New upstream version 17.11-rc3
[deb_dpdk.git] / drivers / net / qede / base / ecore_cxt.c
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8
9 #include "bcm_osal.h"
10 #include "reg_addr.h"
11 #include "common_hsi.h"
12 #include "ecore_hsi_common.h"
13 #include "ecore_hsi_eth.h"
14 #include "ecore_rt_defs.h"
15 #include "ecore_status.h"
16 #include "ecore.h"
17 #include "ecore_init_ops.h"
18 #include "ecore_init_fw_funcs.h"
19 #include "ecore_cxt.h"
20 #include "ecore_hw.h"
21 #include "ecore_dev_api.h"
22 #include "ecore_sriov.h"
23 #include "ecore_mcp.h"
24
25 /* Max number of connection types in HW (DQ/CDU etc.) */
26 #define MAX_CONN_TYPES          PROTOCOLID_COMMON
27 #define NUM_TASK_TYPES          2
28 #define NUM_TASK_PF_SEGMENTS    4
29 #define NUM_TASK_VF_SEGMENTS    1
30
31 /* Doorbell-Queue constants */
32 #define DQ_RANGE_SHIFT  4
33 #define DQ_RANGE_ALIGN  (1 << DQ_RANGE_SHIFT)
34
35 /* Searcher constants */
36 #define SRC_MIN_NUM_ELEMS 256
37
38 /* Timers constants */
39 #define TM_SHIFT        7
40 #define TM_ALIGN        (1 << TM_SHIFT)
41 #define TM_ELEM_SIZE    4
42
43 /* ILT constants */
44 #define ILT_DEFAULT_HW_P_SIZE   4
45
46 #define ILT_PAGE_IN_BYTES(hw_p_size)    (1U << ((hw_p_size) + 12))
47 #define ILT_CFG_REG(cli, reg)           PSWRQ2_REG_##cli##_##reg##_RT_OFFSET
48
49 /* ILT entry structure */
50 #define ILT_ENTRY_PHY_ADDR_MASK         0x000FFFFFFFFFFFULL
51 #define ILT_ENTRY_PHY_ADDR_SHIFT        0
52 #define ILT_ENTRY_VALID_MASK            0x1ULL
53 #define ILT_ENTRY_VALID_SHIFT           52
54 #define ILT_ENTRY_IN_REGS               2
55 #define ILT_REG_SIZE_IN_BYTES           4
56
57 /* connection context union */
58 union conn_context {
59         struct e4_core_conn_context core_ctx;
60         struct e4_eth_conn_context eth_ctx;
61 };
62
63 /* TYPE-0 task context - iSCSI, FCOE */
64 union type0_task_context {
65 };
66
67 /* TYPE-1 task context - ROCE */
68 union type1_task_context {
69         struct regpair reserved; /* @DPDK */
70 };
71
72 struct src_ent {
73         u8 opaque[56];
74         u64 next;
75 };
76
77 #define CDUT_SEG_ALIGNMET 3     /* in 4k chunks */
78 #define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12))
79
80 #define CONN_CXT_SIZE(p_hwfn) \
81         ALIGNED_TYPE_SIZE(union conn_context, p_hwfn)
82
83 #define SRQ_CXT_SIZE (sizeof(struct regpair) * 8) /* @DPDK */
84
85 #define TYPE0_TASK_CXT_SIZE(p_hwfn) \
86         ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn)
87
88 /* Alignment is inherent to the type1_task_context structure */
89 #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context)
90
91 /* PF per protocl configuration object */
92 #define TASK_SEGMENTS   (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS)
93 #define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS)
94
95 struct ecore_tid_seg {
96         u32 count;
97         u8 type;
98         bool has_fl_mem;
99 };
100
101 struct ecore_conn_type_cfg {
102         u32 cid_count;
103         u32 cids_per_vf;
104         struct ecore_tid_seg tid_seg[TASK_SEGMENTS];
105 };
106
107 /* ILT Client configuration,
108  * Per connection type (protocol) resources (cids, tis, vf cids etc.)
109  * 1 - for connection context (CDUC) and for each task context we need two
110  * values, for regular task context and for force load memory
111  */
112 #define ILT_CLI_PF_BLOCKS       (1 + NUM_TASK_PF_SEGMENTS * 2)
113 #define ILT_CLI_VF_BLOCKS       (1 + NUM_TASK_VF_SEGMENTS * 2)
114 #define CDUC_BLK                (0)
115 #define SRQ_BLK                 (0)
116 #define CDUT_SEG_BLK(n)         (1 + (u8)(n))
117 #define CDUT_FL_SEG_BLK(n, X)   (1 + (n) + NUM_TASK_##X##_SEGMENTS)
118
119 enum ilt_clients {
120         ILT_CLI_CDUC,
121         ILT_CLI_CDUT,
122         ILT_CLI_QM,
123         ILT_CLI_TM,
124         ILT_CLI_SRC,
125         ILT_CLI_TSDM,
126         ILT_CLI_MAX
127 };
128
129 struct ilt_cfg_pair {
130         u32 reg;
131         u32 val;
132 };
133
134 struct ecore_ilt_cli_blk {
135         u32 total_size;         /* 0 means not active */
136         u32 real_size_in_page;
137         u32 start_line;
138         u32 dynamic_line_cnt;
139 };
140
141 struct ecore_ilt_client_cfg {
142         bool active;
143
144         /* ILT boundaries */
145         struct ilt_cfg_pair first;
146         struct ilt_cfg_pair last;
147         struct ilt_cfg_pair p_size;
148
149         /* ILT client blocks for PF */
150         struct ecore_ilt_cli_blk pf_blks[ILT_CLI_PF_BLOCKS];
151         u32 pf_total_lines;
152
153         /* ILT client blocks for VFs */
154         struct ecore_ilt_cli_blk vf_blks[ILT_CLI_VF_BLOCKS];
155         u32 vf_total_lines;
156 };
157
158 /* Per Path -
159  *      ILT shadow table
160  *      Protocol acquired CID lists
161  *      PF start line in ILT
162  */
163 struct ecore_dma_mem {
164         dma_addr_t p_phys;
165         void *p_virt;
166         osal_size_t size;
167 };
168
169 #define MAP_WORD_SIZE           sizeof(unsigned long)
170 #define BITS_PER_MAP_WORD       (MAP_WORD_SIZE * 8)
171
172 struct ecore_cid_acquired_map {
173         u32 start_cid;
174         u32 max_count;
175         unsigned long *cid_map;
176 };
177
178 struct ecore_cxt_mngr {
179         /* Per protocl configuration */
180         struct ecore_conn_type_cfg conn_cfg[MAX_CONN_TYPES];
181
182         /* computed ILT structure */
183         struct ecore_ilt_client_cfg clients[ILT_CLI_MAX];
184
185         /* Task type sizes */
186         u32 task_type_size[NUM_TASK_TYPES];
187
188         /* total number of VFs for this hwfn -
189          * ALL VFs are symmetric in terms of HW resources
190          */
191         u32 vf_count;
192
193         /* Acquired CIDs */
194         struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES];
195         /* TBD - do we want this allocated to reserve space? */
196         struct ecore_cid_acquired_map
197                 acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS];
198
199         /* ILT  shadow table */
200         struct ecore_dma_mem *ilt_shadow;
201         u32 pf_start_line;
202
203         /* Mutex for a dynamic ILT allocation */
204         osal_mutex_t mutex;
205
206         /* SRC T2 */
207         struct ecore_dma_mem *t2;
208         u32 t2_num_pages;
209         u64 first_free;
210         u64 last_free;
211
212         /* The infrastructure originally was very generic and context/task
213          * oriented - per connection-type we would set how many of those
214          * are needed, and later when determining how much memory we're
215          * needing for a given block we'd iterate over all the relevant
216          * connection-types.
217          * But since then we've had some additional resources, some of which
218          * require memory which is indepent of the general context/task
219          * scheme. We add those here explicitly per-feature.
