1220 #define CDUT_TYPE0_NCIB_MASK                                            \
1221         (CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >>                \
1222         CDUT_TYPE0_NCIB_SHIFT)
1223
1224 #define CDUT_TYPE1_CXT_SIZE_SHIFT                                       \
1225         CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT
1226
1227 #define CDUT_TYPE1_CXT_SIZE_MASK                                        \
1228         (CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >>                         \
1229         CDUT_TYPE1_CXT_SIZE_SHIFT)
1230
1231 #define CDUT_TYPE1_BLOCK_WASTE_SHIFT                                    \
1232         CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT
1233
1234 #define CDUT_TYPE1_BLOCK_WASTE_MASK                                     \
1235         (CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >>                  \
1236         CDUT_TYPE1_BLOCK_WASTE_SHIFT)
1237
1238 #define CDUT_TYPE1_NCIB_SHIFT                                           \
1239         CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT
1240
1241 #define CDUT_TYPE1_NCIB_MASK                                            \
1242         (CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >>                \
1243         CDUT_TYPE1_NCIB_SHIFT)
1244
1245 static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn)
1246 {
1247         u32 page_sz, elems_per_page, block_waste, cxt_size, cdu_params = 0;
1248
1249         /* CDUC - connection configuration */
1250         page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1251         cxt_size = CONN_CXT_SIZE(p_hwfn);
1252         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1253         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1254
1255         SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size);
1256         SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste);
1257         SET_FIELD(cdu_params, CDUC_NCIB, elems_per_page);
1258         STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params);
1259
1260         /* CDUT - type-0 tasks configuration */
1261         page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val;
1262         cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0];
1263         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1264         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1265
1266         /* cxt size and block-waste are multipes of 8 */
1267         cdu_params = 0;
1268         SET_FIELD(cdu_params, CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3));
1269         SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3));
1270         SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page);
1271         STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params);
1272
1273         /* CDUT - type-1 tasks configuration */
1274         cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1];
1275         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1276         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1277
1278         /* cxt size and block-waste are multipes of 8 */
1279         cdu_params = 0;
1280         SET_FIELD(cdu_params, CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3));
1281         SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3));
1282         SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page);
1283         STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params);
1284 }
1285
1286 /* CDU PF */
1287 #define CDU_SEG_REG_TYPE_SHIFT          CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT
1288 #define CDU_SEG_REG_TYPE_MASK           0x1
1289 #define CDU_SEG_REG_OFFSET_SHIFT        0
1290 #define CDU_SEG_REG_OFFSET_MASK         CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK
1291
1292 static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn)
1293 {
1294         struct ecore_ilt_client_cfg *p_cli;
1295         struct ecore_tid_seg *p_seg;
1296         u32 cdu_seg_params, offset;
1297         int i;
1298
1299         static const u32 rt_type_offset_arr[] = {
1300                 CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET,
1301                 CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET,
1302                 CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET,
1303                 CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET
1304         };
1305
1306         static const u32 rt_type_offset_fl_arr[] = {
1307                 CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET,
1308                 CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET,
1309                 CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET,
1310                 CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET
1311         };
1312
1313         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1314
1315         /* There are initializations only for CDUT during pf Phase */
1316         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1317                 /* Segment 0 */
1318                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
1319                 if (!p_seg)
1320                         continue;
1321
1322                 /* Note: start_line is already adjusted for the CDU
1323                  * segment register granularity, so we just need to
1324                  * divide. Adjustment is implicit as we assume ILT
1325                  * Page size is larger than 32K!
