Imported Upstream version 16.11
[deb_dpdk.git] / drivers / net / qede / base / ecore_init_fw_funcs.c
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8
9 #include "bcm_osal.h"
10 #include "ecore_hw.h"
11 #include "ecore_init_ops.h"
12 #include "reg_addr.h"
13 #include "ecore_rt_defs.h"
14 #include "ecore_hsi_common.h"
15 #include "ecore_hsi_init_func.h"
16 #include "ecore_hsi_eth.h"
17 #include "ecore_hsi_init_tool.h"
18 #include "ecore_iro.h"
19 #include "ecore_init_fw_funcs.h"
20 enum CmInterfaceEnum {
21         MCM_SEC,
22         MCM_PRI,
23         UCM_SEC,
24         UCM_PRI,
25         TCM_SEC,
26         TCM_PRI,
27         YCM_SEC,
28         YCM_PRI,
29         XCM_SEC,
30         XCM_PRI,
31         NUM_OF_CM_INTERFACES
32 };
33 /* general constants */
34 #define QM_PQ_MEM_4KB(pq_size) \
35 (pq_size ? DIV_ROUND_UP((pq_size + 1) * QM_PQ_ELEMENT_SIZE, 0x1000) : 0)
36 #define QM_PQ_SIZE_256B(pq_size) \
37 (pq_size ? DIV_ROUND_UP(pq_size, 0x100) - 1 : 0)
38 #define QM_INVALID_PQ_ID                        0xffff
39 /* feature enable */
40 #define QM_BYPASS_EN                            1
41 #define QM_BYTE_CRD_EN                          1
42 /* other PQ constants */
43 #define QM_OTHER_PQS_PER_PF                     4
44 /* WFQ constants */
45 #define QM_WFQ_UPPER_BOUND                      62500000
46 #define QM_WFQ_VP_PQ_VOQ_SHIFT          0
47 #define QM_WFQ_VP_PQ_PF_SHIFT           5
48 #define QM_WFQ_INC_VAL(weight)          ((weight) * 0x9000)
49 #define QM_WFQ_MAX_INC_VAL                      43750000
50 /* RL constants */
51 #define QM_RL_UPPER_BOUND                       62500000
52 #define QM_RL_PERIOD                            5
53 #define QM_RL_PERIOD_CLK_25M            (25 * QM_RL_PERIOD)
54 #define QM_RL_MAX_INC_VAL                       43750000
55 /* RL increment value - the factor of 1.01 was added after seeing only
56  * 99% factor reached in a 25Gbps port with DPDK RFC 2544 test.
57  * In this scenario the PF RL was reducing the line rate to 99% although
58  * the credit increment value was the correct one and FW calculated
59  * correct packet sizes. The reason for the inaccuracy of the RL is
60  * unknown at this point.
61  */
62 /* rate in mbps */
63 #define QM_RL_INC_VAL(rate) OSAL_MAX_T(u32, (u32)(((rate ? rate : 1000000) * \
64                                         QM_RL_PERIOD * 101) / (8 * 100)), 1)
65 /* AFullOprtnstcCrdMask constants */
66 #define QM_OPPOR_LINE_VOQ_DEF           1
67 #define QM_OPPOR_FW_STOP_DEF            0
68 #define QM_OPPOR_PQ_EMPTY_DEF           1
69 /* Command Queue constants */
70 #define PBF_CMDQ_PURE_LB_LINES                  150
71 #define PBF_CMDQ_LINES_RT_OFFSET(voq) \
72 (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
73 voq * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET \
74 - PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
75 #define PBF_BTB_GUARANTEED_RT_OFFSET(voq) \
76 (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + voq * \
77 (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
78 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
79 ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
80 /* BTB: blocks constants (block size = 256B) */
81 #define BTB_JUMBO_PKT_BLOCKS 38 /* 256B blocks in 9700B packet */
82 /* headroom per-port */
83 #define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
84 #define BTB_PURE_LB_FACTOR              10
85 #define BTB_PURE_LB_RATIO               7 /* factored (hence really 0.7) */
86 /* QM stop command constants */
87 #define QM_STOP_PQ_MASK_WIDTH                   32
88 #define QM_STOP_CMD_ADDR                                0x2
89 #define QM_STOP_CMD_STRUCT_SIZE                 2
90 #define QM_STOP_CMD_PAUSE_MASK_OFFSET   0
91 #define QM_STOP_CMD_PAUSE_MASK_SHIFT    0
92 #define QM_STOP_CMD_PAUSE_MASK_MASK             -1
93 #define QM_STOP_CMD_GROUP_ID_OFFSET             1
94 #define QM_STOP_CMD_GROUP_ID_SHIFT              16
95 #define QM_STOP_CMD_GROUP_ID_MASK               15
96 #define QM_STOP_CMD_PQ_TYPE_OFFSET              1
97 #define QM_STOP_CMD_PQ_TYPE_SHIFT               24
98 #define QM_STOP_CMD_PQ_TYPE_MASK                1
99 #define QM_STOP_CMD_MAX_POLL_COUNT              100
100 #define QM_STOP_CMD_POLL_PERIOD_US              500
101 /* QM command macros */
102 #define QM_CMD_STRUCT_SIZE(cmd) cmd##_STRUCT_SIZE
103 #define QM_CMD_SET_FIELD(var, cmd, field, value) \
104 SET_FIELD(var[cmd##_##field##_OFFSET], cmd##_##field, value)
105 /* QM: VOQ macros */
106 #define PHYS_VOQ(port, tc, max_phys_tcs_per_port) \
107 ((port) * (max_phys_tcs_per_port) + (tc))
108 #define LB_VOQ(port)                            (MAX_PHYS_VOQS + (port))
109 #define VOQ(port, tc, max_phys_tcs_per_port) \
110 ((tc) < LB_TC ? PHYS_VOQ(port, tc, max_phys_tcs_per_port) : LB_VOQ(port))
111 /******************** INTERNAL IMPLEMENTATION *********************/
112 /* Prepare PF RL enable/disable runtime init values */
113 static void ecore_enable_pf_rl(struct ecore_hwfn *p_hwfn, bool pf_rl_en)
114 {
115         STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
116         if (pf_rl_en) {
117                 /* enable RLs for all VOQs */
118                 STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET,
119                              (1 << MAX_NUM_VOQS) - 1);
120                 /* write RL period */
121                 STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIOD_RT_OFFSET,
122                              QM_RL_PERIOD_CLK_25M);
123                 STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIODTIMER_RT_OFFSET,
124                              QM_RL_PERIOD_CLK_25M);
125                 /* set credit threshold for QM bypass flow */
126                 if (QM_BYPASS_EN)
127                         STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
128                                      QM_RL_UPPER_BOUND);
129         }
130 }
131
132 /* Prepare PF WFQ enable/disable runtime init values */
133 static void ecore_enable_pf_wfq(struct ecore_hwfn *p_hwfn, bool pf_wfq_en)
134 {
135         STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
136         /* set credit threshold for QM bypass flow */
137         if (pf_wfq_en && QM_BYPASS_EN)
138                 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
139                              QM_WFQ_UPPER_BOUND);
140 }
141
142 /* Prepare VPORT RL enable/disable runtime init values */
143 static void ecore_enable_vport_rl(struct ecore_hwfn *p_hwfn, bool vport_rl_en)
144 {
145         STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
146                      vport_rl_en ? 1 : 0);
147         if (vport_rl_en) {
148                 /* write RL period (use timer 0 only) */
149                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
150                              QM_RL_PERIOD_CLK_25M);
151                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
152                              QM_RL_PERIOD_CLK_25M);
153                 /* set credit threshold for QM bypass flow */
154                 if (QM_BYPASS_EN)
155                         STORE_RT_REG(p_hwfn,
156                                      QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
157                                      QM_RL_UPPER_BOUND);
158         }
159 }
160
161 /* Prepare VPORT WFQ enable/disable runtime init values */
162 static void ecore_enable_vport_wfq(struct ecore_hwfn *p_hwfn, bool vport_wfq_en)
163 {
164         STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
165                      vport_wfq_en ? 1 : 0);
166         /* set credit threshold for QM bypass flow */
167         if (vport_wfq_en && QM_BYPASS_EN)
168                 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
169                              QM_WFQ_UPPER_BOUND);
170 }
171
172 /* Prepare runtime init values to allocate PBF command queue lines for
173  * the specified VOQ
174  */
175 static void ecore_cmdq_lines_voq_rt_init(struct ecore_hwfn *p_hwfn,
176                                          u8 voq, u16 cmdq_lines)
177 {
178         u32 qm_line_crd;
179         /* In A0 - Limit the size of pbf queue so that only 511 commands
180          * with the minimum size of 4 (FCoE minimum size)
181          */
182         bool is_bb_a0 = ECORE_IS_BB_A0(p_hwfn->p_dev);
183         if (is_bb_a0)
184                 cmdq_lines = OSAL_MIN_T(u32, cmdq_lines, 1022);
185         qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
186         OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq),
187                          (u32)cmdq_lines);
188         STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + voq, qm_line_crd);
189         STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + voq,
190                      qm_line_crd);
191 }
192
193 /* Prepare runtime init values to allocate PBF command queue lines. */
194 static void ecore_cmdq_lines_rt_init(struct ecore_hwfn *p_hwfn,
195                                      u8 max_ports_per_engine,
196                                      u8 max_phys_tcs_per_port,
197                                      struct init_qm_port_params
198                                      port_params[MAX_NUM_PORTS])
199 {
200         u8 tc, voq, port_id, num_tcs_in_port;
