New upstream version 18.11-rc1
[deb_dpdk.git] / drivers / net / qede / base / ecore_init_fw_funcs.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6
7 #include "bcm_osal.h"
8 #include "ecore_hw.h"
9 #include "ecore_init_ops.h"
10 #include "reg_addr.h"
11 #include "ecore_rt_defs.h"
12 #include "ecore_hsi_common.h"
13 #include "ecore_hsi_init_func.h"
14 #include "ecore_hsi_eth.h"
15 #include "ecore_hsi_init_tool.h"
16 #include "ecore_iro.h"
17 #include "ecore_init_fw_funcs.h"
18
19 #define CDU_VALIDATION_DEFAULT_CFG 61
20
21 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
22         { 400,  336,  352,  304,  304,  384,  416,  352}, /* region 3 offsets */
23         { 528,  496,  416,  448,  448,  512,  544,  480}, /* region 4 offsets */
24         { 608,  544,  496,  512,  576,  592,  624,  560}  /* region 5 offsets */
25 };
26 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
27         { 240,  240,  112,    0,    0,    0,    0,   96}  /* region 1 offsets */
28 };
29
30 /* General constants */
31 #define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
32                                 QM_PQ_ELEMENT_SIZE, 0x1000) : 0)
33 #define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, 0x100) - 1 : \
34                                   0)
35 #define QM_INVALID_PQ_ID                0xffff
36
37 /* Feature enable */
38 #define QM_BYPASS_EN                    1
39 #define QM_BYTE_CRD_EN                  1
40
41 /* Other PQ constants */
42 #define QM_OTHER_PQS_PER_PF             4
43
44 /* VOQ constants */
45 #define QM_E5_NUM_EXT_VOQ               (MAX_NUM_PORTS_E5 * NUM_OF_TCS)
46
47 /* WFQ constants: */
48
49 /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
50 #define QM_WFQ_UPPER_BOUND              62500000
51
52 /* Bit  of VOQ in WFQ VP PQ map */
53 #define QM_WFQ_VP_PQ_VOQ_SHIFT          0
54
55 /* Bit  of PF in WFQ VP PQ map */
56 #define QM_WFQ_VP_PQ_PF_E4_SHIFT        5
57 #define QM_WFQ_VP_PQ_PF_E5_SHIFT        6
58
59 /* 0x9000 = 4*9*1024 */
60 #define QM_WFQ_INC_VAL(weight)          ((weight) * 0x9000)
61
62 /* Max WFQ increment value is 0.7 * upper bound */
63 #define QM_WFQ_MAX_INC_VAL              ((QM_WFQ_UPPER_BOUND * 7) / 10)
64
65 /* Number of VOQs in E5 QmWfqCrd register */
66 #define QM_WFQ_CRD_E5_NUM_VOQS          16
67
68 /* RL constants: */
69
70 /* Period in us */
71 #define QM_RL_PERIOD                    5
72
73 /* Period in 25MHz cycles */
74 #define QM_RL_PERIOD_CLK_25M            (25 * QM_RL_PERIOD)
75
76 /* RL increment value - rate is specified in mbps. the factor of 1.01 was
77  * added after seeing only 99% factor reached in a 25Gbps port with DPDK RFC
78  * 2544 test. In this scenario the PF RL was reducing the line rate to 99%
79  * although the credit increment value was the correct one and FW calculated
80  * correct packet sizes. The reason for the inaccuracy of the RL is unknown at
81  * this point.
82  */
83 #define QM_RL_INC_VAL(rate) \
84         OSAL_MAX_T(u32, (u32)(((rate ? rate : 100000) * QM_RL_PERIOD * 101) / \
85         (8 * 100)), 1)
86
87 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
88 #define QM_PF_RL_UPPER_BOUND            62500000
89
90 /* Max PF RL increment value is 0.7 * upper bound */
91 #define QM_PF_RL_MAX_INC_VAL            ((QM_PF_RL_UPPER_BOUND * 7) / 10)
92
93 /* Vport RL Upper bound, link speed is in Mpbs */
94 #define QM_VP_RL_UPPER_BOUND(speed) \
95         ((u32)OSAL_MAX_T(u32, QM_RL_INC_VAL(speed), 9700 + 1000))
96
97 /* Max Vport RL increment value is the Vport RL upper bound */
98 #define QM_VP_RL_MAX_INC_VAL(speed)     QM_VP_RL_UPPER_BOUND(speed)
99
100 /* Vport RL credit threshold in case of QM bypass */
101 #define QM_VP_RL_BYPASS_THRESH_SPEED    (QM_VP_RL_UPPER_BOUND(10000) - 1)
102
103 /* AFullOprtnstcCrdMask constants */
104 #define QM_OPPOR_LINE_VOQ_DEF           1
105 #define QM_OPPOR_FW_STOP_DEF            0
106 #define QM_OPPOR_PQ_EMPTY_DEF           1
107
108 /* Command Queue constants: */
109
110 /* Pure LB CmdQ lines (+spare) */
111 #define PBF_CMDQ_PURE_LB_LINES          150
112
113 #define PBF_CMDQ_LINES_E5_RSVD_RATIO    8
114
115 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
116         (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
117          ext_voq * \
118          (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
119           PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
120
121 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
122         (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
123          ext_voq * \
124          (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
125           PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
126
127 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
128 ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
129
130 /* BTB: blocks constants (block size = 256B) */
131
132 /* 256B blocks in 9700B packet */
133 #define BTB_JUMBO_PKT_BLOCKS            38
134
135 /* Headroom per-port */
136 #define BTB_HEADROOM_BLOCKS             BTB_JUMBO_PKT_BLOCKS
137 #define BTB_PURE_LB_FACTOR              10
138
139 /* Factored (hence really 0.7) */
140 #define BTB_PURE_LB_RATIO               7
141
142 /* QM stop command constants */
143 #define QM_STOP_PQ_MASK_WIDTH           32
144 #define QM_STOP_CMD_ADDR                2
145 #define QM_STOP_CMD_STRUCT_SIZE         2
146 #define QM_STOP_CMD_PAUSE_MASK_OFFSET   0
147 #define QM_STOP_CMD_PAUSE_MASK_SHIFT    0
148 #define QM_STOP_CMD_PAUSE_MASK_MASK     0xffffffff /* @DPDK */
149 #define QM_STOP_CMD_GROUP_ID_OFFSET     1
150 #define QM_STOP_CMD_GROUP_ID_SHIFT      16
151 #define QM_STOP_CMD_GROUP_ID_MASK       15
152 #define QM_STOP_CMD_PQ_TYPE_OFFSET      1
153 #define QM_STOP_CMD_PQ_TYPE_SHIFT       24
154 #define QM_STOP_CMD_PQ_TYPE_MASK        1
155 #define QM_STOP_CMD_MAX_POLL_COUNT      100
156 #define QM_STOP_CMD_POLL_PERIOD_US      500
157
158 /* QM command macros */
159 #define QM_CMD_STRUCT_SIZE(cmd) cmd##_STRUCT_SIZE
160 #define QM_CMD_SET_FIELD(var, cmd, field, value) \
161         SET_FIELD(var[cmd##_##field##_OFFSET], cmd##_##field, value)
162
163 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, rl_valid, \
164                           vp_pq_id, rl_id, ext_voq, wrr) \
165         do {                                            \
166                 OSAL_MEMSET(&map, 0, sizeof(map)); \
167                 SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_PQ_VALID, 1); \
168                 SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_VALID, rl_valid); \
169                 SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VP_PQ_ID, vp_pq_id); \
170                 SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_ID, rl_id); \
171                 SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VOQ, ext_voq); \
172                 SET_FIELD(map.reg, \
173                           QM_RF_PQ_MAP_##chip##_WRR_WEIGHT_GROUP, wrr); \
174                 STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id, \
175                              *((u32 *)&map)); \
176         } while (0)
177
178 #define WRITE_PQ_INFO_TO_RAM            1
179 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
180         (((vp) << 0) | ((pf) << 12) | ((tc) << 16) |    \
181          ((port) << 20) | ((rl_valid) << 22) | ((rl) << 24))
182 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
183         (XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 21776 + (pq_id) * 4)
184
185 /******************** INTERNAL IMPLEMENTATION *********************/
186
187 /* Returns the external VOQ number */
188 static u8 ecore_get_ext_voq(struct ecore_hwfn *p_hwfn,
189                             u8 port_id,
190                             u8 tc,
191                             u8 max_phys_tcs_per_port)
192 {
193         if (tc == PURE_LB_TC)
194                 return NUM_OF_PHYS_TCS * (MAX_NUM_PORTS_BB) + port_id;
195         else
196                 return port_id * (max_phys_tcs_per_port) + tc;
197 }
198
199 /* Prepare PF RL enable/disable runtime init values */
200 static void ecore_enable_pf_rl(struct ecore_hwfn *p_hwfn, bool pf_rl_en)
201 {
202         STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
203         if (pf_rl_en) {
204                 u8 num_ext_voqs = MAX_NUM_VOQS_E4;
205                 u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
206
207                 /* Enable RLs for all VOQs */
208                 STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET,
209                              (u32)voq_bit_mask);
210 #ifdef QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET
211                 if (num_ext_voqs >= 32)
212                         STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET,
213                                      (u32)(voq_bit_mask >> 32));
214 #endif
215
216                 /* Write RL period */
217                 STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIOD_RT_OFFSET,
218                              QM_RL_PERIOD_CLK_25M);
219                 STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIODTIMER_RT_OFFSET,
220                              QM_RL_PERIOD_CLK_25M);
221
222                 /* Set credit threshold for QM bypass flow */
223                 if (QM_BYPASS_EN)
224                         STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
225                                      QM_PF_RL_UPPER_BOUND);
226         }
227 }
228
229 /* Prepare PF WFQ enable/disable runtime init values */
230 static void ecore_enable_pf_wfq(struct ecore_hwfn *p_hwfn, bool pf_wfq_en)
231 {
232         STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
233
234         /* Set credit threshold for QM bypass flow */
235         if (pf_wfq_en && QM_BYPASS_EN)
236                 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
237                              QM_WFQ_UPPER_BOUND);
238 }
239
240 /* Prepare VPORT RL enable/disable runtime init values */
241 static void ecore_enable_vport_rl(struct ecore_hwfn *p_hwfn, bool vport_rl_en)
242 {
243         STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
244                      vport_rl_en ? 1 : 0);
245         if (vport_rl_en) {
246                 /* Write RL period (use timer 0 only) */
247                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
248                              QM_RL_PERIOD_CLK_25M);
249                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
250                              QM_RL_PERIOD_CLK_25M);
251
252                 /* Set credit threshold for QM bypass flow */
253                 if (QM_BYPASS_EN)
254                         STORE_RT_REG(p_hwfn,
255                                      QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
256                                      QM_VP_RL_BYPASS_THRESH_SPEED);
257         }
258 }
259
260 /* Prepare VPORT WFQ enable/disable runtime init values */
261 static void ecore_enable_vport_wfq(struct ecore_hwfn *p_hwfn, bool vport_wfq_en)
262 {
263         STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
