8dc4d15079fbebf21e8ee1fe3e2fc44825f45fc0
[deb_dpdk.git] / drivers / net / qede / base / ecore_int.c
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8
9 #include "bcm_osal.h"
10 #include "ecore.h"
11 #include "ecore_spq.h"
12 #include "reg_addr.h"
13 #include "ecore_gtt_reg_addr.h"
14 #include "ecore_init_ops.h"
15 #include "ecore_rt_defs.h"
16 #include "ecore_int.h"
17 #include "reg_addr.h"
18 #include "ecore_hw.h"
19 #include "ecore_sriov.h"
20 #include "ecore_vf.h"
21 #include "ecore_hw_defs.h"
22 #include "ecore_hsi_common.h"
23 #include "ecore_mcp.h"
24
25 struct ecore_pi_info {
26         ecore_int_comp_cb_t comp_cb;
27         void *cookie;           /* Will be sent to the compl cb function */
28 };
29
30 struct ecore_sb_sp_info {
31         struct ecore_sb_info sb_info;
32         /* per protocol index data */
33         struct ecore_pi_info pi_info_arr[PIS_PER_SB];
34 };
35
36 enum ecore_attention_type {
37         ECORE_ATTN_TYPE_ATTN,
38         ECORE_ATTN_TYPE_PARITY,
39 };
40
41 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
42         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
43
44 struct aeu_invert_reg_bit {
45         char bit_name[30];
46
47 #define ATTENTION_PARITY                (1 << 0)
48
49 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
50 #define ATTENTION_LENGTH_SHIFT          (4)
51 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
52                                          ATTENTION_LENGTH_SHIFT)
53 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
54 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
55 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
56                                          ATTENTION_PARITY)
57
58 /* Multiple bits start with this offset */
59 #define ATTENTION_OFFSET_MASK           (0x000ff000)
60 #define ATTENTION_OFFSET_SHIFT          (12)
61
62 #define ATTENTION_BB_MASK               (0x00700000)
63 #define ATTENTION_BB_SHIFT              (20)
64 #define ATTENTION_BB(value)             ((value) << ATTENTION_BB_SHIFT)
65 #define ATTENTION_BB_DIFFERENT          (1 << 23)
66
67 #define ATTENTION_CLEAR_ENABLE          (1 << 28)
68         unsigned int flags;
69
70         /* Callback to call if attention will be triggered */
71         enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
72
73         enum block_id block_index;
74 };
75
76 struct aeu_invert_reg {
77         struct aeu_invert_reg_bit bits[32];
78 };
79
80 #define MAX_ATTN_GRPS           (8)
81 #define NUM_ATTN_REGS           (9)
82
83 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
84 {
85         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
86
87         DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
88         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
89
90         return ECORE_SUCCESS;
91 }
92
93 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK         (0x3c000)
94 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT        (14)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK         (0x03fc0)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT        (6)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK      (0x00020)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT     (5)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK     (0x0001e)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT    (1)
101 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK      (0x1)
102 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT     (0)
103 #define ECORE_PSWHST_ATTENTION_VF_DISABLED              (0x1)
104 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS         (0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK         (0x1)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT        (0)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK     (0x1e)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT    (1)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK   (0x20)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT  (5)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK      (0x3fc0)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT     (6)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK      (0x3c000)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT     (14)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK    (0x3fc0000)
116 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT   (18)
117 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
118 {
119         u32 tmp =
120             ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
121                      PSWHST_REG_VF_DISABLED_ERROR_VALID);
122
123         /* Disabled VF access */
124         if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
125                 u32 addr, data;
126
127                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
128                                 PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
129                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
130                                 PSWHST_REG_VF_DISABLED_ERROR_DATA);
131                 DP_INFO(p_hwfn->p_dev,
132                         "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
133                         " Write [0x%02x] Addr [0x%08x]\n",
134                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
135                              >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
136                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
137                              >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
138                         (u8)((data &
139                               ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
140                               ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
141                         (u8)((data &
142                               ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
143                               ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
144                         (u8)((data &
145                               ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
146                               ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
147                         addr);
148         }
149
150         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
151                        PSWHST_REG_INCORRECT_ACCESS_VALID);
152         if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
153                 u32 addr, data, length;
154
155                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
156                                 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
157                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
158                                 PSWHST_REG_INCORRECT_ACCESS_DATA);
159                 length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
160                                   PSWHST_REG_INCORRECT_ACCESS_LENGTH);
161
162                 DP_INFO(p_hwfn->p_dev,
163                         "Incorrect access to %08x of length %08x - PF [%02x]"
164                         " VF [%04x] [valid %02x] client [%02x] write [%02x]"
165                         " Byte-Enable [%04x] [%08x]\n",
166                         addr, length,
167                         (u8)((data &
168                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
169                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
170                         (u8)((data &
171                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
172                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
173                         (u8)((data &
174                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
175                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
176                         (u8)((data &
177                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
178                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
179                         (u8)((data &
180                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
181                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
182                         (u8)((data &
183                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
184                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
185                         data);
186         }
187
188         /* TODO - We know 'some' of these are legal due to virtualization,
189          * but is it true for all of them?
190          */
191         return ECORE_SUCCESS;
192 }
193
194 #define ECORE_GRC_ATTENTION_VALID_BIT           (1 << 0)
195 #define ECORE_GRC_ATTENTION_ADDRESS_MASK        (0x7fffff << 0)
196 #define ECORE_GRC_ATTENTION_RDWR_BIT            (1 << 23)
197 #define ECORE_GRC_ATTENTION_MASTER_MASK         (0xf << 24)
198 #define ECORE_GRC_ATTENTION_MASTER_SHIFT        (24)
199 #define ECORE_GRC_ATTENTION_PF_MASK             (0xf)
200 #define ECORE_GRC_ATTENTION_VF_MASK             (0xff << 4)
201 #define ECORE_GRC_ATTENTION_VF_SHIFT            (4)
202 #define ECORE_GRC_ATTENTION_PRIV_MASK           (0x3 << 14)
203 #define ECORE_GRC_ATTENTION_PRIV_SHIFT          (14)
204 #define ECORE_GRC_ATTENTION_PRIV_VF             (0)
205 static const char *grc_timeout_attn_master_to_str(u8 master)
206 {
207         switch (master) {
208         case 1:
209                 return "PXP";
210         case 2:
211                 return "MCP";
212         case 3:
213                 return "MSDM";
214         case 4:
215                 return "PSDM";
216         case 5:
217                 return "YSDM";
218         case 6:
219                 return "USDM";
220         case 7:
221                 return "TSDM";
222         case 8:
223                 return "XSDM";
224         case 9:
225                 return "DBU";
226         case 10:
227                 return "DMAE";
228         default:
229                 return "Unknown";
230         }
231 }
232
233 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
234 {
235         u32 tmp, tmp2;
236
237         /* We've already cleared the timeout interrupt register, so we learn
238          * of interrupts via the validity register
239          */
240         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
241                        GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
242         if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
243                 goto out;
244
245         /* Read the GRC timeout information */
246         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
247                        GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
248         tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
249                         GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
250
251         DP_INFO(p_hwfn->p_dev,
252                 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s]"
253                 " [PF: %02x %s %02x]\n",
254                 tmp2, tmp,
255                 (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
256                 (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
257                 grc_timeout_attn_master_to_str((tmp &
258                                         ECORE_GRC_ATTENTION_MASTER_MASK) >>
259                                        ECORE_GRC_ATTENTION_MASTER_SHIFT),
260                 (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
261                 (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
262                   ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
263                  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
264                 (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
265                 ECORE_GRC_ATTENTION_VF_SHIFT);
266
267 out:
268         /* Regardles of anything else, clean the validity bit */
269         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
270                  GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
271         return ECORE_SUCCESS;
272 }
273
274 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
275 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
276 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
277 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
278 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
279 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
280 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
281 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
282 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME      (1 << 22)
283 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
284 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
285 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
286 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
287 static enum _ecore_status_t ecore_pglub_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
288 {
289         u32 tmp;
290
291         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
292                        PGLUE_B_REG_TX_ERR_WR_DETAILS2);
293         if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
294                 u32 addr_lo, addr_hi, details;
295
296                 addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
297                                    PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
298                 addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
299                                    PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
300                 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
301                                    PGLUE_B_REG_TX_ERR_WR_DETAILS);
302
303                 DP_INFO(p_hwfn,
304                         "Illegal write by chip to [%08x:%08x] blocked."
