New upstream version 18.02
[deb_dpdk.git] / drivers / net / qede / qede_rxtx.c
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8
9 #include <rte_net.h>
10 #include "qede_rxtx.h"
11
12 static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
13 {
14         struct rte_mbuf *new_mb = NULL;
15         struct eth_rx_bd *rx_bd;
16         dma_addr_t mapping;
17         uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
18
19         new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
20         if (unlikely(!new_mb)) {
21                 PMD_RX_LOG(ERR, rxq,
22                            "Failed to allocate rx buffer "
23                            "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
24                            idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
25                            rte_mempool_avail_count(rxq->mb_pool),
26                            rte_mempool_in_use_count(rxq->mb_pool));
27                 return -ENOMEM;
28         }
29         rxq->sw_rx_ring[idx].mbuf = new_mb;
30         rxq->sw_rx_ring[idx].page_offset = 0;
31         mapping = rte_mbuf_data_iova_default(new_mb);
32         /* Advance PROD and get BD pointer */
33         rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
34         rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
35         rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
36         rxq->sw_rx_prod++;
37         return 0;
38 }
39
40 int
41 qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
42                     uint16_t nb_desc, unsigned int socket_id,
43                     __rte_unused const struct rte_eth_rxconf *rx_conf,
44                     struct rte_mempool *mp)
45 {
46         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
47         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
48         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
49         struct qede_rx_queue *rxq;
50         uint16_t max_rx_pkt_len;
51         uint16_t bufsz;
52         size_t size;
53         int rc;
54
55         PMD_INIT_FUNC_TRACE(edev);
56
57         /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
58         if (!rte_is_power_of_2(nb_desc)) {
59                 DP_ERR(edev, "Ring size %u is not power of 2\n",
60                           nb_desc);
61                 return -EINVAL;
62         }
63
64         /* Free memory prior to re-allocation if needed... */
65         if (dev->data->rx_queues[queue_idx] != NULL) {
66                 qede_rx_queue_release(dev->data->rx_queues[queue_idx]);
67                 dev->data->rx_queues[queue_idx] = NULL;
68         }
69
70         /* First allocate the rx queue data structure */
71         rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
72                                  RTE_CACHE_LINE_SIZE, socket_id);
73
74         if (!rxq) {
75                 DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
76                           socket_id);
77                 return -ENOMEM;
78         }
79
80         rxq->qdev = qdev;
81         rxq->mb_pool = mp;
82         rxq->nb_rx_desc = nb_desc;
83         rxq->queue_id = queue_idx;
84         rxq->port_id = dev->data->port_id;
85
86         max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
87
88         /* Fix up RX buffer size */
89         bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
90         if ((rxmode->enable_scatter)                    ||
91             (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
92                 if (!dev->data->scattered_rx) {
93                         DP_INFO(edev, "Forcing scatter-gather mode\n");
94                         dev->data->scattered_rx = 1;
95                 }
96         }
97
98         if (dev->data->scattered_rx)
99                 rxq->rx_buf_size = bufsz + ETHER_HDR_LEN +
100                                    ETHER_CRC_LEN + QEDE_ETH_OVERHEAD;
101         else
102                 rxq->rx_buf_size = max_rx_pkt_len + QEDE_ETH_OVERHEAD;
103         /* Align to cache-line size if needed */
104         rxq->rx_buf_size = QEDE_CEIL_TO_CACHE_LINE_SIZE(rxq->rx_buf_size);
105
106         DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
107                 qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
108
109         /* Allocate the parallel driver ring for Rx buffers */
110         size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
111         rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
112                                              RTE_CACHE_LINE_SIZE, socket_id);
113         if (!rxq->sw_rx_ring) {
114                 DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
115                        " socket %u\n", socket_id);
116                 rte_free(rxq);
117                 return -ENOMEM;
118         }
119
120         /* Allocate FW Rx ring  */
121         rc = qdev->ops->common->chain_alloc(edev,
122                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
123                                             ECORE_CHAIN_MODE_NEXT_PTR,
124                                             ECORE_CHAIN_CNT_TYPE_U16,
