New upstream version 18.11-rc1
[deb_dpdk.git] / drivers / net / qede / base / ecore_cxt.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6
7 #include "bcm_osal.h"
8 #include "reg_addr.h"
9 #include "common_hsi.h"
10 #include "ecore_hsi_common.h"
11 #include "ecore_hsi_eth.h"
12 #include "ecore_rt_defs.h"
13 #include "ecore_status.h"
14 #include "ecore.h"
15 #include "ecore_init_ops.h"
16 #include "ecore_init_fw_funcs.h"
17 #include "ecore_cxt.h"
18 #include "ecore_hw.h"
19 #include "ecore_dev_api.h"
20 #include "ecore_sriov.h"
21 #include "ecore_mcp.h"
22
23 /* Max number of connection types in HW (DQ/CDU etc.) */
24 #define MAX_CONN_TYPES          PROTOCOLID_COMMON
25 #define NUM_TASK_TYPES          2
26 #define NUM_TASK_PF_SEGMENTS    4
27 #define NUM_TASK_VF_SEGMENTS    1
28
29 /* Doorbell-Queue constants */
30 #define DQ_RANGE_SHIFT  4
31 #define DQ_RANGE_ALIGN  (1 << DQ_RANGE_SHIFT)
32
33 /* Searcher constants */
34 #define SRC_MIN_NUM_ELEMS 256
35
36 /* Timers constants */
37 #define TM_SHIFT        7
38 #define TM_ALIGN        (1 << TM_SHIFT)
39 #define TM_ELEM_SIZE    4
40
41 /* ILT constants */
42 #define ILT_DEFAULT_HW_P_SIZE   4
43
44 #define ILT_PAGE_IN_BYTES(hw_p_size)    (1U << ((hw_p_size) + 12))
45 #define ILT_CFG_REG(cli, reg)           PSWRQ2_REG_##cli##_##reg##_RT_OFFSET
46
47 /* ILT entry structure */
48 #define ILT_ENTRY_PHY_ADDR_MASK         0x000FFFFFFFFFFFULL
49 #define ILT_ENTRY_PHY_ADDR_SHIFT        0
50 #define ILT_ENTRY_VALID_MASK            0x1ULL
51 #define ILT_ENTRY_VALID_SHIFT           52
52 #define ILT_ENTRY_IN_REGS               2
53 #define ILT_REG_SIZE_IN_BYTES           4
54
55 /* connection context union */
56 union conn_context {
57         struct e4_core_conn_context core_ctx;
58         struct e4_eth_conn_context eth_ctx;
59 };
60
61 /* TYPE-0 task context - iSCSI, FCOE */
62 union type0_task_context {
63 };
64
65 /* TYPE-1 task context - ROCE */
66 union type1_task_context {
67         struct regpair reserved; /* @DPDK */
68 };
69
70 struct src_ent {
71         u8 opaque[56];
72         u64 next;
73 };
74
75 #define CDUT_SEG_ALIGNMET 3     /* in 4k chunks */
76 #define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12))
77
78 #define CONN_CXT_SIZE(p_hwfn) \
79         ALIGNED_TYPE_SIZE(union conn_context, p_hwfn)
80
81 #define SRQ_CXT_SIZE (sizeof(struct regpair) * 8) /* @DPDK */
82
83 #define TYPE0_TASK_CXT_SIZE(p_hwfn) \
84         ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn)
85
86 /* Alignment is inherent to the type1_task_context structure */
87 #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context)
88
89 /* PF per protocl configuration object */
90 #define TASK_SEGMENTS   (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS)
91 #define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS)
92
93 struct ecore_tid_seg {
94         u32 count;
95         u8 type;
96         bool has_fl_mem;
97 };
98
99 struct ecore_conn_type_cfg {
100         u32 cid_count;
101         u32 cids_per_vf;
102         struct ecore_tid_seg tid_seg[TASK_SEGMENTS];
103 };
104
105 /* ILT Client configuration,
106  * Per connection type (protocol) resources (cids, tis, vf cids etc.)
107  * 1 - for connection context (CDUC) and for each task context we need two
108  * values, for regular task context and for force load memory
109  */
110 #define ILT_CLI_PF_BLOCKS       (1 + NUM_TASK_PF_SEGMENTS * 2)
111 #define ILT_CLI_VF_BLOCKS       (1 + NUM_TASK_VF_SEGMENTS * 2)
112 #define CDUC_BLK                (0)
113 #define SRQ_BLK                 (0)
114 #define CDUT_SEG_BLK(n)         (1 + (u8)(n))
115 #define CDUT_FL_SEG_BLK(n, X)   (1 + (n) + NUM_TASK_##X##_SEGMENTS)
116
117 enum ilt_clients {
118         ILT_CLI_CDUC,
119         ILT_CLI_CDUT,
120         ILT_CLI_QM,
121         ILT_CLI_TM,
122         ILT_CLI_SRC,
123         ILT_CLI_TSDM,
124         ILT_CLI_MAX
125 };
126
127 struct ilt_cfg_pair {
128         u32 reg;
129         u32 val;
130 };
131
132 struct ecore_ilt_cli_blk {
133         u32 total_size;         /* 0 means not active */
134         u32 real_size_in_page;
135         u32 start_line;
136         u32 dynamic_line_cnt;
137 };
138
139 struct ecore_ilt_client_cfg {
140         bool active;
141
142         /* ILT boundaries */
143         struct ilt_cfg_pair first;
144         struct ilt_cfg_pair last;
145         struct ilt_cfg_pair p_size;
146
147         /* ILT client blocks for PF */
148         struct ecore_ilt_cli_blk pf_blks[ILT_CLI_PF_BLOCKS];
149         u32 pf_total_lines;
150
151         /* ILT client blocks for VFs */
152         struct ecore_ilt_cli_blk vf_blks[ILT_CLI_VF_BLOCKS];
153         u32 vf_total_lines;
154 };
155
156 /* Per Path -
157  *      ILT shadow table
158  *      Protocol acquired CID lists
159  *      PF start line in ILT
160  */
161 struct ecore_dma_mem {
162         dma_addr_t p_phys;
163         void *p_virt;
164         osal_size_t size;
165 };
166
167 #define MAP_WORD_SIZE           sizeof(unsigned long)
168 #define BITS_PER_MAP_WORD       (MAP_WORD_SIZE * 8)
169
170 struct ecore_cid_acquired_map {
171         u32 start_cid;
172         u32 max_count;
173         unsigned long *cid_map;
174 };
175
176 struct ecore_cxt_mngr {
177         /* Per protocl configuration */
178         struct ecore_conn_type_cfg conn_cfg[MAX_CONN_TYPES];
179
180         /* computed ILT structure */
181         struct ecore_ilt_client_cfg clients[ILT_CLI_MAX];
182
183         /* Task type sizes */
184         u32 task_type_size[NUM_TASK_TYPES];
185
186         /* total number of VFs for this hwfn -
187          * ALL VFs are symmetric in terms of HW resources
188          */
189         u32 vf_count;
190
191         /* Acquired CIDs */
192         struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES];
193         /* TBD - do we want this allocated to reserve space? */
194         struct ecore_cid_acquired_map
195                 acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS];
196
197         /* ILT  shadow table */
198         struct ecore_dma_mem *ilt_shadow;
199         u32 pf_start_line;
200
201         /* Mutex for a dynamic ILT allocation */
202         osal_mutex_t mutex;
203
204         /* SRC T2 */
205         struct ecore_dma_mem *t2;
206         u32 t2_num_pages;
207         u64 first_free;
208         u64 last_free;
209
210         /* The infrastructure originally was very generic and context/task
211          * oriented - per connection-type we would set how many of those
212          * are needed, and later when determining how much memory we're
213          * needing for a given block we'd iterate over all the relevant
214          * connection-types.
215          * But since then we've had some additional resources, some of which
216          * require memory which is indepent of the general context/task
217          * scheme. We add those here explicitly per-feature.