305                         "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]"
306                         " Details2 %08x [Was_error %02x BME deassert %02x"
307                         " FID_enable deassert %02x]\n",
308                         addr_hi, addr_lo, details,
309                         (u8)((details &
310                               ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
311                              ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
312                         (u8)((details &
313                               ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
314                              ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
315                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID)
316                              ? 1 : 0), tmp,
317                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
318                              : 0),
319                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 :
320                              0),
321                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
322                              : 0));
323         }
324
325         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
326                        PGLUE_B_REG_TX_ERR_RD_DETAILS2);
327         if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
328                 u32 addr_lo, addr_hi, details;
329
330                 addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
331                                    PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
332                 addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
333                                    PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
334                 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
335                                    PGLUE_B_REG_TX_ERR_RD_DETAILS);
336
337                 DP_INFO(p_hwfn,
338                         "Illegal read by chip from [%08x:%08x] blocked."
339                         " Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]"
340                         " Details2 %08x [Was_error %02x BME deassert %02x"
341                         " FID_enable deassert %02x]\n",
342                         addr_hi, addr_lo, details,
343                         (u8)((details &
344                               ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
345                              ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
346                         (u8)((details &
347                               ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
348                              ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
349                         (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID)
350                              ? 1 : 0), tmp,
351                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
352                              : 0),
353                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 :
354                              0),
355                         (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
356                              : 0));
357         }
358
359         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
360                        PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
361         if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
362                 DP_INFO(p_hwfn, "ICPL error - %08x\n", tmp);
363
364         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
365                        PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
366         if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
367                 u32 addr_hi, addr_lo;
368
369                 addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
370                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
371                 addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
372                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
373
374                 DP_INFO(p_hwfn, "ICPL error - %08x [Address %08x:%08x]\n",
375                         tmp, addr_hi, addr_lo);
376         }
377
378         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
379                        PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
380         if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
381                 u32 addr_hi, addr_lo, details;
382
383                 addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
384                                    PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
385                 addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
386                                    PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
387                 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
388                                    PGLUE_B_REG_VF_ILT_ERR_DETAILS);
389
390                 DP_INFO(p_hwfn,
391                         "ILT error - Details %08x Details2 %08x"
392                         " [Address %08x:%08x]\n",
393                         details, tmp, addr_hi, addr_lo);
394         }
395
396         /* Clear the indications */
397         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
398                  PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
399
400         return ECORE_SUCCESS;
401 }
402
403 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
404 {
405         DP_NOTICE(p_hwfn, false, "FW assertion!\n");
406
407         ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
408
409         return ECORE_INVAL;
410 }
411
412 static enum _ecore_status_t
413 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
414 {
415         DP_INFO(p_hwfn, "General attention 35!\n");
416
417         return ECORE_SUCCESS;
418 }
419
420 #define ECORE_DORQ_ATTENTION_REASON_MASK (0xfffff)
421 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
422 #define ECORE_DORQ_ATTENTION_SIZE_MASK   (0x7f0000)
423 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT  (16)
424
425 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
426 {
427         u32 reason;
428
429         reason = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
430             ECORE_DORQ_ATTENTION_REASON_MASK;
431         if (reason) {
432                 u32 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
433                                        DORQ_REG_DB_DROP_DETAILS);
434
435                 DP_INFO(p_hwfn->p_dev,
436                         "DORQ db_drop: address 0x%08x Opaque FID 0x%04x"
437                         " Size [bytes] 0x%08x Reason: 0x%08x\n",
438                         ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
439                                  DORQ_REG_DB_DROP_DETAILS_ADDRESS),
440                         (u16)(details & ECORE_DORQ_ATTENTION_OPAQUE_MASK),
441                         ((details & ECORE_DORQ_ATTENTION_SIZE_MASK) >>
442                          ECORE_DORQ_ATTENTION_SIZE_SHIFT) * 4, reason);
443         }
444
445         return ECORE_INVAL;
446 }
447
448 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
449 {
450 #ifndef ASIC_ONLY
451         if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
452                 u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
453                                    TM_REG_INT_STS_1);
454
455                 if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
456                             TM_REG_INT_STS_1_PEND_CONN_SCAN))
457                         return ECORE_INVAL;
458
459                 if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
460                            TM_REG_INT_STS_1_PEND_CONN_SCAN))
461                         DP_INFO(p_hwfn,
462                                 "TM attention on emulation - most likely"
463                                 " results of clock-ratios\n");
464                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
465                 val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
466                     TM_REG_INT_MASK_1_PEND_TASK_SCAN;
467                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
468
469                 return ECORE_SUCCESS;
470         }
471 #endif
472
473         return ECORE_INVAL;
474 }
475
476 /* Instead of major changes to the data-structure, we have a some 'special'
477  * identifiers for sources that changed meaning between adapters.
478  */
479 enum aeu_invert_reg_special_type {
480         AEU_INVERT_REG_SPECIAL_CNIG_0,
481         AEU_INVERT_REG_SPECIAL_CNIG_1,
482         AEU_INVERT_REG_SPECIAL_CNIG_2,
483         AEU_INVERT_REG_SPECIAL_CNIG_3,
484         AEU_INVERT_REG_SPECIAL_MAX,
485 };
486
487 static struct aeu_invert_reg_bit
488 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
489         {"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
490         {"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
491         {"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
492         {"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
493 };
494
495 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
496 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
497         {
498          {                      /* After Invert 1 */
499           {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
500            MAX_BLOCK_ID},
501           }
502          },
503
504         {
505          {                      /* After Invert 2 */
506           {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
507           {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
508           {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglub_rbc_attn_cb,
509            BLOCK_PGLUE_B},
510           {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
511           {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
512           {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
513           {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
514           {"SW timers #%d",
515            (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
516            OSAL_NULL, MAX_BLOCK_ID},
517           {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
518            BLOCK_PGLCS},
519           }
520          },
521
522         {
523          {                      /* After Invert 3 */
524           {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
525            MAX_BLOCK_ID},
526           }
527          },
528
529         {
530          {                      /* After Invert 4 */
531           {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
532            ecore_fw_assertion, MAX_BLOCK_ID},
533           {"General Attention %d",
534            (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
535            OSAL_NULL, MAX_BLOCK_ID},
536           {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
537            ecore_general_attention_35, MAX_BLOCK_ID},
538           {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
539                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
540                          OSAL_NULL, BLOCK_NWS},
541           {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
542                             ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
543                             OSAL_NULL, BLOCK_NWS},
544           {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
545                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
546                          OSAL_NULL, BLOCK_NWM},
547           {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
548                             ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
549                             OSAL_NULL, BLOCK_NWM},
550           {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
551           {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
552           {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
553           {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
554           {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
555           {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
556           {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
557            MAX_BLOCK_ID},
558           {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
559           {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
560           {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
561           {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
562           {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
563           }
564          },
565
566         {
567          {                      /* After Invert 5 */
568           {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
569           {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
570           {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
571           {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
572           {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
573           {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
574           {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
575           {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
576           {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
577           {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
578           {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
579           {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
580           {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
581           {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
582           {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
583           {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
584           }
585          },
586
587         {
588          {                      /* After Invert 6 */
589           {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
590           {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
591           {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
592           {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
593           {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
594           {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
595           {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
596           {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
597           {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
598           {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
599           {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
600           {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
601           {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
602           {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
603           {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