264                      vport_wfq_en ? 1 : 0);
265
266         /* Set credit threshold for QM bypass flow */
267         if (vport_wfq_en && QM_BYPASS_EN)
268                 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
269                              QM_WFQ_UPPER_BOUND);
270 }
271
272 /* Prepare runtime init values to allocate PBF command queue lines for
273  * the specified VOQ
274  */
275 static void ecore_cmdq_lines_voq_rt_init(struct ecore_hwfn *p_hwfn,
276                                          u8 ext_voq,
277                                          u16 cmdq_lines)
278 {
279         u32 qm_line_crd;
280
281         qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
282
283         OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
284                          (u32)cmdq_lines);
285         STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
286                          qm_line_crd);
287         STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
288                          qm_line_crd);
289 }
290
291 /* Prepare runtime init values to allocate PBF command queue lines. */
292 static void ecore_cmdq_lines_rt_init(struct ecore_hwfn *p_hwfn,
293                                      u8 max_ports_per_engine,
294                                      u8 max_phys_tcs_per_port,
295                                      struct init_qm_port_params
296                                      port_params[MAX_NUM_PORTS])
297 {
298         u8 tc, ext_voq, port_id, num_tcs_in_port;
299         u8 num_ext_voqs = MAX_NUM_VOQS_E4;
300
301         /* Clear PBF lines of all VOQs */
302         for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
303                 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
304
305         for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
306                 u16 phys_lines, phys_lines_per_tc;
307
308                 if (!port_params[port_id].active)
309                         continue;
310
311                 /* Find number of command queue lines to divide between the
312                  * active physical TCs. In E5, 1/8 of the lines are reserved.
313                  * the lines for pure LB TC are subtracted.
314                  */
315                 phys_lines = port_params[port_id].num_pbf_cmd_lines;
316                 phys_lines -= PBF_CMDQ_PURE_LB_LINES;
317
318                 /* Find #lines per active physical TC */
319                 num_tcs_in_port = 0;
320                 for (tc = 0; tc < max_phys_tcs_per_port; tc++)
321                         if (((port_params[port_id].active_phys_tcs >> tc) &
322                               0x1) == 1)
323                                 num_tcs_in_port++;
324                 phys_lines_per_tc = phys_lines / num_tcs_in_port;
325
326                 /* Init registers per active TC */
327                 for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
328                         ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc,
329                                                     max_phys_tcs_per_port);
330                         if (((port_params[port_id].active_phys_tcs >> tc) &
331                             0x1) == 1)
332                                 ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
333                                                              phys_lines_per_tc);
334                 }
335
336                 /* Init registers for pure LB TC */
337                 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC,
338                                             max_phys_tcs_per_port);
339                 ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
340                                              PBF_CMDQ_PURE_LB_LINES);
341         }
342 }
343
344 /*
345  * Prepare runtime init values to allocate guaranteed BTB blocks for the
346  * specified port. The guaranteed BTB space is divided between the TCs as
347  * follows (shared space Is currently not used):
348  * 1. Parameters:
349  *     B BTB blocks for this port
350  *     C Number of physical TCs for this port
351  * 2. Calculation:
352  *     a. 38 blocks (9700B jumbo frame) are allocated for global per port
353  *        headroom
354  *     b. B = B 38 (remainder after global headroom allocation)
355  *     c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
356  *     d. B = B MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
357  *     e. B/C blocks are allocated for each physical TC.
358  * Assumptions:
359  * - MTU is up to 9700 bytes (38 blocks)
360  * - All TCs are considered symmetrical (same rate and packet size)
361  * - No optimization for lossy TC (all are considered lossless). Shared space is
362  *   not enabled and allocated for each TC.
363  */
364 static void ecore_btb_blocks_rt_init(struct ecore_hwfn *p_hwfn,
365                                      u8 max_ports_per_engine,
366                                      u8 max_phys_tcs_per_port,
367                                      struct init_qm_port_params
368                                      port_params[MAX_NUM_PORTS])
369 {
370         u32 usable_blocks, pure_lb_blocks, phys_blocks;
371         u8 tc, ext_voq, port_id, num_tcs_in_port;
372
373         for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
374                 if (!port_params[port_id].active)
375                         continue;
376
377                 /* Subtract headroom blocks */
378                 usable_blocks = port_params[port_id].num_btb_blocks -
379                                 BTB_HEADROOM_BLOCKS;
380
381                 /* Find blocks per physical TC. use factor to avoid floating
382                  * arithmethic.
383                  */
384                 num_tcs_in_port = 0;
385                 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
386                         if (((port_params[port_id].active_phys_tcs >> tc) &
387                               0x1) == 1)
388                                 num_tcs_in_port++;
389
390                 pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
391                                   (num_tcs_in_port * BTB_PURE_LB_FACTOR +
392                                    BTB_PURE_LB_RATIO);
393                 pure_lb_blocks = OSAL_MAX_T(u32, BTB_JUMBO_PKT_BLOCKS,
394                                             pure_lb_blocks /
395                                             BTB_PURE_LB_FACTOR);
396                 phys_blocks = (usable_blocks - pure_lb_blocks) /
397                               num_tcs_in_port;
398
399                 /* Init physical TCs */
400                 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
401                         if (((port_params[port_id].active_phys_tcs >> tc) &
402                              0x1) == 1) {
403                                 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc,
404                                                          max_phys_tcs_per_port);
405                                 STORE_RT_REG(p_hwfn,
406                                         PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
407                                         phys_blocks);
408                         }
409                 }
410
411                 /* Init pure LB TC */
412                 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC,
413                                             max_phys_tcs_per_port);
414                 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
415                              pure_lb_blocks);
416         }
417 }
418
419 /* Prepare Tx PQ mapping runtime init values for the specified PF */
420 static void ecore_tx_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
421                                     struct ecore_ptt *p_ptt,
422                                     u8 pf_id,
423                                     u8 max_phys_tcs_per_port,
424                                                 bool is_pf_loading,
425                                     u32 num_pf_cids,
426                                     u32 num_vf_cids,
427                                     u16 start_pq,
428                                     u16 num_pf_pqs,
429                                     u16 num_vf_pqs,
430                                     u8 start_vport,
431                                     u32 base_mem_addr_4kb,
432                                     struct init_qm_pq_params *pq_params,
433                                     struct init_qm_vport_params *vport_params)
434 {
435         /* A bit per Tx PQ indicating if the PQ is associated with a VF */
436         u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
437         u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
438         u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
439         u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
440
441         num_pqs = num_pf_pqs + num_vf_pqs;
442
443         first_pq_group = start_pq / QM_PF_QUEUE_GROUP_SIZE;
444         last_pq_group = (start_pq + num_pqs - 1) / QM_PF_QUEUE_GROUP_SIZE;
445
446         pq_mem_4kb = QM_PQ_MEM_4KB(num_pf_cids);
447         vport_pq_mem_4kb = QM_PQ_MEM_4KB(num_vf_cids);
448         mem_addr_4kb = base_mem_addr_4kb;
449
450         /* Set mapping from PQ group to PF */
451         for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
452                 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
453                              (u32)(pf_id));
454
455         /* Set PQ sizes */
456         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
457                      QM_PQ_SIZE_256B(num_pf_cids));
458         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
459                      QM_PQ_SIZE_256B(num_vf_cids));
460
461         /* Go over all Tx PQs */
462         for (i = 0, pq_id = start_pq; i < num_pqs; i++, pq_id++) {
463                 u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
464                 u8 ext_voq, vport_id_in_pf;
465                 bool is_vf_pq, rl_valid;
466                 u16 first_tx_pq_id;
467
468                 ext_voq = ecore_get_ext_voq(p_hwfn, pq_params[i].port_id,
469                                             pq_params[i].tc_id,
470                                             max_phys_tcs_per_port);
471                 is_vf_pq = (i >= num_pf_pqs);
472                 rl_valid = pq_params[i].rl_valid > 0;
473
474                 /* Update first Tx PQ of VPORT/TC */
475                 vport_id_in_pf = pq_params[i].vport_id - start_vport;
476                 first_tx_pq_id =
477                 vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id];
478                 if (first_tx_pq_id == QM_INVALID_PQ_ID) {
479                         u32 map_val = (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
480                                        (pf_id << (QM_WFQ_VP_PQ_PF_E4_SHIFT));
481
482                         /* Create new VP PQ */
483                         vport_params[vport_id_in_pf].