201         /* clear PBF lines for all VOQs */
202         for (voq = 0; voq < MAX_NUM_VOQS; voq++)
203                 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq), 0);
204         for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
205                 if (port_params[port_id].active) {
206                         u16 phys_lines, phys_lines_per_tc;
207                         /* find #lines to divide between active physical TCs */
208                         phys_lines =
209                             port_params[port_id].num_pbf_cmd_lines -
210                             PBF_CMDQ_PURE_LB_LINES;
211                         /* find #lines per active physical TC */
212                         num_tcs_in_port = 0;
213                         for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
214                                 if (((port_params[port_id].active_phys_tcs >>
215                                                 tc) & 0x1) == 1)
216                                         num_tcs_in_port++;
217                         }
218                         phys_lines_per_tc = phys_lines / num_tcs_in_port;
219                         /* init registers per active TC */
220                         for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
221                                 if (((port_params[port_id].active_phys_tcs >>
222                                                         tc) & 0x1) == 1) {
223                                         voq = PHYS_VOQ(port_id, tc,
224                                                         max_phys_tcs_per_port);
225                                         ecore_cmdq_lines_voq_rt_init(p_hwfn,
226                                                         voq, phys_lines_per_tc);
227                                 }
228                         }
229                         /* init registers for pure LB TC */
230                         ecore_cmdq_lines_voq_rt_init(p_hwfn, LB_VOQ(port_id),
231                                                      PBF_CMDQ_PURE_LB_LINES);
232                 }
233         }
234 }
235
236 /*
237  * Prepare runtime init values to allocate guaranteed BTB blocks for the
238  * specified port. The guaranteed BTB space is divided between the TCs as
239  * follows (shared space Is currently not used):
240  * 1. Parameters:
241  *     B BTB blocks for this port
242  *     C Number of physical TCs for this port
243  * 2. Calculation:
244  *     a. 38 blocks (9700B jumbo frame) are allocated for global per port
245  *        headroom
246  *     b. B = B 38 (remainder after global headroom allocation)
247  *     c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
248  *     d. B = B MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
249  *     e. B/C blocks are allocated for each physical TC.
250  * Assumptions:
251  * - MTU is up to 9700 bytes (38 blocks)
252  * - All TCs are considered symmetrical (same rate and packet size)
253  * - No optimization for lossy TC (all are considered lossless). Shared space is
254  *   not enabled and allocated for each TC.
255  */
256 static void ecore_btb_blocks_rt_init(struct ecore_hwfn *p_hwfn,
257                                      u8 max_ports_per_engine,
258                                      u8 max_phys_tcs_per_port,
259                                      struct init_qm_port_params
260                                      port_params[MAX_NUM_PORTS])
261 {
262         u8 tc, voq, port_id, num_tcs_in_port;
263         u32 usable_blocks, pure_lb_blocks, phys_blocks;
264         for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
265                 if (port_params[port_id].active) {
266                         /* subtract headroom blocks */
267                         usable_blocks =
268                             port_params[port_id].num_btb_blocks -
269                             BTB_HEADROOM_BLOCKS;
270 /* find blocks per physical TC. use factor to avoid floating arithmethic */
271
272                         num_tcs_in_port = 0;
273                         for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
274                                 if (((port_params[port_id].active_phys_tcs >>
275                                                                 tc) & 0x1) == 1)
276                                         num_tcs_in_port++;
277                         pure_lb_blocks =
278                             (usable_blocks * BTB_PURE_LB_FACTOR) /
279                             (num_tcs_in_port *
280                              BTB_PURE_LB_FACTOR + BTB_PURE_LB_RATIO);
281                         pure_lb_blocks =
282                             OSAL_MAX_T(u32, BTB_JUMBO_PKT_BLOCKS,
283                                        pure_lb_blocks / BTB_PURE_LB_FACTOR);
284                         phys_blocks =
285                             (usable_blocks -
286                              pure_lb_blocks) /
287                              num_tcs_in_port;
288                         /* init physical TCs */
289                         for (tc = 0;
290                              tc < NUM_OF_PHYS_TCS;
291                              tc++) {
292                                 if (((port_params[port_id].active_phys_tcs >>
293                                                         tc) & 0x1) == 1) {
294                                         voq = PHYS_VOQ(port_id, tc,
295                                                        max_phys_tcs_per_port);
296                                         STORE_RT_REG(p_hwfn,
297                                              PBF_BTB_GUARANTEED_RT_OFFSET(voq),
298                                              phys_blocks);
299                                 }
300                         }
301                         /* init pure LB TC */
302                         STORE_RT_REG(p_hwfn,
303                                      PBF_BTB_GUARANTEED_RT_OFFSET(
304                                         LB_VOQ(port_id)), pure_lb_blocks);
305                 }
306         }
307 }
308
309 /* Prepare Tx PQ mapping runtime init values for the specified PF */
310 static void ecore_tx_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
311                                     struct ecore_ptt *p_ptt,
312                                     u8 port_id,
313                                     u8 pf_id,
314                                     u8 max_phys_tcs_per_port,
315                                     bool is_first_pf,
316                                     u32 num_pf_cids,
317                                     u32 num_vf_cids,
318                                     u16 start_pq,
319                                     u16 num_pf_pqs,
320                                     u16 num_vf_pqs,
321                                     u8 start_vport,
322                                     u32 base_mem_addr_4kb,
323                                     struct init_qm_pq_params *pq_params,
324                                     struct init_qm_vport_params *vport_params)
325 {
326         u16 i, pq_id, pq_group;
327         u16 num_pqs = num_pf_pqs + num_vf_pqs;
328         u16 first_pq_group = start_pq / QM_PF_QUEUE_GROUP_SIZE;
329         u16 last_pq_group = (start_pq + num_pqs - 1) / QM_PF_QUEUE_GROUP_SIZE;
330         bool is_bb_a0 = ECORE_IS_BB_A0(p_hwfn->p_dev);
331         /* a bit per Tx PQ indicating if the PQ is associated with a VF */
332         u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
333         u32 tx_pq_vf_mask_width = is_bb_a0 ? 32 : QM_PF_QUEUE_GROUP_SIZE;
334         u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / tx_pq_vf_mask_width;
335         u32 pq_mem_4kb = QM_PQ_MEM_4KB(num_pf_cids);
336         u32 vport_pq_mem_4kb = QM_PQ_MEM_4KB(num_vf_cids);
337         u32 mem_addr_4kb = base_mem_addr_4kb;
338         /* set mapping from PQ group to PF */
339         for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
340                 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
341                              (u32)(pf_id));
342         /* set PQ sizes */
343         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
344                      QM_PQ_SIZE_256B(num_pf_cids));
345         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
346                      QM_PQ_SIZE_256B(num_vf_cids));
347         /* go over all Tx PQs */
348         for (i = 0, pq_id = start_pq; i < num_pqs; i++, pq_id++) {
349                 struct qm_rf_pq_map tx_pq_map;
350                 u8 voq =
351                     VOQ(port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
352                 bool is_vf_pq = (i >= num_pf_pqs);
353                 /* added to avoid compilation warning */
354                 u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
355                 bool rl_valid = pq_params[i].rl_valid &&
356                                 pq_params[i].vport_id < max_qm_global_rls;
357                 /* update first Tx PQ of VPORT/TC */
358                 u8 vport_id_in_pf = pq_params[i].vport_id - start_vport;
359                 u16 first_tx_pq_id =
360                     vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].