220          */
221
222         /* total number of SRQ's for this hwfn */
223         u32                             srq_count;
224
225         /* Maximal number of L2 steering filters */
226         u32                             arfs_count;
227
228         /* TODO - VF arfs filters ? */
229 };
230
231 static OSAL_INLINE bool tm_cid_proto(enum protocol_type type)
232 {
233         return type == PROTOCOLID_TOE;
234 }
235
236 static bool tm_tid_proto(enum protocol_type type)
237 {
238         return type == PROTOCOLID_FCOE;
239 }
240
241 /* counts the iids for the CDU/CDUC ILT client configuration */
242 struct ecore_cdu_iids {
243         u32 pf_cids;
244         u32 per_vf_cids;
245 };
246
247 static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr *p_mngr,
248                                struct ecore_cdu_iids *iids)
249 {
250         u32 type;
251
252         for (type = 0; type < MAX_CONN_TYPES; type++) {
253                 iids->pf_cids += p_mngr->conn_cfg[type].cid_count;
254                 iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
255         }
256 }
257
258 /* counts the iids for the Searcher block configuration */
259 struct ecore_src_iids {
260         u32 pf_cids;
261         u32 per_vf_cids;
262 };
263
264 static void ecore_cxt_src_iids(struct ecore_cxt_mngr *p_mngr,
265                                struct ecore_src_iids *iids)
266 {
267         u32 i;
268
269         for (i = 0; i < MAX_CONN_TYPES; i++) {
270                 iids->pf_cids += p_mngr->conn_cfg[i].cid_count;
271                 iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf;
272         }
273
274         /* Add L2 filtering filters in addition */
275         iids->pf_cids += p_mngr->arfs_count;
276 }
277
278 /* counts the iids for the Timers block configuration */
279 struct ecore_tm_iids {
280         u32 pf_cids;
281         u32 pf_tids[NUM_TASK_PF_SEGMENTS];      /* per segment */
282         u32 pf_tids_total;
283         u32 per_vf_cids;
284         u32 per_vf_tids;
285 };
286
287 static void ecore_cxt_tm_iids(struct ecore_cxt_mngr *p_mngr,
288                               struct ecore_tm_iids *iids)
289 {
290         bool tm_vf_required = false;
291         bool tm_required = false;
292         u32 i, j;
293
294         for (i = 0; i < MAX_CONN_TYPES; i++) {
295                 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i];
296
297                 if (tm_cid_proto(i) || tm_required) {
298                         if (p_cfg->cid_count)
299                                 tm_required = true;
300
301                         iids->pf_cids += p_cfg->cid_count;
302                 }
303
304                 if (tm_cid_proto(i) || tm_vf_required) {
305                         if (p_cfg->cids_per_vf)
306                                 tm_vf_required = true;
307
308                 }
309
310                 if (tm_tid_proto(i)) {
311                         struct ecore_tid_seg *segs = p_cfg->tid_seg;
312
313                         /* for each segment there is at most one
314                          * protocol for which count is not 0.
315                          */
316                         for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
317                                 iids->pf_tids[j] += segs[j].count;
318
319                         /* The last array elelment is for the VFs. As for PF
320                          * segments there can be only one protocol for
321                          * which this value is not 0.
322                          */
323                         iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
324                 }
325         }
326
327         iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN);
328         iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN);
329         iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN);
330
331         for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) {
332                 iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN);
333                 iids->pf_tids_total += iids->pf_tids[j];
334         }
335 }
336
337 static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn,
338                               struct ecore_qm_iids *iids)
339 {
340         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
341         struct ecore_tid_seg *segs;
342         u32 vf_cids = 0, type, j;
343         u32 vf_tids = 0;
344
345         for (type = 0; type < MAX_CONN_TYPES; type++) {
346                 iids->cids += p_mngr->conn_cfg[type].cid_count;
347                 vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
348
349                 segs = p_mngr->conn_cfg[type].tid_seg;
350                 /* for each segment there is at most one
351                  * protocol for which count is not 0.
352                  */
353                 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
354                         iids->tids += segs[j].count;
355
356                 /* The last array elelment is for the VFs. As for PF
357                  * segments there can be only one protocol for
358                  * which this value is not 0.
359                  */
360                 vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
361         }
362
363         iids->vf_cids += vf_cids * p_mngr->vf_count;
364         iids->tids += vf_tids * p_mngr->vf_count;
365
366         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
367                    "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n",
368                    iids->cids, iids->vf_cids, iids->tids, vf_tids);
369 }
370
371 static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn *p_hwfn,
372                                                     u32 seg)
373 {
374         struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr;
375         u32 i;
376
377         /* Find the protocol with tid count > 0 for this segment.
378          * Note: there can only be one and this is already validated.
379          */
380         for (i = 0; i < MAX_CONN_TYPES; i++) {
381                 if (p_cfg->conn_cfg[i].tid_seg[seg].count)
382                         return &p_cfg->conn_cfg[i].tid_seg[seg];
383         }
384         return OSAL_NULL;
385 }
386
387 static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn, u32 num_srqs)
388 {
389         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
390
391         p_mgr->srq_count = num_srqs;
392 }
393
394 u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn)
395 {
396         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
397
398         return p_mgr->srq_count;
399 }
400
401 /* set the iids (cid/tid) count per protocol */
402 static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn,
403                                    enum protocol_type type,
404                                    u32 cid_count, u32 vf_cid_cnt)
405 {
406         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
407         struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type];
408
409         p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN);
410         p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN);
411 }
412
413 u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn *p_hwfn,
414                                   enum protocol_type type, u32 *vf_cid)
415 {
416         if (vf_cid)
417                 *vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf;
418
419         return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
420 }
421
422 u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn *p_hwfn,
423                                   enum protocol_type type)
424 {
425         return p_hwfn->p_cxt_mngr->acquired[type].start_cid;
426 }
427
428 u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn,
429                                          enum protocol_type type)
430 {
431         u32 cnt = 0;
432         int i;
433
434         for (i = 0; i < TASK_SEGMENTS; i++)
435                 cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count;
436
437         return cnt;
438 }
439
440 static OSAL_INLINE void
441 ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn,
442                               enum protocol_type proto,
443                               u8 seg, u8 seg_type, u32 count, bool has_fl)
444 {
445         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
446         struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg];
447
448         p_seg->count = count;
449         p_seg->has_fl_mem = has_fl;
450         p_seg->type = seg_type;
451 }
452
453 /* the *p_line parameter must be either 0 for the first invocation or the
454  * value returned in the previous invocation.
455  */
456 static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg *p_cli,
457                                    struct ecore_ilt_cli_blk *p_blk,
458                                    u32 start_line,
459                                    u32 total_size, u32 elem_size)
460 {
461         u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
462
463         /* verify that it's called once for each block */
464         if (p_blk->total_size)
465                 return;
466
467         p_blk->total_size = total_size;
468         p_blk->real_size_in_page = 0;
469         if (elem_size)
470                 p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size;
471         p_blk->start_line = start_line;
472 }
473
474 static void ecore_ilt_cli_adv_line(struct ecore_hwfn *p_hwfn,
475                                    struct ecore_ilt_client_cfg *p_cli,
476                                    struct ecore_ilt_cli_blk *p_blk,
477                                    u32 *p_line, enum ilt_clients client_id)
478 {
479         if (!p_blk->total_size)
480                 return;
481
482         if (!p_cli->active)
483                 p_cli->first.val = *p_line;
484
485         p_cli->active = true;
486         *p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
487         p_cli->last.val = *p_line - 1;
488
489         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
490                    "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x"
491                    " [Real %08x] Start line %d\n",
492                    client_id, p_cli->first.val, p_cli->last.val,
493                    p_blk->total_size, p_blk->real_size_in_page,
494                    p_blk->start_line);
495 }
496
497 static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn,
498                                           enum ilt_clients ilt_client)
499 {
500         u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count;
501         struct ecore_ilt_client_cfg *p_cli;
502         u32 lines_to_skip = 0;
503         u32 cxts_per_p;
504
505         /* TBD MK: ILT code should be simplified once PROTO enum is changed */
506
507         if (ilt_client == ILT_CLI_CDUC) {
508                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
509
510                 cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) /
511                     (u32)CONN_CXT_SIZE(p_hwfn);
512
513                 lines_to_skip = cid_count / cxts_per_p;
514         }
515
516         return lines_to_skip;
517 }
518
519 enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn)
520 {
521         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
522         u32 curr_line, total, i, task_size, line;
523         struct ecore_ilt_client_cfg *p_cli;
524         struct ecore_ilt_cli_blk *p_blk;
525         struct ecore_cdu_iids cdu_iids;
526         struct ecore_src_iids src_iids;
527         struct ecore_qm_iids qm_iids;
528         struct ecore_tm_iids tm_iids;
529         struct ecore_tid_seg *p_seg;
530
531         OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids));
532         OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids));
533         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
534         OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
535
536         p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT);
537
538         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
539                    "hwfn [%d] - Set context mngr starting line to be 0x%08x\n",
540                    p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line);
541
542         /* CDUC */
543         p_cli = &p_mngr->clients[ILT_CLI_CDUC];
544
545         curr_line = p_mngr->pf_start_line;
546
547         /* CDUC PF */
548         p_cli->pf_total_lines = 0;
549
550         /* get the counters for the CDUC,CDUC and QM clients  */
551         ecore_cxt_cdu_iids(p_mngr, &cdu_iids);
552
553         p_blk = &p_cli->pf_blks[CDUC_BLK];
554
555         total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn);
556
557         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
558                                total, CONN_CXT_SIZE(p_hwfn));
559
560         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
561         p_cli->pf_total_lines = curr_line - p_blk->start_line;
562
563         p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn,
564                                                                  ILT_CLI_CDUC);
565
566         /* CDUC VF */
567         p_blk = &p_cli->vf_blks[CDUC_BLK];
568         total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn);
569
570         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
571                                total, CONN_CXT_SIZE(p_hwfn));
572
573         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
574         p_cli->vf_total_lines = curr_line - p_blk->start_line;
575
576         for (i = 1; i < p_mngr->vf_count; i++)
577                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
578                                        ILT_CLI_CDUC);
579
580         /* CDUT PF */
581         p_cli = &p_mngr->clients[ILT_CLI_CDUT];
582         p_cli->first.val = curr_line;
583
584         /* first the 'working' task memory */
585         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
586                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
587                 if (!p_seg || p_seg->count == 0)
588                         continue;
589
590                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(i)];
591                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
592                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total,
593                                        p_mngr->task_type_size[p_seg->type]);
594
595                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
596                                        ILT_CLI_CDUT);
597         }
598
599         /* next the 'init' task memory (forced load memory) */
600         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
601                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
602                 if (!p_seg || p_seg->count == 0)
603                         continue;
604
605                 p_blk = &p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)];
606
607                 if (!p_seg->has_fl_mem) {
608                         /* The segment is active (total size pf 'working'
609                          * memory is > 0) but has no FL (forced-load, Init)
610                          * memory. Thus:
611                          *
612                          * 1.   The total-size in the corrsponding FL block of
613                          *      the ILT client is set to 0 - No ILT line are
614                          *      provisioned and no ILT memory allocated.