604           {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
605           }
606          },
607
608         {
609          {                      /* After Invert 7 */
610           {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
611           {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
612           {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
613           {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
614           {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
615           {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
616           {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
617           {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
618           {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
619           {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
620           {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
621           {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
622           {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
623           {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
624           {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
625           {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
626           {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
627           }
628          },
629
630         {
631          {                      /* After Invert 8 */
632           {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
633           {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
634           {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
635           {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
636           {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
637           {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
638           {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
639           {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
640           {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
641           {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
642           {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
643           {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
644           {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
645           {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
646           {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
647           {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
648           {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
649           {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
650           {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
651           {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
652           {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
653            MAX_BLOCK_ID},
654           }
655          },
656
657         {
658          {                      /* After Invert 9 */
659           {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
660           {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
661            MAX_BLOCK_ID},
662           {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
663           {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
664           {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
665            MAX_BLOCK_ID},
666           }
667          },
668
669 };
670
671 static struct aeu_invert_reg_bit *
672 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
673                         struct aeu_invert_reg_bit *p_bit)
674 {
675         if (!ECORE_IS_BB(p_hwfn->p_dev))
676                 return p_bit;
677
678         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
679                 return p_bit;
680
681         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
682                                   ATTENTION_BB_SHIFT];
683 }
684
685 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
686                                      struct aeu_invert_reg_bit *p_bit)
687 {
688         return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
689                   ATTENTION_PARITY);
690 }
691
692 #define ATTN_STATE_BITS         (0xfff)
693 #define ATTN_BITS_MASKABLE      (0x3ff)
694 struct ecore_sb_attn_info {
695         /* Virtual & Physical address of the SB */
696         struct atten_status_block *sb_attn;
697         dma_addr_t sb_phys;
698
699         /* Last seen running index */
700         u16 index;
701
702         /* A mask of the AEU bits resulting in a parity error */
703         u32 parity_mask[NUM_ATTN_REGS];
704
705         /* A pointer to the attention description structure */
706         struct aeu_invert_reg *p_aeu_desc;
707
708         /* Previously asserted attentions, which are still unasserted */
709         u16 known_attn;
710
711         /* Cleanup address for the link's general hw attention */
712         u32 mfw_attn_addr;
713 };
714
715 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
716                                  struct ecore_sb_attn_info *p_sb_desc)
717 {
718         u16 rc = 0, index;
719
720         OSAL_MMIOWB(p_hwfn->p_dev);
721
722         index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
723         if (p_sb_desc->index != index) {
724                 p_sb_desc->index = index;
725                 rc = ECORE_SB_ATT_IDX;
726         }
727
728         OSAL_MMIOWB(p_hwfn->p_dev);
729
730         return rc;
731 }
732
733 /**
734  * @brief ecore_int_assertion - handles asserted attention bits
735  *
736  * @param p_hwfn
737  * @param asserted_bits newly asserted bits
738  * @return enum _ecore_status_t
739  */
740 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
741                                                 u16 asserted_bits)
742 {
743         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
744         u32 igu_mask;
745
746         /* Mask the source of the attention in the IGU */
747         igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
748                             IGU_REG_ATTENTION_ENABLE);
749         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
750                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
751         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
752         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
753
754         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
755                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
756                    sb_attn_sw->known_attn,
757                    sb_attn_sw->known_attn | asserted_bits);
758         sb_attn_sw->known_attn |= asserted_bits;
759
760         /* Handle MCP events */
761         if (asserted_bits & 0x100) {
762                 ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
763                 /* Clean the MCP attention */
764                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
765                          sb_attn_sw->mfw_attn_addr, 0);
766         }
767
768         /* FIXME - this will change once we'll have GOOD gtt definitions */
769         DIRECT_REG_WR(p_hwfn,
770                       (u8 OSAL_IOMEM *) p_hwfn->regview +
771                       GTT_BAR0_MAP_REG_IGU_CMD +
772                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
773                         IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
774
775         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
776                    asserted_bits);
777
778         return ECORE_SUCCESS;
779 }
780
781 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
782                                  enum block_id id, enum dbg_attn_type type,
783                                  bool b_clear)
784 {
785         /* @DPDK */
786         DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
787 }
788
789 /**
790  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
791  * cause of the attention
792  *
793  * @param p_hwfn
794  * @param p_aeu - descriptor of an AEU bit which caused the attention
795  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
796  *  this bit to this group.
797  * @param bit_index - index of this bit in the aeu_en_reg
798  *
799  * @return enum _ecore_status_t
800  */
801 static enum _ecore_status_t
802 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
803                               struct aeu_invert_reg_bit *p_aeu,
804                               u32 aeu_en_reg,
805                               const char *p_bit_name,
806                               u32 bitmask)
807 {
808         enum _ecore_status_t rc = ECORE_INVAL;
809         bool b_fatal = false;
810
811         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
812                 p_bit_name, bitmask);
813
814         /* Call callback before clearing the interrupt status */
815         if (p_aeu->cb) {
816                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
817                         p_bit_name);
818                 rc = p_aeu->cb(p_hwfn);
819         }
820
821         if (rc != ECORE_SUCCESS)
822                 b_fatal = true;
823
824         /* Print HW block interrupt registers */
825         if (p_aeu->block_index != MAX_BLOCK_ID) {
826                 ecore_int_attn_print(p_hwfn, p_aeu->block_index,
827                                      ATTN_TYPE_INTERRUPT, !b_fatal);
828 }
829
830         /* Reach assertion if attention is fatal */
831         if (b_fatal) {
832                 DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
833                           p_bit_name);
834
835                 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
836         }
837
838         /* Prevent this Attention from being asserted in the future */
839         if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
840             p_hwfn->p_dev->attn_clr_en) {
841                 u32 val;
842                 u32 mask = ~bitmask;
843                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
844                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
845                 DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
846                         p_bit_name);
847         }
848
849         return rc;
850 }
851
852 /**
853  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
854  *
855  * @param p_hwfn
856  * @param p_aeu - descriptor of an AEU bit which caused the
857  *              parity
858  * @param bit_index
859  */
860 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
861                                          struct aeu_invert_reg_bit *p_aeu,
862                                          u8 bit_index)
863 {
864         u32 block_id = p_aeu->block_index;
865
866         DP_INFO(p_hwfn->p_dev, "%s[%d] parity attention is set\n",
867                 p_aeu->bit_name, bit_index);
868
869         if (block_id == MAX_BLOCK_ID)
870                 return;
871
872         ecore_int_attn_print(p_hwfn, block_id,
873                              ATTN_TYPE_PARITY, false);
874
875         /* In A0, there's a single parity bit for several blocks */
876         if (block_id == BLOCK_BTB) {
877                 ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
878                                      ATTN_TYPE_PARITY, false);
879                 ecore_int_attn_print(p_hwfn, BLOCK_MCP,
880                                      ATTN_TYPE_PARITY, false);
881         }
882 }
883
884 /**
885  * @brief - handles deassertion of previously asserted attentions.
886  *
887  * @param p_hwfn
888  * @param deasserted_bits - newly deasserted bits
889  * @return enum _ecore_status_t
890  *
891  */
892 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
893                                                   u16 deasserted_bits)
894 {
895         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
896         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask;
897         bool b_parity = false;
898         u8 i, j, k, bit_idx;
899         enum _ecore_status_t rc = ECORE_SUCCESS;
900
901         /* Read the attention registers in the AEU */
902         for (i = 0; i < NUM_ATTN_REGS; i++) {
903                 aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
904                                           MISC_REG_AEU_AFTER_INVERT_1_IGU +
905                                           i * 0x4);
906                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
907                            "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
908         }
909
910         /* Handle parity attentions first */
911         for (i = 0; i < NUM_ATTN_REGS; i++) {
912                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
913                 u32 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
914                                   MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
915                                   i * sizeof(u32));
916
917                 u32 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
918
919                 /* Skip register in which no parity bit is currently set */
920                 if (!parities)
921                         continue;
922
923                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
924                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
925
926                         if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
927                             !!(parities & (1 << bit_idx))) {
928                                 ecore_int_deassertion_parity(p_hwfn, p_bit,
929                                                              bit_idx);
930                                 b_parity = true;
931                         }
932
933                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
934                 }
935         }
936
937         /* Find non-parity cause for attention and act */
938         for (k = 0; k < MAX_ATTN_GRPS; k++) {
939                 struct aeu_invert_reg_bit *p_aeu;
940
941                 /* Handle only groups whose attention is currently deasserted */
942                 if (!(deasserted_bits & (1 << k)))
943                         continue;
944
945                 for (i = 0; i < NUM_ATTN_REGS; i++) {
946                         u32 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
947                             i * sizeof(u32) + k * sizeof(u32) * NUM_ATTN_REGS;
948                         u32 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
949                         u32 bits = aeu_inv_arr[i] & en;
950
951                         /* Skip if no bit from this group is currently set */
952                         if (!bits)
953                                 continue;
954
955                         /* Find all set bits from current register which belong
956                          * to current group, making them responsible for the
957                          * previous assertion.