484                             first_tx_pq_id[pq_params[i].tc_id] = pq_id;
485                         first_tx_pq_id = pq_id;
486
487                         /* Map VP PQ to VOQ and PF */
488                         STORE_RT_REG(p_hwfn, QM_REG_WFQVPMAP_RT_OFFSET +
489                                      first_tx_pq_id, map_val);
490                 }
491
492                 /* Check RL ID */
493                 if (rl_valid && pq_params[i].vport_id >= max_qm_global_rls) {
494                         DP_NOTICE(p_hwfn, true,
495                                   "Invalid VPORT ID for rate limiter config\n");
496                         rl_valid = false;
497                 }
498
499                 /* Prepare PQ map entry */
500                 struct qm_rf_pq_map_e4 tx_pq_map;
501
502                 QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E4, pq_id, rl_valid ?
503                                   1 : 0,
504                                   first_tx_pq_id, rl_valid ?
505                                   pq_params[i].vport_id : 0,
506                                   ext_voq, pq_params[i].wrr_group);
507
508                 /* Set PQ base address */
509                 STORE_RT_REG(p_hwfn, QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
510                              mem_addr_4kb);
511
512                 /* Clear PQ pointer table entry (64 bit) */
513                 if (is_pf_loading)
514                         for (j = 0; j < 2; j++)
515                                 STORE_RT_REG(p_hwfn, QM_REG_PTRTBLTX_RT_OFFSET +
516                                              (pq_id * 2) + j, 0);
517
518                 /* Write PQ info to RAM */
519                 if (WRITE_PQ_INFO_TO_RAM != 0) {
520                         u32 pq_info = 0;
521
522                         pq_info = PQ_INFO_ELEMENT(first_tx_pq_id, pf_id,
523                                                   pq_params[i].tc_id,
524                                                   pq_params[i].port_id,
525                                                   rl_valid ? 1 : 0, rl_valid ?
526                                                   pq_params[i].vport_id : 0);
527                         ecore_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
528                                  pq_info);
529                 }
530
531                 /* If VF PQ, add indication to PQ VF mask */
532                 if (is_vf_pq) {
533                         tx_pq_vf_mask[pq_id / QM_PF_QUEUE_GROUP_SIZE] |=
534                                 (1 << (pq_id % QM_PF_QUEUE_GROUP_SIZE));
535                         mem_addr_4kb += vport_pq_mem_4kb;
536                 } else {
537                         mem_addr_4kb += pq_mem_4kb;
538                 }
539         }
540
541         /* Store Tx PQ VF mask to size select register */
542         for (i = 0; i < num_tx_pq_vf_masks; i++)
543                 if (tx_pq_vf_mask[i])
544                         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET +
545                                      i, tx_pq_vf_mask[i]);
546 }
547
548 /* Prepare Other PQ mapping runtime init values for the specified PF */
549 static void ecore_other_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
550                                        u8 pf_id,
551                                        bool is_pf_loading,
552                                        u32 num_pf_cids,
553                                        u32 num_tids,
554                                        u32 base_mem_addr_4kb)
555 {
556         u32 pq_size, pq_mem_4kb, mem_addr_4kb;
557         u16 i, j, pq_id, pq_group;
558
559         /* A single other PQ group is used in each PF, where PQ group i is used
560          * in PF i.
561          */
562         pq_group = pf_id;
563         pq_size = num_pf_cids + num_tids;
564         pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
565         mem_addr_4kb = base_mem_addr_4kb;
566
567         /* Map PQ group to PF */
568         STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
569                      (u32)(pf_id));
570
571         /* Set PQ sizes */
572         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
573                      QM_PQ_SIZE_256B(pq_size));
574
575         for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
576              i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
577                 /* Set PQ base address */
578                 STORE_RT_REG(p_hwfn, QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
579                              mem_addr_4kb);
580
581                 /* Clear PQ pointer table entry */
582                 if (is_pf_loading)
583                         for (j = 0; j < 2; j++)
584                                 STORE_RT_REG(p_hwfn,
585                                              QM_REG_PTRTBLOTHER_RT_OFFSET +
586                                              (pq_id * 2) + j, 0);
587
588                 mem_addr_4kb += pq_mem_4kb;
589         }
590 }
591
592 /* Prepare PF WFQ runtime init values for the specified PF.
593  * Return -1 on error.
594  */
595 static int ecore_pf_wfq_rt_init(struct ecore_hwfn *p_hwfn,
596                                 u8 pf_id,
597                                 u16 pf_wfq,
598                                 u8 max_phys_tcs_per_port,
599                                 u16 num_tx_pqs,
600                                 struct init_qm_pq_params *pq_params)
601 {
602         u32 inc_val, crd_reg_offset;
603         u8 ext_voq;
604         u16 i;
605
606         inc_val = QM_WFQ_INC_VAL(pf_wfq);
607         if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
608                 DP_NOTICE(p_hwfn, true,
609                           "Invalid PF WFQ weight configuration\n");
610                 return -1;
611         }
612
613         for (i = 0; i < num_tx_pqs; i++) {
614                 ext_voq = ecore_get_ext_voq(p_hwfn, pq_params[i].port_id,
615                                             pq_params[i].tc_id,
616                                             max_phys_tcs_per_port);
617                 crd_reg_offset = (pf_id < MAX_NUM_PFS_BB ?
618                                   QM_REG_WFQPFCRD_RT_OFFSET :
619                                   QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
620                                  ext_voq * MAX_NUM_PFS_BB +
621                                  (pf_id % MAX_NUM_PFS_BB);
622                 OVERWRITE_RT_REG(p_hwfn, crd_reg_offset,
623                                  (u32)QM_WFQ_CRD_REG_SIGN_BIT);
624         }
625
626         STORE_RT_REG(p_hwfn, QM_REG_WFQPFUPPERBOUND_RT_OFFSET +
627                      pf_id, QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
628         STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + pf_id, inc_val);
629
630         return 0;
631 }
632
633 /* Prepare PF RL runtime init values for the specified PF.
634  * Return -1 on error.
635  */
636 static int ecore_pf_rl_rt_init(struct ecore_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
637 {
638         u32 inc_val;
639
640         inc_val = QM_RL_INC_VAL(pf_rl);
641         if (inc_val > QM_PF_RL_MAX_INC_VAL) {
642                 DP_NOTICE(p_hwfn, true,
643                           "Invalid PF rate limit configuration\n");
644                 return -1;
645         }
646
647         STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id,
648                      (u32)QM_RL_CRD_REG_SIGN_BIT);
649         STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
650                      QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
651         STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
652
653         return 0;
654 }
655
656 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
657  * Return -1 on error.
658  */
659 static int ecore_vp_wfq_rt_init(struct ecore_hwfn *p_hwfn,
660                                 u8 num_vports,
661                                 struct init_qm_vport_params *vport_params)
662 {
663         u16 vport_pq_id;
664         u32 inc_val;
665         u8 tc, i;
666
667         /* Go over all PF VPORTs */
668         for (i = 0; i < num_vports; i++) {
669                 if (!vport_params[i].vport_wfq)
670                         continue;
671
672                 inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
673                 if (inc_val > QM_WFQ_MAX_INC_VAL) {
674                         DP_NOTICE(p_hwfn, true,
675                                   "Invalid VPORT WFQ weight configuration\n");
676                         return -1;
677                 }
678
679                 /* Each VPORT can have several VPORT PQ IDs for various TCs */
680                 for (tc = 0; tc < NUM_OF_TCS; tc++) {
681                         vport_pq_id = vport_params[i].first_tx_pq_id[tc];
682                         if (vport_pq_id != QM_INVALID_PQ_ID) {
683                                 STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET +
684                                              vport_pq_id,
685                                              (u32)QM_WFQ_CRD_REG_SIGN_BIT);
686                                 STORE_RT_REG(p_hwfn,
687                                              QM_REG_WFQVPWEIGHT_RT_OFFSET +
688                                              vport_pq_id, inc_val);
689                         }
690                 }
691         }
692         return 0;
693 }
694
695 /* Prepare VPORT RL runtime init values for the specified VPORTs.
696  * Return -1 on error.
697  */
698 static int ecore_vport_rl_rt_init(struct ecore_hwfn *p_hwfn,
699                                   u8 start_vport,
700                                   u8 num_vports,
701                                   u32 link_speed,
702                                   struct init_qm_vport_params *vport_params)
703 {
704         u8 i, vport_id;
705         u32 inc_val;
706
707         if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
708                 DP_NOTICE(p_hwfn, true,
709                           "Invalid VPORT ID for rate limiter configuration\n");
710                 return -1;
711         }
712
713         /* Go over all PF VPORTs */
714         for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
715                 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl ?