361                                                                 tc_id];
362                 if (first_tx_pq_id == QM_INVALID_PQ_ID) {
363                         /* create new VP PQ */
364                         vport_params[vport_id_in_pf].
365                             first_tx_pq_id[pq_params[i].tc_id] = pq_id;
366                         first_tx_pq_id = pq_id;
367                         /* map VP PQ to VOQ and PF */
368                         STORE_RT_REG(p_hwfn,
369                                      QM_REG_WFQVPMAP_RT_OFFSET + first_tx_pq_id,
370                                      (voq << QM_WFQ_VP_PQ_VOQ_SHIFT) | (pf_id <<
371                                                         QM_WFQ_VP_PQ_PF_SHIFT));
372                 }
373                 /* check RL ID */
374                 if (pq_params[i].rl_valid && pq_params[i].vport_id >=
375                                                         max_qm_global_rls)
376                         DP_NOTICE(p_hwfn, true,
377                                   "Invalid VPORT ID for rate limiter config");
378                 /* fill PQ map entry */
379                 OSAL_MEMSET(&tx_pq_map, 0, sizeof(tx_pq_map));
380                 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_PQ_VALID, 1);
381                 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_VALID,
382                           rl_valid ? 1 : 0);
383                 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VP_PQ_ID, first_tx_pq_id);
384                 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_ID,
385                           rl_valid ? pq_params[i].vport_id : 0);
386                 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VOQ, voq);
387                 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,
388                           pq_params[i].wrr_group);
389                 /* write PQ map entry to CAM */
390                 STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id,
391                              *((u32 *)&tx_pq_map));
392                 /* set base address */
393                 STORE_RT_REG(p_hwfn, QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
394                              mem_addr_4kb);
395                 /* check if VF PQ */
396                 if (is_vf_pq) {
397                         /* if PQ is associated with a VF, add indication to PQ
398                          * VF mask
399                          */
400                         tx_pq_vf_mask[pq_id / tx_pq_vf_mask_width] |=
401                             (1 << (pq_id % tx_pq_vf_mask_width));
402                         mem_addr_4kb += vport_pq_mem_4kb;
403                 } else {
404                         mem_addr_4kb += pq_mem_4kb;
405                 }
406         }
407         /* store Tx PQ VF mask to size select register */
408         for (i = 0; i < num_tx_pq_vf_masks; i++) {
409                 if (tx_pq_vf_mask[i]) {
410                         if (is_bb_a0) {
411                                 /* A0-only: perform read-modify-write
412                                  *(fixed in B0)
413                                  */
414                                 u32 curr_mask =
415                                     is_first_pf ? 0 : ecore_rd(p_hwfn, p_ptt,
416                                                        QM_REG_MAXPQSIZETXSEL_0
417                                                                 + i * 4);
418                                 STORE_RT_REG(p_hwfn,
419                                              QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET +
420                                              i, curr_mask | tx_pq_vf_mask[i]);
421                         } else
422                                 STORE_RT_REG(p_hwfn,
423                                              QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET +
424                                              i, tx_pq_vf_mask[i]);
425                 }
426         }
427 }
428
429 /* Prepare Other PQ mapping runtime init values for the specified PF */
430 static void ecore_other_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
431                                        u8 port_id,
432                                        u8 pf_id,
433                                        u32 num_pf_cids,
434                                        u32 num_tids, u32 base_mem_addr_4kb)
435 {
436         u16 i, pq_id;
437 /* a single other PQ grp is used in each PF, where PQ group i is used in PF i */
438
439         u16 pq_group = pf_id;
440         u32 pq_size = num_pf_cids + num_tids;
441         u32 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
442         u32 mem_addr_4kb = base_mem_addr_4kb;
443         /* map PQ group to PF */
444         STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
445                      (u32)(pf_id));
446         /* set PQ sizes */
447         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
448                      QM_PQ_SIZE_256B(pq_size));
449         /* set base address */
450         for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
451              i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
452                 STORE_RT_REG(p_hwfn, QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
453                              mem_addr_4kb);
454                 mem_addr_4kb += pq_mem_4kb;
455         }
456 }
457 /* Prepare PF WFQ runtime init values for specified PF. Return -1 on error. */
458 static int ecore_pf_wfq_rt_init(struct ecore_hwfn *p_hwfn,
459                                 u8 port_id,
460                                 u8 pf_id,
461                                 u16 pf_wfq,
462                                 u8 max_phys_tcs_per_port,
463                                 u16 num_tx_pqs,
464                                 struct init_qm_pq_params *pq_params)
465 {
466         u16 i;
467         u32 inc_val;
468         u32 crd_reg_offset =
469             (pf_id <
470              MAX_NUM_PFS_BB ? QM_REG_WFQPFCRD_RT_OFFSET :
471              QM_REG_WFQPFCRD_MSB_RT_OFFSET) + (pf_id % MAX_NUM_PFS_BB);
472         inc_val = QM_WFQ_INC_VAL(pf_wfq);
473         if (inc_val == 0 || inc_val > QM_WFQ_MAX_INC_VAL) {
474                 DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration");
475                 return -1;
476         }
477         for (i = 0; i < num_tx_pqs; i++) {
478                 u8 voq =
479                     VOQ(port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
480                 OVERWRITE_RT_REG(p_hwfn, crd_reg_offset + voq * MAX_NUM_PFS_BB,
481                                  (u32)QM_WFQ_CRD_REG_SIGN_BIT);
482         }
483         STORE_RT_REG(p_hwfn, QM_REG_WFQPFUPPERBOUND_RT_OFFSET + pf_id,
484                      QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
485         STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + pf_id, inc_val);
486         return 0;
487 }
488 /* Prepare PF RL runtime init values for specified PF. Return -1 on error. */
489 static int ecore_pf_rl_rt_init(struct ecore_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
490 {
491         u32 inc_val = QM_RL_INC_VAL(pf_rl);
492         if (inc_val > QM_RL_MAX_INC_VAL) {
493                 DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration");
494                 return -1;
495         }
496         STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id,
497                      (u32)QM_RL_CRD_REG_SIGN_BIT);
498         STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
499                      QM_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
500         STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
501         return 0;
502 }
503 /* Prepare VPORT WFQ runtime init values for the specified VPORTs. Return -1 on
504  * error.
505  */
506 static int ecore_vp_wfq_rt_init(struct ecore_hwfn *p_hwfn,
507                                 u8 num_vports,
508                                 struct init_qm_vport_params *vport_params)
509 {
510         u8 tc, i;
511         u32 inc_val;
512         /* go over all PF VPORTs */
513         for (i = 0; i < num_vports; i++) {
514                 if (vport_params[i].vport_wfq) {
515                         inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
516                         if (inc_val > QM_WFQ_MAX_INC_VAL) {
517                                 DP_NOTICE(p_hwfn, true,
518                                           "Invalid VPORT WFQ weight config");
519                                 return -1;
520                         }
521                         /* each VPORT can have several VPORT PQ IDs for
522                          * different TCs
523                          */
524                         for (tc = 0; tc < NUM_OF_TCS; tc++) {
525                                 u16 vport_pq_id =
526                                     vport_params[i].first_tx_pq_id[tc];
527                                 if (vport_pq_id != QM_INVALID_PQ_ID) {
528                                         STORE_RT_REG(p_hwfn,
529                                                   QM_REG_WFQVPCRD_RT_OFFSET +
530                                                   vport_pq_id,
531                                                   (u32)QM_WFQ_CRD_REG_SIGN_BIT);
532                                         STORE_RT_REG(p_hwfn,
533                                                 QM_REG_WFQVPWEIGHT_RT_OFFSET
534                                                      + vport_pq_id, inc_val);
535                                 }
536                         }
537                 }
538         }
539         return 0;
540 }
541
542 /* Prepare VPORT RL runtime init values for the specified VPORTs.