218          */
219
220         /* total number of SRQ's for this hwfn */
221         u32                             srq_count;
222
223         /* Maximal number of L2 steering filters */
224         u32                             arfs_count;
225
226         /* TODO - VF arfs filters ? */
227 };
228
229 static OSAL_INLINE bool tm_cid_proto(enum protocol_type type)
230 {
231         return type == PROTOCOLID_TOE;
232 }
233
234 static bool tm_tid_proto(enum protocol_type type)
235 {
236         return type == PROTOCOLID_FCOE;
237 }
238
239 /* counts the iids for the CDU/CDUC ILT client configuration */
240 struct ecore_cdu_iids {
241         u32 pf_cids;
242         u32 per_vf_cids;
243 };
244
245 static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr *p_mngr,
246                                struct ecore_cdu_iids *iids)
247 {
248         u32 type;
249
250         for (type = 0; type < MAX_CONN_TYPES; type++) {
251                 iids->pf_cids += p_mngr->conn_cfg[type].cid_count;
252                 iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
253         }
254 }
255
256 /* counts the iids for the Searcher block configuration */
257 struct ecore_src_iids {
258         u32 pf_cids;
259         u32 per_vf_cids;
260 };
261
262 static void ecore_cxt_src_iids(struct ecore_cxt_mngr *p_mngr,
263                                struct ecore_src_iids *iids)
264 {
265         u32 i;
266
267         for (i = 0; i < MAX_CONN_TYPES; i++) {
268                 iids->pf_cids += p_mngr->conn_cfg[i].cid_count;
269                 iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf;
270         }
271
272         /* Add L2 filtering filters in addition */
273         iids->pf_cids += p_mngr->arfs_count;
274 }
275
276 /* counts the iids for the Timers block configuration */
277 struct ecore_tm_iids {
278         u32 pf_cids;
279         u32 pf_tids[NUM_TASK_PF_SEGMENTS];      /* per segment */
280         u32 pf_tids_total;
281         u32 per_vf_cids;
282         u32 per_vf_tids;
283 };
284
285 static void ecore_cxt_tm_iids(struct ecore_cxt_mngr *p_mngr,
286                               struct ecore_tm_iids *iids)
287 {
288         bool tm_vf_required = false;
289         bool tm_required = false;
290         u32 i, j;
291
292         for (i = 0; i < MAX_CONN_TYPES; i++) {
293                 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i];
294
295                 if (tm_cid_proto(i) || tm_required) {
296                         if (p_cfg->cid_count)
297                                 tm_required = true;
298
299                         iids->pf_cids += p_cfg->cid_count;
300                 }
301
302                 if (tm_cid_proto(i) || tm_vf_required) {
303                         if (p_cfg->cids_per_vf)
304                                 tm_vf_required = true;
305
306                 }
307
308                 if (tm_tid_proto(i)) {
309                         struct ecore_tid_seg *segs = p_cfg->tid_seg;
310
311                         /* for each segment there is at most one
312                          * protocol for which count is not 0.
313                          */
314                         for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
315                                 iids->pf_tids[j] += segs[j].count;
316
317                         /* The last array elelment is for the VFs. As for PF
318                          * segments there can be only one protocol for
319                          * which this value is not 0.
320                          */
321                         iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
322                 }
323         }
324
325         iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN);
326         iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN);
327         iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN);
328
329         for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) {
330                 iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN);
331                 iids->pf_tids_total += iids->pf_tids[j];
332         }
333 }
334
335 static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn,
336                               struct ecore_qm_iids *iids)
337 {
338         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
339         struct ecore_tid_seg *segs;
340         u32 vf_cids = 0, type, j;
341         u32 vf_tids = 0;
342
343         for (type = 0; type < MAX_CONN_TYPES; type++) {
344                 iids->cids += p_mngr->conn_cfg[type].cid_count;
345                 vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
346
347                 segs = p_mngr->conn_cfg[type].tid_seg;
348                 /* for each segment there is at most one
349                  * protocol for which count is not 0.
350                  */
351                 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
352                         iids->tids += segs[j].count;
353
354                 /* The last array elelment is for the VFs. As for PF
355                  * segments there can be only one protocol for
356                  * which this value is not 0.
357                  */
358                 vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
359         }
360
361         iids->vf_cids += vf_cids * p_mngr->vf_count;
362         iids->tids += vf_tids * p_mngr->vf_count;
363
364         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
365                    "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n",
366                    iids->cids, iids->vf_cids, iids->tids, vf_tids);
367 }
368
369 static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn *p_hwfn,
370                                                     u32 seg)
371 {
372         struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr;
373         u32 i;
374
375         /* Find the protocol with tid count > 0 for this segment.
376          * Note: there can only be one and this is already validated.
377          */
378         for (i = 0; i < MAX_CONN_TYPES; i++) {
379                 if (p_cfg->conn_cfg[i].tid_seg[seg].count)
380                         return &p_cfg->conn_cfg[i].tid_seg[seg];
381         }
382         return OSAL_NULL;
383 }
384
385 static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn, u32 num_srqs)
386 {
387         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
388
389         p_mgr->srq_count = num_srqs;
390 }
391
392 u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn)
393 {
394         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
395
396         return p_mgr->srq_count;
397 }
398
399 /* set the iids (cid/tid) count per protocol */
400 static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn,
401                                    enum protocol_type type,
402                                    u32 cid_count, u32 vf_cid_cnt)
403 {
404         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
405         struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type];
406
407         p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN);
408         p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN);
409 }
410
411 u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn *p_hwfn,
412                                   enum protocol_type type, u32 *vf_cid)
413 {
414         if (vf_cid)
415                 *vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf;
416
417         return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
418 }
419
420 u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn *p_hwfn,
421                                   enum protocol_type type)
422 {
423         return p_hwfn->p_cxt_mngr->acquired[type].start_cid;
424 }
425
426 u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn,
427                                          enum protocol_type type)
428 {
429         u32 cnt = 0;
430         int i;
431
432         for (i = 0; i < TASK_SEGMENTS; i++)
433                 cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count;
434
435         return cnt;
436 }
437
438 static OSAL_INLINE void
439 ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn,
440                               enum protocol_type proto,
441                               u8 seg, u8 seg_type, u32 count, bool has_fl)
442 {
443         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
444         struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg];
445
446         p_seg->count = count;
447         p_seg->has_fl_mem = has_fl;
448         p_seg->type = seg_type;
449 }
450
451 /* the *p_line parameter must be either 0 for the first invocation or the
452  * value returned in the previous invocation.
453  */
454 static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg *p_cli,
455                                    struct ecore_ilt_cli_blk *p_blk,
456                                    u32 start_line,
457                                    u32 total_size, u32 elem_size)
458 {
459         u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
460
461         /* verify that it's called once for each block */
462         if (p_blk->total_size)
463                 return;
464
465         p_blk->total_size = total_size;
466         p_blk->real_size_in_page = 0;
467         if (elem_size)
468                 p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size;
469         p_blk->start_line = start_line;
470 }
471
472 static void ecore_ilt_cli_adv_line(struct ecore_hwfn *p_hwfn,
473                                    struct ecore_ilt_client_cfg *p_cli,
474                                    struct ecore_ilt_cli_blk *p_blk,
475                                    u32 *p_line, enum ilt_clients client_id)
476 {
477         if (!p_blk->total_size)
478                 return;
479
480         if (!p_cli->active)
481                 p_cli->first.val = *p_line;
482
483         p_cli->active = true;
484         *p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
485         p_cli->last.val = *p_line - 1;
486
487         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
488                    "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x"
489                    " [Real %08x] Start line %d\n",
490                    client_id, p_cli->first.val, p_cli->last.val,
491                    p_blk->total_size, p_blk->real_size_in_page,
492                    p_blk->start_line);
493 }
494
495 static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn,
496                                           enum ilt_clients ilt_client)
497 {
498         u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count;
499         struct ecore_ilt_client_cfg *p_cli;
500         u32 lines_to_skip = 0;
501         u32 cxts_per_p;
502
503         /* TBD MK: ILT code should be simplified once PROTO enum is changed */
504
505         if (ilt_client == ILT_CLI_CDUC) {
506                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
507
508                 cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) /
509                     (u32)CONN_CXT_SIZE(p_hwfn);
510
511                 lines_to_skip = cid_count / cxts_per_p;
512         }
513
514         return lines_to_skip;
515 }
516
517 enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn)
518 {
519         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
520         u32 curr_line, total, i, task_size, line;
521         struct ecore_ilt_client_cfg *p_cli;
522         struct ecore_ilt_cli_blk *p_blk;
523         struct ecore_cdu_iids cdu_iids;
524         struct ecore_src_iids src_iids;
525         struct ecore_qm_iids qm_iids;
526         struct ecore_tm_iids tm_iids;
527         struct ecore_tid_seg *p_seg;
528
529         OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids));
530         OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids));
531         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
532         OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
533
534         p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT);
535
536         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
537                    "hwfn [%d] - Set context mngr starting line to be 0x%08x\n",
538                    p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line);
539
540         /* CDUC */
541         p_cli = &p_mngr->clients[ILT_CLI_CDUC];
542
543         curr_line = p_mngr->pf_start_line;
544
545         /* CDUC PF */
546         p_cli->pf_total_lines = 0;
547
548         /* get the counters for the CDUC,CDUC and QM clients  */
549         ecore_cxt_cdu_iids(p_mngr, &cdu_iids);
550
551         p_blk = &p_cli->pf_blks[CDUC_BLK];
552
553         total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn);
554
555         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
556                                total, CONN_CXT_SIZE(p_hwfn));
557
558         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
559         p_cli->pf_total_lines = curr_line - p_blk->start_line;
560
561         p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn,
562                                                                  ILT_CLI_CDUC);
563
564         /* CDUC VF */
565         p_blk = &p_cli->vf_blks[CDUC_BLK];
566         total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn);
567
568         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
569                                total, CONN_CXT_SIZE(p_hwfn));
570
571         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
572         p_cli->vf_total_lines = curr_line - p_blk->start_line;
573
574         for (i = 1; i < p_mngr->vf_count; i++)
575                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
576                                        ILT_CLI_CDUC);
577
578         /* CDUT PF */
579         p_cli = &p_mngr->clients[ILT_CLI_CDUT];
580         p_cli->first.val = curr_line;
581
582         /* first the 'working' task memory */
583         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
584                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
585                 if (!p_seg || p_seg->count == 0)
586                         continue;
587
588                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(i)];
589                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
590                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total,
591                                        p_mngr->task_type_size[p_seg->type]);
592
593                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
594                                        ILT_CLI_CDUT);
595         }
596
597         /* next the 'init' task memory (forced load memory) */
598         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
599                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
600                 if (!p_seg || p_seg->count == 0)
601                         continue;
602
603                 p_blk = &p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)];
604
605                 if (!p_seg->has_fl_mem) {
606                         /* The segment is active (total size pf 'working'
607                          * memory is > 0) but has no FL (forced-load, Init)
608                          * memory. Thus:
609                          *
610                          * 1.   The total-size in the corrsponding FL block of
611                          *      the ILT client is set to 0 - No ILT line are
612                          *      provisioned and no ILT memory allocated.