716                           vport_params[i].vport_rl : link_speed);
717                 if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
718                         DP_NOTICE(p_hwfn, true,
719                                   "Invalid VPORT rate-limit configuration\n");
720                         return -1;
721                 }
722
723                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
724                              (u32)QM_RL_CRD_REG_SIGN_BIT);
725                 STORE_RT_REG(p_hwfn,
726                              QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
727                              QM_VP_RL_UPPER_BOUND(link_speed) |
728                              (u32)QM_RL_CRD_REG_SIGN_BIT);
729                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
730                              inc_val);
731         }
732
733         return 0;
734 }
735
736 static bool ecore_poll_on_qm_cmd_ready(struct ecore_hwfn *p_hwfn,
737                                        struct ecore_ptt *p_ptt)
738 {
739         u32 reg_val, i;
740
741         for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
742              i++) {
743                 OSAL_UDELAY(QM_STOP_CMD_POLL_PERIOD_US);
744                 reg_val = ecore_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
745         }
746
747         /* Check if timeout while waiting for SDM command ready */
748         if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
749                 DP_VERBOSE(p_hwfn, ECORE_MSG_DEBUG,
750                            "Timeout waiting for QM SDM cmd ready signal\n");
751                 return false;
752         }
753
754         return true;
755 }
756
757 static bool ecore_send_qm_cmd(struct ecore_hwfn *p_hwfn,
758                               struct ecore_ptt *p_ptt,
759                                                           u32 cmd_addr,
760                                                           u32 cmd_data_lsb,
761                                                           u32 cmd_data_msb)
762 {
763         if (!ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
764                 return false;
765
766         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
767         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
768         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
769         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
770         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
771
772         return ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
773 }
774
775
776 /******************** INTERFACE IMPLEMENTATION *********************/
777
778 u32 ecore_qm_pf_mem_size(u32 num_pf_cids,
779                                                  u32 num_vf_cids,
780                                                  u32 num_tids,
781                                                  u16 num_pf_pqs,
782                                                  u16 num_vf_pqs)
783 {
784         return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
785             QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
786             QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
787 }
788
789 int ecore_qm_common_rt_init(struct ecore_hwfn *p_hwfn,
790                             u8 max_ports_per_engine,
791                             u8 max_phys_tcs_per_port,
792                             bool pf_rl_en,
793                             bool pf_wfq_en,
794                             bool vport_rl_en,
795                             bool vport_wfq_en,
796                             struct init_qm_port_params
797                             port_params[MAX_NUM_PORTS])
798 {
799         u32 mask;
800
801         /* Init AFullOprtnstcCrdMask */
802         mask = (QM_OPPOR_LINE_VOQ_DEF <<
803                 QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
804                 (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
805                 (pf_wfq_en << QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
806                 (vport_wfq_en << QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
807                 (pf_rl_en << QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
808                 (vport_rl_en << QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
809                 (QM_OPPOR_FW_STOP_DEF <<
810                  QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
811                 (QM_OPPOR_PQ_EMPTY_DEF <<
812                  QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
813         STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
814
815         /* Enable/disable PF RL */
816         ecore_enable_pf_rl(p_hwfn, pf_rl_en);
817
818         /* Enable/disable PF WFQ */
819         ecore_enable_pf_wfq(p_hwfn, pf_wfq_en);
820
821         /* Enable/disable VPORT RL */
822         ecore_enable_vport_rl(p_hwfn, vport_rl_en);
823
824         /* Enable/disable VPORT WFQ */
825         ecore_enable_vport_wfq(p_hwfn, vport_wfq_en);
826
827         /* Init PBF CMDQ line credit */
828         ecore_cmdq_lines_rt_init(p_hwfn, max_ports_per_engine,
829                                  max_phys_tcs_per_port, port_params);
830
831         /* Init BTB blocks in PBF */
832         ecore_btb_blocks_rt_init(p_hwfn, max_ports_per_engine,
833                                  max_phys_tcs_per_port, port_params);
834
835         return 0;
836 }
837
838 int ecore_qm_pf_rt_init(struct ecore_hwfn *p_hwfn,
839                         struct ecore_ptt *p_ptt,
840                         u8 pf_id,
841                         u8 max_phys_tcs_per_port,
842                         bool is_pf_loading,
843                         u32 num_pf_cids,
844                         u32 num_vf_cids,
845                         u32 num_tids,
846                         u16 start_pq,
847                         u16 num_pf_pqs,
848                         u16 num_vf_pqs,
849                         u8 start_vport,
850                         u8 num_vports,
851                         u16 pf_wfq,
852                         u32 pf_rl,
853                         u32 link_speed,
854                         struct init_qm_pq_params *pq_params,
855                         struct init_qm_vport_params *vport_params)
856 {
857         u32 other_mem_size_4kb;
858         u8 tc, i;
859
860         other_mem_size_4kb = QM_PQ_MEM_4KB(num_pf_cids + num_tids) *
861                              QM_OTHER_PQS_PER_PF;
862
863         /* Clear first Tx PQ ID array for each VPORT */
864         for (i = 0; i < num_vports; i++)
865                 for (tc = 0; tc < NUM_OF_TCS; tc++)
866                         vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
867
868         /* Map Other PQs (if any) */
869 #if QM_OTHER_PQS_PER_PF > 0
870         ecore_other_pq_map_rt_init(p_hwfn, pf_id, is_pf_loading, num_pf_cids,
871                                    num_tids, 0);
872 #endif
873
874         /* Map Tx PQs */
875         ecore_tx_pq_map_rt_init(p_hwfn, p_ptt, pf_id, max_phys_tcs_per_port,
876                                 is_pf_loading, num_pf_cids, num_vf_cids,
877                                 start_pq, num_pf_pqs, num_vf_pqs, start_vport,
878                                 other_mem_size_4kb, pq_params, vport_params);
879
880         /* Init PF WFQ */
881         if (pf_wfq)
882                 if (ecore_pf_wfq_rt_init(p_hwfn, pf_id, pf_wfq,
883                                          max_phys_tcs_per_port,
884                                          num_pf_pqs + num_vf_pqs, pq_params))
885                         return -1;
886
887         /* Init PF RL */
888         if (ecore_pf_rl_rt_init(p_hwfn, pf_id, pf_rl))
889                 return -1;
890
891         /* Set VPORT WFQ */
892         if (ecore_vp_wfq_rt_init(p_hwfn, num_vports, vport_params))
893                 return -1;
894
895         /* Set VPORT RL */
896         if (ecore_vport_rl_rt_init
897             (p_hwfn, start_vport, num_vports, link_speed, vport_params))
898                 return -1;
899
900         return 0;
901 }
902
903 int ecore_init_pf_wfq(struct ecore_hwfn *p_hwfn,
904                       struct ecore_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
905 {
906         u32 inc_val;
907
908         inc_val = QM_WFQ_INC_VAL(pf_wfq);
909         if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
910                 DP_NOTICE(p_hwfn, true,
911                           "Invalid PF WFQ weight configuration\n");
912                 return -1;
913         }
914
915         ecore_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
916
917         return 0;
918 }
919
920 int ecore_init_pf_rl(struct ecore_hwfn *p_hwfn,
921                      struct ecore_ptt *p_ptt, u8 pf_id, u32 pf_rl)
922 {
923         u32 inc_val;
924
925         inc_val = QM_RL_INC_VAL(pf_rl);
926         if (inc_val > QM_PF_RL_MAX_INC_VAL) {
927                 DP_NOTICE(p_hwfn, true,
928                           "Invalid PF rate limit configuration\n");
929                 return -1;
930         }
931
932         ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFCRD + pf_id * 4,
933                  (u32)QM_RL_CRD_REG_SIGN_BIT);
934         ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
935
936         return 0;
937 }
938
939 int ecore_init_vport_wfq(struct ecore_hwfn *p_hwfn,
940                          struct ecore_ptt *p_ptt,
941                          u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq)
942 {
943         u16 vport_pq_id;
944         u32 inc_val;
945         u8 tc;
946
947         inc_val = QM_WFQ_INC_VAL(vport_wfq);
948         if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
949                 DP_NOTICE(p_hwfn, true,
950                           "Invalid VPORT WFQ weight configuration\n");
951                 return -1;
952         }
953
954         for (tc = 0; tc < NUM_OF_TCS; tc++) {
955                 vport_pq_id = first_tx_pq_id[tc];
956                 if (vport_pq_id != QM_INVALID_PQ_ID) {
957                         ecore_wr(p_hwfn, p_ptt,
958                                  QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
959                 }
960         }
961
962         return 0;
963 }
964
965 int ecore_init_vport_rl(struct ecore_hwfn *p_hwfn,