615                          *
616                          * 2.   The start-line of said block is set to the
617                          *      start line of the matching working memory
618                          *      block in the ILT client. This is later used to
619                          *      configure the CDU segment offset registers and
620                          *      results in an FL command for TIDs of this
621                          *      segment behaves as regular load commands
622                          *      (loading TIDs from the working memory).
623                          */
624                         line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line;
625
626                         ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
627                         continue;
628                 }
629                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
630
631                 ecore_ilt_cli_blk_fill(p_cli, p_blk,
632                                        curr_line, total,
633                                        p_mngr->task_type_size[p_seg->type]);
634
635                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
636                                        ILT_CLI_CDUT);
637         }
638         p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line;
639
640         /* CDUT VF */
641         p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF);
642         if (p_seg && p_seg->count) {
643                 /* Stricly speaking we need to iterate over all VF
644                  * task segment types, but a VF has only 1 segment
645                  */
646
647                 /* 'working' memory */
648                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
649
650                 p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
651                 ecore_ilt_cli_blk_fill(p_cli, p_blk,
652                                        curr_line, total,
653                                        p_mngr->task_type_size[p_seg->type]);
654
655                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
656                                        ILT_CLI_CDUT);
657
658                 /* 'init' memory */
659                 p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
660                 if (!p_seg->has_fl_mem) {
661                         /* see comment above */
662                         line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line;
663                         ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
664                 } else {
665                         task_size = p_mngr->task_type_size[p_seg->type];
666                         ecore_ilt_cli_blk_fill(p_cli, p_blk,
667                                                curr_line, total, task_size);
668                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
669                                                ILT_CLI_CDUT);
670                 }
671                 p_cli->vf_total_lines = curr_line -
672                     p_cli->vf_blks[0].start_line;
673
674                 /* Now for the rest of the VFs */
675                 for (i = 1; i < p_mngr->vf_count; i++) {
676                         p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
677                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
678                                                ILT_CLI_CDUT);
679
680                         p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
681                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
682                                                ILT_CLI_CDUT);
683                 }
684         }
685
686         /* QM */
687         p_cli = &p_mngr->clients[ILT_CLI_QM];
688         p_blk = &p_cli->pf_blks[0];
689
690         ecore_cxt_qm_iids(p_hwfn, &qm_iids);
691         total = ecore_qm_pf_mem_size(qm_iids.cids,
692                                      qm_iids.vf_cids, qm_iids.tids,
693                                      p_hwfn->qm_info.num_pqs,
694                                      p_hwfn->qm_info.num_vf_pqs);
695
696         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
697                    "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d,"
698                    " num_vf_pqs=%d, memory_size=%d)\n",
699                    qm_iids.cids, qm_iids.vf_cids, qm_iids.tids,
700                    p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total);
701
702         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000,
703                                QM_PQ_ELEMENT_SIZE);
704
705         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM);
706         p_cli->pf_total_lines = curr_line - p_blk->start_line;
707
708         /* SRC */
709         p_cli = &p_mngr->clients[ILT_CLI_SRC];
710         ecore_cxt_src_iids(p_mngr, &src_iids);
711
712         /* Both the PF and VFs searcher connections are stored in the per PF
713          * database. Thus sum the PF searcher cids and all the VFs searcher
714          * cids.
715          */
716         total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
717         if (total) {
718                 u32 local_max = OSAL_MAX_T(u32, total,
719                                            SRC_MIN_NUM_ELEMS);
720
721                 total = OSAL_ROUNDUP_POW_OF_TWO(local_max);
722
723                 p_blk = &p_cli->pf_blks[0];
724                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
725                                        total * sizeof(struct src_ent),
726                                        sizeof(struct src_ent));
727
728                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
729                                        ILT_CLI_SRC);
730                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
731         }
732
733         /* TM PF */
734         p_cli = &p_mngr->clients[ILT_CLI_TM];
735         ecore_cxt_tm_iids(p_mngr, &tm_iids);
736         total = tm_iids.pf_cids + tm_iids.pf_tids_total;
737         if (total) {
738                 p_blk = &p_cli->pf_blks[0];
739                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
740                                        total * TM_ELEM_SIZE, TM_ELEM_SIZE);
741
742                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
743                                        ILT_CLI_TM);
744                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
745         }
746
747         /* TM VF */
748         total = tm_iids.per_vf_cids + tm_iids.per_vf_tids;
749         if (total) {
750                 p_blk = &p_cli->vf_blks[0];
751                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
752                                        total * TM_ELEM_SIZE, TM_ELEM_SIZE);
753
754                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
755                                        ILT_CLI_TM);
756
757                 p_cli->vf_total_lines = curr_line - p_blk->start_line;
758                 for (i = 1; i < p_mngr->vf_count; i++) {
759                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
760                                                ILT_CLI_TM);
761                 }
762         }
763
764         /* TSDM (SRQ CONTEXT) */
765         total = ecore_cxt_get_srq_count(p_hwfn);
766
767         if (total) {
768                 p_cli = &p_mngr->clients[ILT_CLI_TSDM];
769                 p_blk = &p_cli->pf_blks[SRQ_BLK];
770                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
771                                        total * SRQ_CXT_SIZE, SRQ_CXT_SIZE);
772
773                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
774                                        ILT_CLI_TSDM);
775                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
776         }
777
778         if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line >
779             RESC_NUM(p_hwfn, ECORE_ILT)) {
780                 DP_ERR(p_hwfn, "too many ilt lines...#lines=%d\n",
781                        curr_line - p_hwfn->p_cxt_mngr->pf_start_line);
782                 return ECORE_INVAL;
783         }
784
785         return ECORE_SUCCESS;
786 }
787
788 static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn)
789 {
790         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
791         u32 i;
792
793         if (!p_mngr->t2)
794                 return;
795
796         for (i = 0; i < p_mngr->t2_num_pages; i++)
797                 if (p_mngr->t2[i].p_virt)
798                         OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
799                                                p_mngr->t2[i].p_virt,
800                                                p_mngr->t2[i].p_phys,
801                                                p_mngr->t2[i].size);
802
803         OSAL_FREE(p_hwfn->p_dev, p_mngr->t2);
804 }
805
806 static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn)
807 {
808         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
809         u32 conn_num, total_size, ent_per_page, psz, i;
810         struct ecore_ilt_client_cfg *p_src;
811         struct ecore_src_iids src_iids;
812         struct ecore_dma_mem *p_t2;
813         enum _ecore_status_t rc;
814
815         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
816
817         /* if the SRC ILT client is inactive - there are no connection
818          * requiring the searcer, leave.