613                          *
614                          * 2.   The start-line of said block is set to the
615                          *      start line of the matching working memory
616                          *      block in the ILT client. This is later used to
617                          *      configure the CDU segment offset registers and
618                          *      results in an FL command for TIDs of this
619                          *      segment behaves as regular load commands
620                          *      (loading TIDs from the working memory).
621                          */
622                         line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line;
623
624                         ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
625                         continue;
626                 }
627                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
628
629                 ecore_ilt_cli_blk_fill(p_cli, p_blk,
630                                        curr_line, total,
631                                        p_mngr->task_type_size[p_seg->type]);
632
633                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
634                                        ILT_CLI_CDUT);
635         }
636         p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line;
637
638         /* CDUT VF */
639         p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF);
640         if (p_seg && p_seg->count) {
641                 /* Stricly speaking we need to iterate over all VF
642                  * task segment types, but a VF has only 1 segment
643                  */
644
645                 /* 'working' memory */
646                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
647
648                 p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
649                 ecore_ilt_cli_blk_fill(p_cli, p_blk,
650                                        curr_line, total,
651                                        p_mngr->task_type_size[p_seg->type]);
652
653                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
654                                        ILT_CLI_CDUT);
655
656                 /* 'init' memory */
657                 p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
658                 if (!p_seg->has_fl_mem) {
659                         /* see comment above */
660                         line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line;
661                         ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
662                 } else {
663                         task_size = p_mngr->task_type_size[p_seg->type];
664                         ecore_ilt_cli_blk_fill(p_cli, p_blk,
665                                                curr_line, total, task_size);
666                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
667                                                ILT_CLI_CDUT);
668                 }
669                 p_cli->vf_total_lines = curr_line -
670                     p_cli->vf_blks[0].start_line;
671
672                 /* Now for the rest of the VFs */
673                 for (i = 1; i < p_mngr->vf_count; i++) {
674                         p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
675                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
676                                                ILT_CLI_CDUT);
677
678                         p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
679                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
680                                                ILT_CLI_CDUT);
681                 }
682         }
683
684         /* QM */
685         p_cli = &p_mngr->clients[ILT_CLI_QM];
686         p_blk = &p_cli->pf_blks[0];
687
688         ecore_cxt_qm_iids(p_hwfn, &qm_iids);
689         total = ecore_qm_pf_mem_size(qm_iids.cids,
690                                      qm_iids.vf_cids, qm_iids.tids,
691                                      p_hwfn->qm_info.num_pqs,
692                                      p_hwfn->qm_info.num_vf_pqs);
693
694         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
695                    "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d,"
696                    " num_vf_pqs=%d, memory_size=%d)\n",
697                    qm_iids.cids, qm_iids.vf_cids, qm_iids.tids,
698                    p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total);
699
700         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000,
701                                QM_PQ_ELEMENT_SIZE);
702
703         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM);
704         p_cli->pf_total_lines = curr_line - p_blk->start_line;
705
706         /* SRC */
707         p_cli = &p_mngr->clients[ILT_CLI_SRC];
708         ecore_cxt_src_iids(p_mngr, &src_iids);
709
710         /* Both the PF and VFs searcher connections are stored in the per PF
711          * database. Thus sum the PF searcher cids and all the VFs searcher
712          * cids.
713          */
714         total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
715         if (total) {
716                 u32 local_max = OSAL_MAX_T(u32, total,
717                                            SRC_MIN_NUM_ELEMS);
718
719                 total = OSAL_ROUNDUP_POW_OF_TWO(local_max);
720
721                 p_blk = &p_cli->pf_blks[0];
722                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
723                                        total * sizeof(struct src_ent),
724                                        sizeof(struct src_ent));
725
726                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
727                                        ILT_CLI_SRC);
728                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
729         }
730
731         /* TM PF */
732         p_cli = &p_mngr->clients[ILT_CLI_TM];
733         ecore_cxt_tm_iids(p_mngr, &tm_iids);
734         total = tm_iids.pf_cids + tm_iids.pf_tids_total;
735         if (total) {
736                 p_blk = &p_cli->pf_blks[0];
737                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
738                                        total * TM_ELEM_SIZE, TM_ELEM_SIZE);
739
740                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
741                                        ILT_CLI_TM);
742                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
743         }
744
745         /* TM VF */
746         total = tm_iids.per_vf_cids + tm_iids.per_vf_tids;
747         if (total) {
748                 p_blk = &p_cli->vf_blks[0];
749                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
750                                        total * TM_ELEM_SIZE, TM_ELEM_SIZE);
751
752                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
753                                        ILT_CLI_TM);
754
755                 p_cli->vf_total_lines = curr_line - p_blk->start_line;
756                 for (i = 1; i < p_mngr->vf_count; i++) {
757                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
758                                                ILT_CLI_TM);
759                 }
760         }
761
762         /* TSDM (SRQ CONTEXT) */
763         total = ecore_cxt_get_srq_count(p_hwfn);
764
765         if (total) {
766                 p_cli = &p_mngr->clients[ILT_CLI_TSDM];
767                 p_blk = &p_cli->pf_blks[SRQ_BLK];
768                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
769                                        total * SRQ_CXT_SIZE, SRQ_CXT_SIZE);
770
771                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
772                                        ILT_CLI_TSDM);
773                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
774         }
775
776         if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line >
777             RESC_NUM(p_hwfn, ECORE_ILT)) {
778                 DP_ERR(p_hwfn, "too many ilt lines...#lines=%d\n",
779                        curr_line - p_hwfn->p_cxt_mngr->pf_start_line);
780                 return ECORE_INVAL;
781         }
782
783         return ECORE_SUCCESS;
784 }
785
786 static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn)
787 {
788         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
789         u32 i;
790
791         if (!p_mngr->t2)
792                 return;
793
794         for (i = 0; i < p_mngr->t2_num_pages; i++)
795                 if (p_mngr->t2[i].p_virt)
796                         OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
797                                                p_mngr->t2[i].p_virt,
798                                                p_mngr->t2[i].p_phys,
799                                                p_mngr->t2[i].size);
800
801         OSAL_FREE(p_hwfn->p_dev, p_mngr->t2);
802 }
803
804 static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn)
805 {
806         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
807         u32 conn_num, total_size, ent_per_page, psz, i;
808         struct ecore_ilt_client_cfg *p_src;
809         struct ecore_src_iids src_iids;
810         struct ecore_dma_mem *p_t2;
811         enum _ecore_status_t rc;
812
813         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
814
815         /* if the SRC ILT client is inactive - there are no connection
816          * requiring the searcer, leave.