966                         struct ecore_ptt *p_ptt, u8 vport_id,
967                                                 u32 vport_rl,
968                                                 u32 link_speed)
969 {
970         u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
971
972         if (vport_id >= max_qm_global_rls) {
973                 DP_NOTICE(p_hwfn, true,
974                           "Invalid VPORT ID for rate limiter configuration\n");
975                 return -1;
976         }
977
978         inc_val = QM_RL_INC_VAL(vport_rl ? vport_rl : link_speed);
979         if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
980                 DP_NOTICE(p_hwfn, true,
981                           "Invalid VPORT rate-limit configuration\n");
982                 return -1;
983         }
984
985         ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLCRD + vport_id * 4,
986                  (u32)QM_RL_CRD_REG_SIGN_BIT);
987         ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
988
989         return 0;
990 }
991
992 bool ecore_send_qm_stop_cmd(struct ecore_hwfn *p_hwfn,
993                             struct ecore_ptt *p_ptt,
994                             bool is_release_cmd,
995                             bool is_tx_pq, u16 start_pq, u16 num_pqs)
996 {
997         u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
998         u32 pq_mask = 0, last_pq, pq_id;
999
1000         last_pq = start_pq + num_pqs - 1;
1001
1002         /* Set command's PQ type */
1003         QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
1004
1005         /* Go over requested PQs */
1006         for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
1007                 /* Set PQ bit in mask (stop command only) */
1008                 if (!is_release_cmd)
1009                         pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
1010
1011                 /* If last PQ or end of PQ mask, write command */
1012                 if ((pq_id == last_pq) ||
1013                     (pq_id % QM_STOP_PQ_MASK_WIDTH ==
1014                     (QM_STOP_PQ_MASK_WIDTH - 1))) {
1015                         QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PAUSE_MASK,
1016                                          pq_mask);
1017                         QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, GROUP_ID,
1018                                          pq_id / QM_STOP_PQ_MASK_WIDTH);
1019                         if (!ecore_send_qm_cmd
1020                             (p_hwfn, p_ptt, QM_STOP_CMD_ADDR, cmd_arr[0],
1021                              cmd_arr[1]))
1022                                 return false;
1023                         pq_mask = 0;
1024                 }
1025         }
1026
1027         return true;
1028 }
1029
1030
1031 /* NIG: ETS configuration constants */
1032 #define NIG_TX_ETS_CLIENT_OFFSET        4
1033 #define NIG_LB_ETS_CLIENT_OFFSET        1
1034 #define NIG_ETS_MIN_WFQ_BYTES           1600
1035
1036 /* NIG: ETS constants */
1037 #define NIG_ETS_UP_BOUND(weight, mtu) \
1038         (2 * ((weight) > (mtu) ? (weight) : (mtu)))
1039
1040 /* NIG: RL constants */
1041
1042 /* Byte base type value */
1043 #define NIG_RL_BASE_TYPE                1
1044
1045 /* Period in us */
1046 #define NIG_RL_PERIOD                   1
1047
1048 /* Period in 25MHz cycles */
1049 #define NIG_RL_PERIOD_CLK_25M           (25 * NIG_RL_PERIOD)
1050
1051 /* Rate in mbps */
1052 #define NIG_RL_INC_VAL(rate)            (((rate) * NIG_RL_PERIOD) / 8)
1053
1054 #define NIG_RL_MAX_VAL(inc_val, mtu) \
1055         (2 * ((inc_val) > (mtu) ? (inc_val) : (mtu)))
1056
1057 /* NIG: packet prioritry configuration constants */
1058 #define NIG_PRIORITY_MAP_TC_BITS        4
1059
1060
1061 void ecore_init_nig_ets(struct ecore_hwfn *p_hwfn,
1062                         struct ecore_ptt *p_ptt,
1063                         struct init_ets_req *req, bool is_lb)
1064 {
1065         u32 min_weight, tc_weight_base_addr, tc_weight_addr_diff;
1066         u32 tc_bound_base_addr, tc_bound_addr_diff;
1067         u8 sp_tc_map = 0, wfq_tc_map = 0;
1068         u8 tc, num_tc, tc_client_offset;
1069
1070         num_tc = is_lb ? NUM_OF_TCS : NUM_OF_PHYS_TCS;
1071         tc_client_offset = is_lb ? NIG_LB_ETS_CLIENT_OFFSET :
1072                                    NIG_TX_ETS_CLIENT_OFFSET;
1073         min_weight = 0xffffffff;
1074         tc_weight_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_0 :
1075                                       NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
1076         tc_weight_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_1 -
1077                                       NIG_REG_LB_ARB_CREDIT_WEIGHT_0 :
1078                                       NIG_REG_TX_ARB_CREDIT_WEIGHT_1 -
1079                                       NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
1080         tc_bound_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 :
1081                                      NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
1082         tc_bound_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_1 -
1083                                      NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 :
1084                                      NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_1 -
1085                                      NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
1086
1087         for (tc = 0; tc < num_tc; tc++) {
1088                 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1089
1090                 /* Update SP map */
1091                 if (tc_req->use_sp)
1092                         sp_tc_map |= (1 << tc);
1093
1094                 if (!tc_req->use_wfq)
1095                         continue;
1096
1097                 /* Update WFQ map */
1098                 wfq_tc_map |= (1 << tc);
1099
1100                 /* Find minimal weight */
1101                 if (tc_req->weight < min_weight)
1102                         min_weight = tc_req->weight;
1103         }
1104
1105         /* Write SP map */
1106         ecore_wr(p_hwfn, p_ptt,
1107                  is_lb ? NIG_REG_LB_ARB_CLIENT_IS_STRICT :
1108                  NIG_REG_TX_ARB_CLIENT_IS_STRICT,
1109                  (sp_tc_map << tc_client_offset));
1110
1111         /* Write WFQ map */
1112         ecore_wr(p_hwfn, p_ptt,
1113                  is_lb ? NIG_REG_LB_ARB_CLIENT_IS_SUBJECT2WFQ :
1114                  NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ,
1115                  (wfq_tc_map << tc_client_offset));
1116         /* write WFQ weights */
1117         for (tc = 0; tc < num_tc; tc++, tc_client_offset++) {
1118                 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1119                 u32 byte_weight;
1120
1121                 if (!tc_req->use_wfq)
1122                         continue;
1123
1124                 /* Translate weight to bytes */
1125                 byte_weight = (NIG_ETS_MIN_WFQ_BYTES * tc_req->weight) /
1126                               min_weight;
1127
1128                 /* Write WFQ weight */
1129                 ecore_wr(p_hwfn, p_ptt, tc_weight_base_addr +
1130                          tc_weight_addr_diff * tc_client_offset, byte_weight);
1131
1132                 /* Write WFQ upper bound */
1133                 ecore_wr(p_hwfn, p_ptt, tc_bound_base_addr +
1134                          tc_bound_addr_diff * tc_client_offset,
1135                          NIG_ETS_UP_BOUND(byte_weight, req->mtu));
1136         }
1137 }
1138
1139 void ecore_init_nig_lb_rl(struct ecore_hwfn *p_hwfn,
1140                           struct ecore_ptt *p_ptt,
1141                           struct init_nig_lb_rl_req *req)
1142 {
1143         u32 ctrl, inc_val, reg_offset;
1144         u8 tc;
1145
1146         /* Disable global MAC+LB RL */
1147         ctrl =
1148             NIG_RL_BASE_TYPE <<
1149             NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_BASE_TYPE_SHIFT;
1150         ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
1151
1152         /* Configure and enable global MAC+LB RL */
1153         if (req->lb_mac_rate) {
1154                 /* Configure  */
1155                 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_PERIOD,
1156                          NIG_RL_PERIOD_CLK_25M);
1157                 inc_val = NIG_RL_INC_VAL(req->lb_mac_rate);
1158                 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_VALUE,
1159                          inc_val);
1160                 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_MAX_VALUE,
1161                          NIG_RL_MAX_VAL(inc_val, req->mtu));
1162
1163                 /* Enable */
1164                 ctrl |=
1165                     1 <<
1166                     NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_EN_SHIFT;
1167                 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
1168         }
1169
1170         /* Disable global LB-only RL */
1171         ctrl =
1172             NIG_RL_BASE_TYPE <<
1173             NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_BASE_TYPE_SHIFT;
1174         ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
1175
1176         /* Configure and enable global LB-only RL */
1177         if (req->lb_rate) {
1178                 /* Configure  */
1179                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_PERIOD,
1180                          NIG_RL_PERIOD_CLK_25M);
1181                 inc_val = NIG_RL_INC_VAL(req->lb_rate);
1182                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_VALUE,
1183                          inc_val);
1184                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_MAX_VALUE,
1185                          NIG_RL_MAX_VAL(inc_val, req->mtu));
1186
1187                 /* Enable */
1188                 ctrl |=
1189                     1 << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_EN_SHIFT;
1190                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
1191         }
1192
1193         /* Per-TC RLs */
1194         for (tc = 0, reg_offset = 0; tc < NUM_OF_PHYS_TCS;
1195              tc++, reg_offset += 4) {
1196                 /* Disable TC RL */
1197                 ctrl =