1326                  */
1327                 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1328                           (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line -
1329                            p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1330
1331                 cdu_seg_params = 0;
1332                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1333                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1334                 STORE_RT_REG(p_hwfn, rt_type_offset_arr[i], cdu_seg_params);
1335
1336                 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1337                           (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line -
1338                            p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1339
1340                 cdu_seg_params = 0;
1341                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1342                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1343                 STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i], cdu_seg_params);
1344         }
1345 }
1346
1347 void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn)
1348 {
1349         struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1350         struct ecore_qm_iids iids;
1351
1352         OSAL_MEM_ZERO(&iids, sizeof(iids));
1353         ecore_cxt_qm_iids(p_hwfn, &iids);
1354
1355         ecore_qm_pf_rt_init(p_hwfn, p_hwfn->p_main_ptt, p_hwfn->port_id,
1356                             p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port,
1357                             p_hwfn->first_on_engine,
1358                             iids.cids, iids.vf_cids, iids.tids,
1359                             qm_info->start_pq,
1360                             qm_info->num_pqs - qm_info->num_vf_pqs,
1361                             qm_info->num_vf_pqs,
1362                             qm_info->start_vport,
1363                             qm_info->num_vports, qm_info->pf_wfq,
1364                             qm_info->pf_rl, p_hwfn->qm_info.qm_pq_params,
1365                             p_hwfn->qm_info.qm_vport_params);
1366 }
1367
1368 /* CM PF */
1369 static enum _ecore_status_t ecore_cm_init_pf(struct ecore_hwfn *p_hwfn)
1370 {
1371         union ecore_qm_pq_params pq_params;
1372         u16 pq;
1373
1374         /* XCM pure-LB queue */
1375         OSAL_MEMSET(&pq_params, 0, sizeof(pq_params));
1376         pq_params.core.tc = LB_TC;
1377         pq = ecore_get_qm_pq(p_hwfn, PROTOCOLID_CORE, &pq_params);
1378         STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, pq);
1379
1380         return ECORE_SUCCESS;
1381 }
1382
1383 /* DQ PF */
1384 static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn)
1385 {
1386         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1387         u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0;
1388
1389         dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT);
1390         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid);
1391
1392         dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT);
1393         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid);
1394
1395         dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT);
1396         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid);
1397
1398         dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT);
1399         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid);
1400
1401         dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT);
1402         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid);
1403
1404         dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT);
1405         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid);
1406
1407         dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT);
1408         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid);
1409
1410         dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT);
1411         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid);
1412
1413         dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT);
1414         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid);
1415
1416         dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT);
1417         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid);
1418
1419         dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT);
1420         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid);
1421
1422         dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT);
1423         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid);
1424
1425         /* Connection types 6 & 7 are not in use, yet they must be configured
1426          * as the highest possible connection. Not configuring them means the
1427          * defaults will be  used, and with a large number of cids a bug may
1428          * occur, if the defaults will be smaller than dq_pf_max_cid /
1429          * dq_vf_max_cid.
1430          */
1431         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid);
1432         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid);
1433
1434         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid);
1435         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid);
1436 }
1437
1438 static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn)
1439 {
1440         struct ecore_ilt_client_cfg *ilt_clients;
1441         int i;
1442
1443         ilt_clients = p_hwfn->p_cxt_mngr->clients;