958                          */
959                         for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
960                                 unsigned long int bitmask;
961                                 u8 bit, bit_len;
962
963                                 /* Need to account bits with changed meaning */
964                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
965
966                                 bit = bit_idx;
967                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
968                                 if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
969                                         /* Skip Parity */
970                                         bit++;
971                                         bit_len--;
972                                 }
973
974                                 /* Find the bits relating to HW-block, then
975                                  * shift so they'll become LSB.
976                                  */
977                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
978                                 bitmask >>= bit;
979
980                                 if (bitmask) {
981                                         u32 flags = p_aeu->flags;
982                                         char bit_name[30];
983                                         u8 num;
984
985                                         num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
986                                                                 bit_len);
987
988                                         /* Some bits represent more than a
989                                          * a single interrupt. Correctly print
990                                          * their name.
991                                          */
992                                         if (ATTENTION_LENGTH(flags) > 2 ||
993                                             ((flags & ATTENTION_PAR_INT) &&
994                                             ATTENTION_LENGTH(flags) > 1))
995                                                 OSAL_SNPRINTF(bit_name, 30,
996                                                               p_aeu->bit_name,
997                                                               num);
998                                         else
999                                                 OSAL_STRNCPY(bit_name,
1000                                                              p_aeu->bit_name,
1001                                                              30);
1002
1003                                         /* We now need to pass bitmask in its
1004                                          * correct position.
1005                                          */
1006                                         bitmask <<= bit;
1007
1008                                         /* Handle source of the attention */
1009                                         ecore_int_deassertion_aeu_bit(p_hwfn,
1010                                                                       p_aeu,
1011                                                                       aeu_en,
1012                                                                       bit_name,
1013                                                                       bitmask);
1014                                 }
1015
1016                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1017                         }
1018                 }
1019         }
1020
1021         /* Clear IGU indication for the deasserted bits */
1022         /* FIXME - this will change once we'll have GOOD gtt definitions */
1023         DIRECT_REG_WR(p_hwfn,
1024                       (u8 OSAL_IOMEM *) p_hwfn->regview +
1025                       GTT_BAR0_MAP_REG_IGU_CMD +
1026                       ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1027                         IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1028
1029         /* Unmask deasserted attentions in IGU */
1030         aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1031                             IGU_REG_ATTENTION_ENABLE);
1032         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1033         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1034
1035         /* Clear deassertion from inner state */
1036         sb_attn_sw->known_attn &= ~deasserted_bits;
1037
1038         return rc;
1039 }
1040
1041 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1042 {
1043         struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1044         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1045         u16 index = 0, asserted_bits, deasserted_bits;
1046         u32 attn_bits = 0, attn_acks = 0;
1047         enum _ecore_status_t rc = ECORE_SUCCESS;
1048
1049         /* Read current attention bits/acks - safeguard against attentions
1050          * by guaranting work on a synchronized timeframe
1051          */
1052         do {
1053                 index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1054                 attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1055                 attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1056         } while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1057         p_sb_attn->sb_index = index;
1058
1059         /* Attention / Deassertion are meaningful (and in correct state)
1060          * only when they differ and consistent with known state - deassertion
1061          * when previous attention & current ack, and assertion when current
1062          * attention with no previous attention
1063          */
1064         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1065             ~p_sb_attn_sw->known_attn;
1066         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1067             p_sb_attn_sw->known_attn;
1068
1069         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1070                 DP_INFO(p_hwfn,
1071                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1072                         index, attn_bits, attn_acks, asserted_bits,
1073                         deasserted_bits, p_sb_attn_sw->known_attn);
1074         else if (asserted_bits == 0x100)
1075                 DP_INFO(p_hwfn, "MFW indication via attention\n");
1076         else
1077                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1078                            "MFW indication [deassertion]\n");
1079
1080         if (asserted_bits) {
1081                 rc = ecore_int_assertion(p_hwfn, asserted_bits);
1082                 if (rc)
1083                         return rc;
1084         }
1085
1086         if (deasserted_bits)
1087                 rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1088
1089         return rc;
1090 }
1091
1092 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1093                               void OSAL_IOMEM *igu_addr, u32 ack_cons)
1094 {
1095         struct igu_prod_cons_update igu_ack = { 0 };
1096
1097         igu_ack.sb_id_and_flags =
1098             ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1099              (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1100              (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1101              (IGU_SEG_ACCESS_ATTN <<
1102               IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1103
1104         DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1105
1106         /* Both segments (interrupts & acks) are written to same place address;
1107          * Need to guarantee all commands will be received (in-order) by HW.
1108          */
1109         OSAL_MMIOWB(p_hwfn->p_dev);
1110         OSAL_BARRIER(p_hwfn->p_dev);
1111 }
1112
1113 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1114 {
1115         struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1116         struct ecore_pi_info *pi_info = OSAL_NULL;
1117         struct ecore_sb_attn_info *sb_attn;
1118         struct ecore_sb_info *sb_info;
1119         int arr_size;
1120         u16 rc = 0;
1121
1122         if (!p_hwfn)
1123                 return;
1124
1125         if (!p_hwfn->p_sp_sb) {
1126                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1127                 return;
1128         }
1129
1130         sb_info = &p_hwfn->p_sp_sb->sb_info;
1131         arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1132         if (!sb_info) {
1133                 DP_ERR(p_hwfn->p_dev,
1134                        "Status block is NULL - cannot ack interrupts\n");
1135                 return;
1136         }
1137
1138         if (!p_hwfn->p_sb_attn) {
1139                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1140                 return;
1141         }
1142         sb_attn = p_hwfn->p_sb_attn;
1143
1144         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1145                    p_hwfn, p_hwfn->my_id);
1146
1147         /* Disable ack for def status block. Required both for msix +
1148          * inta in non-mask mode, in inta does no harm.
1149          */
1150         ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1151
1152         /* Gather Interrupts/Attentions information */
1153         if (!sb_info->sb_virt) {
1154                 DP_ERR(p_hwfn->p_dev,
1155                        "Interrupt Status block is NULL -"
1156                        " cannot check for new interrupts!\n");
1157         } else {
1158                 u32 tmp_index = sb_info->sb_ack;
1159                 rc = ecore_sb_update_sb_idx(sb_info);
1160                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1161                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1162                            tmp_index, sb_info->sb_ack);
1163         }
1164
1165         if (!sb_attn || !sb_attn->sb_attn) {
1166                 DP_ERR(p_hwfn->p_dev,
1167                        "Attentions Status block is NULL -"
1168                        " cannot check for new attentions!\n");
1169         } else {
1170                 u16 tmp_index = sb_attn->index;
1171
1172                 rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1173                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1174                            "Attention indices: 0x%08x --> 0x%08x\n",
1175                            tmp_index, sb_attn->index);
1176         }
1177
1178         /* Check if we expect interrupts at this time. if not just ack them */
1179         if (!(rc & ECORE_SB_EVENT_MASK)) {
1180                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1181                 return;
1182         }
1183
1184 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1185
1186         if (!p_hwfn->p_dpc_ptt) {
1187                 DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1188                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1189                 return;
1190         }
1191
1192         if (rc & ECORE_SB_ATT_IDX)
1193                 ecore_int_attentions(p_hwfn);
1194
1195         if (rc & ECORE_SB_IDX) {
1196                 int pi;
1197
1198                 /* Since we only looked at the SB index, it's possible more
1199                  * than a single protocol-index on the SB incremented.
1200                  * Iterate over all configured protocol indices and check
1201                  * whether something happened for each.
1202                  */
1203                 for (pi = 0; pi < arr_size; pi++) {
1204                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1205                         if (pi_info->comp_cb != OSAL_NULL)
1206                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1207                 }
1208         }
1209
1210         if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1211                 /* This should be done before the interrupts are enabled,
1212                  * since otherwise a new attention will be generated.