1198                     NIG_RL_BASE_TYPE <<
1199                 NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_BASE_TYPE_0_SHIFT;
1200                 ecore_wr(p_hwfn, p_ptt,
1201                          NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
1202
1203                 /* Configure and enable TC RL */
1204                 if (!req->tc_rate[tc])
1205                         continue;
1206
1207                 /* Configure */
1208                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_PERIOD_0 +
1209                          reg_offset, NIG_RL_PERIOD_CLK_25M);
1210                 inc_val = NIG_RL_INC_VAL(req->tc_rate[tc]);
1211                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_VALUE_0 +
1212                          reg_offset, inc_val);
1213                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_MAX_VALUE_0 +
1214                          reg_offset, NIG_RL_MAX_VAL(inc_val, req->mtu));
1215
1216                 /* Enable */
1217                 ctrl |= 1 <<
1218                         NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_EN_0_SHIFT;
1219                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 +
1220                          reg_offset, ctrl);
1221         }
1222 }
1223
1224 void ecore_init_nig_pri_tc_map(struct ecore_hwfn *p_hwfn,
1225                                struct ecore_ptt *p_ptt,
1226                                struct init_nig_pri_tc_map_req *req)
1227 {
1228         u8 tc_pri_mask[NUM_OF_PHYS_TCS] = { 0 };
1229         u32 pri_tc_mask = 0;
1230         u8 pri, tc;
1231
1232         for (pri = 0; pri < NUM_OF_VLAN_PRIORITIES; pri++) {
1233                 if (!req->pri[pri].valid)
1234                         continue;
1235
1236                 pri_tc_mask |= (req->pri[pri].tc_id <<
1237                                 (pri * NIG_PRIORITY_MAP_TC_BITS));
1238                 tc_pri_mask[req->pri[pri].tc_id] |= (1 << pri);
1239         }
1240
1241         /* Write priority -> TC mask */
1242         ecore_wr(p_hwfn, p_ptt, NIG_REG_PKT_PRIORITY_TO_TC, pri_tc_mask);
1243
1244         /* Write TC -> priority mask */
1245         for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
1246                 ecore_wr(p_hwfn, p_ptt, NIG_REG_PRIORITY_FOR_TC_0 + tc * 4,
1247                          tc_pri_mask[tc]);
1248                 ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_TC0_PRIORITY_MASK + tc * 4,
1249                          tc_pri_mask[tc]);
1250         }
1251 }
1252
1253
1254 /* PRS: ETS configuration constants */
1255 #define PRS_ETS_MIN_WFQ_BYTES           1600
1256 #define PRS_ETS_UP_BOUND(weight, mtu) \
1257         (2 * ((weight) > (mtu) ? (weight) : (mtu)))
1258
1259
1260 void ecore_init_prs_ets(struct ecore_hwfn *p_hwfn,
1261                         struct ecore_ptt *p_ptt, struct init_ets_req *req)
1262 {
1263         u32 tc_weight_addr_diff, tc_bound_addr_diff, min_weight = 0xffffffff;
1264         u8 tc, sp_tc_map = 0, wfq_tc_map = 0;
1265
1266         tc_weight_addr_diff = PRS_REG_ETS_ARB_CREDIT_WEIGHT_1 -
1267                               PRS_REG_ETS_ARB_CREDIT_WEIGHT_0;
1268         tc_bound_addr_diff = PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_1 -
1269                              PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0;
1270
1271         for (tc = 0; tc < NUM_OF_TCS; tc++) {
1272                 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1273
1274                 /* Update SP map */
1275                 if (tc_req->use_sp)
1276                         sp_tc_map |= (1 << tc);
1277
1278                 if (!tc_req->use_wfq)
1279                         continue;
1280
1281                 /* Update WFQ map */
1282                 wfq_tc_map |= (1 << tc);
1283
1284                 /* Find minimal weight */
1285                 if (tc_req->weight < min_weight)
1286                         min_weight = tc_req->weight;
1287         }
1288
1289         /* write SP map */
1290         ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_STRICT, sp_tc_map);
1291
1292         /* write WFQ map */
1293         ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ,
1294                  wfq_tc_map);
1295
1296         /* write WFQ weights */
1297         for (tc = 0; tc < NUM_OF_TCS; tc++) {
1298                 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1299                 u32 byte_weight;
1300
1301                 if (!tc_req->use_wfq)
1302                         continue;
1303
1304                 /* Translate weight to bytes */
1305                 byte_weight = (PRS_ETS_MIN_WFQ_BYTES * tc_req->weight) /
1306                               min_weight;
1307
1308                 /* Write WFQ weight */
1309                 ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_WEIGHT_0 + tc *
1310                          tc_weight_addr_diff, byte_weight);
1311
1312                 /* Write WFQ upper bound */
1313                 ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0 +
1314                          tc * tc_bound_addr_diff, PRS_ETS_UP_BOUND(byte_weight,
1315                                                                    req->mtu));
1316         }
1317 }
1318
1319
1320 /* BRB: RAM configuration constants */
1321 #define BRB_TOTAL_RAM_BLOCKS_BB 4800
1322 #define BRB_TOTAL_RAM_BLOCKS_K2 5632
1323 #define BRB_BLOCK_SIZE          128
1324 #define BRB_MIN_BLOCKS_PER_TC   9
1325 #define BRB_HYST_BYTES          10240
1326 #define BRB_HYST_BLOCKS         (BRB_HYST_BYTES / BRB_BLOCK_SIZE)
1327
1328 /* Temporary big RAM allocation - should be updated */
1329 void ecore_init_brb_ram(struct ecore_hwfn *p_hwfn,
1330                         struct ecore_ptt *p_ptt, struct init_brb_ram_req *req)
1331 {
1332         u32 tc_headroom_blocks, min_pkt_size_blocks, total_blocks;
1333         u32 active_port_blocks, reg_offset = 0;
1334         u8 port, active_ports = 0;
1335
1336         tc_headroom_blocks = (u32)DIV_ROUND_UP(req->headroom_per_tc,
1337                                                BRB_BLOCK_SIZE);
1338         min_pkt_size_blocks = (u32)DIV_ROUND_UP(req->min_pkt_size,
1339                                                 BRB_BLOCK_SIZE);
1340         total_blocks = ECORE_IS_K2(p_hwfn->p_dev) ? BRB_TOTAL_RAM_BLOCKS_K2 :
1341                                                     BRB_TOTAL_RAM_BLOCKS_BB;
1342
1343         /* Find number of active ports */
1344         for (port = 0; port < MAX_NUM_PORTS; port++)
1345                 if (req->num_active_tcs[port])
1346                         active_ports++;
1347
1348         active_port_blocks = (u32)(total_blocks / active_ports);
1349
1350         for (port = 0; port < req->max_ports_per_engine; port++) {
1351                 u32 port_blocks, port_shared_blocks, port_guaranteed_blocks;
1352                 u32 full_xoff_th, full_xon_th, pause_xoff_th, pause_xon_th;
1353                 u32 tc_guaranteed_blocks;
1354                 u8 tc;
1355
1356                 /* Calculate per-port sizes */
1357                 tc_guaranteed_blocks = (u32)DIV_ROUND_UP(req->guranteed_per_tc,
1358                                                          BRB_BLOCK_SIZE);
1359                 port_blocks = req->num_active_tcs[port] ? active_port_blocks :
1360                                                           0;
1361                 port_guaranteed_blocks = req->num_active_tcs[port] *
1362                                          tc_guaranteed_blocks;
1363                 port_shared_blocks = port_blocks - port_guaranteed_blocks;
1364                 full_xoff_th = req->num_active_tcs[port] *
1365                                BRB_MIN_BLOCKS_PER_TC;
1366                 full_xon_th = full_xoff_th + min_pkt_size_blocks;
1367                 pause_xoff_th = tc_headroom_blocks;
1368                 pause_xon_th = pause_xoff_th + min_pkt_size_blocks;
1369
1370                 /* Init total size per port */
1371                 ecore_wr(p_hwfn, p_ptt, BRB_REG_TOTAL_MAC_SIZE + port * 4,
1372                          port_blocks);
1373
1374                 /* Init shared size per port */
1375                 ecore_wr(p_hwfn, p_ptt, BRB_REG_SHARED_HR_AREA + port * 4,
1376                          port_shared_blocks);
1377
1378                 for (tc = 0; tc < NUM_OF_TCS; tc++, reg_offset += 4) {
1379                         /* Clear init values for non-active TCs */
1380                         if (tc == req->num_active_tcs[port]) {
1381                                 tc_guaranteed_blocks = 0;
1382                                 full_xoff_th = 0;
1383                                 full_xon_th = 0;
1384                                 pause_xoff_th = 0;
1385                                 pause_xon_th = 0;
1386                         }
1387
1388                         /* Init guaranteed size per TC */
1389                         ecore_wr(p_hwfn, p_ptt,
1390                                  BRB_REG_TC_GUARANTIED_0 + reg_offset,
1391                                  tc_guaranteed_blocks);
1392                         ecore_wr(p_hwfn, p_ptt,
1393                                  BRB_REG_MAIN_TC_GUARANTIED_HYST_0 + reg_offset,
1394                                  BRB_HYST_BLOCKS);
1395
1396                         /* Init pause/full thresholds per physical TC - for
1397                          * loopback traffic.
1398                          */
1399                         ecore_wr(p_hwfn, p_ptt,
1400                                  BRB_REG_LB_TC_FULL_XOFF_THRESHOLD_0 +
1401                                  reg_offset, full_xoff_th);
1402                         ecore_wr(p_hwfn, p_ptt,
1403                                  BRB_REG_LB_TC_FULL_XON_THRESHOLD_0 +
1404                                  reg_offset, full_xon_th);
1405                         ecore_wr(p_hwfn, p_ptt,
1406                                  BRB_REG_LB_TC_PAUSE_XOFF_THRESHOLD_0 +
1407                                  reg_offset, pause_xoff_th);
1408                         ecore_wr(p_hwfn, p_ptt,
1409                                  BRB_REG_LB_TC_PAUSE_XON_THRESHOLD_0 +
1410                                  reg_offset, pause_xon_th);
1411
1412                         /* Init pause/full thresholds per physical TC - for
1413                          * main traffic.