1444         for_each_ilt_valid_client(i, ilt_clients) {
1445                 STORE_RT_REG(p_hwfn,
1446                              ilt_clients[i].first.reg,
1447                              ilt_clients[i].first.val);
1448                 STORE_RT_REG(p_hwfn,
1449                              ilt_clients[i].last.reg, ilt_clients[i].last.val);
1450                 STORE_RT_REG(p_hwfn,
1451                              ilt_clients[i].p_size.reg,
1452                              ilt_clients[i].p_size.val);
1453         }
1454 }
1455
1456 static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn)
1457 {
1458         struct ecore_ilt_client_cfg *p_cli;
1459         u32 blk_factor;
1460
1461         /* For simplicty  we set the 'block' to be an ILT page */
1462         if (p_hwfn->p_dev->p_iov_info) {
1463                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
1464
1465                 STORE_RT_REG(p_hwfn,
1466                              PSWRQ2_REG_VF_BASE_RT_OFFSET,
1467                              p_iov->first_vf_in_pf);
1468                 STORE_RT_REG(p_hwfn,
1469                              PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET,
1470                              p_iov->first_vf_in_pf + p_iov->total_vfs);
1471         }
1472
1473         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
1474         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1475         if (p_cli->active) {
1476                 STORE_RT_REG(p_hwfn,
1477                              PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET,
1478                              blk_factor);
1479                 STORE_RT_REG(p_hwfn,
1480                              PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1481                              p_cli->pf_total_lines);
1482                 STORE_RT_REG(p_hwfn,
1483                              PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET,
1484                              p_cli->vf_total_lines);
1485         }
1486
1487         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1488         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1489         if (p_cli->active) {
1490                 STORE_RT_REG(p_hwfn,
1491                              PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET,
1492                              blk_factor);
1493                 STORE_RT_REG(p_hwfn,
1494                              PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1495                              p_cli->pf_total_lines);
1496                 STORE_RT_REG(p_hwfn,
1497                              PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET,
1498                              p_cli->vf_total_lines);
1499         }
1500
1501         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM];
1502         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1503         if (p_cli->active) {
1504                 STORE_RT_REG(p_hwfn,
1505                              PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET, blk_factor);
1506                 STORE_RT_REG(p_hwfn,
1507                              PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1508                              p_cli->pf_total_lines);
1509                 STORE_RT_REG(p_hwfn,
1510                              PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET,
1511                              p_cli->vf_total_lines);
1512         }
1513 }
1514
1515 /* ILT (PSWRQ2) PF */
1516 static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn)
1517 {
1518         struct ecore_ilt_client_cfg *clients;
1519         struct ecore_cxt_mngr *p_mngr;
1520         struct ecore_dma_mem *p_shdw;
1521         u32 line, rt_offst, i;
1522
1523         ecore_ilt_bounds_init(p_hwfn);
1524         ecore_ilt_vf_bounds_init(p_hwfn);
1525
1526         p_mngr = p_hwfn->p_cxt_mngr;
1527         p_shdw = p_mngr->ilt_shadow;
1528         clients = p_hwfn->p_cxt_mngr->clients;
1529
1530         for_each_ilt_valid_client(i, clients) {
1531                 /* Client's 1st val and RT array are absolute, ILT shadows'
1532                  * lines are relative.
1533                  */
1534                 line = clients[i].first.val - p_mngr->pf_start_line;
1535                 rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET +
1536                     clients[i].first.val * ILT_ENTRY_IN_REGS;
1537
1538                 for (; line <= clients[i].last.val - p_mngr->pf_start_line;
1539                      line++, rt_offst += ILT_ENTRY_IN_REGS) {
1540                         u64 ilt_hw_entry = 0;
1541
1542                         /** p_virt could be OSAL_NULL incase of dynamic
1543                          *  allocation
1544                          */
1545                         if (p_shdw[line].p_virt != OSAL_NULL) {
1546                                 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
1547                                 SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
1548                                           (p_shdw[line].p_phys >> 12));
1549
1550                                 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1551                                         "Setting RT[0x%08x] from"
1552                                         " ILT[0x%08x] [Client is %d] to"
1553                                         " Physical addr: 0x%lx\n",
1554                                         rt_offst, line, i,
1555                                         (unsigned long)(p_shdw[line].