817          */
818         p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC];
819         if (!p_src->active)
820                 return ECORE_SUCCESS;
821
822         ecore_cxt_src_iids(p_mngr, &src_iids);
823         conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
824         total_size = conn_num * sizeof(struct src_ent);
825
826         /* use the same page size as the SRC ILT client */
827         psz = ILT_PAGE_IN_BYTES(p_src->p_size.val);
828         p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz);
829
830         /* allocate t2 */
831         p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
832                                  p_mngr->t2_num_pages *
833                                  sizeof(struct ecore_dma_mem));
834         if (!p_mngr->t2) {
835                 DP_NOTICE(p_hwfn, false, "Failed to allocate t2 table\n");
836                 rc = ECORE_NOMEM;
837                 goto t2_fail;
838         }
839
840         /* allocate t2 pages */
841         for (i = 0; i < p_mngr->t2_num_pages; i++) {
842                 u32 size = OSAL_MIN_T(u32, total_size, psz);
843                 void **p_virt = &p_mngr->t2[i].p_virt;
844
845                 *p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
846                                                   &p_mngr->t2[i].p_phys, size);
847                 if (!p_mngr->t2[i].p_virt) {
848                         rc = ECORE_NOMEM;
849                         goto t2_fail;
850                 }
851                 OSAL_MEM_ZERO(*p_virt, size);
852                 p_mngr->t2[i].size = size;
853                 total_size -= size;
854         }
855
856         /* Set the t2 pointers */
857
858         /* entries per page - must be a power of two */
859         ent_per_page = psz / sizeof(struct src_ent);
860
861         p_mngr->first_free = (u64)p_mngr->t2[0].p_phys;
862
863         p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page];
864         p_mngr->last_free = (u64)p_t2->p_phys +
865             ((conn_num - 1) & (ent_per_page - 1)) * sizeof(struct src_ent);
866
867         for (i = 0; i < p_mngr->t2_num_pages; i++) {
868                 u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num);
869                 struct src_ent *entries = p_mngr->t2[i].p_virt;
870                 u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val;
871                 u32 j;
872
873                 for (j = 0; j < ent_num - 1; j++) {
874                         val = p_ent_phys + (j + 1) * sizeof(struct src_ent);
875                         entries[j].next = OSAL_CPU_TO_BE64(val);
876                 }
877
878                 if (i < p_mngr->t2_num_pages - 1)
879                         val = (u64)p_mngr->t2[i + 1].p_phys;
880                 else
881                         val = 0;
882                 entries[j].next = OSAL_CPU_TO_BE64(val);
883
884                 conn_num -= ent_num;
885         }
886
887         return ECORE_SUCCESS;
888
889 t2_fail:
890         ecore_cxt_src_t2_free(p_hwfn);
891         return rc;
892 }
893
894 #define for_each_ilt_valid_client(pos, clients)         \
895         for (pos = 0; pos < ILT_CLI_MAX; pos++)         \
896                 if (!clients[pos].active) {             \
897                         continue;                       \
898                 } else                                  \
899
900
901 /* Total number of ILT lines used by this PF */
902 static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients)
903 {
904         u32 size = 0;
905         u32 i;
906
907         for_each_ilt_valid_client(i, ilt_clients)
908                 size += (ilt_clients[i].last.val -
909                          ilt_clients[i].first.val + 1);
910
911         return size;
912 }
913
914 static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn)
915 {
916         struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients;
917         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
918         u32 ilt_size, i;
919
920         if (p_mngr->ilt_shadow == OSAL_NULL)
921                 return;
922
923         ilt_size = ecore_cxt_ilt_shadow_size(p_cli);
924
925         for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) {
926                 struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i];
927
928                 if (p_dma->p_virt)
929                         OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
930                                                p_dma->p_virt,
931                                                p_dma->p_phys, p_dma->size);
932                 p_dma->p_virt = OSAL_NULL;
933         }
934         OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow);
935         p_mngr->ilt_shadow = OSAL_NULL;
936 }
937
938 static enum _ecore_status_t
939 ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn,
940                     struct ecore_ilt_cli_blk *p_blk,
941                     enum ilt_clients ilt_client, u32 start_line_offset)
942 {
943         struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow;
944         u32 lines, line, sz_left, lines_to_skip = 0;
945
946         /* Special handling for RoCE that supports dynamic allocation */
947         if (ilt_client == ILT_CLI_CDUT || ilt_client == ILT_CLI_TSDM)
948                 return ECORE_SUCCESS;
949
950         lines_to_skip = p_blk->dynamic_line_cnt;
951
952         if (!p_blk->total_size)
953                 return ECORE_SUCCESS;
954
955         sz_left = p_blk->total_size;
956         lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) - lines_to_skip;
957         line = p_blk->start_line + start_line_offset -
958             p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip;
959
960         for (; lines; lines--) {
961                 dma_addr_t p_phys;
962                 void *p_virt;
963                 u32 size;
964
965                 size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page);
966
967 /* @DPDK */
968 #define ILT_BLOCK_ALIGN_SIZE 0x1000
969                 p_virt = OSAL_DMA_ALLOC_COHERENT_ALIGNED(p_hwfn->p_dev,
970                                                          &p_phys, size,
971                                                          ILT_BLOCK_ALIGN_SIZE);
972                 if (!p_virt)
973                         return ECORE_NOMEM;
974                 OSAL_MEM_ZERO(p_virt, size);
975
976                 ilt_shadow[line].p_phys = p_phys;
977                 ilt_shadow[line].p_virt = p_virt;
978                 ilt_shadow[line].size = size;
979
980                 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
981                            "ILT shadow: Line [%d] Physical 0x%lx"
982                            " Virtual %p Size %d\n",
983                            line, (unsigned long)p_phys, p_virt, size);
984
985                 sz_left -= size;
986                 line++;
987         }
988
989         return ECORE_SUCCESS;
990 }
991
992 static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn)
993 {
994         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
995         struct ecore_ilt_client_cfg *clients = p_mngr->clients;
996         struct ecore_ilt_cli_blk *p_blk;
997         u32 size, i, j, k;
998         enum _ecore_status_t rc;
999
1000         size = ecore_cxt_ilt_shadow_size(clients);
1001         p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1002                                          size * sizeof(struct ecore_dma_mem));
1003
1004         if (!p_mngr->ilt_shadow) {
1005                 DP_NOTICE(p_hwfn, false, "Failed to allocate ilt shadow table\n");
1006                 rc = ECORE_NOMEM;
1007                 goto ilt_shadow_fail;
1008         }
1009
1010         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1011                    "Allocated 0x%x bytes for ilt shadow\n",
1012                    (u32)(size * sizeof(struct ecore_dma_mem)));
1013
1014         for_each_ilt_valid_client(i, clients) {
1015                 for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) {
1016                         p_blk = &clients[i].pf_blks[j];
1017                         rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0);
1018                         if (rc != ECORE_SUCCESS)
1019                                 goto ilt_shadow_fail;
1020                 }
1021                 for (k = 0; k < p_mngr->vf_count; k++) {
1022                         for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) {
1023                                 u32 lines = clients[i].vf_total_lines * k;
1024
1025                                 p_blk = &clients[i].vf_blks[j];
1026                                 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk,
1027                                                          i, lines);
1028                                 if (rc != ECORE_SUCCESS)
1029                                         goto ilt_shadow_fail;
1030                         }
1031                 }
1032         }
1033
1034         return ECORE_SUCCESS;
1035
1036 ilt_shadow_fail:
1037         ecore_ilt_shadow_free(p_hwfn);
1038         return rc;
1039 }
1040
1041 static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn)
1042 {
1043         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1044         u32 type, vf;
1045
1046         for (type = 0; type < MAX_CONN_TYPES; type++) {
1047                 OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map);
1048                 p_mngr->acquired[type].cid_map = OSAL_NULL;
1049                 p_mngr->acquired[type].max_count = 0;
1050                 p_mngr->acquired[type].start_cid = 0;
1051
1052                 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1053                         OSAL_FREE(p_hwfn->p_dev,
1054                                   p_mngr->acquired_vf[type][vf].cid_map);
1055                         p_mngr->acquired_vf[type][vf].cid_map = OSAL_NULL;
1056                         p_mngr->acquired_vf[type][vf].max_count = 0;
1057                         p_mngr->acquired_vf[type][vf].start_cid = 0;
1058                 }
1059         }
1060 }
1061
1062 static enum _ecore_status_t
1063 ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type,
1064                            u32 cid_start, u32 cid_count,
1065                            struct ecore_cid_acquired_map *p_map)
1066 {
1067         u32 size;
1068
1069         if (!cid_count)
1070                 return ECORE_SUCCESS;
1071
1072         size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD);
1073         p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size);
1074         if (p_map->cid_map == OSAL_NULL)
1075                 return ECORE_NOMEM;
1076
1077         p_map->max_count = cid_count;
1078         p_map->start_cid = cid_start;
1079
1080         DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1081                    "Type %08x start: %08x count %08x\n",
1082                    type, p_map->start_cid, p_map->max_count);
1083
1084         return ECORE_SUCCESS;
1085 }
1086
1087 static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn)
1088 {
1089         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1090         u32 start_cid = 0, vf_start_cid = 0;
1091         u32 type, vf;
1092
1093         for (type = 0; type < MAX_CONN_TYPES; type++) {
1094                 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type];
1095                 struct ecore_cid_acquired_map *p_map;
1096
1097                 /* Handle PF maps */
1098                 p_map = &p_mngr->acquired[type];
1099                 if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid,
1100                                                p_cfg->cid_count, p_map))
1101                         goto cid_map_fail;
1102
1103                 /* Handle VF maps */
1104                 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1105                         p_map = &p_mngr->acquired_vf[type][vf];
1106                         if (ecore_cid_map_alloc_single(p_hwfn, type,
1107                                                        vf_start_cid,
1108                                                        p_cfg->cids_per_vf,
1109                                                        p_map))
1110                                 goto cid_map_fail;
1111                 }
1112
1113                 start_cid += p_cfg->cid_count;
1114                 vf_start_cid += p_cfg->cids_per_vf;
1115         }
1116
1117         return ECORE_SUCCESS;
1118
1119 cid_map_fail:
1120         ecore_cid_map_free(p_hwfn);
1121         return ECORE_NOMEM;
1122 }
1123
1124 enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn)
1125 {
1126         struct ecore_ilt_client_cfg *clients;
1127         struct ecore_cxt_mngr *p_mngr;
1128         u32 i;
1129
1130         p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr));
1131         if (!p_mngr) {
1132                 DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_cxt_mngr'\n");
1133                 return ECORE_NOMEM;
1134         }
1135
1136         /* Set the cxt mangr pointer prior to further allocations */
1137         p_hwfn->p_cxt_mngr = p_mngr;
1138
1139         /* Initialize ILT client registers */
1140         clients = p_mngr->clients;
1141         clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT);
1142         clients[ILT_CLI_CDUC].last.reg  = ILT_CFG_REG(CDUC, LAST_ILT);
1143         clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE);
1144
1145         clients[ILT_CLI_QM].first.reg   = ILT_CFG_REG(QM, FIRST_ILT);
1146         clients[ILT_CLI_QM].last.reg    = ILT_CFG_REG(QM, LAST_ILT);
1147         clients[ILT_CLI_QM].p_size.reg  = ILT_CFG_REG(QM, P_SIZE);
1148
1149         clients[ILT_CLI_TM].first.reg   = ILT_CFG_REG(TM, FIRST_ILT);
1150         clients[ILT_CLI_TM].last.reg    = ILT_CFG_REG(TM, LAST_ILT);
1151         clients[ILT_CLI_TM].p_size.reg  = ILT_CFG_REG(TM, P_SIZE);
1152
1153         clients[ILT_CLI_SRC].first.reg  = ILT_CFG_REG(SRC, FIRST_ILT);
1154         clients[ILT_CLI_SRC].last.reg   = ILT_CFG_REG(SRC, LAST_ILT);
1155         clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE);
1156
1157         clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT);
1158         clients[ILT_CLI_CDUT].last.reg  = ILT_CFG_REG(CDUT, LAST_ILT);
1159         clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE);
1160
1161         clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT);
1162         clients[ILT_CLI_TSDM].last.reg  = ILT_CFG_REG(TSDM, LAST_ILT);
1163         clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE);
1164
1165         /* default ILT page size for all clients is 64K */
1166         for (i = 0; i < ILT_CLI_MAX; i++)
1167                 p_mngr->clients[i].p_size.val = ILT_DEFAULT_HW_P_SIZE;
1168
1169         /* due to removal of ISCSI/FCoE files union type0_task_context
1170          * task_type_size will be 0. So hardcoded for now.