819          */
820         p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC];
821         if (!p_src->active)
822                 return ECORE_SUCCESS;
823
824         ecore_cxt_src_iids(p_mngr, &src_iids);
825         conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
826         total_size = conn_num * sizeof(struct src_ent);
827
828         /* use the same page size as the SRC ILT client */
829         psz = ILT_PAGE_IN_BYTES(p_src->p_size.val);
830         p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz);
831
832         /* allocate t2 */
833         p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
834                                  p_mngr->t2_num_pages *
835                                  sizeof(struct ecore_dma_mem));
836         if (!p_mngr->t2) {
837                 DP_NOTICE(p_hwfn, true, "Failed to allocate t2 table\n");
838                 rc = ECORE_NOMEM;
839                 goto t2_fail;
840         }
841
842         /* allocate t2 pages */
843         for (i = 0; i < p_mngr->t2_num_pages; i++) {
844                 u32 size = OSAL_MIN_T(u32, total_size, psz);
845                 void **p_virt = &p_mngr->t2[i].p_virt;
846
847                 *p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
848                                                   &p_mngr->t2[i].p_phys, size);
849                 if (!p_mngr->t2[i].p_virt) {
850                         rc = ECORE_NOMEM;
851                         goto t2_fail;
852                 }
853                 OSAL_MEM_ZERO(*p_virt, size);
854                 p_mngr->t2[i].size = size;
855                 total_size -= size;
856         }
857
858         /* Set the t2 pointers */
859
860         /* entries per page - must be a power of two */
861         ent_per_page = psz / sizeof(struct src_ent);
862
863         p_mngr->first_free = (u64)p_mngr->t2[0].p_phys;
864
865         p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page];
866         p_mngr->last_free = (u64)p_t2->p_phys +
867             ((conn_num - 1) & (ent_per_page - 1)) * sizeof(struct src_ent);
868
869         for (i = 0; i < p_mngr->t2_num_pages; i++) {
870                 u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num);
871                 struct src_ent *entries = p_mngr->t2[i].p_virt;
872                 u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val;
873                 u32 j;
874
875                 for (j = 0; j < ent_num - 1; j++) {
876                         val = p_ent_phys + (j + 1) * sizeof(struct src_ent);
877                         entries[j].next = OSAL_CPU_TO_BE64(val);
878                 }
879
880                 if (i < p_mngr->t2_num_pages - 1)
881                         val = (u64)p_mngr->t2[i + 1].p_phys;
882                 else
883                         val = 0;
884                 entries[j].next = OSAL_CPU_TO_BE64(val);
885
886                 conn_num -= ent_num;
887         }
888
889         return ECORE_SUCCESS;
890
891 t2_fail:
892         ecore_cxt_src_t2_free(p_hwfn);
893         return rc;
894 }
895
896 #define for_each_ilt_valid_client(pos, clients)         \
897         for (pos = 0; pos < ILT_CLI_MAX; pos++)         \
898                 if (!clients[pos].active) {             \
899                         continue;                       \
900                 } else                                  \
901
902
903 /* Total number of ILT lines used by this PF */
904 static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients)
905 {
906         u32 size = 0;
907         u32 i;
908
909         for_each_ilt_valid_client(i, ilt_clients)
910                 size += (ilt_clients[i].last.val -
911                          ilt_clients[i].first.val + 1);
912
913         return size;
914 }
915
916 static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn)
917 {
918         struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients;
919         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
920         u32 ilt_size, i;
921
922         ilt_size = ecore_cxt_ilt_shadow_size(p_cli);
923
924         for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) {
925                 struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i];
926
927                 if (p_dma->p_virt)
928                         OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
929                                                p_dma->p_virt,
930                                                p_dma->p_phys, p_dma->size);
931                 p_dma->p_virt = OSAL_NULL;
932         }
933         OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow);
934 }
935
936 static enum _ecore_status_t
937 ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn,
938                     struct ecore_ilt_cli_blk *p_blk,
939                     enum ilt_clients ilt_client, u32 start_line_offset)
940 {
941         struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow;
942         u32 lines, line, sz_left, lines_to_skip = 0;
943
944         /* Special handling for RoCE that supports dynamic allocation */
945         if (ilt_client == ILT_CLI_CDUT || ilt_client == ILT_CLI_TSDM)
946                 return ECORE_SUCCESS;
947
948         lines_to_skip = p_blk->dynamic_line_cnt;
949
950         if (!p_blk->total_size)
951                 return ECORE_SUCCESS;
952
953         sz_left = p_blk->total_size;
954         lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) - lines_to_skip;
955         line = p_blk->start_line + start_line_offset -
956             p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip;
957
958         for (; lines; lines--) {
959                 dma_addr_t p_phys;
960                 void *p_virt;
961                 u32 size;
962
963                 size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page);
964
965 /* @DPDK */
966 #define ILT_BLOCK_ALIGN_SIZE 0x1000
967                 p_virt = OSAL_DMA_ALLOC_COHERENT_ALIGNED(p_hwfn->p_dev,
968                                                          &p_phys, size,
969                                                          ILT_BLOCK_ALIGN_SIZE);
970                 if (!p_virt)
971                         return ECORE_NOMEM;
972                 OSAL_MEM_ZERO(p_virt, size);
973
974                 ilt_shadow[line].p_phys = p_phys;
975                 ilt_shadow[line].p_virt = p_virt;
976                 ilt_shadow[line].size = size;
977
978                 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
979                            "ILT shadow: Line [%d] Physical 0x%lx"
980                            " Virtual %p Size %d\n",
981                            line, (unsigned long)p_phys, p_virt, size);
982
983                 sz_left -= size;
984                 line++;
985         }
986
987         return ECORE_SUCCESS;
988 }
989
990 static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn)
991 {
992         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
993         struct ecore_ilt_client_cfg *clients = p_mngr->clients;
994         struct ecore_ilt_cli_blk *p_blk;
995         u32 size, i, j, k;
996         enum _ecore_status_t rc;
997
998         size = ecore_cxt_ilt_shadow_size(clients);
999         p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1000                                          size * sizeof(struct ecore_dma_mem));
1001
1002         if (!p_mngr->ilt_shadow) {
1003                 DP_NOTICE(p_hwfn, true,
1004                           "Failed to allocate ilt shadow table\n");
1005                 rc = ECORE_NOMEM;
1006                 goto ilt_shadow_fail;
1007         }
1008
1009         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1010                    "Allocated 0x%x bytes for ilt shadow\n",
1011                    (u32)(size * sizeof(struct ecore_dma_mem)));
1012
1013         for_each_ilt_valid_client(i, clients) {
1014                 for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) {
1015                         p_blk = &clients[i].pf_blks[j];
1016                         rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0);
1017                         if (rc != ECORE_SUCCESS)
1018                                 goto ilt_shadow_fail;
1019                 }
1020                 for (k = 0; k < p_mngr->vf_count; k++) {
1021                         for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) {
1022                                 u32 lines = clients[i].vf_total_lines * k;
1023
1024                                 p_blk = &clients[i].vf_blks[j];
1025                                 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk,
1026                                                          i, lines);
1027                                 if (rc != ECORE_SUCCESS)
1028                                         goto ilt_shadow_fail;
1029                         }
1030                 }
1031         }
1032
1033         return ECORE_SUCCESS;
1034
1035 ilt_shadow_fail:
1036         ecore_ilt_shadow_free(p_hwfn);
1037         return rc;
1038 }
1039
1040 static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn)
1041 {
1042         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1043         u32 type, vf;
1044
1045         for (type = 0; type < MAX_CONN_TYPES; type++) {
1046                 OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map);
1047                 p_mngr->acquired[type].max_count = 0;
1048                 p_mngr->acquired[type].start_cid = 0;
1049
1050                 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1051                         OSAL_FREE(p_hwfn->p_dev,
1052                                   p_mngr->acquired_vf[type][vf].cid_map);
1053                         p_mngr->acquired_vf[type][vf].max_count = 0;
1054                         p_mngr->acquired_vf[type][vf].start_cid = 0;
1055                 }
1056         }
1057 }
1058
1059 static enum _ecore_status_t
1060 ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type,
1061                            u32 cid_start, u32 cid_count,
1062                            struct ecore_cid_acquired_map *p_map)
1063 {
1064         u32 size;
1065
1066         if (!cid_count)
1067                 return ECORE_SUCCESS;
1068
1069         size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD);
1070         p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size);
1071         if (p_map->cid_map == OSAL_NULL)
1072                 return ECORE_NOMEM;
1073
1074         p_map->max_count = cid_count;
1075         p_map->start_cid = cid_start;
1076
1077         DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1078                    "Type %08x start: %08x count %08x\n",
1079                    type, p_map->start_cid, p_map->max_count);
1080
1081         return ECORE_SUCCESS;
1082 }
1083
1084 static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn)
1085 {
1086         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1087         u32 start_cid = 0, vf_start_cid = 0;
1088         u32 type, vf;
1089
1090         for (type = 0; type < MAX_CONN_TYPES; type++) {
1091                 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type];
1092                 struct ecore_cid_acquired_map *p_map;
1093
1094                 /* Handle PF maps */
1095                 p_map = &p_mngr->acquired[type];
1096                 if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid,
1097                                                p_cfg->cid_count, p_map))
1098                         goto cid_map_fail;
1099
1100                 /* Handle VF maps */
1101                 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1102                         p_map = &p_mngr->acquired_vf[type][vf];
1103                         if (ecore_cid_map_alloc_single(p_hwfn, type,
1104                                                        vf_start_cid,
1105                                                        p_cfg->cids_per_vf,
1106                                                        p_map))
1107                                 goto cid_map_fail;
1108                 }
1109
1110                 start_cid += p_cfg->cid_count;
1111                 vf_start_cid += p_cfg->cids_per_vf;
1112         }
1113
1114         return ECORE_SUCCESS;
1115
1116 cid_map_fail:
1117         ecore_cid_map_free(p_hwfn);
1118         return ECORE_NOMEM;
1119 }
1120
1121 enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn)
1122 {
1123         struct ecore_ilt_client_cfg *clients;
1124         struct ecore_cxt_mngr *p_mngr;
1125         u32 i;
1126
1127         p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr));
1128         if (!p_mngr) {
1129                 DP_NOTICE(p_hwfn, true,
1130                           "Failed to allocate `struct ecore_cxt_mngr'\n");
1131                 return ECORE_NOMEM;
1132         }
1133
1134         /* Initialize ILT client registers */
1135         clients = p_mngr->clients;
1136         clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT);
1137         clients[ILT_CLI_CDUC].last.reg  = ILT_CFG_REG(CDUC, LAST_ILT);
1138         clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE);
1139
1140         clients[ILT_CLI_QM].first.reg   = ILT_CFG_REG(QM, FIRST_ILT);
1141         clients[ILT_CLI_QM].last.reg    = ILT_CFG_REG(QM, LAST_ILT);
1142         clients[ILT_CLI_QM].p_size.reg  = ILT_CFG_REG(QM, P_SIZE);
1143
1144         clients[ILT_CLI_TM].first.reg   = ILT_CFG_REG(TM, FIRST_ILT);
1145         clients[ILT_CLI_TM].last.reg    = ILT_CFG_REG(TM, LAST_ILT);
1146         clients[ILT_CLI_TM].p_size.reg  = ILT_CFG_REG(TM, P_SIZE);
1147
1148         clients[ILT_CLI_SRC].first.reg  = ILT_CFG_REG(SRC, FIRST_ILT);
1149         clients[ILT_CLI_SRC].last.reg   = ILT_CFG_REG(SRC, LAST_ILT);
1150         clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE);
1151
1152         clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT);
1153         clients[ILT_CLI_CDUT].last.reg  = ILT_CFG_REG(CDUT, LAST_ILT);
1154         clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE);
1155
1156         clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT);
1157         clients[ILT_CLI_TSDM].last.reg  = ILT_CFG_REG(TSDM, LAST_ILT);
1158         clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE);
1159
1160         /* default ILT page size for all clients is 64K */
1161         for (i = 0; i < ILT_CLI_MAX; i++)
1162                 p_mngr->clients[i].p_size.val = ILT_DEFAULT_HW_P_SIZE;
1163
1164         /* due to removal of ISCSI/FCoE files union type0_task_context
1165          * task_type_size will be 0. So hardcoded for now.