1556                                                         p_phys >> 12));
1557                         }
1558
1559                         STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry);
1560                 }
1561         }
1562 }
1563
1564 /* SRC (Searcher) PF */
1565 static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn)
1566 {
1567         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1568         u32 rounded_conn_num, conn_num, conn_max;
1569         struct ecore_src_iids src_iids;
1570
1571         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
1572         ecore_cxt_src_iids(p_mngr, &src_iids);
1573         conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
1574         if (!conn_num)
1575                 return;
1576
1577         conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS);
1578         rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max);
1579
1580         STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num);
1581         STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET,
1582                      OSAL_LOG2(rounded_conn_num));
1583
1584         STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET,
1585                          p_hwfn->p_cxt_mngr->first_free);
1586         STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET,
1587                          p_hwfn->p_cxt_mngr->last_free);
1588 }
1589
1590 /* Timers PF */
1591 #define TM_CFG_NUM_IDS_SHIFT            0
1592 #define TM_CFG_NUM_IDS_MASK             0xFFFFULL
1593 #define TM_CFG_PRE_SCAN_OFFSET_SHIFT    16
1594 #define TM_CFG_PRE_SCAN_OFFSET_MASK     0x1FFULL
1595 #define TM_CFG_PARENT_PF_SHIFT          25
1596 #define TM_CFG_PARENT_PF_MASK           0x7ULL
1597
1598 #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT  30
1599 #define TM_CFG_CID_PRE_SCAN_ROWS_MASK   0x1FFULL
1600
1601 #define TM_CFG_TID_OFFSET_SHIFT         30
1602 #define TM_CFG_TID_OFFSET_MASK          0x7FFFFULL
1603 #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT  49
1604 #define TM_CFG_TID_PRE_SCAN_ROWS_MASK   0x1FFULL
1605
1606 static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn)
1607 {
1608         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1609         u32 active_seg_mask = 0, tm_offset, rt_reg;
1610         struct ecore_tm_iids tm_iids;
1611         u64 cfg_word;
1612         u8 i;
1613
1614         OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
1615         ecore_cxt_tm_iids(p_mngr, &tm_iids);
1616
1617         /* @@@TBD No pre-scan for now */
1618
1619         /* Note: We assume consecutive VFs for a PF */
1620         for (i = 0; i < p_mngr->vf_count; i++) {
1621                 cfg_word = 0;
1622                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids);
1623                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1624                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1625                 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
1626
1627                 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1628                     (sizeof(cfg_word) / sizeof(u32)) *
1629                     (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1630                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1631         }
1632
1633         cfg_word = 0;
1634         SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids);
1635         SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1636         SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);       /* n/a for PF */
1637         SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all   */
1638
1639         rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1640             (sizeof(cfg_word) / sizeof(u32)) *
1641             (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id);
1642         STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1643
1644         /* enale scan */
1645         STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET,
1646                      tm_iids.pf_cids ? 0x1 : 0x0);
1647
1648         /* @@@TBD how to enable the scan for the VFs */
1649
1650         tm_offset = tm_iids.per_vf_cids;
1651
1652         /* Note: We assume consecutive VFs for a PF */
1653         for (i = 0; i < p_mngr->vf_count; i++) {
1654                 cfg_word = 0;
1655                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids);
1656                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1657                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1658                 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1659                 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1660
1661                 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1662                     (sizeof(cfg_word) / sizeof(u32)) *
1663                     (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1664
1665                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1666         }
1667
1668         tm_offset = tm_iids.pf_cids;
1669         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1670                 cfg_word = 0;
1671                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]);
1672                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1673                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);
1674                 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1675                 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1676
1677                 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1678                     (sizeof(cfg_word) / sizeof(u32)) *
1679                     (NUM_OF_VFS(p_hwfn->p_dev) +