1213                  */
1214                 ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1215         }
1216
1217         ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1218 }
1219
1220 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1221 {
1222         struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1223
1224         if (!p_sb)
1225                 return;
1226
1227         if (p_sb->sb_attn) {
1228                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1229                                        p_sb->sb_phys,
1230                                        SB_ATTN_ALIGNED_SIZE(p_hwfn));
1231         }
1232         OSAL_FREE(p_hwfn->p_dev, p_sb);
1233 }
1234
1235 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1236                                     struct ecore_ptt *p_ptt)
1237 {
1238         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1239
1240         OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1241
1242         sb_info->index = 0;
1243         sb_info->known_attn = 0;
1244
1245         /* Configure Attention Status Block in IGU */
1246         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1247                  DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1248         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1249                  DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1250 }
1251
1252 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1253                                    struct ecore_ptt *p_ptt,
1254                                    void *sb_virt_addr, dma_addr_t sb_phy_addr)
1255 {
1256         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1257         int i, j, k;
1258
1259         sb_info->sb_attn = sb_virt_addr;
1260         sb_info->sb_phys = sb_phy_addr;
1261
1262         /* Set the pointer to the AEU descriptors */
1263         sb_info->p_aeu_desc = aeu_descs;
1264
1265         /* Calculate Parity Masks */
1266         OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1267         for (i = 0; i < NUM_ATTN_REGS; i++) {
1268                 /* j is array index, k is bit index */
1269                 for (j = 0, k = 0; k < 32; j++) {
1270                         struct aeu_invert_reg_bit *p_aeu;
1271
1272                         p_aeu = &aeu_descs[i].bits[j];
1273                         if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1274                                 sb_info->parity_mask[i] |= 1 << k;
1275
1276                         k += ATTENTION_LENGTH(p_aeu->flags);
1277                 }
1278                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1279                            "Attn Mask [Reg %d]: 0x%08x\n",
1280                            i, sb_info->parity_mask[i]);
1281         }
1282
1283         /* Set the address of cleanup for the mcp attention */
1284         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1285             MISC_REG_AEU_GENERAL_ATTN_0;
1286
1287         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1288 }
1289
1290 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1291                                                     struct ecore_ptt *p_ptt)
1292 {
1293         struct ecore_dev *p_dev = p_hwfn->p_dev;
1294         struct ecore_sb_attn_info *p_sb;
1295         dma_addr_t p_phys = 0;
1296         void *p_virt;
1297
1298         /* SB struct */
1299         p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1300         if (!p_sb) {
1301                 DP_NOTICE(p_dev, true,
1302                           "Failed to allocate `struct ecore_sb_attn_info'\n");
1303                 return ECORE_NOMEM;
1304         }
1305
1306         /* SB ring  */
1307         p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1308                                          SB_ATTN_ALIGNED_SIZE(p_hwfn));
1309         if (!p_virt) {
1310                 DP_NOTICE(p_dev, true,
1311                           "Failed to allocate status block (attentions)\n");
1312                 OSAL_FREE(p_dev, p_sb);
1313                 return ECORE_NOMEM;
1314         }
1315
1316         /* Attention setup */
1317         p_hwfn->p_sb_attn = p_sb;
1318         ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1319
1320         return ECORE_SUCCESS;
1321 }
1322
1323 /* coalescing timeout = timeset << (timer_res + 1) */
1324 #define ECORE_CAU_DEF_RX_USECS 24
1325 #define ECORE_CAU_DEF_TX_USECS 48
1326
1327 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1328                              struct cau_sb_entry *p_sb_entry,
1329                              u8 pf_id, u16 vf_number, u8 vf_valid)
1330 {
1331         struct ecore_dev *p_dev = p_hwfn->p_dev;
1332         u32 cau_state;
1333         u8 timer_res;
1334
1335         OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1336
1337         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1338         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1339         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1340         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1341         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1342
1343         cau_state = CAU_HC_DISABLE_STATE;
1344
1345         if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1346                 cau_state = CAU_HC_ENABLE_STATE;
1347                 if (!p_dev->rx_coalesce_usecs)
1348                         p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1349                 if (!p_dev->tx_coalesce_usecs)
1350                         p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1351         }
1352
1353         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1354         if (p_dev->rx_coalesce_usecs <= 0x7F)
1355                 timer_res = 0;
1356         else if (p_dev->rx_coalesce_usecs <= 0xFF)
1357                 timer_res = 1;
1358         else
1359                 timer_res = 2;
1360         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1361
1362         if (p_dev->tx_coalesce_usecs <= 0x7F)
1363                 timer_res = 0;
1364         else if (p_dev->tx_coalesce_usecs <= 0xFF)
1365                 timer_res = 1;
1366         else
1367                 timer_res = 2;
1368         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1369
1370         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1371         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1372 }
1373
1374 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1375                            struct ecore_ptt *p_ptt,
1376                            dma_addr_t sb_phys, u16 igu_sb_id,
1377                            u16 vf_number, u8 vf_valid)
1378 {
1379         struct cau_sb_entry sb_entry;
1380
1381         ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1382                                 vf_number, vf_valid);
1383
1384         if (p_hwfn->hw_init_done) {
1385                 /* Wide-bus, initialize via DMAE */
1386                 u64 phys_addr = (u64)sb_phys;
1387
1388                 ecore_dmae_host2grc(p_hwfn, p_ptt,
1389                                     (u64)(osal_uintptr_t)&phys_addr,
1390                                     CAU_REG_SB_ADDR_MEMORY +
1391                                     igu_sb_id * sizeof(u64), 2, 0);
1392                 ecore_dmae_host2grc(p_hwfn, p_ptt,
1393                                     (u64)(osal_uintptr_t)&sb_entry,
1394                                     CAU_REG_SB_VAR_MEMORY +
1395                                     igu_sb_id * sizeof(u64), 2, 0);
1396         } else {
1397                 /* Initialize Status Block Address */
1398                 STORE_RT_REG_AGG(p_hwfn,
1399                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1400                                  igu_sb_id * 2, sb_phys);
1401
1402                 STORE_RT_REG_AGG(p_hwfn,
1403                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1404                                  igu_sb_id * 2, sb_entry);
1405         }
1406
1407         /* Configure pi coalescing if set */
1408         if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1409                 /* eth will open queues for all tcs, so configure all of them
1410                  * properly, rather than just the active ones
1411                  */
1412                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1413
1414                 u8 timeset, timer_res;
1415                 u8 i;
1416
1417                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1418                 if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1419                         timer_res = 0;
1420                 else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1421                         timer_res = 1;
1422                 else
1423                         timer_res = 2;
1424                 timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1425                 ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1426                                       ECORE_COAL_RX_STATE_MACHINE, timeset);
1427
1428                 if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1429                         timer_res = 0;
1430                 else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1431                         timer_res = 1;
1432                 else
1433                         timer_res = 2;
1434                 timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1435                 for (i = 0; i < num_tc; i++) {
1436                         ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1437                                               igu_sb_id, TX_PI(i),
1438                                               ECORE_COAL_TX_STATE_MACHINE,
1439                                               timeset);
1440                 }
1441         }
1442 }
1443
1444 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1445                            struct ecore_ptt *p_ptt,
1446                            u16 igu_sb_id, u32 pi_index,
1447                            enum ecore_coalescing_fsm coalescing_fsm, u8 timeset)
1448 {
1449         struct cau_pi_entry pi_entry;
1450         u32 sb_offset, pi_offset;
1451
1452         if (IS_VF(p_hwfn->p_dev))
1453                 return;         /* @@@TBD MichalK- VF CAU... */
1454
1455         sb_offset = igu_sb_id * PIS_PER_SB;
1456         OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1457
1458         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1459         if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1460                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1461         else
1462                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1463
1464         pi_offset = sb_offset + pi_index;
1465         if (p_hwfn->hw_init_done) {
1466                 ecore_wr(p_hwfn, p_ptt,
1467                          CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1468                          *((u32 *)&(pi_entry)));
1469         } else {
1470                 STORE_RT_REG(p_hwfn,
1471                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1472                              *((u32 *)&(pi_entry)));
1473         }
1474 }
1475
1476 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1477                         struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1478 {
1479         /* zero status block and ack counter */
1480         sb_info->sb_ack = 0;
1481         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1482
1483         if (IS_PF(p_hwfn->p_dev))
1484                 ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1485                                       sb_info->igu_sb_id, 0, 0);
1486 }
1487
1488 /**
1489  * @brief ecore_get_igu_sb_id - given a sw sb_id return the
1490  *        igu_sb_id