125                                             rxq->nb_rx_desc,
126                                             sizeof(struct eth_rx_bd),
127                                             &rxq->rx_bd_ring,
128                                             NULL);
129
130         if (rc != ECORE_SUCCESS) {
131                 DP_ERR(edev, "Memory allocation fails for RX BD ring"
132                        " on socket %u\n", socket_id);
133                 rte_free(rxq->sw_rx_ring);
134                 rte_free(rxq);
135                 return -ENOMEM;
136         }
137
138         /* Allocate FW completion ring */
139         rc = qdev->ops->common->chain_alloc(edev,
140                                             ECORE_CHAIN_USE_TO_CONSUME,
141                                             ECORE_CHAIN_MODE_PBL,
142                                             ECORE_CHAIN_CNT_TYPE_U16,
143                                             rxq->nb_rx_desc,
144                                             sizeof(union eth_rx_cqe),
145                                             &rxq->rx_comp_ring,
146                                             NULL);
147
148         if (rc != ECORE_SUCCESS) {
149                 DP_ERR(edev, "Memory allocation fails for RX CQE ring"
150                        " on socket %u\n", socket_id);
151                 qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
152                 rte_free(rxq->sw_rx_ring);
153                 rte_free(rxq);
154                 return -ENOMEM;
155         }
156
157         dev->data->rx_queues[queue_idx] = rxq;
158         qdev->fp_array[queue_idx].rxq = rxq;
159
160         DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
161                   queue_idx, nb_desc, rxq->rx_buf_size, socket_id);
162
163         return 0;
164 }
165
166 static void
167 qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
168                     struct qede_rx_queue *rxq)
169 {
170         DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
171         ecore_chain_reset(&rxq->rx_bd_ring);
172         ecore_chain_reset(&rxq->rx_comp_ring);
173         rxq->sw_rx_prod = 0;
174         rxq->sw_rx_cons = 0;
175         *rxq->hw_cons_ptr = 0;
176 }
177
178 static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
179 {
180         uint16_t i;
181
182         if (rxq->sw_rx_ring) {
183                 for (i = 0; i < rxq->nb_rx_desc; i++) {
184                         if (rxq->sw_rx_ring[i].mbuf) {
185                                 rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
186                                 rxq->sw_rx_ring[i].mbuf = NULL;
187                         }
188                 }
189         }
190 }
191
192 void qede_rx_queue_release(void *rx_queue)
193 {
194         struct qede_rx_queue *rxq = rx_queue;
195
196         if (rxq) {
197                 qede_rx_queue_release_mbufs(rxq);
198                 rte_free(rxq->sw_rx_ring);
199                 rte_free(rxq);
200         }
201 }
202
203 /* Stops a given RX queue in the HW */
204 static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
205 {
206         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
207         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
208         struct ecore_hwfn *p_hwfn;
209         struct qede_rx_queue *rxq;
210         int hwfn_index;
211         int rc;
212
213         if (rx_queue_id < eth_dev->data->nb_rx_queues) {
214                 rxq = eth_dev->data->rx_queues[rx_queue_id];
215                 hwfn_index = rx_queue_id % edev->num_hwfns;
216                 p_hwfn = &edev->hwfns[hwfn_index];
217                 rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
218                                 true, false);
219                 if (rc != ECORE_SUCCESS) {
220                         DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
221                         return -1;
222                 }
223                 qede_rx_queue_release_mbufs(rxq);
224                 qede_rx_queue_reset(qdev, rxq);
225                 eth_dev->data->rx_queue_state[rx_queue_id] =
226                         RTE_ETH_QUEUE_STATE_STOPPED;
227                 DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
228         } else {
229                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
230                 rc = -EINVAL;
231         }
232
233         return rc;
234 }
235
236 int
237 qede_tx_queue_setup(struct rte_eth_dev *dev,
238                     uint16_t queue_idx,
239                     uint16_t nb_desc,
240                     unsigned int socket_id,
241                     const struct rte_eth_txconf *tx_conf)
242 {
243         struct qede_dev *qdev = dev->data->dev_private;
244         struct ecore_dev *edev = &qdev->edev;
245         struct qede_tx_queue *txq;
246         int rc;
247
248         PMD_INIT_FUNC_TRACE(edev);
249
250         if (!rte_is_power_of_2(nb_desc)) {
251                 DP_ERR(edev, "Ring size %u is not power of 2\n",
252                        nb_desc);
253                 return -EINVAL;
254         }