1171          */
1172         p_mngr->task_type_size[0] = 512; /* @DPDK */
1173         p_mngr->task_type_size[1] = 128; /* @DPDK */
1174
1175         if (p_hwfn->p_dev->p_iov_info)
1176                 p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs;
1177
1178         /* Initialize the dynamic ILT allocation mutex */
1179 #ifdef CONFIG_ECORE_LOCK_ALLOC
1180         if (OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex)) {
1181                 DP_NOTICE(p_hwfn, false, "Failed to alloc p_mngr->mutex\n");
1182                 return ECORE_NOMEM;
1183         }
1184 #endif
1185         OSAL_MUTEX_INIT(&p_mngr->mutex);
1186
1187         return ECORE_SUCCESS;
1188 }
1189
1190 enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn)
1191 {
1192         enum _ecore_status_t rc;
1193
1194         /* Allocate the ILT shadow table */
1195         rc = ecore_ilt_shadow_alloc(p_hwfn);
1196         if (rc) {
1197                 DP_NOTICE(p_hwfn, false, "Failed to allocate ilt memory\n");
1198                 goto tables_alloc_fail;
1199         }
1200
1201         /* Allocate the T2  table */
1202         rc = ecore_cxt_src_t2_alloc(p_hwfn);
1203         if (rc) {
1204                 DP_NOTICE(p_hwfn, false, "Failed to allocate T2 memory\n");
1205                 goto tables_alloc_fail;
1206         }
1207
1208         /* Allocate and initialize the acquired cids bitmaps */
1209         rc = ecore_cid_map_alloc(p_hwfn);
1210         if (rc) {
1211                 DP_NOTICE(p_hwfn, false, "Failed to allocate cid maps\n");
1212                 goto tables_alloc_fail;
1213         }
1214
1215         return ECORE_SUCCESS;
1216
1217 tables_alloc_fail:
1218         ecore_cxt_mngr_free(p_hwfn);
1219         return rc;
1220 }
1221
1222 void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn)
1223 {
1224         if (!p_hwfn->p_cxt_mngr)
1225                 return;
1226
1227         ecore_cid_map_free(p_hwfn);
1228         ecore_cxt_src_t2_free(p_hwfn);
1229         ecore_ilt_shadow_free(p_hwfn);
1230 #ifdef CONFIG_ECORE_LOCK_ALLOC
1231         OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex);
1232 #endif
1233         OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr);
1234 }
1235
1236 void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn)
1237 {
1238         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1239         struct ecore_cid_acquired_map *p_map;
1240         struct ecore_conn_type_cfg *p_cfg;
1241         int type;
1242         u32 len;
1243
1244         /* Reset acquired cids */
1245         for (type = 0; type < MAX_CONN_TYPES; type++) {
1246                 u32 vf;
1247
1248                 p_cfg = &p_mngr->conn_cfg[type];
1249                 if (p_cfg->cid_count) {
1250                         p_map = &p_mngr->acquired[type];
1251                         len = DIV_ROUND_UP(p_map->max_count,
1252                                            BITS_PER_MAP_WORD) *
1253                               MAP_WORD_SIZE;
1254                         OSAL_MEM_ZERO(p_map->cid_map, len);
1255                 }
1256
1257                 if (!p_cfg->cids_per_vf)
1258                         continue;
1259
1260                 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1261                         p_map = &p_mngr->acquired_vf[type][vf];
1262                         len = DIV_ROUND_UP(p_map->max_count,
1263                                            BITS_PER_MAP_WORD) *
1264                               MAP_WORD_SIZE;
1265                         OSAL_MEM_ZERO(p_map->cid_map, len);
1266                 }
1267         }
1268 }
1269
1270 /* HW initialization helper (per Block, per phase) */
1271
1272 /* CDU Common */
1273 #define CDUC_CXT_SIZE_SHIFT                                             \
1274         CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT
1275
1276 #define CDUC_CXT_SIZE_MASK                                              \
1277         (CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT)
1278
1279 #define CDUC_BLOCK_WASTE_SHIFT                                          \
1280         CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT
1281
1282 #define CDUC_BLOCK_WASTE_MASK                                           \
1283         (CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT)
1284
1285 #define CDUC_NCIB_SHIFT                                                 \
1286         CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT
1287
1288 #define CDUC_NCIB_MASK                                                  \
1289         (CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT)
1290
1291 #define CDUT_TYPE0_CXT_SIZE_SHIFT                                       \
1292         CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT
1293
1294 #define CDUT_TYPE0_CXT_SIZE_MASK                                        \
1295         (CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >>                         \
1296         CDUT_TYPE0_CXT_SIZE_SHIFT)
1297
1298 #define CDUT_TYPE0_BLOCK_WASTE_SHIFT                                    \
1299         CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT
1300
1301 #define CDUT_TYPE0_BLOCK_WASTE_MASK                                     \
1302         (CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >>                  \
1303         CDUT_TYPE0_BLOCK_WASTE_SHIFT)
1304
1305 #define CDUT_TYPE0_NCIB_SHIFT                                           \
1306         CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT
1307
1308 #define CDUT_TYPE0_NCIB_MASK                                            \
1309         (CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >>                \
1310         CDUT_TYPE0_NCIB_SHIFT)
1311
1312 #define CDUT_TYPE1_CXT_SIZE_SHIFT                                       \
1313         CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT
1314
1315 #define CDUT_TYPE1_CXT_SIZE_MASK                                        \
1316         (CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >>                         \
1317         CDUT_TYPE1_CXT_SIZE_SHIFT)
1318
1319 #define CDUT_TYPE1_BLOCK_WASTE_SHIFT                                    \
1320         CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT
1321
1322 #define CDUT_TYPE1_BLOCK_WASTE_MASK                                     \
1323         (CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >>                  \
1324         CDUT_TYPE1_BLOCK_WASTE_SHIFT)
1325
1326 #define CDUT_TYPE1_NCIB_SHIFT                                           \
1327         CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT
1328
1329 #define CDUT_TYPE1_NCIB_MASK                                            \
1330         (CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >>                \
1331         CDUT_TYPE1_NCIB_SHIFT)
1332
1333 static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn)
1334 {
1335         u32 page_sz, elems_per_page, block_waste, cxt_size, cdu_params = 0;
1336
1337         /* CDUC - connection configuration */
1338         page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1339         cxt_size = CONN_CXT_SIZE(p_hwfn);
1340         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1341         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1342
1343         SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size);
1344         SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste);
1345         SET_FIELD(cdu_params, CDUC_NCIB, elems_per_page);
1346         STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params);
1347
1348         /* CDUT - type-0 tasks configuration */
1349         page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val;
1350         cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0];
1351         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1352         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1353
1354         /* cxt size and block-waste are multipes of 8 */
1355         cdu_params = 0;
1356         SET_FIELD(cdu_params, CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3));
1357         SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3));
1358         SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page);
1359         STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params);
1360
1361         /* CDUT - type-1 tasks configuration */
1362         cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1];
1363         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1364         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1365
1366         /* cxt size and block-waste are multipes of 8 */
1367         cdu_params = 0;
1368         SET_FIELD(cdu_params, CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3));
1369         SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3));
1370         SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page);
1371         STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params);
1372 }
1373
1374 /* CDU PF */
1375 #define CDU_SEG_REG_TYPE_SHIFT          CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT
1376 #define CDU_SEG_REG_TYPE_MASK           0x1
1377 #define CDU_SEG_REG_OFFSET_SHIFT        0
1378 #define CDU_SEG_REG_OFFSET_MASK         CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK
1379
1380 static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn)
1381 {
1382         struct ecore_ilt_client_cfg *p_cli;
1383         struct ecore_tid_seg *p_seg;
1384         u32 cdu_seg_params, offset;
1385         int i;
1386
1387         static const u32 rt_type_offset_arr[] = {
1388                 CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET,
1389                 CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET,
1390                 CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET,
1391                 CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET
1392         };
1393
1394         static const u32 rt_type_offset_fl_arr[] = {
1395                 CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET,
1396                 CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET,
1397                 CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET,
1398                 CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET
1399         };
1400
1401         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1402
1403         /* There are initializations only for CDUT during pf Phase */
1404         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1405                 /* Segment 0 */
1406                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
1407                 if (!p_seg)
1408                         continue;
1409
1410                 /* Note: start_line is already adjusted for the CDU
1411                  * segment register granularity, so we just need to
1412                  * divide. Adjustment is implicit as we assume ILT
1413                  * Page size is larger than 32K!