1491  *
1492  * @param p_hwfn
1493  * @param sb_id
1494  *
1495  * @return u16
1496  */
1497 static u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1498 {
1499         u16 igu_sb_id;
1500
1501         /* Assuming continuous set of IGU SBs dedicated for given PF */
1502         if (sb_id == ECORE_SP_SB_ID)
1503                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1504         else if (IS_PF(p_hwfn->p_dev))
1505                 igu_sb_id = sb_id + p_hwfn->hw_info.p_igu_info->igu_base_sb;
1506         else
1507                 igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1508
1509         if (sb_id == ECORE_SP_SB_ID)
1510                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1511                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1512         else
1513                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1514                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1515
1516         return igu_sb_id;
1517 }
1518
1519 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1520                                        struct ecore_ptt *p_ptt,
1521                                        struct ecore_sb_info *sb_info,
1522                                        void *sb_virt_addr,
1523                                        dma_addr_t sb_phy_addr, u16 sb_id)
1524 {
1525         sb_info->sb_virt = sb_virt_addr;
1526         sb_info->sb_phys = sb_phy_addr;
1527
1528         sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1529
1530         if (sb_id != ECORE_SP_SB_ID) {
1531                 p_hwfn->sbs_info[sb_id] = sb_info;
1532                 p_hwfn->num_sbs++;
1533         }
1534 #ifdef ECORE_CONFIG_DIRECT_HWFN
1535         sb_info->p_hwfn = p_hwfn;
1536 #endif
1537         sb_info->p_dev = p_hwfn->p_dev;
1538
1539         /* The igu address will hold the absolute address that needs to be
1540          * written to for a specific status block
1541          */
1542         if (IS_PF(p_hwfn->p_dev)) {
1543                 sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1544                     GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3);
1545
1546         } else {
1547                 sb_info->igu_addr =
1548                     (u8 OSAL_IOMEM *)p_hwfn->regview +
1549                     PXP_VF_BAR0_START_IGU +
1550                     ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1551         }
1552
1553         sb_info->flags |= ECORE_SB_INFO_INIT;
1554
1555         ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1556
1557         return ECORE_SUCCESS;
1558 }
1559
1560 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1561                                           struct ecore_sb_info *sb_info,
1562                                           u16 sb_id)
1563 {
1564         if (sb_id == ECORE_SP_SB_ID) {
1565                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1566                 return ECORE_INVAL;
1567         }
1568
1569         /* zero status block and ack counter */
1570         sb_info->sb_ack = 0;
1571         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1572
1573         if (p_hwfn->sbs_info[sb_id] != OSAL_NULL) {
1574                 p_hwfn->sbs_info[sb_id] = OSAL_NULL;
1575                 p_hwfn->num_sbs--;
1576         }
1577
1578         return ECORE_SUCCESS;
1579 }
1580
1581 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1582 {
1583         struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1584
1585         if (!p_sb)
1586                 return;
1587
1588         if (p_sb->sb_info.sb_virt) {
1589                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1590                                        p_sb->sb_info.sb_virt,
1591                                        p_sb->sb_info.sb_phys,
1592                                        SB_ALIGNED_SIZE(p_hwfn));
1593         }
1594
1595         OSAL_FREE(p_hwfn->p_dev, p_sb);
1596 }
1597
1598 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1599                                                   struct ecore_ptt *p_ptt)
1600 {
1601         struct ecore_sb_sp_info *p_sb;
1602         dma_addr_t p_phys = 0;
1603         void *p_virt;
1604
1605         /* SB struct */
1606         p_sb =
1607             OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL,
1608                        sizeof(*p_sb));
1609         if (!p_sb) {
1610                 DP_NOTICE(p_hwfn, true,
1611                           "Failed to allocate `struct ecore_sb_info'\n");
1612                 return ECORE_NOMEM;
1613         }
1614
1615         /* SB ring  */
1616         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1617                                          &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1618         if (!p_virt) {
1619                 DP_NOTICE(p_hwfn, true, "Failed to allocate status block\n");
1620                 OSAL_FREE(p_hwfn->p_dev, p_sb);
1621                 return ECORE_NOMEM;
1622         }
1623
1624         /* Status Block setup */
1625         p_hwfn->p_sp_sb = p_sb;
1626         ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1627                           p_virt, p_phys, ECORE_SP_SB_ID);
1628
1629         OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1630
1631         return ECORE_SUCCESS;
1632 }
1633
1634 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1635                                            ecore_int_comp_cb_t comp_cb,
1636                                            void *cookie,
1637                                            u8 *sb_idx, __le16 **p_fw_cons)
1638 {
1639         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1640         enum _ecore_status_t rc = ECORE_NOMEM;
1641         u8 pi;
1642
1643         /* Look for a free index */
1644         for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1645                 if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1646                         continue;
1647
1648                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1649                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1650                 *sb_idx = pi;
1651                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1652                 rc = ECORE_SUCCESS;
1653                 break;
1654         }
1655
1656         return rc;
1657 }
1658
1659 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1660 {
1661         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1662
1663         if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1664                 return ECORE_NOMEM;
1665
1666         p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1667         p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1668         return ECORE_SUCCESS;
1669 }
1670
1671 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1672 {
1673         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1674 }
1675
1676 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1677                               struct ecore_ptt *p_ptt,
1678                               enum ecore_int_mode int_mode)
1679 {
1680         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1681
1682 #ifndef ASIC_ONLY
1683         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1684                 DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1685                 igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1686         }
1687 #endif
1688
1689         p_hwfn->p_dev->int_mode = int_mode;
1690         switch (p_hwfn->p_dev->int_mode) {
1691         case ECORE_INT_MODE_INTA:
1692                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1693                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1694                 break;
1695
1696         case ECORE_INT_MODE_MSI:
1697                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1698                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1699                 break;
1700
1701         case ECORE_INT_MODE_MSIX:
1702                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1703                 break;
1704         case ECORE_INT_MODE_POLL:
1705                 break;
1706         }
1707
1708         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1709 }
1710
1711 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1712                                       struct ecore_ptt *p_ptt)
1713 {
1714 #ifndef ASIC_ONLY
1715         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1716                 DP_INFO(p_hwfn,
1717                         "FPGA - Don't enable Attentions in IGU and MISC\n");
1718                 return;
1719         }
1720 #endif
1721
1722         /* Configure AEU signal change to produce attentions */
1723         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1724         ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1725         ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1726         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1727
1728         /* Flush the writes to IGU */
1729         OSAL_MMIOWB(p_hwfn->p_dev);
1730
1731         /* Unmask AEU signals toward IGU */
1732         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1733 }
1734
1735 enum _ecore_status_t
1736 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1737                           enum ecore_int_mode int_mode)
1738 {
1739         enum _ecore_status_t rc = ECORE_SUCCESS;
1740         u32 tmp;
1741
1742         /* @@@tmp - Starting with MFW 8.2.1.0 we've started hitting AVS stop
1743          * attentions. Since we're waiting for BRCM answer regarding this
1744          * attention, in the meanwhile we simply mask it.
1745          */
1746         tmp = ecore_rd(p_hwfn, p_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0);
1747         tmp &= ~0x800;
1748         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0, tmp);
1749
1750         ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1751
1752         if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1753                 rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1754                 if (rc != ECORE_SUCCESS) {
1755                         DP_NOTICE(p_hwfn, true,
1756                                   "Slowpath IRQ request failed\n");
1757                         return ECORE_NORESOURCES;
1758                 }
1759                 p_hwfn->b_int_requested = true;
1760         }
1761
1762         /* Enable interrupt Generation */
1763         ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1764
1765         p_hwfn->b_int_enabled = 1;
1766
1767         return rc;
1768 }
1769
1770 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
1771                                struct ecore_ptt *p_ptt)
1772 {
1773         p_hwfn->b_int_enabled = 0;
1774
1775         if (IS_VF(p_hwfn->p_dev))
1776                 return;
1777
1778         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1779 }
1780
1781 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1782 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1783                               struct ecore_ptt *p_ptt,
1784                               u32 sb_id, bool cleanup_set, u16 opaque_fid)
1785 {
1786         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1787         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + sb_id;
1788         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1789         u8 type = 0;            /* FIXME MichalS type??? */
1790
1791         OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1792                            IGU_REG_CLEANUP_STATUS_0) != 0x200);
1793
1794         /* USE Control Command Register to perform cleanup. There is an
1795          * option to do this using IGU bar, but then it can't be used for VFs.