255
256         /* Free memory prior to re-allocation if needed... */
257         if (dev->data->tx_queues[queue_idx] != NULL) {
258                 qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
259                 dev->data->tx_queues[queue_idx] = NULL;
260         }
261
262         txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
263                                  RTE_CACHE_LINE_SIZE, socket_id);
264
265         if (txq == NULL) {
266                 DP_ERR(edev,
267                        "Unable to allocate memory for txq on socket %u",
268                        socket_id);
269                 return -ENOMEM;
270         }
271
272         txq->nb_tx_desc = nb_desc;
273         txq->qdev = qdev;
274         txq->port_id = dev->data->port_id;
275
276         rc = qdev->ops->common->chain_alloc(edev,
277                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
278                                             ECORE_CHAIN_MODE_PBL,
279                                             ECORE_CHAIN_CNT_TYPE_U16,
280                                             txq->nb_tx_desc,
281                                             sizeof(union eth_tx_bd_types),
282                                             &txq->tx_pbl,
283                                             NULL);
284         if (rc != ECORE_SUCCESS) {
285                 DP_ERR(edev,
286                        "Unable to allocate memory for txbd ring on socket %u",
287                        socket_id);
288                 qede_tx_queue_release(txq);
289                 return -ENOMEM;
290         }
291
292         /* Allocate software ring */
293         txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
294                                              (sizeof(struct qede_tx_entry) *
295                                               txq->nb_tx_desc),
296                                              RTE_CACHE_LINE_SIZE, socket_id);
297
298         if (!txq->sw_tx_ring) {
299                 DP_ERR(edev,
300                        "Unable to allocate memory for txbd ring on socket %u",
301                        socket_id);
302                 qdev->ops->common->chain_free(edev, &txq->tx_pbl);
303                 qede_tx_queue_release(txq);
304                 return -ENOMEM;
305         }
306
307         txq->queue_id = queue_idx;
308
309         txq->nb_tx_avail = txq->nb_tx_desc;
310
311         txq->tx_free_thresh =
312             tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
313             (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
314
315         dev->data->tx_queues[queue_idx] = txq;
316         qdev->fp_array[queue_idx].txq = txq;
317
318         DP_INFO(edev,
319                   "txq %u num_desc %u tx_free_thresh %u socket %u\n",
320                   queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
321
322         return 0;
323 }
324
325 static void
326 qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
327                     struct qede_tx_queue *txq)
328 {
329         DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
330         ecore_chain_reset(&txq->tx_pbl);
331         txq->sw_tx_cons = 0;
332         txq->sw_tx_prod = 0;
333         *txq->hw_cons_ptr = 0;
334 }
335
336 static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
337 {
338         uint16_t i;
339
340         if (txq->sw_tx_ring) {
341                 for (i = 0; i < txq->nb_tx_desc; i++) {
342                         if (txq->sw_tx_ring[i].mbuf) {
343                                 rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
344                                 txq->sw_tx_ring[i].mbuf = NULL;
345                         }
346                 }
347         }
348 }
349
350 void qede_tx_queue_release(void *tx_queue)
351 {
352         struct qede_tx_queue *txq = tx_queue;
353
354         if (txq) {
355                 qede_tx_queue_release_mbufs(txq);
356                 rte_free(txq->sw_tx_ring);
357                 rte_free(txq);
358         }
359 }
360
361 /* This function allocates fast-path status block memory */
362 static int
363 qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
364                   uint16_t sb_id)
365 {
366         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
367         struct status_block_e4 *sb_virt;
368         dma_addr_t sb_phys;
369         int rc;
370
371         sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
372                                           sizeof(struct status_block_e4));
373         if (!sb_virt) {
374                 DP_ERR(edev, "Status block allocation failed\n");
375                 return -ENOMEM;
376         }
377         rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
378                                         sb_phys, sb_id);
379         if (rc) {
380                 DP_ERR(edev, "Status block initialization failed\n");
381                 OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
382                                        sizeof(struct status_block_e4));
383                 return rc;
384         }
385
386         return 0;