543  * Return -1 on error.
544  */
545 static int ecore_vport_rl_rt_init(struct ecore_hwfn *p_hwfn,
546                                   u8 start_vport,
547                                   u8 num_vports,
548                                   struct init_qm_vport_params *vport_params)
549 {
550         u8 i, vport_id;
551         if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
552                 DP_NOTICE(p_hwfn, true,
553                           "Invalid VPORT ID for rate limiter configuration");
554                 return -1;
555         }
556         /* go over all PF VPORTs */
557         for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
558                 u32 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl);
559                 if (inc_val > QM_RL_MAX_INC_VAL) {
560                         DP_NOTICE(p_hwfn, true,
561                                   "Invalid VPORT rate-limit configuration");
562                         return -1;
563                 }
564                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
565                              (u32)QM_RL_CRD_REG_SIGN_BIT);
566                 STORE_RT_REG(p_hwfn,
567                              QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
568                              QM_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
569                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
570                              inc_val);
571         }
572         return 0;
573 }
574
575 static bool ecore_poll_on_qm_cmd_ready(struct ecore_hwfn *p_hwfn,
576                                        struct ecore_ptt *p_ptt)
577 {
578         u32 reg_val, i;
579         for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && reg_val == 0;
580              i++) {
581                 OSAL_UDELAY(QM_STOP_CMD_POLL_PERIOD_US);
582                 reg_val = ecore_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
583         }
584         /* check if timeout while waiting for SDM command ready */
585         if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
586                 DP_VERBOSE(p_hwfn, ECORE_MSG_DEBUG,
587                            "Timeout waiting for QM SDM cmd ready signal\n");
588                 return false;
589         }
590         return true;
591 }
592
593 static bool ecore_send_qm_cmd(struct ecore_hwfn *p_hwfn,
594                               struct ecore_ptt *p_ptt,
595                               u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
596 {
597         if (!ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
598                 return false;
599         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
600         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
601         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
602         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
603         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
604         return ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
605 }
606
607 /******************** INTERFACE IMPLEMENTATION *********************/
608 u32 ecore_qm_pf_mem_size(u8 pf_id,
609                          u32 num_pf_cids,
610                          u32 num_vf_cids,
611                          u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
612 {
613         return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
614             QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
615             QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
616 }
617
618 int ecore_qm_common_rt_init(struct ecore_hwfn *p_hwfn,
619                             u8 max_ports_per_engine,
620                             u8 max_phys_tcs_per_port,
621                             bool pf_rl_en,
622                             bool pf_wfq_en,
623                             bool vport_rl_en,
624                             bool vport_wfq_en,
625                             struct init_qm_port_params
626                             port_params[MAX_NUM_PORTS])
627 {
628         /* init AFullOprtnstcCrdMask */
629         u32 mask =
630             (QM_OPPOR_LINE_VOQ_DEF << QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
631             (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
632             (pf_wfq_en << QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
633             (vport_wfq_en << QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
634             (pf_rl_en << QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
635             (vport_rl_en << QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
636             (QM_OPPOR_FW_STOP_DEF << QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
637             (QM_OPPOR_PQ_EMPTY_DEF <<
638              QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
639         STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
640         /* enable/disable PF RL */
641         ecore_enable_pf_rl(p_hwfn, pf_rl_en);
642         /* enable/disable PF WFQ */
643         ecore_enable_pf_wfq(p_hwfn, pf_wfq_en);
644         /* enable/disable VPORT RL */
645         ecore_enable_vport_rl(p_hwfn, vport_rl_en);
646         /* enable/disable VPORT WFQ */
647         ecore_enable_vport_wfq(p_hwfn, vport_wfq_en);
648         /* init PBF CMDQ line credit */
649         ecore_cmdq_lines_rt_init(p_hwfn, max_ports_per_engine,
650                                  max_phys_tcs_per_port, port_params);
651         /* init BTB blocks in PBF */
652         ecore_btb_blocks_rt_init(p_hwfn, max_ports_per_engine,
653                                  max_phys_tcs_per_port, port_params);
654         return 0;
655 }
656
657 int ecore_qm_pf_rt_init(struct ecore_hwfn *p_hwfn,
658                         struct ecore_ptt *p_ptt,
659                         u8 port_id,
660                         u8 pf_id,
661                         u8 max_phys_tcs_per_port,
662                         bool is_first_pf,
663                         u32 num_pf_cids,
664                         u32 num_vf_cids,
665                         u32 num_tids,
666                         u16 start_pq,
667                         u16 num_pf_pqs,
668                         u16 num_vf_pqs,
669                         u8 start_vport,
670                         u8 num_vports,
671                         u16 pf_wfq,
672                         u32 pf_rl,
673                         struct init_qm_pq_params *pq_params,
674                         struct init_qm_vport_params *vport_params)
675 {
676         u8 tc, i;
677         u32 other_mem_size_4kb =
678             QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
679         /* clear first Tx PQ ID array for each VPORT */
680         for (i = 0; i < num_vports; i++)
681                 for (tc = 0; tc < NUM_OF_TCS; tc++)
682                         vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
683         /* map Other PQs (if any) */
684 #if QM_OTHER_PQS_PER_PF > 0
685         ecore_other_pq_map_rt_init(p_hwfn, port_id, pf_id, num_pf_cids,
686                                    num_tids, 0);
687 #endif
688         /* map Tx PQs */
689         ecore_tx_pq_map_rt_init(p_hwfn, p_ptt, port_id, pf_id,
690                                 max_phys_tcs_per_port, is_first_pf, num_pf_cids,
691                                 num_vf_cids, start_pq, num_pf_pqs, num_vf_pqs,
692                                 start_vport, other_mem_size_4kb, pq_params,
693                                 vport_params);
694         /* init PF WFQ */
695         if (pf_wfq)
696                 if (ecore_pf_wfq_rt_init
697                     (p_hwfn, port_id, pf_id, pf_wfq, max_phys_tcs_per_port,
698                      num_pf_pqs + num_vf_pqs, pq_params) != 0)
699                         return -1;
700         /* init PF RL */
701         if (ecore_pf_rl_rt_init(p_hwfn, pf_id, pf_rl) != 0)
702                 return -1;
703         /* set VPORT WFQ */
704         if (ecore_vp_wfq_rt_init(p_hwfn, num_vports, vport_params) != 0)
705                 return -1;
706         /* set VPORT RL */
707         if (ecore_vport_rl_rt_init
708             (p_hwfn, start_vport, num_vports, vport_params) != 0)
709                 return -1;
710         return 0;
711 }
712
713 int ecore_init_pf_wfq(struct ecore_hwfn *p_hwfn,
714                       struct ecore_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
715 {
716         u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
717         if (inc_val == 0 || inc_val > QM_WFQ_MAX_INC_VAL) {
718                 DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration");
719                 return -1;
720         }
721         ecore_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
722         return 0;
723 }
724
725 int ecore_init_pf_rl(struct ecore_hwfn *p_hwfn,
726                      struct ecore_ptt *p_ptt, u8 pf_id, u32 pf_rl)
727 {
728         u32 inc_val = QM_RL_INC_VAL(pf_rl);
729         if (inc_val > QM_RL_MAX_INC_VAL) {
730                 DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration");
731                 return -1;
732         }
733         ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFCRD + pf_id * 4,
734                  (u32)QM_RL_CRD_REG_SIGN_BIT);
735         ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
736         return 0;
737 }
738
739 int ecore_init_vport_wfq(struct ecore_hwfn *p_hwfn,
740                          struct ecore_ptt *p_ptt,
741                          u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq)
742 {
743         u8 tc;
744         u32 inc_val = QM_WFQ_INC_VAL(vport_wfq);
745         if (inc_val == 0 || inc_val > QM_WFQ_MAX_INC_VAL) {
746                 DP_NOTICE(p_hwfn, true,
747                           "Invalid VPORT WFQ weight configuration");
748                 return -1;
749         }
750         for (tc = 0; tc < NUM_OF_TCS; tc++) {
751                 u16 vport_pq_id = first_tx_pq_id[tc];
752                 if (vport_pq_id != QM_INVALID_PQ_ID) {
753                         ecore_wr(p_hwfn, p_ptt,
754                                  QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
755                 }
756         }
757         return 0;
758 }
759
760 int ecore_init_vport_rl(struct ecore_hwfn *p_hwfn,
761                         struct ecore_ptt *p_ptt, u8 vport_id, u32 vport_rl)
762 {
763         u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
764         if (vport_id >= max_qm_global_rls) {
765                 DP_NOTICE(p_hwfn, true,
766                           "Invalid VPORT ID for rate limiter configuration");
767                 return -1;
768         }
769         inc_val = QM_RL_INC_VAL(vport_rl);
770         if (inc_val > QM_RL_MAX_INC_VAL) {
771                 DP_NOTICE(p_hwfn, true,
772                           "Invalid VPORT rate-limit configuration");
773                 return -1;
774         }