1796          */
1797
1798         /* Set the data field */
1799         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1800         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1801         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1802
1803         /* Set the control register */
1804         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1805         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1806         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1807
1808         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1809
1810         OSAL_BARRIER(p_hwfn->p_dev);
1811
1812         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1813
1814         /* Flush the write to IGU */
1815         OSAL_MMIOWB(p_hwfn->p_dev);
1816
1817         /* calculate where to read the status bit from */
1818         sb_bit = 1 << (sb_id % 32);
1819         sb_bit_addr = sb_id / 32 * sizeof(u32);
1820
1821         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
1822
1823         /* Now wait for the command to complete */
1824         while (--sleep_cnt) {
1825                 val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
1826                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1827                         break;
1828                 OSAL_MSLEEP(5);
1829         }
1830
1831         if (!sleep_cnt)
1832                 DP_NOTICE(p_hwfn, true,
1833                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1834                           val, sb_id);
1835 }
1836
1837 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
1838                                        struct ecore_ptt *p_ptt,
1839                                        u32 sb_id, u16 opaque, bool b_set)
1840 {
1841         int pi, i;
1842
1843         /* Set */
1844         if (b_set)
1845                 ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 1, opaque);
1846
1847         /* Clear */
1848         ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 0, opaque);
1849
1850         /* Wait for the IGU SB to cleanup */
1851         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1852                 u32 val;
1853
1854                 val = ecore_rd(p_hwfn, p_ptt,
1855                                IGU_REG_WRITE_DONE_PENDING +
1856                                ((sb_id / 32) * 4));
1857                 if (val & (1 << (sb_id % 32)))
1858                         OSAL_UDELAY(10);
1859                 else
1860                         break;
1861         }
1862         if (i == IGU_CLEANUP_SLEEP_LENGTH)
1863                 DP_NOTICE(p_hwfn, true,
1864                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1865                           sb_id);
1866
1867         /* Clear the CAU for the SB */
1868         for (pi = 0; pi < 12; pi++)
1869                 ecore_wr(p_hwfn, p_ptt,
1870                          CAU_REG_PI_MEMORY + (sb_id * 12 + pi) * 4, 0);
1871 }
1872
1873 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
1874                                 struct ecore_ptt *p_ptt,
1875                                 bool b_set, bool b_slowpath)
1876 {
1877         u32 igu_base_sb = p_hwfn->hw_info.p_igu_info->igu_base_sb;
1878         u32 igu_sb_cnt = p_hwfn->hw_info.p_igu_info->igu_sb_cnt;
1879         u32 sb_id = 0, val = 0;
1880
1881         /* @@@TBD MichalK temporary... should be moved to init-tool... */
1882         val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1883         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1884         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1885         ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1886         /* end temporary */
1887
1888         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1889                    "IGU cleaning SBs [%d,...,%d]\n",
1890                    igu_base_sb, igu_base_sb + igu_sb_cnt - 1);
1891
1892         for (sb_id = igu_base_sb; sb_id < igu_base_sb + igu_sb_cnt; sb_id++)
1893                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
1894                                                   p_hwfn->hw_info.opaque_fid,
1895                                                   b_set);
1896
1897         if (!b_slowpath)
1898                 return;
1899
1900         sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1901         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1902                    "IGU cleaning slowpath SB [%d]\n", sb_id);
1903         ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
1904                                           p_hwfn->hw_info.opaque_fid, b_set);
1905 }
1906
1907 static u32 ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
1908                                         struct ecore_ptt *p_ptt, u16 sb_id)
1909 {
1910         u32 val = ecore_rd(p_hwfn, p_ptt,
1911                            IGU_REG_MAPPING_MEMORY + sizeof(u32) * sb_id);
1912         struct ecore_igu_block *p_block;
1913
1914         p_block = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id];
1915
1916         /* stop scanning when hit first invalid PF entry */
1917         if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
1918             GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
1919                 goto out;
1920
1921         /* Fill the block information */
1922         p_block->status = ECORE_IGU_STATUS_VALID;
1923         p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
1924         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
1925         p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
1926
1927         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1928                    "IGU_BLOCK: [SB 0x%04x, Value in CAM 0x%08x] func_id = %d"
1929                    " is_pf = %d vector_num = 0x%x\n",
1930                    sb_id, val, p_block->function_id, p_block->is_pf,
1931                    p_block->vector_number);
1932
1933 out:
1934         return val;
1935 }
1936
1937 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
1938                                             struct ecore_ptt *p_ptt)
1939 {
1940         struct ecore_igu_info *p_igu_info;
1941         struct ecore_igu_block *p_block;
1942         u32 min_vf = 0, max_vf = 0, val;
1943         u16 sb_id, last_iov_sb_id = 0;
1944         u16 prev_sb_id = 0xFF;
1945
1946         p_hwfn->hw_info.p_igu_info = OSAL_ALLOC(p_hwfn->p_dev,
1947                                                 GFP_KERNEL,
1948                                                 sizeof(*p_igu_info));
1949         if (!p_hwfn->hw_info.p_igu_info)
1950                 return ECORE_NOMEM;
1951
1952         OSAL_MEMSET(p_hwfn->hw_info.p_igu_info, 0, sizeof(*p_igu_info));
1953
1954         p_igu_info = p_hwfn->hw_info.p_igu_info;
1955
1956         /* Initialize base sb / sb cnt for PFs and VFs */
1957         p_igu_info->igu_base_sb = 0xffff;
1958         p_igu_info->igu_sb_cnt = 0;
1959         p_igu_info->igu_dsb_id = 0xffff;
1960         p_igu_info->igu_base_sb_iov = 0xffff;
1961
1962         if (p_hwfn->p_dev->p_iov_info) {
1963                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
1964
1965                 min_vf = p_iov->first_vf_in_pf;
1966                 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
1967         }
1968         for (sb_id = 0;
1969              sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1970              sb_id++) {
1971                 p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
1972                 val = ecore_int_igu_read_cam_block(p_hwfn, p_ptt, sb_id);
1973                 if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
1974                     GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
1975                         break;
1976
1977                 if (p_block->is_pf) {
1978                         if (p_block->function_id == p_hwfn->rel_pf_id) {
1979                                 p_block->status |= ECORE_IGU_STATUS_PF;
1980
1981                                 if (p_block->vector_number == 0) {
1982                                         if (p_igu_info->igu_dsb_id == 0xffff)
1983                                                 p_igu_info->igu_dsb_id = sb_id;
1984                                 } else {
1985                                         if (p_igu_info->igu_base_sb == 0xffff) {
1986                                                 p_igu_info->igu_base_sb = sb_id;
1987                                         } else if (prev_sb_id != sb_id - 1) {
1988                                                 DP_NOTICE(p_hwfn->p_dev, false,
1989                                                           "consecutive igu"
1990                                                           " vectors for HWFN"
1991                                                           " %x broken",
1992                                                           p_hwfn->rel_pf_id);
1993                                                 break;
1994                                         }
1995                                         prev_sb_id = sb_id;
1996                                         /* we don't count the default */
1997                                         (p_igu_info->igu_sb_cnt)++;
1998                                 }
1999                         }
2000                 } else {
2001                         if ((p_block->function_id >= min_vf) &&
2002                             (p_block->function_id < max_vf)) {
2003                                 /* Available for VFs of this PF */
2004                                 if (p_igu_info->igu_base_sb_iov == 0xffff) {
2005                                         p_igu_info->igu_base_sb_iov = sb_id;
2006                                 } else if (last_iov_sb_id != sb_id - 1) {
2007                                         if (!val)
2008                                                 DP_VERBOSE(p_hwfn->p_dev,
2009                                                            ECORE_MSG_INTR,
2010                                                            "First uninited IGU"
2011                                                            " CAM entry at"
2012                                                            " index 0x%04x\n",
2013                                                            sb_id);
2014                                         else
2015                                                 DP_NOTICE(p_hwfn->p_dev, false,
2016                                                           "Consecutive igu"
2017                                                           " vectors for HWFN"
2018                                                           " %x vfs is broken"
2019                                                           " [jumps from %04x"
2020                                                           " to %04x]\n",
2021                                                           p_hwfn->rel_pf_id,
2022                                                           last_iov_sb_id,
2023                                                           sb_id);
2024                                         break;
2025                                 }
2026                                 p_block->status |= ECORE_IGU_STATUS_FREE;
2027                                 p_hwfn->hw_info.p_igu_info->free_blks++;
2028                                 last_iov_sb_id = sb_id;
2029                         }
2030                 }
2031         }
2032
2033         /* There's a possibility the igu_sb_cnt_iov doesn't properly reflect
2034          * the number of VF SBs [especially for first VF on engine, as we can't
2035          * diffrentiate between empty entries and its entries].