387 }
388
389 int qede_alloc_fp_resc(struct qede_dev *qdev)
390 {
391         struct ecore_dev *edev = &qdev->edev;
392         struct qede_fastpath *fp;
393         uint32_t num_sbs;
394         uint16_t sb_idx;
395
396         if (IS_VF(edev))
397                 ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
398         else
399                 num_sbs = ecore_cxt_get_proto_cid_count
400                           (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
401
402         if (num_sbs == 0) {
403                 DP_ERR(edev, "No status blocks available\n");
404                 return -EINVAL;
405         }
406
407         qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
408                                 sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);
409
410         if (!qdev->fp_array) {
411                 DP_ERR(edev, "fp array allocation failed\n");
412                 return -ENOMEM;
413         }
414
415         memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
416                         sizeof(*qdev->fp_array));
417
418         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
419                 fp = &qdev->fp_array[sb_idx];
420                 if (!fp)
421                         continue;
422                 fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
423                                 RTE_CACHE_LINE_SIZE);
424                 if (!fp->sb_info) {
425                         DP_ERR(edev, "FP sb_info allocation fails\n");
426                         return -1;
427                 }
428                 if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
429                         DP_ERR(edev, "FP status block allocation fails\n");
430                         return -1;
431                 }
432                 DP_INFO(edev, "sb_info idx 0x%x initialized\n",
433                                 fp->sb_info->igu_sb_id);
434         }
435
436         return 0;
437 }
438
439 void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
440 {
441         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
442         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
443         struct qede_fastpath *fp;
444         struct qede_rx_queue *rxq;
445         struct qede_tx_queue *txq;
446         uint16_t sb_idx;
447         uint8_t i;
448
449         PMD_INIT_FUNC_TRACE(edev);
450
451         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
452                 fp = &qdev->fp_array[sb_idx];
453                 if (!fp)
454                         continue;
455                 DP_INFO(edev, "Free sb_info index 0x%x\n",
456                                 fp->sb_info->igu_sb_id);
457                 if (fp->sb_info) {
458                         OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
459                                 fp->sb_info->sb_phys,
460                                 sizeof(struct status_block_e4));
461                         rte_free(fp->sb_info);
462                         fp->sb_info = NULL;
463                 }
464         }
465
466         /* Free packet buffers and ring memories */
467         for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
468                 if (eth_dev->data->rx_queues[i]) {
469                         qede_rx_queue_release(eth_dev->data->rx_queues[i]);
470                         rxq = eth_dev->data->rx_queues[i];
471                         qdev->ops->common->chain_free(edev,
472                                                       &rxq->rx_bd_ring);
473                         qdev->ops->common->chain_free(edev,
474                                                       &rxq->rx_comp_ring);
475                         eth_dev->data->rx_queues[i] = NULL;
476                 }
477         }
478
479         for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
480                 if (eth_dev->data->tx_queues[i]) {
481                         txq = eth_dev->data->tx_queues[i];
482                         qede_tx_queue_release(eth_dev->data->tx_queues[i]);
483                         qdev->ops->common->chain_free(edev,
484                                                       &txq->tx_pbl);
485                         eth_dev->data->tx_queues[i] = NULL;
486                 }
487         }
488
489         if (qdev->fp_array)
490                 rte_free(qdev->fp_array);
491         qdev->fp_array = NULL;
492 }
493
494 static inline void
495 qede_update_rx_prod(__rte_unused struct qede_dev *edev,
496                     struct qede_rx_queue *rxq)
497 {
498         uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
499         uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
500         struct eth_rx_prod_data rx_prods = { 0 };
501
502         /* Update producers */
503         rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
504         rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
505
506         /* Make sure that the BD and SGE data is updated before updating the
507          * producers since FW might read the BD/SGE right after the producer
508          * is updated.