1166          */
1167         p_mngr->task_type_size[0] = 512; /* @DPDK */
1168         p_mngr->task_type_size[1] = 128; /* @DPDK */
1169
1170         if (p_hwfn->p_dev->p_iov_info)
1171                 p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs;
1172
1173         /* Initialize the dynamic ILT allocation mutex */
1174 #ifdef CONFIG_ECORE_LOCK_ALLOC
1175         OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex);
1176 #endif
1177         OSAL_MUTEX_INIT(&p_mngr->mutex);
1178
1179         /* Set the cxt mangr pointer priori to further allocations */
1180         p_hwfn->p_cxt_mngr = p_mngr;
1181
1182         return ECORE_SUCCESS;
1183 }
1184
1185 enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn)
1186 {
1187         enum _ecore_status_t rc;
1188
1189         /* Allocate the ILT shadow table */
1190         rc = ecore_ilt_shadow_alloc(p_hwfn);
1191         if (rc) {
1192                 DP_NOTICE(p_hwfn, true, "Failed to allocate ilt memory\n");
1193                 goto tables_alloc_fail;
1194         }
1195
1196         /* Allocate the T2  table */
1197         rc = ecore_cxt_src_t2_alloc(p_hwfn);
1198         if (rc) {
1199                 DP_NOTICE(p_hwfn, true, "Failed to allocate T2 memory\n");
1200                 goto tables_alloc_fail;
1201         }
1202
1203         /* Allocate and initialize the acquired cids bitmaps */
1204         rc = ecore_cid_map_alloc(p_hwfn);
1205         if (rc) {
1206                 DP_NOTICE(p_hwfn, true, "Failed to allocate cid maps\n");
1207                 goto tables_alloc_fail;
1208         }
1209
1210         return ECORE_SUCCESS;
1211
1212 tables_alloc_fail:
1213         ecore_cxt_mngr_free(p_hwfn);
1214         return rc;
1215 }
1216
1217 void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn)
1218 {
1219         if (!p_hwfn->p_cxt_mngr)
1220                 return;
1221
1222         ecore_cid_map_free(p_hwfn);
1223         ecore_cxt_src_t2_free(p_hwfn);
1224         ecore_ilt_shadow_free(p_hwfn);
1225 #ifdef CONFIG_ECORE_LOCK_ALLOC
1226         OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex);
1227 #endif
1228         OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr);
1229 }
1230
1231 void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn)
1232 {
1233         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1234         struct ecore_cid_acquired_map *p_map;
1235         struct ecore_conn_type_cfg *p_cfg;
1236         int type;
1237         u32 len;
1238
1239         /* Reset acquired cids */
1240         for (type = 0; type < MAX_CONN_TYPES; type++) {
1241                 u32 vf;
1242
1243                 p_cfg = &p_mngr->conn_cfg[type];
1244                 if (p_cfg->cid_count) {
1245                         p_map = &p_mngr->acquired[type];
1246                         len = DIV_ROUND_UP(p_map->max_count,
1247                                            BITS_PER_MAP_WORD) *
1248                               MAP_WORD_SIZE;
1249                         OSAL_MEM_ZERO(p_map->cid_map, len);
1250                 }
1251
1252                 if (!p_cfg->cids_per_vf)
1253                         continue;
1254
1255                 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1256                         p_map = &p_mngr->acquired_vf[type][vf];
1257                         len = DIV_ROUND_UP(p_map->max_count,
1258                                            BITS_PER_MAP_WORD) *
1259                               MAP_WORD_SIZE;
1260                         OSAL_MEM_ZERO(p_map->cid_map, len);
1261                 }
1262         }
1263 }
1264
1265 /* HW initialization helper (per Block, per phase) */
1266
1267 /* CDU Common */
1268 #define CDUC_CXT_SIZE_SHIFT                                             \
1269         CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT
1270
1271 #define CDUC_CXT_SIZE_MASK                                              \
1272         (CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT)
1273
1274 #define CDUC_BLOCK_WASTE_SHIFT                                          \
1275         CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT
1276
1277 #define CDUC_BLOCK_WASTE_MASK                                           \
1278         (CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT)
1279
1280 #define CDUC_NCIB_SHIFT                                                 \
1281         CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT
1282
1283 #define CDUC_NCIB_MASK                                                  \
1284         (CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT)
1285
1286 #define CDUT_TYPE0_CXT_SIZE_SHIFT                                       \
1287         CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT
1288
1289 #define CDUT_TYPE0_CXT_SIZE_MASK                                        \
1290         (CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >>                         \
1291         CDUT_TYPE0_CXT_SIZE_SHIFT)
1292
1293 #define CDUT_TYPE0_BLOCK_WASTE_SHIFT                                    \
1294         CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT
1295
1296 #define CDUT_TYPE0_BLOCK_WASTE_MASK                                     \
1297         (CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >>                  \
1298         CDUT_TYPE0_BLOCK_WASTE_SHIFT)
1299
1300 #define CDUT_TYPE0_NCIB_SHIFT                                           \
1301         CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT
1302
1303 #define CDUT_TYPE0_NCIB_MASK                                            \
1304         (CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >>                \
1305         CDUT_TYPE0_NCIB_SHIFT)
1306
1307 #define CDUT_TYPE1_CXT_SIZE_SHIFT                                       \
1308         CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT
1309
1310 #define CDUT_TYPE1_CXT_SIZE_MASK                                        \
1311         (CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >>                         \
1312         CDUT_TYPE1_CXT_SIZE_SHIFT)
1313
1314 #define CDUT_TYPE1_BLOCK_WASTE_SHIFT                                    \
1315         CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT
1316
1317 #define CDUT_TYPE1_BLOCK_WASTE_MASK                                     \
1318         (CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >>                  \
1319         CDUT_TYPE1_BLOCK_WASTE_SHIFT)
1320
1321 #define CDUT_TYPE1_NCIB_SHIFT                                           \
1322         CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT
1323
1324 #define CDUT_TYPE1_NCIB_MASK                                            \
1325         (CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >>                \
1326         CDUT_TYPE1_NCIB_SHIFT)
1327
1328 static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn)
1329 {
1330         u32 page_sz, elems_per_page, block_waste, cxt_size, cdu_params = 0;
1331
1332         /* CDUC - connection configuration */
1333         page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1334         cxt_size = CONN_CXT_SIZE(p_hwfn);
1335         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1336         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1337
1338         SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size);
1339         SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste);
1340         SET_FIELD(cdu_params, CDUC_NCIB, elems_per_page);
1341         STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params);
1342
1343         /* CDUT - type-0 tasks configuration */
1344         page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val;
1345         cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0];
1346         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1347         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1348
1349         /* cxt size and block-waste are multipes of 8 */
1350         cdu_params = 0;
1351         SET_FIELD(cdu_params, CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3));
1352         SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3));
1353         SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page);
1354         STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params);
1355
1356         /* CDUT - type-1 tasks configuration */
1357         cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1];
1358         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1359         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1360
1361         /* cxt size and block-waste are multipes of 8 */
1362         cdu_params = 0;
1363         SET_FIELD(cdu_params, CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3));
1364         SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3));
1365         SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page);
1366         STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params);
1367 }
1368
1369 /* CDU PF */
1370 #define CDU_SEG_REG_TYPE_SHIFT          CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT
1371 #define CDU_SEG_REG_TYPE_MASK           0x1
1372 #define CDU_SEG_REG_OFFSET_SHIFT        0
1373 #define CDU_SEG_REG_OFFSET_MASK         CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK
1374
1375 static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn)
1376 {
1377         struct ecore_ilt_client_cfg *p_cli;
1378         struct ecore_tid_seg *p_seg;
1379         u32 cdu_seg_params, offset;
1380         int i;
1381
1382         static const u32 rt_type_offset_arr[] = {
1383                 CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET,
1384                 CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET,
1385                 CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET,
1386                 CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET
1387         };
1388
1389         static const u32 rt_type_offset_fl_arr[] = {
1390                 CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET,
1391                 CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET,
1392                 CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET,
1393                 CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET
1394         };
1395
1396         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1397
1398         /* There are initializations only for CDUT during pf Phase */
1399         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1400                 /* Segment 0 */
1401                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
1402                 if (!p_seg)
1403                         continue;
1404
1405                 /* Note: start_line is already adjusted for the CDU
1406                  * segment register granularity, so we just need to
1407                  * divide. Adjustment is implicit as we assume ILT
1408                  * Page size is larger than 32K!