1414                          */
1415                         ecore_wr(p_hwfn, p_ptt,
1416                                  BRB_REG_MAIN_TC_FULL_XOFF_THRESHOLD_0 +
1417                                  reg_offset, full_xoff_th);
1418                         ecore_wr(p_hwfn, p_ptt,
1419                                  BRB_REG_MAIN_TC_FULL_XON_THRESHOLD_0 +
1420                                  reg_offset, full_xon_th);
1421                         ecore_wr(p_hwfn, p_ptt,
1422                                  BRB_REG_MAIN_TC_PAUSE_XOFF_THRESHOLD_0 +
1423                                  reg_offset, pause_xoff_th);
1424                         ecore_wr(p_hwfn, p_ptt,
1425                                  BRB_REG_MAIN_TC_PAUSE_XON_THRESHOLD_0 +
1426                                  reg_offset, pause_xon_th);
1427                 }
1428         }
1429 }
1430
1431 /* In MF should be called once per port to set EtherType of OuterTag */
1432 void ecore_set_port_mf_ovlan_eth_type(struct ecore_hwfn *p_hwfn, u32 ethType)
1433 {
1434         /* Update DORQ register */
1435         STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, ethType);
1436 }
1437
1438 #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
1439 (var = ((var) & ~(1 << (offset))) | ((enable) ? (1 << (offset)) : 0))
1440 #define PRS_ETH_TUNN_OUTPUT_FORMAT        -188897008
1441 #define PRS_ETH_OUTPUT_FORMAT             -46832
1442
1443 void ecore_set_vxlan_dest_port(struct ecore_hwfn *p_hwfn,
1444                                struct ecore_ptt *p_ptt, u16 dest_port)
1445 {
1446         /* Update PRS register */
1447         ecore_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1448
1449         /* Update NIG register */
1450         ecore_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1451
1452         /* Update PBF register */
1453         ecore_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1454 }
1455
1456 void ecore_set_vxlan_enable(struct ecore_hwfn *p_hwfn,
1457                             struct ecore_ptt *p_ptt, bool vxlan_enable)
1458 {
1459         u32 reg_val;
1460
1461         /* Update PRS register */
1462         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1463         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1464                            PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT,
1465                            vxlan_enable);
1466         ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1467         if (reg_val) { /* TODO: handle E5 init */
1468                 reg_val = ecore_rd(p_hwfn, p_ptt,
1469                                    PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1470
1471                 /* Update output  only if tunnel blocks not included. */
1472                 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1473                         ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1474                                  (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1475         }
1476
1477         /* Update NIG register */
1478         reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1479         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1480                                    NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT,
1481                                    vxlan_enable);
1482         ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1483
1484         /* Update DORQ register */
1485         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN,
1486                  vxlan_enable ? 1 : 0);
1487 }
1488
1489 void ecore_set_gre_enable(struct ecore_hwfn *p_hwfn,
1490                           struct ecore_ptt *p_ptt,
1491                           bool eth_gre_enable, bool ip_gre_enable)
1492 {
1493         u32 reg_val;
1494
1495         /* Update PRS register */
1496         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1497         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1498                    PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT,
1499                    eth_gre_enable);
1500         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1501                    PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT,
1502                    ip_gre_enable);
1503         ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1504         if (reg_val) { /* TODO: handle E5 init */
1505                 reg_val = ecore_rd(p_hwfn, p_ptt,
1506                                    PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1507
1508                 /* Update output  only if tunnel blocks not included. */
1509                 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1510                         ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1511                                  (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1512         }
1513
1514         /* Update NIG register */
1515         reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1516         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1517                    NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT,
1518                    eth_gre_enable);
1519         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1520                    NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT,
1521                    ip_gre_enable);
1522         ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1523
1524         /* Update DORQ registers */
1525         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN,
1526                  eth_gre_enable ? 1 : 0);
1527         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN,
1528                  ip_gre_enable ? 1 : 0);
1529 }
1530
1531 void ecore_set_geneve_dest_port(struct ecore_hwfn *p_hwfn,
1532                                 struct ecore_ptt *p_ptt, u16 dest_port)
1533 {
1534         /* Update PRS register */
1535         ecore_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1536
1537         /* Update NIG register */
1538         ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1539
1540         /* Update PBF register */
1541         ecore_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1542 }
1543
1544 void ecore_set_geneve_enable(struct ecore_hwfn *p_hwfn,
1545                              struct ecore_ptt *p_ptt,
1546                              bool eth_geneve_enable, bool ip_geneve_enable)
1547 {
1548         u32 reg_val;
1549
1550         /* Update PRS register */
1551         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1552         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1553                    PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT,
1554                    eth_geneve_enable);
1555         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1556                    PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT,
1557                    ip_geneve_enable);
1558         ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1559         if (reg_val) { /* TODO: handle E5 init */
1560                 reg_val = ecore_rd(p_hwfn, p_ptt,
1561                                    PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1562
1563                 /* Update output  only if tunnel blocks not included. */
1564                 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1565                         ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1566                                  (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1567         }
1568
1569         /* Update NIG register */
1570         ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1571                  eth_geneve_enable ? 1 : 0);
1572         ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE,
1573                  ip_geneve_enable ? 1 : 0);
1574
1575         /* EDPM with geneve tunnel not supported in BB */
1576         if (ECORE_IS_BB_B0(p_hwfn->p_dev))
1577                 return;
1578
1579         /* Update DORQ registers */
1580         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5,
1581                  eth_geneve_enable ? 1 : 0);
1582         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5,
1583                  ip_geneve_enable ? 1 : 0);
1584 }
1585
1586 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET   4
1587 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT      -927094512
1588
1589 void ecore_set_vxlan_no_l2_enable(struct ecore_hwfn *p_hwfn,
1590                                   struct ecore_ptt *p_ptt,
1591                                   bool enable)
1592 {
1593         u32 reg_val, cfg_mask;
1594
1595         /* read PRS config register */
1596         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1597
1598         /* set VXLAN_NO_L2_ENABLE mask */
1599         cfg_mask = (1 << PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1600
1601         if (enable) {
1602                 /* set VXLAN_NO_L2_ENABLE flag */
1603                 reg_val |= cfg_mask;
1604
1605                 /* update PRS FIC  register */
1606                 ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1607                  (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1608         } else  {
1609                 /* clear VXLAN_NO_L2_ENABLE flag */
1610                 reg_val &= ~cfg_mask;
1611         }
1612
1613         /* write PRS config register */
1614         ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1615 }
1616
1617 #define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1618 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1619 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1620 #define PARSER_ETH_CONN_CM_HDR 0
1621 #define CAM_LINE_SIZE sizeof(u32)
1622 #define RAM_LINE_SIZE sizeof(u64)
1623 #define REG_SIZE sizeof(u32)
1624
1625 void ecore_gft_disable(struct ecore_hwfn *p_hwfn,
1626                        struct ecore_ptt *p_ptt,
1627                        u16 pf_id)
1628 {
1629         /* disable gft search for PF */
1630         ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1631
1632         /* Clean ram & cam for next gft session*/
1633
1634         /* Zero camline */
1635         ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1636
1637         /* Zero ramline */
1638         ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM +
1639                                 RAM_LINE_SIZE * pf_id, 0);
1640         ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM +
1641                                 RAM_LINE_SIZE * pf_id + REG_SIZE, 0);
1642 }
1643
1644
1645 void ecore_set_gft_event_id_cm_hdr(struct ecore_hwfn *p_hwfn,
1646                                    struct ecore_ptt *p_ptt)
1647 {
1648         u32 rfs_cm_hdr_event_id;
1649
1650         /* Set RFS event ID to be awakened i Tstorm By Prs */
1651         rfs_cm_hdr_event_id = ecore_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
1652         rfs_cm_hdr_event_id |= T_ETH_PACKET_ACTION_GFT_EVENTID <<
1653             PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1654         rfs_cm_hdr_event_id |= PARSER_ETH_CONN_GFT_ACTION_CM_HDR <<
1655             PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1656         ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
1657 }
1658
1659 void ecore_gft_config(struct ecore_hwfn *p_hwfn,
1660                                struct ecore_ptt *p_ptt,
1661                                u16 pf_id,
1662                                bool tcp,
1663                                bool udp,
1664                                bool ipv4,
1665                                bool ipv6,
1666                                enum gft_profile_type profile_type)
1667 {
1668         u32 reg_val, cam_line, ram_line_lo, ram_line_hi, search_non_ip_as_gft;
1669
1670         if (!ipv6 && !ipv4)
1671                 DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1672         if (!tcp && !udp)
1673                 DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - udp or tcp\n");
1674         if (profile_type >= MAX_GFT_PROFILE_TYPE)
1675                 DP_NOTICE(p_hwfn, true, "gft_config: unsupported gft_profile_type\n");
1676
1677         /* Set RFS event ID to be awakened i Tstorm By Prs */
1678         reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1679                   PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1680         reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1681         ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1682
1683         /* Do not load context only cid in PRS on match. */
1684         ecore_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1685
1686         /* Do not use tenant ID exist bit for gft search*/
1687         ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1688
1689         /* Set Cam */
1690         cam_line = 0;
1691         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1692
1693         /* Filters are per PF!! */
1694         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1695                   GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1696         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1697
1698         if (!(tcp && udp)) {
1699                 SET_FIELD(cam_line,
1700                           GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1701                           GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1702                 if (tcp)
1703                         SET_FIELD(cam_line,
1704                                   GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1705                                   GFT_PROFILE_TCP_PROTOCOL);
1706                 else
1707                         SET_FIELD(cam_line,
1708                                   GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1709                                   GFT_PROFILE_UDP_PROTOCOL);
1710         }
1711
1712         if (!(ipv4 && ipv6)) {
1713                 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1714                 if (ipv4)
1715                         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION,
1716                                   GFT_PROFILE_IPV4);
1717                 else
1718                         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION,
1719                                   GFT_PROFILE_IPV6);
1720         }
1721
1722         /* Write characteristics to cam */
1723         ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1724                  cam_line);