509          */
510         rte_wmb();
511
512         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
513                         (uint32_t *)&rx_prods);
514
515         /* mmiowb is needed to synchronize doorbell writes from more than one
516          * processor. It guarantees that the write arrives to the device before
517          * the napi lock is released and another qede_poll is called (possibly
518          * on another CPU). Without this barrier, the next doorbell can bypass
519          * this doorbell. This is applicable to IA64/Altix systems.
520          */
521         rte_wmb();
522
523         PMD_RX_LOG(DEBUG, rxq, "bd_prod %u  cqe_prod %u", bd_prod, cqe_prod);
524 }
525
526 /* Starts a given RX queue in HW */
527 static int
528 qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
529 {
530         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
531         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
532         struct ecore_queue_start_common_params params;
533         struct ecore_rxq_start_ret_params ret_params;
534         struct qede_rx_queue *rxq;
535         struct qede_fastpath *fp;
536         struct ecore_hwfn *p_hwfn;
537         dma_addr_t p_phys_table;
538         uint16_t page_cnt;
539         uint16_t j;
540         int hwfn_index;
541         int rc;
542
543         if (rx_queue_id < eth_dev->data->nb_rx_queues) {
544                 fp = &qdev->fp_array[rx_queue_id];
545                 rxq = eth_dev->data->rx_queues[rx_queue_id];
546                 /* Allocate buffers for the Rx ring */
547                 for (j = 0; j < rxq->nb_rx_desc; j++) {
548                         rc = qede_alloc_rx_buffer(rxq);
549                         if (rc) {
550                                 DP_ERR(edev, "RX buffer allocation failed"
551                                                 " for rxq = %u\n", rx_queue_id);
552                                 return -ENOMEM;
553                         }
554                 }
555                 /* disable interrupts */
556                 ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
557                 /* Prepare ramrod */
558                 memset(&params, 0, sizeof(params));
559                 params.queue_id = rx_queue_id / edev->num_hwfns;
560                 params.vport_id = 0;
561                 params.stats_id = params.vport_id;
562                 params.p_sb = fp->sb_info;
563                 DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
564                                 fp->rxq->queue_id, fp->sb_info->igu_sb_id);
565                 params.sb_idx = RX_PI;
566                 hwfn_index = rx_queue_id % edev->num_hwfns;
567                 p_hwfn = &edev->hwfns[hwfn_index];
568                 p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
569                 page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
570                 memset(&ret_params, 0, sizeof(ret_params));
571                 rc = ecore_eth_rx_queue_start(p_hwfn,
572                                 p_hwfn->hw_info.opaque_fid,
573                                 &params, fp->rxq->rx_buf_size,
574                                 fp->rxq->rx_bd_ring.p_phys_addr,
575                                 p_phys_table, page_cnt,
576                                 &ret_params);
577                 if (rc) {
578                         DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
579                                         rx_queue_id, rc);
580                         return -1;
581                 }
582                 /* Update with the returned parameters */
583                 fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
584                 fp->rxq->handle = ret_params.p_handle;
585
586                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
587                 qede_update_rx_prod(qdev, fp->rxq);
588                 eth_dev->data->rx_queue_state[rx_queue_id] =
589                         RTE_ETH_QUEUE_STATE_STARTED;
590                 DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
591         } else {
592                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
593                 rc = -EINVAL;
594         }
595
596         return rc;
597 }
598
599 static int
600 qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
601 {
602         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
603         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
604         struct ecore_queue_start_common_params params;
605         struct ecore_txq_start_ret_params ret_params;
606         struct ecore_hwfn *p_hwfn;
607         dma_addr_t p_phys_table;
608         struct qede_tx_queue *txq;
609         struct qede_fastpath *fp;
610         uint16_t page_cnt;
611         int hwfn_index;
612         int rc;
613
614         if (tx_queue_id < eth_dev->data->nb_tx_queues) {
615                 txq = eth_dev->data->tx_queues[tx_queue_id];
616                 fp = &qdev->fp_array[tx_queue_id];
617                 memset(&params, 0, sizeof(params));
618                 params.queue_id = tx_queue_id / edev->num_hwfns;
619                 params.vport_id = 0;
620                 params.stats_id = params.vport_id;
621                 params.p_sb = fp->sb_info;
622                 DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