1680                      p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i);
1681
1682                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1683                 active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0);
1684
1685                 tm_offset += tm_iids.pf_tids[i];
1686         }
1687
1688         STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask);
1689
1690         /* @@@TBD how to enable the scan for the VFs */
1691 }
1692
1693 static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn)
1694 {
1695         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1696         struct ecore_conn_type_cfg *p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE];
1697         struct ecore_tid_seg *p_tid;
1698
1699         /* If FCoE is active set the MAX OX_ID (tid) in the Parser */
1700         if (!p_fcoe->cid_count)
1701                 return;
1702
1703         p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG];
1704         STORE_RT_REG_AGG(p_hwfn,
1705                         PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET,
1706                         p_tid->count);
1707 }
1708
1709 void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn)
1710 {
1711         /* CDU configuration */
1712         ecore_cdu_init_common(p_hwfn);
1713 }
1714
1715 void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn)
1716 {
1717         ecore_qm_init_pf(p_hwfn);
1718         ecore_cm_init_pf(p_hwfn);
1719         ecore_dq_init_pf(p_hwfn);
1720         ecore_cdu_init_pf(p_hwfn);
1721         ecore_ilt_init_pf(p_hwfn);
1722         ecore_src_init_pf(p_hwfn);
1723         ecore_tm_init_pf(p_hwfn);
1724         ecore_prs_init_pf(p_hwfn);
1725 }
1726
1727 enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
1728                                            enum protocol_type type, u32 *p_cid)
1729 {
1730         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1731         u32 rel_cid;
1732
1733         if (type >= MAX_CONN_TYPES || !p_mngr->acquired[type].cid_map) {
1734                 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
1735                 return ECORE_INVAL;
1736         }
1737
1738         rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_mngr->acquired[type].cid_map,
1739                                            p_mngr->acquired[type].max_count);
1740
1741         if (rel_cid >= p_mngr->acquired[type].max_count) {
1742                 DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n",
1743                           type);
1744                 return ECORE_NORESOURCES;
1745         }
1746
1747         OSAL_SET_BIT(rel_cid, p_mngr->acquired[type].cid_map);
1748
1749         *p_cid = rel_cid + p_mngr->acquired[type].start_cid;
1750
1751         return ECORE_SUCCESS;
1752 }
1753
1754 static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn,
1755                                         u32 cid, enum protocol_type *p_type)
1756 {
1757         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1758         struct ecore_cid_acquired_map *p_map;
1759         enum protocol_type p;
1760         u32 rel_cid;
1761
1762         /* Iterate over protocols and find matching cid range */
1763         for (p = 0; p < MAX_CONN_TYPES; p++) {
1764                 p_map = &p_mngr->acquired[p];
1765
1766                 if (!p_map->cid_map)
1767                         continue;
1768                 if (cid >= p_map->start_cid &&
1769                     cid < p_map->start_cid + p_map->max_count) {
1770                         break;
1771                 }
1772         }
1773         *p_type = p;
1774
1775         if (p == MAX_CONN_TYPES) {
1776                 DP_NOTICE(p_hwfn, true, "Invalid CID %d", cid);
1777                 return false;
1778         }
1779         rel_cid = cid - p_map->start_cid;
1780         if (!OSAL_TEST_BIT(rel_cid, p_map->cid_map)) {
1781                 DP_NOTICE(p_hwfn, true, "CID %d not acquired", cid);
1782                 return false;
1783         }
1784         return true;
1785 }
1786
1787 void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid)
1788 {
1789         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1790         enum protocol_type type;
1791         bool b_acquired;
1792         u32 rel_cid;
1793
1794         /* Test acquired and find matching per-protocol map */
1795         b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, &type);
1796
1797         if (!b_acquired)
1798                 return;
1799
1800         rel_cid = cid - p_mngr->acquired[type].start_cid;
1801         OSAL_CLEAR_BIT(rel_cid, p_mngr->acquired[type].cid_map);
1802 }
1803
1804 enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn,
1805                                             struct ecore_cxt_info *p_info)
1806 {
1807         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1808         u32 conn_cxt_size, hw_p_size, cxts_per_p, line;
1809         enum protocol_type type;
1810         bool b_acquired;
1811
1812         /* Test acquired and find matching per-protocol map */
1813         b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid, &type);
1814
1815         if (!b_acquired)
1816                 return ECORE_INVAL;
1817
1818         /* set the protocl type */
1819         p_info->type = type;
1820
1821         /* compute context virtual pointer */
1822         hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1823
1824         conn_cxt_size = CONN_CXT_SIZE(p_hwfn);
1825         cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size;
1826         line = p_info->iid / cxts_per_p;
1827
1828         /* Make sure context is allocated (dynamic allocation) */
1829         if (!p_mngr->ilt_shadow[line].p_virt)
1830                 return ECORE_INVAL;