775         ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLCRD + vport_id * 4,
776                  (u32)QM_RL_CRD_REG_SIGN_BIT);
777         ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
778         return 0;
779 }
780
781 bool ecore_send_qm_stop_cmd(struct ecore_hwfn *p_hwfn,
782                             struct ecore_ptt *p_ptt,
783                             bool is_release_cmd,
784                             bool is_tx_pq, u16 start_pq, u16 num_pqs)
785 {
786         u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
787         u32 pq_mask = 0, last_pq = start_pq + num_pqs - 1, pq_id;
788         /* set command's PQ type */
789         QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
790         /* go over requested PQs */
791         for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
792                 /* set PQ bit in mask (stop command only) */
793                 if (!is_release_cmd)
794                         pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
795                 /* if last PQ or end of PQ mask, write command */
796                 if ((pq_id == last_pq) ||
797                     (pq_id % QM_STOP_PQ_MASK_WIDTH ==
798                     (QM_STOP_PQ_MASK_WIDTH - 1))) {
799                         QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PAUSE_MASK,
800                                          pq_mask);
801                         QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, GROUP_ID,
802                                          pq_id / QM_STOP_PQ_MASK_WIDTH);
803                         if (!ecore_send_qm_cmd
804                             (p_hwfn, p_ptt, QM_STOP_CMD_ADDR, cmd_arr[0],
805                              cmd_arr[1]))
806                                 return false;
807                         pq_mask = 0;
808                 }
809         }
810         return true;
811 }
812
813 /* NIG: ETS configuration constants */
814 #define NIG_TX_ETS_CLIENT_OFFSET        4
815 #define NIG_LB_ETS_CLIENT_OFFSET        1
816 #define NIG_ETS_MIN_WFQ_BYTES           1600
817 /* NIG: ETS constants */
818 #define NIG_ETS_UP_BOUND(weight, mtu) \
819 (2 * ((weight) > (mtu) ? (weight) : (mtu)))
820 /* NIG: RL constants */
821 #define NIG_RL_BASE_TYPE                        1       /* byte base type */
822 #define NIG_RL_PERIOD                           1       /* in us */
823 #define NIG_RL_PERIOD_CLK_25M           (25 * NIG_RL_PERIOD)
824 #define NIG_RL_INC_VAL(rate)            (((rate) * NIG_RL_PERIOD) / 8)
825 #define NIG_RL_MAX_VAL(inc_val, mtu) \
826 (2 * ((inc_val) > (mtu) ? (inc_val) : (mtu)))
827 /* NIG: packet prioritry configuration constants */
828 #define NIG_PRIORITY_MAP_TC_BITS 4
829 void ecore_init_nig_ets(struct ecore_hwfn *p_hwfn,
830                         struct ecore_ptt *p_ptt,
831                         struct init_ets_req *req, bool is_lb)
832 {
833         u8 tc, sp_tc_map = 0, wfq_tc_map = 0;
834         u8 num_tc = is_lb ? NUM_OF_TCS : NUM_OF_PHYS_TCS;
835         u8 tc_client_offset =
836             is_lb ? NIG_LB_ETS_CLIENT_OFFSET : NIG_TX_ETS_CLIENT_OFFSET;
837         u32 min_weight = 0xffffffff;
838         u32 tc_weight_base_addr =
839             is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_0 :
840             NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
841         u32 tc_weight_addr_diff =
842             is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_1 -
843             NIG_REG_LB_ARB_CREDIT_WEIGHT_0 : NIG_REG_TX_ARB_CREDIT_WEIGHT_1 -
844             NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
845         u32 tc_bound_base_addr =
846             is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 :
847             NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
848         u32 tc_bound_addr_diff =
849             is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_1 -
850             NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 :
851             NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_1 -
852             NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
853         for (tc = 0; tc < num_tc; tc++) {
854                 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
855                 /* update SP map */
856                 if (tc_req->use_sp)
857                         sp_tc_map |= (1 << tc);
858                 if (tc_req->use_wfq) {
859                         /* update WFQ map */
860                         wfq_tc_map |= (1 << tc);
861                         /* find minimal weight */
862                         if (tc_req->weight < min_weight)
863                                 min_weight = tc_req->weight;
864                 }
865         }
866         /* write SP map */
867         ecore_wr(p_hwfn, p_ptt,
868                  is_lb ? NIG_REG_LB_ARB_CLIENT_IS_STRICT :
869                  NIG_REG_TX_ARB_CLIENT_IS_STRICT,
870                  (sp_tc_map << tc_client_offset));
871         /* write WFQ map */
872         ecore_wr(p_hwfn, p_ptt,
873                  is_lb ? NIG_REG_LB_ARB_CLIENT_IS_SUBJECT2WFQ :
874                  NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ,
875                  (wfq_tc_map << tc_client_offset));
876         /* write WFQ weights */
877         for (tc = 0; tc < num_tc; tc++, tc_client_offset++) {
878                 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
879                 if (tc_req->use_wfq) {
880                         /* translate weight to bytes */
881                         u32 byte_weight =
882                             (NIG_ETS_MIN_WFQ_BYTES * tc_req->weight) /
883                             min_weight;
884                         /* write WFQ weight */
885                         ecore_wr(p_hwfn, p_ptt,
886                                  tc_weight_base_addr +
887                                  tc_weight_addr_diff * tc_client_offset,
888                                  byte_weight);
889                         /* write WFQ upper bound */
890                         ecore_wr(p_hwfn, p_ptt,
891                                  tc_bound_base_addr +
892                                  tc_bound_addr_diff * tc_client_offset,
893                                  NIG_ETS_UP_BOUND(byte_weight, req->mtu));
894                 }
895         }
896 }
897
898 void ecore_init_nig_lb_rl(struct ecore_hwfn *p_hwfn,
899                           struct ecore_ptt *p_ptt,
900                           struct init_nig_lb_rl_req *req)
901 {
902         u8 tc;
903         u32 ctrl, inc_val, reg_offset;
904         /* disable global MAC+LB RL */
905         ctrl =
906             NIG_RL_BASE_TYPE <<
907             NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_BASE_TYPE_SHIFT;
908         ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
909         /* configure and enable global MAC+LB RL */
910         if (req->lb_mac_rate) {
911                 /* configure  */
912                 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_PERIOD,
913                          NIG_RL_PERIOD_CLK_25M);
914                 inc_val = NIG_RL_INC_VAL(req->lb_mac_rate);
915                 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_VALUE,
916                          inc_val);
917                 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_MAX_VALUE,
918                          NIG_RL_MAX_VAL(inc_val, req->mtu));
919                 /* enable */
920                 ctrl |=
921                     1 <<
922                     NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_EN_SHIFT;
923                 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
924         }
925         /* disable global LB-only RL */
926         ctrl =
927             NIG_RL_BASE_TYPE <<
928             NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_BASE_TYPE_SHIFT;
929         ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
930         /* configure and enable global LB-only RL */
931         if (req->lb_rate) {
932                 /* configure  */
933                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_PERIOD,
934                          NIG_RL_PERIOD_CLK_25M);
935                 inc_val = NIG_RL_INC_VAL(req->lb_rate);
936                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_VALUE,
937                          inc_val);
938                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_MAX_VALUE,
939                          NIG_RL_MAX_VAL(inc_val, req->mtu));
940                 /* enable */
941                 ctrl |=
942                     1 << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_EN_SHIFT;
943                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
944         }
945         /* per-TC RLs */
946         for (tc = 0, reg_offset = 0; tc < NUM_OF_PHYS_TCS;
947              tc++, reg_offset += 4) {
948                 /* disable TC RL */
949                 ctrl =
950                     NIG_RL_BASE_TYPE <<
951                 NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_BASE_TYPE_0_SHIFT;
952                 ecore_wr(p_hwfn, p_ptt,
953                          NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
954                 /* configure and enable TC RL */
955                 if (req->tc_rate[tc]) {
956                         /* configure */
957                         ecore_wr(p_hwfn, p_ptt,
958                                  NIG_REG_LB_TCRATELIMIT_INC_PERIOD_0 +
959                                  reg_offset, NIG_RL_PERIOD_CLK_25M);
960                         inc_val = NIG_RL_INC_VAL(req->tc_rate[tc]);
961                         ecore_wr(p_hwfn, p_ptt,
962                                  NIG_REG_LB_TCRATELIMIT_INC_VALUE_0 +
963                                  reg_offset, inc_val);
964                         ecore_wr(p_hwfn, p_ptt,
965                                  NIG_REG_LB_TCRATELIMIT_MAX_VALUE_0 +
966                                  reg_offset, NIG_RL_MAX_VAL(inc_val, req->mtu));
967                         /* enable */
968                         ctrl |=
969                             1 <<
970                 NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_EN_0_SHIFT;
971                         ecore_wr(p_hwfn, p_ptt,
972                                  NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset,
973                                  ctrl);
974                 }
975         }
976 }
977
978 void ecore_init_nig_pri_tc_map(struct ecore_hwfn *p_hwfn,
979                                struct ecore_ptt *p_ptt,
980                                struct init_nig_pri_tc_map_req *req)
981 {
982         u8 pri, tc;
983         u32 pri_tc_mask = 0;
984         u8 tc_pri_mask[NUM_OF_PHYS_TCS] = { 0 };
985         for (pri = 0; pri < NUM_OF_VLAN_PRIORITIES; pri++) {
986                 if (req->pri[pri].valid) {
987                         pri_tc_mask |=
988                             (req->pri[pri].