2036          * Since we don't really support more SBs than VFs today, prevent any
2037          * such configuration by sanitizing the number of SBs to equal the
2038          * number of VFs.
2039          */
2040         if (IS_PF_SRIOV(p_hwfn)) {
2041                 u16 total_vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2042
2043                 if (total_vfs < p_igu_info->free_blks) {
2044                         DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2045                                    "Limiting number of SBs for IOV - %04x --> %04x\n",
2046                                    p_igu_info->free_blks,
2047                                    p_hwfn->p_dev->p_iov_info->total_vfs);
2048                         p_igu_info->free_blks = total_vfs;
2049                 } else if (total_vfs > p_igu_info->free_blks) {
2050                         DP_NOTICE(p_hwfn, true,
2051                                   "IGU has only %04x SBs for VFs while the device has %04x VFs\n",
2052                                   p_igu_info->free_blks, total_vfs);
2053                         return ECORE_INVAL;
2054                 }
2055         }
2056
2057         p_igu_info->igu_sb_cnt_iov = p_igu_info->free_blks;
2058
2059         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2060                    "IGU igu_base_sb=0x%x [IOV 0x%x] igu_sb_cnt=%d [IOV 0x%x] "
2061                    "igu_dsb_id=0x%x\n",
2062                    p_igu_info->igu_base_sb, p_igu_info->igu_base_sb_iov,
2063                    p_igu_info->igu_sb_cnt, p_igu_info->igu_sb_cnt_iov,
2064                    p_igu_info->igu_dsb_id);
2065
2066         if (p_igu_info->igu_base_sb == 0xffff ||
2067             p_igu_info->igu_dsb_id == 0xffff || p_igu_info->igu_sb_cnt == 0) {
2068                 DP_NOTICE(p_hwfn, true,
2069                           "IGU CAM returned invalid values igu_base_sb=0x%x "
2070                           "igu_sb_cnt=%d igu_dsb_id=0x%x\n",
2071                           p_igu_info->igu_base_sb, p_igu_info->igu_sb_cnt,
2072                           p_igu_info->igu_dsb_id);
2073                 return ECORE_INVAL;
2074         }
2075
2076         return ECORE_SUCCESS;
2077 }
2078
2079 /**
2080  * @brief Initialize igu runtime registers
2081  *
2082  * @param p_hwfn
2083  */
2084 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2085 {
2086         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2087
2088         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2089 }
2090
2091 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2092                           IGU_CMD_INT_ACK_BASE)
2093 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2094                           IGU_CMD_INT_ACK_BASE)
2095 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2096 {
2097         u32 intr_status_hi = 0, intr_status_lo = 0;
2098         u64 intr_status = 0;
2099
2100         intr_status_lo = REG_RD(p_hwfn,
2101                                 GTT_BAR0_MAP_REG_IGU_CMD +
2102                                 LSB_IGU_CMD_ADDR * 8);
2103         intr_status_hi = REG_RD(p_hwfn,
2104                                 GTT_BAR0_MAP_REG_IGU_CMD +
2105                                 MSB_IGU_CMD_ADDR * 8);
2106         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2107
2108         return intr_status;
2109 }
2110
2111 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2112 {
2113         OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2114         p_hwfn->b_sp_dpc_enabled = true;
2115 }
2116
2117 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2118 {
2119         p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2120         if (!p_hwfn->sp_dpc)
2121                 return ECORE_NOMEM;
2122
2123         return ECORE_SUCCESS;
2124 }
2125
2126 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2127 {
2128         OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2129 }
2130
2131 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2132                                      struct ecore_ptt *p_ptt)
2133 {
2134         enum _ecore_status_t rc = ECORE_SUCCESS;
2135
2136         rc = ecore_int_sp_dpc_alloc(p_hwfn);
2137         if (rc != ECORE_SUCCESS) {
2138                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2139                 return rc;
2140         }
2141
2142         rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2143         if (rc != ECORE_SUCCESS) {
2144                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2145                 return rc;
2146         }
2147
2148         rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2149         if (rc != ECORE_SUCCESS)
2150                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2151
2152         return rc;
2153 }
2154
2155 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2156 {
2157         ecore_int_sp_sb_free(p_hwfn);
2158         ecore_int_sb_attn_free(p_hwfn);
2159         ecore_int_sp_dpc_free(p_hwfn);
2160 }
2161
2162 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2163 {
2164         if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2165                 return;
2166
2167         ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2168         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2169         ecore_int_sp_dpc_setup(p_hwfn);
2170 }
2171
2172 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2173                            struct ecore_sb_cnt_info *p_sb_cnt_info)
2174 {
2175         struct ecore_igu_info *info = p_hwfn->hw_info.p_igu_info;
2176
2177         if (!info || !p_sb_cnt_info)
2178                 return;
2179
2180         p_sb_cnt_info->sb_cnt = info->igu_sb_cnt;
2181         p_sb_cnt_info->sb_iov_cnt = info->igu_sb_cnt_iov;
2182         p_sb_cnt_info->sb_free_blk = info->free_blks;
2183 }
2184
2185 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2186 {
2187         int i;
2188
2189         for_each_hwfn(p_dev, i)
2190                 p_dev->hwfns[i].b_int_requested = false;
2191 }
2192
2193 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2194 {
2195         p_dev->attn_clr_en = clr_enable;
2196 }
2197
2198 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2199                                              struct ecore_ptt *p_ptt,
2200                                              u8 timer_res, u16 sb_id, bool tx)
2201 {
2202         struct cau_sb_entry sb_entry;
2203         enum _ecore_status_t rc;
2204
2205         if (!p_hwfn->hw_init_done) {
2206                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2207                 return ECORE_INVAL;
2208         }
2209
2210         rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2211                                  sb_id * sizeof(u64),
2212                                  (u64)(osal_uintptr_t)&sb_entry, 2, 0);
2213         if (rc != ECORE_SUCCESS) {
2214                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2215                 return rc;
2216         }
2217
2218         if (tx)
2219                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2220         else
2221                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2222
2223         rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2224                                  (u64)(osal_uintptr_t)&sb_entry,
2225                                  CAU_REG_SB_VAR_MEMORY +
2226                                  sb_id * sizeof(u64), 2, 0);
2227         if (rc != ECORE_SUCCESS) {
2228                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2229                 return rc;
2230         }
2231
2232         return rc;
2233 }
2234
2235 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2236                                           struct ecore_ptt *p_ptt,
2237                                           struct ecore_sb_info *p_sb,
2238                                           struct ecore_sb_info_dbg *p_info)
2239 {
2240         u16 sbid = p_sb->igu_sb_id;
2241         int i;
2242
2243         if (IS_VF(p_hwfn->p_dev))
2244                 return ECORE_INVAL;
2245
2246         if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2247                 return ECORE_INVAL;
2248
2249         p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2250                                     IGU_REG_PRODUCER_MEMORY + sbid * 4);
2251         p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2252                                     IGU_REG_CONSUMER_MEM + sbid * 4);
2253
2254         for (i = 0; i < PIS_PER_SB; i++)
2255                 p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2256                                               CAU_REG_PI_MEMORY +
2257                                               sbid * 4 * PIS_PER_SB +  i * 4);
2258
2259         return ECORE_SUCCESS;
2260 }