1409                  */
1410                 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1411                           (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line -
1412                            p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1413
1414                 cdu_seg_params = 0;
1415                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1416                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1417                 STORE_RT_REG(p_hwfn, rt_type_offset_arr[i], cdu_seg_params);
1418
1419                 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1420                           (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line -
1421                            p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1422
1423                 cdu_seg_params = 0;
1424                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1425                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1426                 STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i], cdu_seg_params);
1427         }
1428 }
1429
1430 void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
1431 {
1432         struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1433         struct ecore_mcp_link_state *p_link;
1434         struct ecore_qm_iids iids;
1435
1436         OSAL_MEM_ZERO(&iids, sizeof(iids));
1437         ecore_cxt_qm_iids(p_hwfn, &iids);
1438
1439         p_link = &ECORE_LEADING_HWFN(p_hwfn->p_dev)->mcp_info->link_output;
1440
1441         ecore_qm_pf_rt_init(p_hwfn, p_ptt, p_hwfn->port_id,
1442                             p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port,
1443                             iids.cids, iids.vf_cids, iids.tids,
1444                             qm_info->start_pq,
1445                             qm_info->num_pqs - qm_info->num_vf_pqs,
1446                             qm_info->num_vf_pqs,
1447                             qm_info->start_vport,
1448                             qm_info->num_vports, qm_info->pf_wfq,
1449                             qm_info->pf_rl, p_link->speed,
1450                             p_hwfn->qm_info.qm_pq_params,
1451                             p_hwfn->qm_info.qm_vport_params);
1452 }
1453
1454 /* CM PF */
1455 static void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn)
1456 {
1457         STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET,
1458                      ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB));
1459 }
1460
1461 /* DQ PF */
1462 static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn)
1463 {
1464         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1465         u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0;
1466
1467         dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT);
1468         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid);
1469
1470         dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT);
1471         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid);
1472
1473         dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT);
1474         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid);
1475
1476         dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT);
1477         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid);
1478
1479         dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT);
1480         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid);
1481
1482         dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT);
1483         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid);
1484
1485         dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT);
1486         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid);
1487
1488         dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT);
1489         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid);
1490
1491         dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT);
1492         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid);
1493
1494         dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT);
1495         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid);
1496
1497         dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT);
1498         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid);
1499
1500         dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT);
1501         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid);
1502
1503         /* Connection types 6 & 7 are not in use, yet they must be configured
1504          * as the highest possible connection. Not configuring them means the
1505          * defaults will be  used, and with a large number of cids a bug may
1506          * occur, if the defaults will be smaller than dq_pf_max_cid /
1507          * dq_vf_max_cid.
1508          */
1509         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid);
1510         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid);
1511
1512         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid);
1513         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid);
1514 }
1515
1516 static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn)
1517 {
1518         struct ecore_ilt_client_cfg *ilt_clients;
1519         int i;
1520
1521         ilt_clients = p_hwfn->p_cxt_mngr->clients;
1522         for_each_ilt_valid_client(i, ilt_clients) {
1523                 STORE_RT_REG(p_hwfn,
1524                              ilt_clients[i].first.reg,
1525                              ilt_clients[i].first.val);
1526                 STORE_RT_REG(p_hwfn,
1527                              ilt_clients[i].last.reg, ilt_clients[i].last.val);
1528                 STORE_RT_REG(p_hwfn,
1529                              ilt_clients[i].p_size.reg,
1530                              ilt_clients[i].p_size.val);
1531         }
1532 }
1533
1534 static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn)
1535 {
1536         struct ecore_ilt_client_cfg *p_cli;
1537         u32 blk_factor;
1538
1539         /* For simplicty  we set the 'block' to be an ILT page */
1540         if (p_hwfn->p_dev->p_iov_info) {
1541                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
1542
1543                 STORE_RT_REG(p_hwfn,
1544                              PSWRQ2_REG_VF_BASE_RT_OFFSET,
1545                              p_iov->first_vf_in_pf);
1546                 STORE_RT_REG(p_hwfn,
1547                              PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET,
1548                              p_iov->first_vf_in_pf + p_iov->total_vfs);
1549         }
1550
1551         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
1552         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1553         if (p_cli->active) {
1554                 STORE_RT_REG(p_hwfn,
1555                              PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET,
1556                              blk_factor);
1557                 STORE_RT_REG(p_hwfn,
1558                              PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1559                              p_cli->pf_total_lines);
1560                 STORE_RT_REG(p_hwfn,
1561                              PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET,
1562                              p_cli->vf_total_lines);
1563         }
1564
1565         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1566         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1567         if (p_cli->active) {
1568                 STORE_RT_REG(p_hwfn,
1569                              PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET,
1570                              blk_factor);
1571                 STORE_RT_REG(p_hwfn,
1572                              PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1573                              p_cli->pf_total_lines);
1574                 STORE_RT_REG(p_hwfn,
1575                              PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET,
1576                              p_cli->vf_total_lines);
1577         }
1578
1579         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM];
1580         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1581         if (p_cli->active) {
1582                 STORE_RT_REG(p_hwfn,
1583                              PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET, blk_factor);
1584                 STORE_RT_REG(p_hwfn,
1585                              PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1586                              p_cli->pf_total_lines);
1587                 STORE_RT_REG(p_hwfn,
1588                              PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET,
1589                              p_cli->vf_total_lines);
1590         }
1591 }
1592
1593 /* ILT (PSWRQ2) PF */
1594 static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn)
1595 {
1596         struct ecore_ilt_client_cfg *clients;
1597         struct ecore_cxt_mngr *p_mngr;
1598         struct ecore_dma_mem *p_shdw;
1599         u32 line, rt_offst, i;
1600
1601         ecore_ilt_bounds_init(p_hwfn);
1602         ecore_ilt_vf_bounds_init(p_hwfn);
1603
1604         p_mngr = p_hwfn->p_cxt_mngr;
1605         p_shdw = p_mngr->ilt_shadow;
1606         clients = p_hwfn->p_cxt_mngr->clients;
1607
1608         for_each_ilt_valid_client(i, clients) {
1609                 /* Client's 1st val and RT array are absolute, ILT shadows'
1610                  * lines are relative.
1611                  */
1612                 line = clients[i].first.val - p_mngr->pf_start_line;
1613                 rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET +
1614                     clients[i].first.val * ILT_ENTRY_IN_REGS;
1615
1616                 for (; line <= clients[i].last.val - p_mngr->pf_start_line;
1617                      line++, rt_offst += ILT_ENTRY_IN_REGS) {
1618                         u64 ilt_hw_entry = 0;
1619
1620                         /** p_virt could be OSAL_NULL incase of dynamic
1621                          *  allocation
1622                          */
1623                         if (p_shdw[line].p_virt != OSAL_NULL) {
1624                                 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
1625                                 SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
1626                                           (p_shdw[line].p_phys >> 12));
1627
1628                                 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1629                                         "Setting RT[0x%08x] from"
1630                                         " ILT[0x%08x] [Client is %d] to"
1631                                         " Physical addr: 0x%lx\n",
1632                                         rt_offst, line, i,
1633                                         (unsigned long)(p_shdw[line].