989                              tc_id << (pri * NIG_PRIORITY_MAP_TC_BITS));
990                         tc_pri_mask[req->pri[pri].tc_id] |= (1 << pri);
991                 }
992         }
993         /* write priority -> TC mask */
994         ecore_wr(p_hwfn, p_ptt, NIG_REG_PKT_PRIORITY_TO_TC, pri_tc_mask);
995         /* write TC -> priority mask */
996         for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
997                 ecore_wr(p_hwfn, p_ptt, NIG_REG_PRIORITY_FOR_TC_0 + tc * 4,
998                          tc_pri_mask[tc]);
999                 ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_TC0_PRIORITY_MASK + tc * 4,
1000                          tc_pri_mask[tc]);
1001         }
1002 }
1003
1004 /* PRS: ETS configuration constants */
1005 #define PRS_ETS_MIN_WFQ_BYTES                   1600
1006 #define PRS_ETS_UP_BOUND(weight, mtu) \
1007 (2 * ((weight) > (mtu) ? (weight) : (mtu)))
1008 void ecore_init_prs_ets(struct ecore_hwfn *p_hwfn,
1009                         struct ecore_ptt *p_ptt, struct init_ets_req *req)
1010 {
1011         u8 tc, sp_tc_map = 0, wfq_tc_map = 0;
1012         u32 min_weight = 0xffffffff;
1013         u32 tc_weight_addr_diff =
1014             PRS_REG_ETS_ARB_CREDIT_WEIGHT_1 - PRS_REG_ETS_ARB_CREDIT_WEIGHT_0;
1015         u32 tc_bound_addr_diff =
1016             PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_1 -
1017             PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0;
1018         for (tc = 0; tc < NUM_OF_TCS; tc++) {
1019                 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1020                 /* update SP map */
1021                 if (tc_req->use_sp)
1022                         sp_tc_map |= (1 << tc);
1023                 if (tc_req->use_wfq) {
1024                         /* update WFQ map */
1025                         wfq_tc_map |= (1 << tc);
1026                         /* find minimal weight */
1027                         if (tc_req->weight < min_weight)
1028                                 min_weight = tc_req->weight;
1029                 }
1030         }
1031         /* write SP map */
1032         ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_STRICT, sp_tc_map);
1033         /* write WFQ map */
1034         ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ,
1035                  wfq_tc_map);
1036         /* write WFQ weights */
1037         for (tc = 0; tc < NUM_OF_TCS; tc++) {
1038                 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1039                 if (tc_req->use_wfq) {
1040                         /* translate weight to bytes */
1041                         u32 byte_weight =
1042                             (PRS_ETS_MIN_WFQ_BYTES * tc_req->weight) /
1043                             min_weight;
1044                         /* write WFQ weight */
1045                         ecore_wr(p_hwfn, p_ptt,
1046                                  PRS_REG_ETS_ARB_CREDIT_WEIGHT_0 +
1047                                  tc * tc_weight_addr_diff, byte_weight);
1048                         /* write WFQ upper bound */
1049                         ecore_wr(p_hwfn, p_ptt,
1050                                  PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0 +
1051                                  tc * tc_bound_addr_diff,
1052                                  PRS_ETS_UP_BOUND(byte_weight, req->mtu));
1053                 }
1054         }
1055 }
1056
1057 /* BRB: RAM configuration constants */
1058 #define BRB_TOTAL_RAM_BLOCKS_BB 4800
1059 #define BRB_TOTAL_RAM_BLOCKS_K2 5632
1060 #define BRB_BLOCK_SIZE                  128     /* in bytes */
1061 #define BRB_MIN_BLOCKS_PER_TC   9
1062 #define BRB_HYST_BYTES                  10240
1063 #define BRB_HYST_BLOCKS                 (BRB_HYST_BYTES / BRB_BLOCK_SIZE)
1064 /*
1065  * temporary big RAM allocation - should be updated
1066  */
1067 void ecore_init_brb_ram(struct ecore_hwfn *p_hwfn,
1068                         struct ecore_ptt *p_ptt, struct init_brb_ram_req *req)
1069 {
1070         u8 port, active_ports = 0;
1071         u32 active_port_blocks, reg_offset = 0;
1072         u32 tc_headroom_blocks =
1073             (u32)DIV_ROUND_UP(req->headroom_per_tc, BRB_BLOCK_SIZE);
1074         u32 min_pkt_size_blocks =
1075             (u32)DIV_ROUND_UP(req->min_pkt_size, BRB_BLOCK_SIZE);
1076         u32 total_blocks =
1077             ECORE_IS_K2(p_hwfn->
1078                         p_dev) ? BRB_TOTAL_RAM_BLOCKS_K2 :
1079             BRB_TOTAL_RAM_BLOCKS_BB;
1080         /* find number of active ports */
1081         for (port = 0; port < MAX_NUM_PORTS; port++)
1082                 if (req->num_active_tcs[port])
1083                         active_ports++;
1084         active_port_blocks = (u32)(total_blocks / active_ports);
1085         for (port = 0; port < req->max_ports_per_engine; port++) {
1086                 /* calculate per-port sizes */
1087                 u32 tc_guaranteed_blocks =
1088                     (u32)DIV_ROUND_UP(req->guranteed_per_tc, BRB_BLOCK_SIZE);
1089                 u32 port_blocks =
1090                     req->num_active_tcs[port] ? active_port_blocks : 0;
1091                 u32 port_guaranteed_blocks =
1092                     req->num_active_tcs[port] * tc_guaranteed_blocks;
1093                 u32 port_shared_blocks = port_blocks - port_guaranteed_blocks;
1094                 u32 full_xoff_th =
1095                     req->num_active_tcs[port] * BRB_MIN_BLOCKS_PER_TC;
1096                 u32 full_xon_th = full_xoff_th + min_pkt_size_blocks;
1097                 u32 pause_xoff_th = tc_headroom_blocks;
1098                 u32 pause_xon_th = pause_xoff_th + min_pkt_size_blocks;
1099                 u8 tc;
1100                 /* init total size per port */
1101                 ecore_wr(p_hwfn, p_ptt, BRB_REG_TOTAL_MAC_SIZE + port * 4,
1102                          port_blocks);
1103                 /* init shared size per port */
1104                 ecore_wr(p_hwfn, p_ptt, BRB_REG_SHARED_HR_AREA + port * 4,
1105                          port_shared_blocks);
1106                 for (tc = 0; tc < NUM_OF_TCS; tc++, reg_offset += 4) {
1107                         /* clear init values for non-active TCs */
1108                         if (tc == req->num_active_tcs[port]) {
1109                                 tc_guaranteed_blocks = 0;
1110                                 full_xoff_th = 0;
1111                                 full_xon_th = 0;
1112                                 pause_xoff_th = 0;
1113                                 pause_xon_th = 0;
1114                         }
1115                         /* init guaranteed size per TC */
1116                         ecore_wr(p_hwfn, p_ptt,
1117                                  BRB_REG_TC_GUARANTIED_0 + reg_offset,
1118                                  tc_guaranteed_blocks);
1119                         ecore_wr(p_hwfn, p_ptt,
1120                                  BRB_REG_MAIN_TC_GUARANTIED_HYST_0 + reg_offset,
1121                                  BRB_HYST_BLOCKS);
1122 /* init pause/full thresholds per physical TC - for loopback traffic */
1123
1124                         ecore_wr(p_hwfn, p_ptt,
1125                                  BRB_REG_LB_TC_FULL_XOFF_THRESHOLD_0 +
1126                                  reg_offset, full_xoff_th);
1127                         ecore_wr(p_hwfn, p_ptt,
1128                                  BRB_REG_LB_TC_FULL_XON_THRESHOLD_0 +
1129                                  reg_offset, full_xon_th);
1130                         ecore_wr(p_hwfn, p_ptt,
1131                                  BRB_REG_LB_TC_PAUSE_XOFF_THRESHOLD_0 +
1132                                  reg_offset, pause_xoff_th);
1133                         ecore_wr(p_hwfn, p_ptt,
1134                                  BRB_REG_LB_TC_PAUSE_XON_THRESHOLD_0 +
1135                                  reg_offset, pause_xon_th);
1136 /* init pause/full thresholds per physical TC - for main traffic */
1137                         ecore_wr(p_hwfn, p_ptt,
1138                                  BRB_REG_MAIN_TC_FULL_XOFF_THRESHOLD_0 +
1139                                  reg_offset, full_xoff_th);
1140                         ecore_wr(p_hwfn, p_ptt,
1141                                  BRB_REG_MAIN_TC_FULL_XON_THRESHOLD_0 +
1142                                  reg_offset, full_xon_th);
1143                         ecore_wr(p_hwfn, p_ptt,
1144                                  BRB_REG_MAIN_TC_PAUSE_XOFF_THRESHOLD_0 +
1145                                  reg_offset, pause_xoff_th);