1831
1832         p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt +
1833             p_info->iid % cxts_per_p * conn_cxt_size;
1834
1835         DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT),
1836                 "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n",
1837                 (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid);
1838
1839         return ECORE_SUCCESS;
1840 }
1841
1842 void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn, u32 num_srqs)
1843 {
1844         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
1845
1846         p_mgr->srq_count = num_srqs;
1847 }
1848
1849 u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn)
1850 {
1851         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
1852
1853         return p_mgr->srq_count;
1854 }
1855
1856 enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn)
1857 {
1858         /* Set the number of required CORE connections */
1859         u32 core_cids = 1;      /* SPQ */
1860
1861         ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0);
1862
1863         switch (p_hwfn->hw_info.personality) {
1864         case ECORE_PCI_ETH:
1865                 {
1866                         struct ecore_eth_pf_params *p_params =
1867                             &p_hwfn->pf_params.eth_pf_params;
1868
1869                         ecore_cxt_set_proto_cid_count(p_hwfn,
1870                                 PROTOCOLID_ETH,
1871                                 p_params->num_cons, 1); /* FIXME VF count... */
1872
1873                         break;
1874                 }
1875         default:
1876                 return ECORE_INVAL;
1877         }
1878
1879         return ECORE_SUCCESS;
1880 }
1881
1882 enum _ecore_status_t ecore_cxt_get_tid_mem_info(struct ecore_hwfn *p_hwfn,
1883                                                 struct ecore_tid_mem *p_info)
1884 {
1885         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1886         u32 proto, seg, total_lines, i, shadow_line;
1887         struct ecore_ilt_client_cfg *p_cli;
1888         struct ecore_ilt_cli_blk *p_fl_seg;
1889         struct ecore_tid_seg *p_seg_info;
1890
1891         /* Verify the personality */
1892         switch (p_hwfn->hw_info.personality) {
1893         default:
1894                 return ECORE_INVAL;
1895         }
1896
1897         p_cli = &p_mngr->clients[ILT_CLI_CDUT];
1898         if (!p_cli->active)
1899                 return ECORE_INVAL;
1900
1901         p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
1902         if (!p_seg_info->has_fl_mem)
1903                 return ECORE_INVAL;
1904
1905         p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
1906         total_lines = DIV_ROUND_UP(p_fl_seg->total_size,
1907                                    p_fl_seg->real_size_in_page);
1908
1909         for (i = 0; i < total_lines; i++) {
1910                 shadow_line = i + p_fl_seg->start_line -
1911                     p_hwfn->p_cxt_mngr->pf_start_line;
1912                 p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt;
1913         }
1914         p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) -
1915             p_fl_seg->real_size_in_page;
1916         p_info->tid_size = p_mngr->task_type_size[p_seg_info->type];
1917         p_info->num_tids_per_block = p_fl_seg->real_size_in_page /
1918             p_info->tid_size;
1919
1920         return ECORE_SUCCESS;
1921 }
1922
1923 /* This function is very RoCE oriented, if another protocol in the future
1924  * will want this feature we'll need to modify the function to be more generic
1925  */
1926 enum _ecore_status_t
1927 ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn,
1928                             enum ecore_cxt_elem_type elem_type,
1929                             u32 iid)
1930 {
1931         u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line;
1932         struct ecore_ilt_client_cfg *p_cli;
1933         struct ecore_ilt_cli_blk *p_blk;
1934         struct ecore_ptt *p_ptt;
1935         dma_addr_t p_phys;
1936         u64 ilt_hw_entry;
1937         void *p_virt;
1938         enum _ecore_status_t rc = ECORE_SUCCESS;
1939
1940         switch (elem_type) {
1941         case ECORE_ELEM_CXT:
1942                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
1943                 elem_size = CONN_CXT_SIZE(p_hwfn);
1944                 p_blk = &p_cli->pf_blks[CDUC_BLK];
1945                 break;
1946         case ECORE_ELEM_SRQ:
1947                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
1948                 elem_size = SRQ_CXT_SIZE;
1949                 p_blk = &p_cli->pf_blks[SRQ_BLK];
1950                 break;
1951         case ECORE_ELEM_TASK:
1952                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1953                 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
1954                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
1955                 break;
1956         default:
1957                 DP_NOTICE(p_hwfn, false,
1958                           "ECORE_INVALID elem type = %d", elem_type);
1959                 return ECORE_INVAL;
1960         }
1961
1962         /* Calculate line in ilt */
1963         hw_p_size = p_cli->p_size.val;
1964         elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
1965         line = p_blk->start_line + (iid / elems_per_p);
1966         shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line;
1967
1968         /* If line is already allocated, do nothing, otherwise allocate it and
1969          * write it to the PSWRQ2 registers.
1970          * This section can be run in parallel from different contexts and thus
1971          * a mutex protection is needed.