1725         cam_line = ecore_rd(p_hwfn, p_ptt,
1726                             PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1727
1728         /* Write line to RAM - compare to filter 4 tuple */
1729         ram_line_lo = 0;
1730         ram_line_hi = 0;
1731
1732         /* Search no IP as GFT */
1733         search_non_ip_as_gft = 0;
1734
1735         /* Tunnel type */
1736         SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1737         SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1738
1739         if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1740                 SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1741                 SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1742                 SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1743                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1744                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_SRC_PORT, 1);
1745                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1746         } else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1747                 SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1748                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1749                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1750         } else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1751                 SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1752                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1753         } else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1754                 SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1755                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1756         } else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1757                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1758
1759                 /* Allow tunneled traffic without inner IP */
1760                 search_non_ip_as_gft = 1;
1761         }
1762
1763         ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT,
1764                  search_non_ip_as_gft);
1765         ecore_wr(p_hwfn, p_ptt,
1766                  PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1767                  ram_line_lo);
1768         ecore_wr(p_hwfn, p_ptt,
1769                  PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id +
1770                  REG_SIZE, ram_line_hi);
1771
1772         /* Set default profile so that no filter match will happen */
1773         ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1774                  PRS_GFT_CAM_LINES_NO_MATCH, 0xffffffff);
1775         ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1776                  PRS_GFT_CAM_LINES_NO_MATCH + REG_SIZE, 0x3ff);
1777
1778         /* Enable gft search */
1779         ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1780 }
1781
1782 /* Configure VF zone size mode */
1783 void ecore_config_vf_zone_size_mode(struct ecore_hwfn *p_hwfn,
1784                                     struct ecore_ptt *p_ptt, u16 mode,
1785                                     bool runtime_init)
1786 {
1787         u32 msdm_vf_size_log = MSTORM_VF_ZONE_DEFAULT_SIZE_LOG;
1788         u32 msdm_vf_offset_mask;
1789
1790         if (mode == VF_ZONE_SIZE_MODE_DOUBLE)
1791                 msdm_vf_size_log += 1;
1792         else if (mode == VF_ZONE_SIZE_MODE_QUAD)
1793                 msdm_vf_size_log += 2;
1794
1795         msdm_vf_offset_mask = (1 << msdm_vf_size_log) - 1;
1796
1797         if (runtime_init) {
1798                 STORE_RT_REG(p_hwfn,
1799                              PGLUE_REG_B_MSDM_VF_SHIFT_B_RT_OFFSET,
1800                              msdm_vf_size_log);
1801                 STORE_RT_REG(p_hwfn,
1802                              PGLUE_REG_B_MSDM_OFFSET_MASK_B_RT_OFFSET,
1803                              msdm_vf_offset_mask);
1804         } else {
1805                 ecore_wr(p_hwfn, p_ptt,
1806                          PGLUE_B_REG_MSDM_VF_SHIFT_B, msdm_vf_size_log);
1807                 ecore_wr(p_hwfn, p_ptt,
1808                          PGLUE_B_REG_MSDM_OFFSET_MASK_B, msdm_vf_offset_mask);
1809         }
1810 }
1811
1812 /* Get mstorm statistics for offset by VF zone size mode */
1813 u32 ecore_get_mstorm_queue_stat_offset(struct ecore_hwfn *p_hwfn,
1814                                        u16 stat_cnt_id,
1815                                        u16 vf_zone_size_mode)
1816 {
1817         u32 offset = MSTORM_QUEUE_STAT_OFFSET(stat_cnt_id);
1818
1819         if ((vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) &&
1820             (stat_cnt_id > MAX_NUM_PFS)) {
1821                 if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1822                         offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) *
1823                             (stat_cnt_id - MAX_NUM_PFS);
1824                 else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1825                         offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) *
1826                             (stat_cnt_id - MAX_NUM_PFS);
1827         }
1828
1829         return offset;
1830 }
1831
1832 /* Get mstorm VF producer offset by VF zone size mode */
1833 u32 ecore_get_mstorm_eth_vf_prods_offset(struct ecore_hwfn *p_hwfn,
1834                                          u8 vf_id,
1835                                          u8 vf_queue_id,
1836                                          u16 vf_zone_size_mode)
1837 {
1838         u32 offset = MSTORM_ETH_VF_PRODS_OFFSET(vf_id, vf_queue_id);
1839
1840         if (vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) {
1841                 if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1842                         offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) *
1843                                    vf_id;
1844                 else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1845                         offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) *
1846                                   vf_id;
1847         }
1848
1849         return offset;
1850 }
1851
1852 #ifndef LINUX_REMOVE
1853 #define CRC8_INIT_VALUE 0xFF
1854 #endif
1855 static u8 cdu_crc8_table[CRC8_TABLE_SIZE];
1856
1857 /* Calculate and return CDU validation byte per connection type / region /
1858  * cid
1859  */
1860 static u8 ecore_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1861 {
1862         const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1863
1864         static u8 crc8_table_valid;     /*automatically initialized to 0*/
1865         u8 crc, validation_byte = 0;
1866         u32 validation_string = 0;
1867         u32 data_to_crc;
1868
1869         if (crc8_table_valid == 0) {
1870                 OSAL_CRC8_POPULATE(cdu_crc8_table, 0x07);
1871                 crc8_table_valid = 1;
1872         }
1873
1874         /*
1875          * The CRC is calculated on the String-to-compress:
1876          * [31:8]  = {CID[31:20],CID[11:0]}
1877          * [7:4]   = Region
1878          * [3:0]   = Type
1879          */
1880         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1881                 validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1882
1883         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1884                 validation_string |= ((region & 0xF) << 4);
1885
1886         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1887                 validation_string |= (conn_type & 0xF);
1888
1889         /* Convert to big-endian and calculate CRC8*/
1890         data_to_crc = OSAL_BE32_TO_CPU(validation_string);
1891
1892         crc = OSAL_CRC8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc),
1893                         CRC8_INIT_VALUE);
1894
1895         /* The validation byte [7:0] is composed:
1896          * for type A validation
1897          * [7]          = active configuration bit
1898          * [6:0]        = crc[6:0]
1899          *
1900          * for type B validation
1901          * [7]          = active configuration bit
1902          * [6:3]        = connection_type[3:0]
1903          * [2:0]        = crc[2:0]
1904          */
1905
1906         validation_byte |= ((validation_cfg >>
1907                              CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1908
1909         if ((validation_cfg >>
1910              CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1911                 validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1912         else
1913                 validation_byte |= crc & 0x7F;
1914
1915         return validation_byte;
1916 }
1917
1918 /* Calcualte and set validation bytes for session context */
1919 void ecore_calc_session_ctx_validation(void *p_ctx_mem, u16 ctx_size,
1920                                        u8 ctx_type, u32 cid)
1921 {
1922         u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1923
1924         p_ctx = (u8 *)p_ctx_mem;
1925         x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1926         t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1927         u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1928
1929         OSAL_MEMSET(p_ctx, 0, ctx_size);
1930
1931         *x_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 3, cid);
1932         *t_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 4, cid);
1933         *u_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 5, cid);
1934 }
1935
1936 /* Calcualte and set validation bytes for task context */
1937 void ecore_calc_task_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type,
1938                                     u32 tid)
1939 {
1940         u8 *p_ctx, *region1_val_ptr;
1941
1942         p_ctx = (u8 *)p_ctx_mem;
1943         region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1944
1945         OSAL_MEMSET(p_ctx, 0, ctx_size);
1946
1947         *region1_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 1, tid);
1948 }
1949
1950 /* Memset session context to 0 while preserving validation bytes */
1951 void ecore_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1952 {
1953         u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1954         u8 x_val, t_val, u_val;
1955
1956         p_ctx = (u8 *)p_ctx_mem;
1957         x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1958         t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1959         u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1960
1961         x_val = *x_val_ptr;
1962         t_val = *t_val_ptr;
1963         u_val = *u_val_ptr;
1964
1965         OSAL_MEMSET(p_ctx, 0, ctx_size);
1966
1967         *x_val_ptr = x_val;
1968         *t_val_ptr = t_val;
1969         *u_val_ptr = u_val;
1970 }
1971
1972 /* Memset task context to 0 while preserving validation bytes */
1973 void ecore_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1974 {
1975         u8 *p_ctx, *region1_val_ptr;
1976         u8 region1_val;
1977
1978         p_ctx = (u8 *)p_ctx_mem;
1979         region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1980
1981         region1_val = *region1_val_ptr;
1982
1983         OSAL_MEMSET(p_ctx, 0, ctx_size);
1984
1985         *region1_val_ptr = region1_val;
1986 }
1987
1988 /* Enable and configure context validation */
1989 void ecore_enable_context_validation(struct ecore_hwfn *p_hwfn,
1990                                      struct ecore_ptt *p_ptt)
1991 {
1992         u32 ctx_validation;
1993
1994         /* Enable validation for connection region 3 - bits [31:24] */
1995         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1996         ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1997
1998         /* Enable validation for connection region 5 - bits [15: 8] */
1999         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
2000         ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
2001
2002         /* Enable validation for connection region 1 - bits [15: 8] */
2003         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
2004         ecore_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
2005 }
2006
2007
2008 /*******************************************************************************
2009  * File name : rdma_init.c
2010  * Author    : Michael Shteinbok
2011  *******************************************************************************
2012  *******************************************************************************
2013  * Description:
2014  * RDMA HSI functions
2015  *
2016  *******************************************************************************
2017  * Notes: This is the input to the auto generated file drv_init_fw_funcs.c
2018  *
2019  *******************************************************************************
2020  */
2021 static u32 ecore_get_rdma_assert_ram_addr(struct ecore_hwfn *p_hwfn,
2022                                           u8 storm_id)
2023 {
2024         switch (storm_id) {
2025         case 0: return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
2026                        TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
2027         case 1: return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
2028                        MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
2029         case 2: return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
2030                        USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
2031         case 3: return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
2032                        XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
2033         case 4: return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
2034                        YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
2035         case 5: return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
2036                        PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
2037
2038         default: return 0;
2039         }
2040 }
2041
2042 void ecore_set_rdma_error_level(struct ecore_hwfn *p_hwfn,
2043                                 struct ecore_ptt *p_ptt,
2044                                 u8 assert_level[NUM_STORMS])
2045 {
2046         u8 storm_id;
2047         for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
2048                 u32 ram_addr = ecore_get_rdma_assert_ram_addr(p_hwfn, storm_id);
2049
2050                 ecore_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
2051         }
2052 }