1414                  */
1415                 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1416                           (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line -
1417                            p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1418
1419                 cdu_seg_params = 0;
1420                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1421                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1422                 STORE_RT_REG(p_hwfn, rt_type_offset_arr[i], cdu_seg_params);
1423
1424                 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1425                           (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line -
1426                            p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1427
1428                 cdu_seg_params = 0;
1429                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1430                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1431                 STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i], cdu_seg_params);
1432         }
1433 }
1434
1435 void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1436                       bool is_pf_loading)
1437 {
1438         struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1439         struct ecore_mcp_link_state *p_link;
1440         struct ecore_qm_iids iids;
1441
1442         OSAL_MEM_ZERO(&iids, sizeof(iids));
1443         ecore_cxt_qm_iids(p_hwfn, &iids);
1444
1445         p_link = &ECORE_LEADING_HWFN(p_hwfn->p_dev)->mcp_info->link_output;
1446
1447         ecore_qm_pf_rt_init(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
1448                             qm_info->max_phys_tcs_per_port,
1449                             is_pf_loading,
1450                             iids.cids, iids.vf_cids, iids.tids,
1451                             qm_info->start_pq,
1452                             qm_info->num_pqs - qm_info->num_vf_pqs,
1453                             qm_info->num_vf_pqs,
1454                             qm_info->start_vport,
1455                             qm_info->num_vports, qm_info->pf_wfq,
1456                             qm_info->pf_rl, p_link->speed,
1457                             p_hwfn->qm_info.qm_pq_params,
1458                             p_hwfn->qm_info.qm_vport_params);
1459 }
1460
1461 /* CM PF */
1462 static void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn)
1463 {
1464         STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET,
1465                      ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB));
1466 }
1467
1468 /* DQ PF */
1469 static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn)
1470 {
1471         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1472         u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0;
1473
1474         dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT);
1475         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid);
1476
1477         dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT);
1478         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid);
1479
1480         dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT);
1481         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid);
1482
1483         dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT);
1484         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid);
1485
1486         dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT);
1487         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid);
1488
1489         dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT);
1490         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid);
1491
1492         dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT);
1493         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid);
1494
1495         dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT);
1496         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid);
1497
1498         dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT);
1499         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid);
1500
1501         dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT);
1502         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid);
1503
1504         dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT);
1505         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid);
1506
1507         dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT);
1508         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid);
1509
1510         /* Connection types 6 & 7 are not in use, yet they must be configured
1511          * as the highest possible connection. Not configuring them means the
1512          * defaults will be  used, and with a large number of cids a bug may
1513          * occur, if the defaults will be smaller than dq_pf_max_cid /
1514          * dq_vf_max_cid.
1515          */
1516         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid);
1517         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid);
1518
1519         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid);
1520         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid);
1521 }
1522
1523 static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn)
1524 {
1525         struct ecore_ilt_client_cfg *ilt_clients;
1526         int i;
1527
1528         ilt_clients = p_hwfn->p_cxt_mngr->clients;
1529         for_each_ilt_valid_client(i, ilt_clients) {
1530                 STORE_RT_REG(p_hwfn,
1531                              ilt_clients[i].first.reg,
1532                              ilt_clients[i].first.val);
1533                 STORE_RT_REG(p_hwfn,
1534                              ilt_clients[i].last.reg, ilt_clients[i].last.val);
1535                 STORE_RT_REG(p_hwfn,
1536                              ilt_clients[i].p_size.reg,
1537                              ilt_clients[i].p_size.val);
1538         }
1539 }
1540
1541 static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn)
1542 {
1543         struct ecore_ilt_client_cfg *p_cli;
1544         u32 blk_factor;
1545
1546         /* For simplicty  we set the 'block' to be an ILT page */
1547         if (p_hwfn->p_dev->p_iov_info) {
1548                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
1549
1550                 STORE_RT_REG(p_hwfn,
1551                              PSWRQ2_REG_VF_BASE_RT_OFFSET,
1552                              p_iov->first_vf_in_pf);
1553                 STORE_RT_REG(p_hwfn,
1554                              PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET,
1555                              p_iov->first_vf_in_pf + p_iov->total_vfs);
1556         }
1557
1558         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
1559         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1560         if (p_cli->active) {
1561                 STORE_RT_REG(p_hwfn,
1562                              PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET,
1563                              blk_factor);
1564                 STORE_RT_REG(p_hwfn,
1565                              PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1566                              p_cli->pf_total_lines);
1567                 STORE_RT_REG(p_hwfn,
1568                              PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET,
1569                              p_cli->vf_total_lines);
1570         }
1571
1572         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1573         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1574         if (p_cli->active) {
1575                 STORE_RT_REG(p_hwfn,
1576                              PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET,
1577                              blk_factor);
1578                 STORE_RT_REG(p_hwfn,
1579                              PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1580                              p_cli->pf_total_lines);
1581                 STORE_RT_REG(p_hwfn,
1582                              PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET,
1583                              p_cli->vf_total_lines);
1584         }
1585
1586         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM];
1587         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1588         if (p_cli->active) {
1589                 STORE_RT_REG(p_hwfn,
1590                              PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET, blk_factor);
1591                 STORE_RT_REG(p_hwfn,
1592                              PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1593                              p_cli->pf_total_lines);
1594                 STORE_RT_REG(p_hwfn,
1595                              PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET,
1596                              p_cli->vf_total_lines);
1597         }
1598 }
1599
1600 /* ILT (PSWRQ2) PF */
1601 static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn)
1602 {
1603         struct ecore_ilt_client_cfg *clients;
1604         struct ecore_cxt_mngr *p_mngr;
1605         struct ecore_dma_mem *p_shdw;
1606         u32 line, rt_offst, i;
1607
1608         ecore_ilt_bounds_init(p_hwfn);
1609         ecore_ilt_vf_bounds_init(p_hwfn);
1610
1611         p_mngr = p_hwfn->p_cxt_mngr;
1612         p_shdw = p_mngr->ilt_shadow;
1613         clients = p_hwfn->p_cxt_mngr->clients;
1614
1615         for_each_ilt_valid_client(i, clients) {
1616                 /* Client's 1st val and RT array are absolute, ILT shadows'
1617                  * lines are relative.
1618                  */
1619                 line = clients[i].first.val - p_mngr->pf_start_line;
1620                 rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET +
1621                     clients[i].first.val * ILT_ENTRY_IN_REGS;
1622
1623                 for (; line <= clients[i].last.val - p_mngr->pf_start_line;
1624                      line++, rt_offst += ILT_ENTRY_IN_REGS) {
1625                         u64 ilt_hw_entry = 0;
1626
1627                         /** p_virt could be OSAL_NULL incase of dynamic
1628                          *  allocation
1629                          */
1630                         if (p_shdw[line].p_virt != OSAL_NULL) {
1631                                 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
1632                                 SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
1633                                           (p_shdw[line].p_phys >> 12));
1634
1635                                 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1636                                         "Setting RT[0x%08x] from"
1637                                         " ILT[0x%08x] [Client is %d] to"
1638                                         " Physical addr: 0x%lx\n",
1639                                         rt_offst, line, i,
1640                                         (unsigned long)(p_shdw[line].