1972          */
1973
1974         OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex);
1975
1976         if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt)
1977                 goto out0;
1978
1979         p_ptt = ecore_ptt_acquire(p_hwfn);
1980         if (!p_ptt) {
1981                 DP_NOTICE(p_hwfn, false,
1982                           "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
1983                 rc = ECORE_TIMEOUT;
1984                 goto out0;
1985         }
1986
1987         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1988                                          &p_phys,
1989                                          p_blk->real_size_in_page);
1990         if (!p_virt) {
1991                 rc = ECORE_NOMEM;
1992                 goto out1;
1993         }
1994         OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page);
1995
1996         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt;
1997         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys;
1998         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size =
1999                 p_blk->real_size_in_page;
2000
2001         /* compute absolute offset */
2002         reg_offset = PSWRQ2_REG_ILT_MEMORY +
2003                      (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS);
2004
2005         ilt_hw_entry = 0;
2006         SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
2007         SET_FIELD(ilt_hw_entry,
2008                   ILT_ENTRY_PHY_ADDR,
2009                   (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12));
2010
2011 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */
2012
2013         ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry,
2014                             reg_offset, sizeof(ilt_hw_entry) / sizeof(u32),
2015                             0 /* no flags */);
2016
2017         if (elem_type == ECORE_ELEM_CXT) {
2018                 u32 last_cid_allocated = (1 + (iid / elems_per_p)) *
2019                                          elems_per_p;
2020
2021                 /* Update the relevant register in the parser */
2022                 ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF,
2023                          last_cid_allocated - 1);
2024
2025                 if (!p_hwfn->b_rdma_enabled_in_prs) {
2026                         /* Enable RoCE search */
2027                         ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1);
2028                         p_hwfn->b_rdma_enabled_in_prs = true;
2029                 }
2030         }
2031
2032 out1:
2033         ecore_ptt_release(p_hwfn, p_ptt);
2034 out0:
2035         OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex);
2036
2037         return rc;
2038 }
2039
2040 /* This function is very RoCE oriented, if another protocol in the future
2041  * will want this feature we'll need to modify the function to be more generic
2042  */
2043 static enum _ecore_status_t
2044 ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn,
2045                          enum ecore_cxt_elem_type elem_type,
2046                          u32 start_iid, u32 count)
2047 {
2048         u32 start_line, end_line, shadow_start_line, shadow_end_line;
2049         u32 reg_offset, elem_size, hw_p_size, elems_per_p;
2050         struct ecore_ilt_client_cfg *p_cli;
2051         struct ecore_ilt_cli_blk *p_blk;
2052         u32 end_iid = start_iid + count;
2053         struct ecore_ptt *p_ptt;
2054         u64 ilt_hw_entry = 0;
2055         u32 i;
2056
2057         switch (elem_type) {
2058         case ECORE_ELEM_CXT:
2059                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2060                 elem_size = CONN_CXT_SIZE(p_hwfn);
2061                 p_blk = &p_cli->pf_blks[CDUC_BLK];
2062                 break;
2063         case ECORE_ELEM_SRQ:
2064                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2065                 elem_size = SRQ_CXT_SIZE;
2066                 p_blk = &p_cli->pf_blks[SRQ_BLK];
2067                 break;
2068         case ECORE_ELEM_TASK:
2069                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2070                 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2071                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2072                 break;
2073         default:
2074                 DP_NOTICE(p_hwfn, false,
2075                           "ECORE_INVALID elem type = %d", elem_type);
2076                 return ECORE_INVAL;
2077         }
2078
2079         /* Calculate line in ilt */
2080         hw_p_size = p_cli->p_size.val;
2081         elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2082         start_line = p_blk->start_line + (start_iid / elems_per_p);
2083         end_line = p_blk->start_line + (end_iid / elems_per_p);
2084         if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p))
2085                 end_line--;
2086
2087         shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line;
2088         shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line;
2089
2090         p_ptt = ecore_ptt_acquire(p_hwfn);
2091         if (!p_ptt) {
2092                 DP_NOTICE(p_hwfn, false,
2093                           "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2094                 return ECORE_TIMEOUT;
2095         }
2096
2097         for (i = shadow_start_line; i < shadow_end_line; i++) {
2098                 if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt)
2099                         continue;
2100
2101                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
2102                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt,
2103                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys,
2104                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].size);
2105
2106                 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL;
2107                 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0;
2108                 p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0;
2109
2110                 /* compute absolute offset */
2111                 reg_offset = PSWRQ2_REG_ILT_MEMORY +
2112                     ((start_line++) * ILT_REG_SIZE_IN_BYTES *
2113                      ILT_ENTRY_IN_REGS);
2114
2115                 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a
2116                  * wide-bus.