1634                                                         p_phys >> 12));
1635                         }
1636
1637                         STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry);
1638                 }
1639         }
1640 }
1641
1642 /* SRC (Searcher) PF */
1643 static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn)
1644 {
1645         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1646         u32 rounded_conn_num, conn_num, conn_max;
1647         struct ecore_src_iids src_iids;
1648
1649         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
1650         ecore_cxt_src_iids(p_mngr, &src_iids);
1651         conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
1652         if (!conn_num)
1653                 return;
1654
1655         conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS);
1656         rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max);
1657
1658         STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num);
1659         STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET,
1660                      OSAL_LOG2(rounded_conn_num));
1661
1662         STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET,
1663                          p_hwfn->p_cxt_mngr->first_free);
1664         STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET,
1665                          p_hwfn->p_cxt_mngr->last_free);
1666         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1667                    "Configured SEARCHER for 0x%08x connections\n",
1668                    conn_num);
1669 }
1670
1671 /* Timers PF */
1672 #define TM_CFG_NUM_IDS_SHIFT            0
1673 #define TM_CFG_NUM_IDS_MASK             0xFFFFULL
1674 #define TM_CFG_PRE_SCAN_OFFSET_SHIFT    16
1675 #define TM_CFG_PRE_SCAN_OFFSET_MASK     0x1FFULL
1676 #define TM_CFG_PARENT_PF_SHIFT          25
1677 #define TM_CFG_PARENT_PF_MASK           0x7ULL
1678
1679 #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT  30
1680 #define TM_CFG_CID_PRE_SCAN_ROWS_MASK   0x1FFULL
1681
1682 #define TM_CFG_TID_OFFSET_SHIFT         30
1683 #define TM_CFG_TID_OFFSET_MASK          0x7FFFFULL
1684 #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT  49
1685 #define TM_CFG_TID_PRE_SCAN_ROWS_MASK   0x1FFULL
1686
1687 static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn)
1688 {
1689         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1690         u32 active_seg_mask = 0, tm_offset, rt_reg;
1691         struct ecore_tm_iids tm_iids;
1692         u64 cfg_word;
1693         u8 i;
1694
1695         OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
1696         ecore_cxt_tm_iids(p_mngr, &tm_iids);
1697
1698         /* @@@TBD No pre-scan for now */
1699
1700         /* Note: We assume consecutive VFs for a PF */
1701         for (i = 0; i < p_mngr->vf_count; i++) {
1702                 cfg_word = 0;
1703                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids);
1704                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1705                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1706                 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
1707
1708                 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1709                     (sizeof(cfg_word) / sizeof(u32)) *
1710                     (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1711                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1712         }
1713
1714         cfg_word = 0;
1715         SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids);
1716         SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1717         SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);       /* n/a for PF */
1718         SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all   */
1719
1720         rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1721             (sizeof(cfg_word) / sizeof(u32)) *
1722             (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id);
1723         STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1724
1725         /* enale scan */
1726         STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET,
1727                      tm_iids.pf_cids ? 0x1 : 0x0);
1728
1729         /* @@@TBD how to enable the scan for the VFs */
1730
1731         tm_offset = tm_iids.per_vf_cids;
1732
1733         /* Note: We assume consecutive VFs for a PF */
1734         for (i = 0; i < p_mngr->vf_count; i++) {
1735                 cfg_word = 0;
1736                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids);
1737                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1738                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1739                 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1740                 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1741
1742                 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1743                     (sizeof(cfg_word) / sizeof(u32)) *
1744                     (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1745
1746                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1747         }
1748
1749         tm_offset = tm_iids.pf_cids;
1750         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1751                 cfg_word = 0;
1752                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]);
1753                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1754                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);
1755                 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1756                 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1757
1758                 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1759                     (sizeof(cfg_word) / sizeof(u32)) *
1760                     (NUM_OF_VFS(p_hwfn->p_dev) +
1761                      p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i);
1762
1763                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1764                 active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0);
1765
1766                 tm_offset += tm_iids.pf_tids[i];
1767         }
1768
1769         STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask);
1770
1771         /* @@@TBD how to enable the scan for the VFs */
1772 }
1773
1774 static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn)
1775 {
1776         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1777         struct ecore_conn_type_cfg *p_fcoe;
1778         struct ecore_tid_seg *p_tid;
1779
1780         p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE];
1781
1782         /* If FCoE is active set the MAX OX_ID (tid) in the Parser */
1783         if (!p_fcoe->cid_count)
1784                 return;
1785
1786         p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG];
1787         STORE_RT_REG_AGG(p_hwfn,
1788                         PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET,
1789                         p_tid->count);
1790 }
1791
1792 void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn)
1793 {
1794         /* CDU configuration */
1795         ecore_cdu_init_common(p_hwfn);
1796 }
1797
1798 void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
1799 {
1800         ecore_qm_init_pf(p_hwfn, p_ptt);
1801         ecore_cm_init_pf(p_hwfn);
1802         ecore_dq_init_pf(p_hwfn);
1803         ecore_cdu_init_pf(p_hwfn);
1804         ecore_ilt_init_pf(p_hwfn);
1805         ecore_src_init_pf(p_hwfn);
1806         ecore_tm_init_pf(p_hwfn);
1807         ecore_prs_init_pf(p_hwfn);
1808 }
1809
1810 enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
1811                                             enum protocol_type type,
1812                                             u32 *p_cid, u8 vfid)
1813 {
1814         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1815         struct ecore_cid_acquired_map *p_map;
1816         u32 rel_cid;
1817
1818         if (type >= MAX_CONN_TYPES) {
1819                 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
1820                 return ECORE_INVAL;
1821         }
1822
1823         if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) {
1824                 DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid);
1825                 return ECORE_INVAL;
1826         }
1827
1828         /* Determine the right map to take this CID from */
1829         if (vfid == ECORE_CXT_PF_CID)
1830                 p_map = &p_mngr->acquired[type];
1831         else
1832                 p_map = &p_mngr->acquired_vf[type][vfid];
1833
1834         if (p_map->cid_map == OSAL_NULL) {
1835                 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
1836                 return ECORE_INVAL;
1837         }
1838
1839         rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map,
1840                                            p_map->max_count);
1841
1842         if (rel_cid >= p_map->max_count) {
1843                 DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n",
1844                           type);
1845                 return ECORE_NORESOURCES;
1846         }
1847
1848         OSAL_SET_BIT(rel_cid, p_map->cid_map);
1849
1850         *p_cid = rel_cid + p_map->start_cid;
1851
1852         DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1853                    "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n",
1854                    *p_cid, rel_cid, vfid, type);
1855
1856         return ECORE_SUCCESS;
1857 }
1858
1859 enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
1860                                            enum protocol_type type,
1861                                            u32 *p_cid)
1862 {
1863         return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID);
1864 }
1865
1866 static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn,
1867                                         u32 cid, u8 vfid,
1868                                         enum protocol_type *p_type,
1869                                         struct ecore_cid_acquired_map **pp_map)
1870 {
1871         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1872         u32 rel_cid;
1873
1874         /* Iterate over protocols and find matching cid range */
1875         for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) {
1876                 if (vfid == ECORE_CXT_PF_CID)
1877                         *pp_map = &p_mngr->acquired[*p_type];
1878                 else
1879                         *pp_map = &p_mngr->acquired_vf[*p_type][vfid];
1880
1881                 if (!((*pp_map)->cid_map))
1882                         continue;
1883                 if (cid >= (*pp_map)->start_cid &&
1884                     cid < (*pp_map)->start_cid + (*pp_map)->max_count) {
1885                         break;
1886                 }
1887         }
1888         if (*p_type == MAX_CONN_TYPES) {
1889                 DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid);
1890                 goto fail;
1891         }
1892
1893         rel_cid = cid - (*pp_map)->start_cid;
1894         if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) {
1895                 DP_NOTICE(p_hwfn, true,
1896                           "CID %d [vifd %02x] not acquired", cid, vfid);
1897                 goto fail;
1898         }
1899
1900         return true;
1901 fail:
1902         *p_type = MAX_CONN_TYPES;
1903         *pp_map = OSAL_NULL;
1904         return false;
1905 }
1906
1907 void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid)
1908 {
1909         struct ecore_cid_acquired_map *p_map = OSAL_NULL;
1910         enum protocol_type type;
1911         bool b_acquired;
1912         u32 rel_cid;
1913
1914         if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) {
1915                 DP_NOTICE(p_hwfn, true,
1916                           "Trying to return incorrect CID belonging to VF %02x\n",
1917                           vfid);
1918                 return;
1919         }
1920
1921         /* Test acquired and find matching per-protocol map */
1922         b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid,
1923                                                  &type, &p_map);
1924
1925         if (!b_acquired)
1926                 return;
1927
1928         rel_cid = cid - p_map->start_cid;
1929         OSAL_CLEAR_BIT(rel_cid, p_map->cid_map);
1930
1931         DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1932                    "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n",