1641                                                         p_phys >> 12));
1642                         }
1643
1644                         STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry);
1645                 }
1646         }
1647 }
1648
1649 /* SRC (Searcher) PF */
1650 static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn)
1651 {
1652         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1653         u32 rounded_conn_num, conn_num, conn_max;
1654         struct ecore_src_iids src_iids;
1655
1656         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
1657         ecore_cxt_src_iids(p_mngr, &src_iids);
1658         conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
1659         if (!conn_num)
1660                 return;
1661
1662         conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS);
1663         rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max);
1664
1665         STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num);
1666         STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET,
1667                      OSAL_LOG2(rounded_conn_num));
1668
1669         STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET,
1670                          p_hwfn->p_cxt_mngr->first_free);
1671         STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET,
1672                          p_hwfn->p_cxt_mngr->last_free);
1673         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1674                    "Configured SEARCHER for 0x%08x connections\n",
1675                    conn_num);
1676 }
1677
1678 /* Timers PF */
1679 #define TM_CFG_NUM_IDS_SHIFT            0
1680 #define TM_CFG_NUM_IDS_MASK             0xFFFFULL
1681 #define TM_CFG_PRE_SCAN_OFFSET_SHIFT    16
1682 #define TM_CFG_PRE_SCAN_OFFSET_MASK     0x1FFULL
1683 #define TM_CFG_PARENT_PF_SHIFT          25
1684 #define TM_CFG_PARENT_PF_MASK           0x7ULL
1685
1686 #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT  30
1687 #define TM_CFG_CID_PRE_SCAN_ROWS_MASK   0x1FFULL
1688
1689 #define TM_CFG_TID_OFFSET_SHIFT         30
1690 #define TM_CFG_TID_OFFSET_MASK          0x7FFFFULL
1691 #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT  49
1692 #define TM_CFG_TID_PRE_SCAN_ROWS_MASK   0x1FFULL
1693
1694 static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn)
1695 {
1696         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1697         u32 active_seg_mask = 0, tm_offset, rt_reg;
1698         struct ecore_tm_iids tm_iids;
1699         u64 cfg_word;
1700         u8 i;
1701
1702         OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
1703         ecore_cxt_tm_iids(p_mngr, &tm_iids);
1704
1705         /* @@@TBD No pre-scan for now */
1706
1707         /* Note: We assume consecutive VFs for a PF */
1708         for (i = 0; i < p_mngr->vf_count; i++) {
1709                 cfg_word = 0;
1710                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids);
1711                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1712                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1713                 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
1714
1715                 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1716                     (sizeof(cfg_word) / sizeof(u32)) *
1717                     (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1718                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1719         }
1720
1721         cfg_word = 0;
1722         SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids);
1723         SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1724         SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);       /* n/a for PF */
1725         SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all   */
1726
1727         rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1728             (sizeof(cfg_word) / sizeof(u32)) *
1729             (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id);
1730         STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1731
1732         /* enale scan */
1733         STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET,
1734                      tm_iids.pf_cids ? 0x1 : 0x0);
1735
1736         /* @@@TBD how to enable the scan for the VFs */
1737
1738         tm_offset = tm_iids.per_vf_cids;
1739
1740         /* Note: We assume consecutive VFs for a PF */
1741         for (i = 0; i < p_mngr->vf_count; i++) {
1742                 cfg_word = 0;
1743                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids);
1744                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1745                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1746                 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1747                 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1748
1749                 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1750                     (sizeof(cfg_word) / sizeof(u32)) *
1751                     (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1752
1753                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1754         }
1755
1756         tm_offset = tm_iids.pf_cids;
1757         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1758                 cfg_word = 0;
1759                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]);
1760                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1761                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);
1762                 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1763                 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1764
1765                 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1766                     (sizeof(cfg_word) / sizeof(u32)) *
1767                     (NUM_OF_VFS(p_hwfn->p_dev) +
1768                      p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i);
1769
1770                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1771                 active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0);
1772
1773                 tm_offset += tm_iids.pf_tids[i];
1774         }
1775
1776         STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask);
1777
1778         /* @@@TBD how to enable the scan for the VFs */
1779 }
1780
1781 static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn)
1782 {
1783         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1784         struct ecore_conn_type_cfg *p_fcoe;
1785         struct ecore_tid_seg *p_tid;
1786
1787         p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE];
1788
1789         /* If FCoE is active set the MAX OX_ID (tid) in the Parser */
1790         if (!p_fcoe->cid_count)
1791                 return;
1792
1793         p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG];
1794         STORE_RT_REG_AGG(p_hwfn,
1795                         PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET,
1796                         p_tid->count);
1797 }
1798
1799 void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn)
1800 {
1801         /* CDU configuration */
1802         ecore_cdu_init_common(p_hwfn);
1803 }
1804
1805 void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
1806 {
1807         ecore_qm_init_pf(p_hwfn, p_ptt, true);
1808         ecore_cm_init_pf(p_hwfn);
1809         ecore_dq_init_pf(p_hwfn);
1810         ecore_cdu_init_pf(p_hwfn);
1811         ecore_ilt_init_pf(p_hwfn);
1812         ecore_src_init_pf(p_hwfn);
1813         ecore_tm_init_pf(p_hwfn);
1814         ecore_prs_init_pf(p_hwfn);
1815 }
1816
1817 enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
1818                                             enum protocol_type type,
1819                                             u32 *p_cid, u8 vfid)
1820 {
1821         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1822         struct ecore_cid_acquired_map *p_map;
1823         u32 rel_cid;
1824
1825         if (type >= MAX_CONN_TYPES) {
1826                 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
1827                 return ECORE_INVAL;
1828         }
1829
1830         if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) {
1831                 DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid);
1832                 return ECORE_INVAL;
1833         }
1834
1835         /* Determine the right map to take this CID from */
1836         if (vfid == ECORE_CXT_PF_CID)
1837                 p_map = &p_mngr->acquired[type];
1838         else
1839                 p_map = &p_mngr->acquired_vf[type][vfid];
1840
1841         if (p_map->cid_map == OSAL_NULL) {
1842                 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
1843                 return ECORE_INVAL;
1844         }
1845
1846         rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map,
1847                                            p_map->max_count);
1848
1849         if (rel_cid >= p_map->max_count) {
1850                 DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n",
1851                           type);
1852                 return ECORE_NORESOURCES;
1853         }
1854
1855         OSAL_SET_BIT(rel_cid, p_map->cid_map);
1856
1857         *p_cid = rel_cid + p_map->start_cid;
1858
1859         DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1860                    "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n",
1861                    *p_cid, rel_cid, vfid, type);
1862
1863         return ECORE_SUCCESS;
1864 }
1865
1866 enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
1867                                            enum protocol_type type,
1868                                            u32 *p_cid)
1869 {
1870         return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID);
1871 }
1872
1873 static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn,
1874                                         u32 cid, u8 vfid,
1875                                         enum protocol_type *p_type,
1876                                         struct ecore_cid_acquired_map **pp_map)
1877 {
1878         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1879         u32 rel_cid;
1880
1881         /* Iterate over protocols and find matching cid range */
1882         for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) {
1883                 if (vfid == ECORE_CXT_PF_CID)
1884                         *pp_map = &p_mngr->acquired[*p_type];
1885                 else
1886                         *pp_map = &p_mngr->acquired_vf[*p_type][vfid];
1887
1888                 if (!((*pp_map)->cid_map))
1889                         continue;
1890                 if (cid >= (*pp_map)->start_cid &&
1891                     cid < (*pp_map)->start_cid + (*pp_map)->max_count) {
1892                         break;
1893                 }
1894         }
1895         if (*p_type == MAX_CONN_TYPES) {
1896                 DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid);
1897                 goto fail;
1898         }
1899
1900         rel_cid = cid - (*pp_map)->start_cid;
1901         if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) {
1902                 DP_NOTICE(p_hwfn, true,
1903                           "CID %d [vifd %02x] not acquired", cid, vfid);
1904                 goto fail;
1905         }
1906
1907         return true;
1908 fail:
1909         *p_type = MAX_CONN_TYPES;
1910         *pp_map = OSAL_NULL;
1911         return false;
1912 }
1913
1914 void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid)
1915 {
1916         struct ecore_cid_acquired_map *p_map = OSAL_NULL;
1917         enum protocol_type type;
1918         bool b_acquired;
1919         u32 rel_cid;
1920
1921         if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) {
1922                 DP_NOTICE(p_hwfn, true,
1923                           "Trying to return incorrect CID belonging to VF %02x\n",
1924                           vfid);
1925                 return;
1926         }
1927
1928         /* Test acquired and find matching per-protocol map */
1929         b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid,
1930                                                  &type, &p_map);
1931
1932         if (!b_acquired)
1933                 return;
1934
1935         rel_cid = cid - p_map->start_cid;
1936         OSAL_CLEAR_BIT(rel_cid, p_map->cid_map);
1937
1938         DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1939                    "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n",