2117                  */
2118                 ecore_dmae_host2grc(p_hwfn, p_ptt,
2119                                     (u64)(osal_uintptr_t)&ilt_hw_entry,
2120                                     reg_offset,
2121                                     sizeof(ilt_hw_entry) / sizeof(u32),
2122                                     0 /* no flags */);
2123         }
2124
2125         ecore_ptt_release(p_hwfn, p_ptt);
2126
2127         return ECORE_SUCCESS;
2128 }
2129
2130 enum _ecore_status_t ecore_cxt_free_proto_ilt(struct ecore_hwfn *p_hwfn,
2131                                               enum protocol_type proto)
2132 {
2133         enum _ecore_status_t rc;
2134         u32 cid;
2135
2136         /* Free Connection CXT */
2137         rc = ecore_cxt_free_ilt_range(p_hwfn, ECORE_ELEM_CXT,
2138                                       ecore_cxt_get_proto_cid_start(p_hwfn,
2139                                                                     proto),
2140                                       ecore_cxt_get_proto_cid_count(p_hwfn,
2141                                                                     proto,
2142                                                                     &cid));
2143
2144         if (rc)
2145                 return rc;
2146
2147         /* Free Task CXT */
2148         rc = ecore_cxt_free_ilt_range(p_hwfn, ECORE_ELEM_TASK, 0,
2149                                       ecore_cxt_get_proto_tid_count(p_hwfn,
2150                                                                     proto));
2151         if (rc)
2152                 return rc;
2153
2154         /* Free TSDM CXT */
2155         rc = ecore_cxt_free_ilt_range(p_hwfn, ECORE_ELEM_SRQ, 0,
2156                                       ecore_cxt_get_srq_count(p_hwfn));
2157
2158         return rc;
2159 }
2160
2161 enum _ecore_status_t ecore_cxt_get_task_ctx(struct ecore_hwfn *p_hwfn,
2162                                             u32 tid,
2163                                             u8 ctx_type, void **pp_task_ctx)
2164 {
2165         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2166         struct ecore_ilt_client_cfg *p_cli;
2167         struct ecore_ilt_cli_blk *p_seg;
2168         struct ecore_tid_seg *p_seg_info;
2169         u32 proto, seg;
2170         u32 total_lines;
2171         u32 tid_size, ilt_idx;
2172         u32 num_tids_per_block;
2173
2174         /* Verify the personality */
2175         switch (p_hwfn->hw_info.personality) {
2176         default:
2177                 return ECORE_INVAL;
2178         }
2179
2180         p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2181         if (!p_cli->active)
2182                 return ECORE_INVAL;
2183
2184         p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2185
2186         if (ctx_type == ECORE_CTX_WORKING_MEM) {
2187                 p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)];
2188         } else if (ctx_type == ECORE_CTX_FL_MEM) {
2189                 if (!p_seg_info->has_fl_mem)
2190                         return ECORE_INVAL;
2191                 p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2192         } else {
2193                 return ECORE_INVAL;
2194         }
2195         total_lines = DIV_ROUND_UP(p_seg->total_size, p_seg->real_size_in_page);
2196         tid_size = p_mngr->task_type_size[p_seg_info->type];
2197         num_tids_per_block = p_seg->real_size_in_page / tid_size;
2198
2199         if (total_lines < tid / num_tids_per_block)
2200                 return ECORE_INVAL;
2201
2202         ilt_idx = tid / num_tids_per_block + p_seg->start_line -
2203             p_mngr->pf_start_line;
2204         *pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt +
2205             (tid % num_tids_per_block) * tid_size;
2206
2207         return ECORE_SUCCESS;
2208 }