1933                    cid, rel_cid, vfid, type);
1934 }
1935
1936 void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid)
1937 {
1938         _ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID);
1939 }
1940
1941 enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn,
1942                                             struct ecore_cxt_info *p_info)
1943 {
1944         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1945         struct ecore_cid_acquired_map *p_map = OSAL_NULL;
1946         u32 conn_cxt_size, hw_p_size, cxts_per_p, line;
1947         enum protocol_type type;
1948         bool b_acquired;
1949
1950         /* Test acquired and find matching per-protocol map */
1951         b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid,
1952                                                  ECORE_CXT_PF_CID,
1953                                                  &type, &p_map);
1954
1955         if (!b_acquired)
1956                 return ECORE_INVAL;
1957
1958         /* set the protocl type */
1959         p_info->type = type;
1960
1961         /* compute context virtual pointer */
1962         hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1963
1964         conn_cxt_size = CONN_CXT_SIZE(p_hwfn);
1965         cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size;
1966         line = p_info->iid / cxts_per_p;
1967
1968         /* Make sure context is allocated (dynamic allocation) */
1969         if (!p_mngr->ilt_shadow[line].p_virt)
1970                 return ECORE_INVAL;
1971
1972         p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt +
1973             p_info->iid % cxts_per_p * conn_cxt_size;
1974
1975         DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT),
1976                 "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n",
1977                 (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid);
1978
1979         return ECORE_SUCCESS;
1980 }
1981
1982 enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn)
1983 {
1984         /* Set the number of required CORE connections */
1985         u32 core_cids = 1;      /* SPQ */
1986
1987         ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0);
1988
1989         switch (p_hwfn->hw_info.personality) {
1990         case ECORE_PCI_ETH:
1991                 {
1992                 u32 count = 0;
1993
1994                 struct ecore_eth_pf_params *p_params =
1995                             &p_hwfn->pf_params.eth_pf_params;
1996
1997                 if (!p_params->num_vf_cons)
1998                         p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT;
1999                 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2000                                               p_params->num_cons,
2001                                               p_params->num_vf_cons);
2002
2003                 count = p_params->num_arfs_filters;
2004
2005                 if (!OSAL_TEST_BIT(ECORE_MF_DISABLE_ARFS,
2006                                    &p_hwfn->p_dev->mf_bits))
2007                         p_hwfn->p_cxt_mngr->arfs_count = count;
2008
2009                 break;
2010                 }
2011         default:
2012                 return ECORE_INVAL;
2013         }
2014
2015         return ECORE_SUCCESS;
2016 }
2017
2018 /* This function is very RoCE oriented, if another protocol in the future
2019  * will want this feature we'll need to modify the function to be more generic
2020  */
2021 enum _ecore_status_t
2022 ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn,
2023                             enum ecore_cxt_elem_type elem_type,
2024                             u32 iid)
2025 {
2026         u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line;
2027         struct ecore_ilt_client_cfg *p_cli;
2028         struct ecore_ilt_cli_blk *p_blk;
2029         struct ecore_ptt *p_ptt;
2030         dma_addr_t p_phys;
2031         u64 ilt_hw_entry;
2032         void *p_virt;
2033         enum _ecore_status_t rc = ECORE_SUCCESS;
2034
2035         switch (elem_type) {
2036         case ECORE_ELEM_CXT:
2037                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2038                 elem_size = CONN_CXT_SIZE(p_hwfn);
2039                 p_blk = &p_cli->pf_blks[CDUC_BLK];
2040                 break;
2041         case ECORE_ELEM_SRQ:
2042                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2043                 elem_size = SRQ_CXT_SIZE;
2044                 p_blk = &p_cli->pf_blks[SRQ_BLK];
2045                 break;
2046         case ECORE_ELEM_TASK:
2047                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2048                 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2049                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2050                 break;
2051         default:
2052                 DP_NOTICE(p_hwfn, false,
2053                           "ECORE_INVALID elem type = %d", elem_type);
2054                 return ECORE_INVAL;
2055         }
2056
2057         /* Calculate line in ilt */
2058         hw_p_size = p_cli->p_size.val;
2059         elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2060         line = p_blk->start_line + (iid / elems_per_p);
2061         shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line;
2062
2063         /* If line is already allocated, do nothing, otherwise allocate it and
2064          * write it to the PSWRQ2 registers.
2065          * This section can be run in parallel from different contexts and thus
2066          * a mutex protection is needed.
2067          */
2068
2069         OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex);
2070
2071         if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt)
2072                 goto out0;
2073
2074         p_ptt = ecore_ptt_acquire(p_hwfn);
2075         if (!p_ptt) {
2076                 DP_NOTICE(p_hwfn, false,
2077                           "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2078                 rc = ECORE_TIMEOUT;
2079                 goto out0;
2080         }
2081
2082         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
2083                                          &p_phys,
2084                                          p_blk->real_size_in_page);
2085         if (!p_virt) {
2086                 rc = ECORE_NOMEM;
2087                 goto out1;
2088         }
2089         OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page);
2090
2091         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt;
2092         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys;
2093         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size =
2094                 p_blk->real_size_in_page;
2095
2096         /* compute absolute offset */
2097         reg_offset = PSWRQ2_REG_ILT_MEMORY +
2098                      (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS);
2099
2100         ilt_hw_entry = 0;
2101         SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
2102         SET_FIELD(ilt_hw_entry,
2103                   ILT_ENTRY_PHY_ADDR,
2104                   (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12));
2105
2106 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */
2107
2108         ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry,
2109                             reg_offset, sizeof(ilt_hw_entry) / sizeof(u32),
2110                             0 /* no flags */);
2111
2112         if (elem_type == ECORE_ELEM_CXT) {
2113                 u32 last_cid_allocated = (1 + (iid / elems_per_p)) *
2114                                          elems_per_p;
2115
2116                 /* Update the relevant register in the parser */
2117                 ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF,
2118                          last_cid_allocated - 1);
2119
2120                 if (!p_hwfn->b_rdma_enabled_in_prs) {
2121                         /* Enable RoCE search */
2122                         ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1);
2123                         p_hwfn->b_rdma_enabled_in_prs = true;
2124                 }
2125         }
2126
2127 out1:
2128         ecore_ptt_release(p_hwfn, p_ptt);
2129 out0:
2130         OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex);
2131
2132         return rc;
2133 }
2134
2135 /* This function is very RoCE oriented, if another protocol in the future
2136  * will want this feature we'll need to modify the function to be more generic
2137  */
2138 static enum _ecore_status_t
2139 ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn,
2140                          enum ecore_cxt_elem_type elem_type,
2141                          u32 start_iid, u32 count)
2142 {
2143         u32 start_line, end_line, shadow_start_line, shadow_end_line;
2144         u32 reg_offset, elem_size, hw_p_size, elems_per_p;
2145         struct ecore_ilt_client_cfg *p_cli;
2146         struct ecore_ilt_cli_blk *p_blk;
2147         u32 end_iid = start_iid + count;
2148         struct ecore_ptt *p_ptt;
2149         u64 ilt_hw_entry = 0;
2150         u32 i;
2151
2152         switch (elem_type) {
2153         case ECORE_ELEM_CXT:
2154                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2155                 elem_size = CONN_CXT_SIZE(p_hwfn);
2156                 p_blk = &p_cli->pf_blks[CDUC_BLK];
2157                 break;
2158         case ECORE_ELEM_SRQ:
2159                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2160                 elem_size = SRQ_CXT_SIZE;
2161                 p_blk = &p_cli->pf_blks[SRQ_BLK];
2162                 break;
2163         case ECORE_ELEM_TASK:
2164                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2165                 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2166                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2167                 break;
2168         default:
2169                 DP_NOTICE(p_hwfn, false,
2170                           "ECORE_INVALID elem type = %d", elem_type);
2171                 return ECORE_INVAL;
2172         }
2173
2174         /* Calculate line in ilt */
2175         hw_p_size = p_cli->p_size.val;
2176         elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2177         start_line = p_blk->start_line + (start_iid / elems_per_p);
2178         end_line = p_blk->start_line + (end_iid / elems_per_p);
2179         if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p))
2180                 end_line--;
2181
2182         shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line;
2183         shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line;
2184
2185         p_ptt = ecore_ptt_acquire(p_hwfn);
2186         if (!p_ptt) {
2187                 DP_NOTICE(p_hwfn, false,
2188                           "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2189                 return ECORE_TIMEOUT;
2190         }
2191
2192         for (i = shadow_start_line; i < shadow_end_line; i++) {
2193                 if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt)
2194                         continue;
2195
2196                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
2197                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt,
2198                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys,
2199                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].size);
2200
2201                 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL;
2202                 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0;
2203                 p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0;
2204
2205                 /* compute absolute offset */
2206                 reg_offset = PSWRQ2_REG_ILT_MEMORY +
2207                     ((start_line++) * ILT_REG_SIZE_IN_BYTES *
2208                      ILT_ENTRY_IN_REGS);
2209
2210                 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a
2211                  * wide-bus.
2212                  */
2213                 ecore_dmae_host2grc(p_hwfn, p_ptt,
2214                                     (u64)(osal_uintptr_t)&ilt_hw_entry,
2215                                     reg_offset,
2216                                     sizeof(ilt_hw_entry) / sizeof(u32),
2217                                     0 /* no flags */);
2218         }
2219
2220         ecore_ptt_release(p_hwfn, p_ptt);
2221
2222         return ECORE_SUCCESS;
2223 }