1940                    cid, rel_cid, vfid, type);
1941 }
1942
1943 void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid)
1944 {
1945         _ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID);
1946 }
1947
1948 enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn,
1949                                             struct ecore_cxt_info *p_info)
1950 {
1951         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1952         struct ecore_cid_acquired_map *p_map = OSAL_NULL;
1953         u32 conn_cxt_size, hw_p_size, cxts_per_p, line;
1954         enum protocol_type type;
1955         bool b_acquired;
1956
1957         /* Test acquired and find matching per-protocol map */
1958         b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid,
1959                                                  ECORE_CXT_PF_CID,
1960                                                  &type, &p_map);
1961
1962         if (!b_acquired)
1963                 return ECORE_INVAL;
1964
1965         /* set the protocl type */
1966         p_info->type = type;
1967
1968         /* compute context virtual pointer */
1969         hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1970
1971         conn_cxt_size = CONN_CXT_SIZE(p_hwfn);
1972         cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size;
1973         line = p_info->iid / cxts_per_p;
1974
1975         /* Make sure context is allocated (dynamic allocation) */
1976         if (!p_mngr->ilt_shadow[line].p_virt)
1977                 return ECORE_INVAL;
1978
1979         p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt +
1980             p_info->iid % cxts_per_p * conn_cxt_size;
1981
1982         DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT),
1983                 "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n",
1984                 (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid);
1985
1986         return ECORE_SUCCESS;
1987 }
1988
1989 enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn)
1990 {
1991         /* Set the number of required CORE connections */
1992         u32 core_cids = 1;      /* SPQ */
1993
1994         ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0);
1995
1996         switch (p_hwfn->hw_info.personality) {
1997         case ECORE_PCI_ETH:
1998                 {
1999                 u32 count = 0;
2000
2001                 struct ecore_eth_pf_params *p_params =
2002                             &p_hwfn->pf_params.eth_pf_params;
2003
2004                 if (!p_params->num_vf_cons)
2005                         p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT;
2006                 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2007                                               p_params->num_cons,
2008                                               p_params->num_vf_cons);
2009
2010                 count = p_params->num_arfs_filters;
2011
2012                 if (!OSAL_TEST_BIT(ECORE_MF_DISABLE_ARFS,
2013                                    &p_hwfn->p_dev->mf_bits))
2014                         p_hwfn->p_cxt_mngr->arfs_count = count;
2015
2016                 break;
2017                 }
2018         default:
2019                 return ECORE_INVAL;
2020         }
2021
2022         return ECORE_SUCCESS;
2023 }
2024
2025 /* This function is very RoCE oriented, if another protocol in the future
2026  * will want this feature we'll need to modify the function to be more generic
2027  */
2028 enum _ecore_status_t
2029 ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn,
2030                             enum ecore_cxt_elem_type elem_type,
2031                             u32 iid)
2032 {
2033         u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line;
2034         struct ecore_ilt_client_cfg *p_cli;
2035         struct ecore_ilt_cli_blk *p_blk;
2036         struct ecore_ptt *p_ptt;
2037         dma_addr_t p_phys;
2038         u64 ilt_hw_entry;
2039         void *p_virt;
2040         enum _ecore_status_t rc = ECORE_SUCCESS;
2041
2042         switch (elem_type) {
2043         case ECORE_ELEM_CXT:
2044                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2045                 elem_size = CONN_CXT_SIZE(p_hwfn);
2046                 p_blk = &p_cli->pf_blks[CDUC_BLK];
2047                 break;
2048         case ECORE_ELEM_SRQ:
2049                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2050                 elem_size = SRQ_CXT_SIZE;
2051                 p_blk = &p_cli->pf_blks[SRQ_BLK];
2052                 break;
2053         case ECORE_ELEM_TASK:
2054                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2055                 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2056                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2057                 break;
2058         default:
2059                 DP_NOTICE(p_hwfn, false,
2060                           "ECORE_INVALID elem type = %d", elem_type);
2061                 return ECORE_INVAL;
2062         }
2063
2064         /* Calculate line in ilt */
2065         hw_p_size = p_cli->p_size.val;
2066         elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2067         line = p_blk->start_line + (iid / elems_per_p);
2068         shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line;
2069
2070         /* If line is already allocated, do nothing, otherwise allocate it and
2071          * write it to the PSWRQ2 registers.
2072          * This section can be run in parallel from different contexts and thus
2073          * a mutex protection is needed.
2074          */
2075
2076         OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex);
2077
2078         if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt)
2079                 goto out0;
2080
2081         p_ptt = ecore_ptt_acquire(p_hwfn);
2082         if (!p_ptt) {
2083                 DP_NOTICE(p_hwfn, false,
2084                           "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2085                 rc = ECORE_TIMEOUT;
2086                 goto out0;
2087         }
2088
2089         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
2090                                          &p_phys,
2091                                          p_blk->real_size_in_page);
2092         if (!p_virt) {
2093                 rc = ECORE_NOMEM;
2094                 goto out1;
2095         }
2096         OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page);
2097
2098         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt;
2099         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys;
2100         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size =
2101                 p_blk->real_size_in_page;
2102
2103         /* compute absolute offset */
2104         reg_offset = PSWRQ2_REG_ILT_MEMORY +
2105                      (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS);
2106
2107         ilt_hw_entry = 0;
2108         SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
2109         SET_FIELD(ilt_hw_entry,
2110                   ILT_ENTRY_PHY_ADDR,
2111                   (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12));
2112
2113 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */
2114
2115         ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry,
2116                             reg_offset, sizeof(ilt_hw_entry) / sizeof(u32),
2117                             OSAL_NULL /* default parameters */);
2118
2119         if (elem_type == ECORE_ELEM_CXT) {
2120                 u32 last_cid_allocated = (1 + (iid / elems_per_p)) *
2121                                          elems_per_p;
2122
2123                 /* Update the relevant register in the parser */
2124                 ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF,
2125                          last_cid_allocated - 1);
2126
2127                 if (!p_hwfn->b_rdma_enabled_in_prs) {
2128                         /* Enable RoCE search */
2129                         ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1);
2130                         p_hwfn->b_rdma_enabled_in_prs = true;
2131                 }
2132         }
2133
2134 out1:
2135         ecore_ptt_release(p_hwfn, p_ptt);
2136 out0:
2137         OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex);
2138
2139         return rc;
2140 }
2141
2142 /* This function is very RoCE oriented, if another protocol in the future
2143  * will want this feature we'll need to modify the function to be more generic
2144  */
2145 static enum _ecore_status_t
2146 ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn,
2147                          enum ecore_cxt_elem_type elem_type,
2148                          u32 start_iid, u32 count)
2149 {
2150         u32 start_line, end_line, shadow_start_line, shadow_end_line;
2151         u32 reg_offset, elem_size, hw_p_size, elems_per_p;
2152         struct ecore_ilt_client_cfg *p_cli;
2153         struct ecore_ilt_cli_blk *p_blk;
2154         u32 end_iid = start_iid + count;
2155         struct ecore_ptt *p_ptt;
2156         u64 ilt_hw_entry = 0;
2157         u32 i;
2158
2159         switch (elem_type) {
2160         case ECORE_ELEM_CXT:
2161                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2162                 elem_size = CONN_CXT_SIZE(p_hwfn);
2163                 p_blk = &p_cli->pf_blks[CDUC_BLK];
2164                 break;
2165         case ECORE_ELEM_SRQ:
2166                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2167                 elem_size = SRQ_CXT_SIZE;
2168                 p_blk = &p_cli->pf_blks[SRQ_BLK];
2169                 break;
2170         case ECORE_ELEM_TASK:
2171                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2172                 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2173                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2174                 break;
2175         default:
2176                 DP_NOTICE(p_hwfn, false,
2177                           "ECORE_INVALID elem type = %d", elem_type);
2178                 return ECORE_INVAL;
2179         }
2180
2181         /* Calculate line in ilt */
2182         hw_p_size = p_cli->p_size.val;
2183         elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2184         start_line = p_blk->start_line + (start_iid / elems_per_p);
2185         end_line = p_blk->start_line + (end_iid / elems_per_p);
2186         if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p))
2187                 end_line--;
2188
2189         shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line;
2190         shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line;
2191
2192         p_ptt = ecore_ptt_acquire(p_hwfn);
2193         if (!p_ptt) {
2194                 DP_NOTICE(p_hwfn, false,
2195                           "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2196                 return ECORE_TIMEOUT;
2197         }
2198
2199         for (i = shadow_start_line; i < shadow_end_line; i++) {
2200                 if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt)
2201                         continue;
2202
2203                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
2204                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt,
2205                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys,
2206                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].size);
2207
2208                 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL;
2209                 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0;
2210                 p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0;
2211
2212                 /* compute absolute offset */
2213                 reg_offset = PSWRQ2_REG_ILT_MEMORY +
2214                     ((start_line++) * ILT_REG_SIZE_IN_BYTES *
2215                      ILT_ENTRY_IN_REGS);
2216
2217                 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a
2218                  * wide-bus.
2219                  */
2220                 ecore_dmae_host2grc(p_hwfn, p_ptt,
2221                                     (u64)(osal_uintptr_t)&ilt_hw_entry,
2222                                     reg_offset,
2223                                     sizeof(ilt_hw_entry) / sizeof(u32),
2224                                     OSAL_NULL /* default parameters */);
2225         }
2226
2227         ecore_ptt_release(p_hwfn, p_ptt);
2228
2229         return ECORE_SUCCESS;
2230 }