1146                         ecore_wr(p_hwfn, p_ptt,
1147                                  BRB_REG_MAIN_TC_PAUSE_XON_THRESHOLD_0 +
1148                                  reg_offset, pause_xon_th);
1149                 }
1150         }
1151 }
1152
1153 /*In MF should be called once per engine to set EtherType of OuterTag*/
1154 void ecore_set_engine_mf_ovlan_eth_type(struct ecore_hwfn *p_hwfn,
1155                                         struct ecore_ptt *p_ptt, u32 ethType)
1156 {
1157         /* update PRS register */
1158         STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET, ethType);
1159         /* update NIG register */
1160         STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET, ethType);
1161         /* update PBF register */
1162         STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET, ethType);
1163 }
1164
1165 /*In MF should be called once per port to set EtherType of OuterTag*/
1166 void ecore_set_port_mf_ovlan_eth_type(struct ecore_hwfn *p_hwfn,
1167                                       struct ecore_ptt *p_ptt, u32 ethType)
1168 {
1169         /* update DORQ register */
1170         STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, ethType);
1171 }
1172
1173 #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
1174 (var = ((var) & ~(1 << (offset))) | ((enable) ? (1 << (offset)) : 0))
1175 #define PRS_ETH_TUNN_FIC_FORMAT        -188897008
1176 void ecore_set_vxlan_dest_port(struct ecore_hwfn *p_hwfn,
1177                                struct ecore_ptt *p_ptt, u16 dest_port)
1178 {
1179         /* update PRS register */
1180         ecore_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1181         /* update NIG register */
1182         ecore_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1183         /* update PBF register */
1184         ecore_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1185 }
1186
1187 void ecore_set_vxlan_enable(struct ecore_hwfn *p_hwfn,
1188                             struct ecore_ptt *p_ptt, bool vxlan_enable)
1189 {
1190         u32 reg_val;
1191         /* update PRS register */
1192         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1193         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1194                            PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT,
1195                            vxlan_enable);
1196         ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1197         if (reg_val) {
1198                 ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1199                          (u32)PRS_ETH_TUNN_FIC_FORMAT);
1200         }
1201         /* update NIG register */
1202         reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1203         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1204                                    NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT,
1205                                    vxlan_enable);
1206         ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1207         /* update DORQ register */
1208         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN,
1209                  vxlan_enable ? 1 : 0);
1210 }
1211
1212 void ecore_set_gre_enable(struct ecore_hwfn *p_hwfn,
1213                           struct ecore_ptt *p_ptt,
1214                           bool eth_gre_enable, bool ip_gre_enable)
1215 {
1216         u32 reg_val;
1217         /* update PRS register */
1218         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1219         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1220                    PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT,
1221                    eth_gre_enable);
1222         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1223                    PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT,
1224                    ip_gre_enable);
1225         ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1226         if (reg_val) {
1227                 ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1228                          (u32)PRS_ETH_TUNN_FIC_FORMAT);
1229         }
1230         /* update NIG register */
1231         reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1232         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1233                    NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT,
1234                    eth_gre_enable);
1235         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1236                    NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT,
1237                    ip_gre_enable);
1238         ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1239         /* update DORQ registers */
1240         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN,
1241                  eth_gre_enable ? 1 : 0);
1242         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN,
1243                  ip_gre_enable ? 1 : 0);
1244 }
1245
1246 void ecore_set_geneve_dest_port(struct ecore_hwfn *p_hwfn,
1247                                 struct ecore_ptt *p_ptt, u16 dest_port)
1248 {
1249         /* geneve tunnel not supported in BB_A0 */
1250         if (ECORE_IS_BB_A0(p_hwfn->p_dev))
1251                 return;
1252         /* update PRS register */
1253         ecore_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1254         /* update NIG register */
1255         ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1256         /* update PBF register */
1257         ecore_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1258 }
1259
1260 void ecore_set_geneve_enable(struct ecore_hwfn *p_hwfn,
1261                              struct ecore_ptt *p_ptt,
1262                              bool eth_geneve_enable, bool ip_geneve_enable)
1263 {
1264         u32 reg_val;
1265         /* geneve tunnel not supported in BB_A0 */
1266         if (ECORE_IS_BB_A0(p_hwfn->p_dev))
1267                 return;
1268         /* update PRS register */
1269         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1270         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1271                    PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT,
1272                    eth_geneve_enable);
1273         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1274                    PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT,
1275                    ip_geneve_enable);
1276         ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1277         if (reg_val) {
1278                 ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1279                          (u32)PRS_ETH_TUNN_FIC_FORMAT);
1280         }
1281         /* update NIG register */
1282         ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1283                  eth_geneve_enable ? 1 : 0);
1284         ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE,
1285                  ip_geneve_enable ? 1 : 0);
1286         /* comp ver */
1287         reg_val = (ip_geneve_enable || eth_geneve_enable) ? 1 : 0;
1288         ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_COMP_VER, reg_val);
1289         ecore_wr(p_hwfn, p_ptt, PBF_REG_NGE_COMP_VER, reg_val);
1290         ecore_wr(p_hwfn, p_ptt, PRS_REG_NGE_COMP_VER, reg_val);
1291         /* EDPM with geneve tunnel not supported in BB_B0 */
1292         if (ECORE_IS_BB_B0(p_hwfn->p_dev))
1293                 return;
1294         /* update DORQ registers */
1295         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN,
1296                  eth_geneve_enable ? 1 : 0);
1297         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN,
1298                  ip_geneve_enable ? 1 : 0);
1299 }
1300
1301 #define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1302 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1303 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1304 #define PARSER_ETH_CONN_CM_HDR (0x0)
1305 #define CAM_LINE_SIZE sizeof(u32)
1306 #define RAM_LINE_SIZE sizeof(u64)
1307 #define REG_SIZE sizeof(u32)
1308
1309 void ecore_set_gft_event_id_cm_hdr(struct ecore_hwfn *p_hwfn,
1310                                    struct ecore_ptt *p_ptt)
1311 {
1312         /* set RFS event ID to be awakened i Tstorm By Prs */
1313         u32 rfs_cm_hdr_event_id = ecore_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
1314         rfs_cm_hdr_event_id |= T_ETH_PACKET_ACTION_GFT_EVENTID <<
1315             PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1316         rfs_cm_hdr_event_id |= PARSER_ETH_CONN_GFT_ACTION_CM_HDR <<
1317             PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1318         ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
1319 }
1320
1321 void ecore_set_rfs_mode_enable(struct ecore_hwfn *p_hwfn,
1322                                struct ecore_ptt *p_ptt,
1323                                u16 pf_id,
1324                                bool tcp,
1325                                bool udp,
1326                                bool ipv4,
1327                                bool ipv6)
1328 {
1329         u32 rfs_cm_hdr_event_id = ecore_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
1330         union gft_cam_line_union camLine;
1331         struct gft_ram_line ramLine;
1332         u32 *ramLinePointer = (u32 *)&ramLine;
1333         int i;
1334         if (!ipv6 && !ipv4)
1335                 DP_NOTICE(p_hwfn, true,
1336                           "set_rfs_mode_enable: must accept at "
1337                           "least on of - ipv4 or ipv6");
1338         if (!tcp && !udp)
1339                 DP_NOTICE(p_hwfn, true,
1340                           "set_rfs_mode_enable: must accept at "
1341                           "least on of - udp or tcp");
1342         /* set RFS event ID to be awakened i Tstorm By Prs */
1343         rfs_cm_hdr_event_id |=  T_ETH_PACKET_MATCH_RFS_EVENTID <<
1344             PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1345         rfs_cm_hdr_event_id |=  PARSER_ETH_CONN_CM_HDR <<
1346             PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1347         ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
1348         /* Configure Registers for RFS mode */
1349 /* enable gft search */
1350         ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1351         ecore_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0); /* do not load
1352                                                              * context only cid
1353                                                              * in PRS on match
1354                                                              */
1355         camLine.cam_line_mapped.camline = 0;
1356         /* cam line is now valid!! */
1357         SET_FIELD(camLine.cam_line_mapped.camline,
1358                   GFT_CAM_LINE_MAPPED_VALID, 1);
1359         /* filters are per PF!! */
1360         SET_FIELD(camLine.cam_line_mapped.camline,
1361                   GFT_CAM_LINE_MAPPED_PF_ID_MASK, 1);
1362         SET_FIELD(camLine.cam_line_mapped.camline,
1363                   GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1364         if (!(tcp && udp)) {
1365                 SET_FIELD(camLine.cam_line_mapped.camline,
1366                           GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, 1);
1367                 if (tcp)
1368                         SET_FIELD(camLine.cam_line_mapped.camline,
1369                                   GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1370                                   GFT_PROFILE_TCP_PROTOCOL);
1371                 else
1372                         SET_FIELD(camLine.cam_line_mapped.camline,
1373                                   GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1374                                   GFT_PROFILE_UDP_PROTOCOL);
1375         }
1376         if (!(ipv4 && ipv6)) {
1377                 SET_FIELD(camLine.cam_line_mapped.camline,
1378                           GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1379                 if (ipv4)
1380                         SET_FIELD(camLine.cam_line_mapped.camline,
1381                                   GFT_CAM_LINE_MAPPED_IP_VERSION,
1382                                   GFT_PROFILE_IPV4);
1383                 else
1384                         SET_FIELD(camLine.cam_line_mapped.camline,
1385                                   GFT_CAM_LINE_MAPPED_IP_VERSION,
1386                                   GFT_PROFILE_IPV6);
1387         }
1388         /* write characteristics to cam */
1389         ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1390             camLine.cam_line_mapped.camline);
1391         camLine.cam_line_mapped.camline =
1392             ecore_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1393         /* write line to RAM - compare to filter 4 tuple */
1394         ramLine.low32bits = 0;
1395         ramLine.high32bits = 0;
1396         SET_FIELD(ramLine.high32bits, GFT_RAM_LINE_DST_IP, 1);
1397         SET_FIELD(ramLine.high32bits, GFT_RAM_LINE_SRC_IP, 1);
1398         SET_FIELD(ramLine.low32bits, GFT_RAM_LINE_SRC_PORT, 1);
1399         SET_FIELD(ramLine.low32bits, GFT_RAM_LINE_DST_PORT, 1);
1400         /* each iteration write to reg */
1401         for (i = 0; i < RAM_LINE_SIZE / REG_SIZE; i++)
1402                 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM +
1403                          RAM_LINE_SIZE * pf_id +
1404                          i * REG_SIZE, *(ramLinePointer + i));
1405         /* set default profile so that no filter match will happen */
1406         ramLine.low32bits = 0xffff;
1407         ramLine.high32bits = 0xffff;
1408         for (i = 0; i < RAM_LINE_SIZE / REG_SIZE; i++)
1409                 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM +
1410                          RAM_LINE_SIZE * PRS_GFT_CAM_LINES_NO_MATCH +
1411                          i * REG_SIZE, *(ramLinePointer + i));
1412 }
1413
1414 /* Configure VF zone size mode*/
1415 void ecore_config_vf_zone_size_mode(struct ecore_hwfn *p_hwfn,
1416                                     struct ecore_ptt *p_ptt, u16 mode,
1417                                     bool runtime_init)
1418 {
1419         u32 msdm_vf_size_log = MSTORM_VF_ZONE_DEFAULT_SIZE_LOG;
1420         u32 msdm_vf_offset_mask;
1421         if (mode == VF_ZONE_SIZE_MODE_DOUBLE)
1422                 msdm_vf_size_log += 1;
1423         else if (mode == VF_ZONE_SIZE_MODE_QUAD)
1424                 msdm_vf_size_log += 2;
1425         msdm_vf_offset_mask = (1 << msdm_vf_size_log) - 1;
1426         if (runtime_init) {
1427                 STORE_RT_REG(p_hwfn,
1428                              PGLUE_REG_B_MSDM_VF_SHIFT_B_RT_OFFSET,
1429                              msdm_vf_size_log);
1430                 STORE_RT_REG(p_hwfn,
1431                              PGLUE_REG_B_MSDM_OFFSET_MASK_B_RT_OFFSET,
1432                              msdm_vf_offset_mask);
1433         } else {
1434                 ecore_wr(p_hwfn, p_ptt,
1435                          PGLUE_B_REG_MSDM_VF_SHIFT_B, msdm_vf_size_log);
1436                 ecore_wr(p_hwfn, p_ptt,
1437                          PGLUE_B_REG_MSDM_OFFSET_MASK_B, msdm_vf_offset_mask);
1438         }
1439 }
1440
1441 /* get mstorm statistics for offset by VF zone size mode*/
1442 u32 ecore_get_mstorm_queue_stat_offset(struct ecore_hwfn *p_hwfn,
1443                                        u16 stat_cnt_id,
1444                                        u16 vf_zone_size_mode)
1445 {
1446         u32 offset = MSTORM_QUEUE_STAT_OFFSET(stat_cnt_id);
1447         if ((vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) &&
1448             (stat_cnt_id > MAX_NUM_PFS)) {
1449                 if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1450                         offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) *
1451                             (stat_cnt_id - MAX_NUM_PFS);
1452                 else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1453                         offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) *
1454                             (stat_cnt_id - MAX_NUM_PFS);
1455         }
1456         return offset;
1457 }
1458
1459 /* get mstorm VF producer offset by VF zone size mode*/
1460 u32 ecore_get_mstorm_eth_vf_prods_offset(struct ecore_hwfn *p_hwfn,
1461                                          u8 vf_id,
1462                                          u8 vf_queue_id,
1463                                          u16 vf_zone_size_mode)
1464 {
1465         u32 offset = MSTORM_ETH_VF_PRODS_OFFSET(vf_id, vf_queue_id);
1466         if (vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) {
1467                 if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1468                         offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) *
1469                                    vf_id;
1470                 else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1471                         offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) *
1472                                   vf_id;
1473         }
1474         return offset;
1475 }