623                                 fp->txq->queue_id, fp->sb_info->igu_sb_id);
624                 params.sb_idx = TX_PI(0); /* tc = 0 */
625                 p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
626                 page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
627                 hwfn_index = tx_queue_id % edev->num_hwfns;
628                 p_hwfn = &edev->hwfns[hwfn_index];
629                 if (qdev->dev_info.is_legacy)
630                         fp->txq->is_legacy = true;
631                 rc = ecore_eth_tx_queue_start(p_hwfn,
632                                 p_hwfn->hw_info.opaque_fid,
633                                 &params, 0 /* tc */,
634                                 p_phys_table, page_cnt,
635                                 &ret_params);
636                 if (rc != ECORE_SUCCESS) {
637                         DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
638                                         tx_queue_id, rc);
639                         return -1;
640                 }
641                 txq->doorbell_addr = ret_params.p_doorbell;
642                 txq->handle = ret_params.p_handle;
643
644                 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[TX_PI(0)];
645                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
646                                 DB_DEST_XCM);
647                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
648                                 DB_AGG_CMD_SET);
649                 SET_FIELD(txq->tx_db.data.params,
650                                 ETH_DB_DATA_AGG_VAL_SEL,
651                                 DQ_XCM_ETH_TX_BD_PROD_CMD);
652                 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
653                 eth_dev->data->tx_queue_state[tx_queue_id] =
654                         RTE_ETH_QUEUE_STATE_STARTED;
655                 DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
656         } else {
657                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
658                 rc = -EINVAL;
659         }
660
661         return rc;
662 }
663
664 static inline void
665 qede_free_tx_pkt(struct qede_tx_queue *txq)
666 {
667         struct rte_mbuf *mbuf;
668         uint16_t nb_segs;
669         uint16_t idx;
670
671         idx = TX_CONS(txq);
672         mbuf = txq->sw_tx_ring[idx].mbuf;
673         if (mbuf) {
674                 nb_segs = mbuf->nb_segs;
675                 PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
676                 while (nb_segs) {
677                         /* It's like consuming rxbuf in recv() */
678                         ecore_chain_consume(&txq->tx_pbl);
679                         txq->nb_tx_avail++;
680                         nb_segs--;
681                 }
682                 rte_pktmbuf_free(mbuf);
683                 txq->sw_tx_ring[idx].mbuf = NULL;
684                 txq->sw_tx_cons++;
685                 PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
686         } else {
687                 ecore_chain_consume(&txq->tx_pbl);
688                 txq->nb_tx_avail++;
689         }
690 }
691
692 static inline void
693 qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
694                       struct qede_tx_queue *txq)
695 {
696         uint16_t hw_bd_cons;
697 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
698         uint16_t sw_tx_cons;
699 #endif
700
701         rte_compiler_barrier();
702         hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
703 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
704         sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
705         PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
706                    abs(hw_bd_cons - sw_tx_cons));
707 #endif
708         while (hw_bd_cons !=  ecore_chain_get_cons_idx(&txq->tx_pbl))
709                 qede_free_tx_pkt(txq);
710 }
711
712 static int qede_drain_txq(struct qede_dev *qdev,
713                           struct qede_tx_queue *txq, bool allow_drain)
714 {
715         struct ecore_dev *edev = &qdev->edev;
716         int rc, cnt = 1000;
717
718         while (txq->sw_tx_cons != txq->sw_tx_prod) {
719                 qede_process_tx_compl(edev, txq);
720                 if (!cnt) {
721                         if (allow_drain) {
722                                 DP_ERR(edev, "Tx queue[%u] is stuck,"
723                                           "requesting MCP to drain\n",
724                                           txq->queue_id);
725                                 rc = qdev->ops->common->drain(edev);
726                                 if (rc)
727                                         return rc;
728                                 return qede_drain_txq(qdev, txq, false);
729                         }
730                         DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
731                                   "PROD=%d, CONS=%d\n",
732                                   txq->queue_id, txq->sw_tx_prod,
733                                   txq->sw_tx_cons);
734                         return -1;
735                 }
736                 cnt--;
737                 DELAY(1000);
738                 rte_compiler_barrier();
739         }
740
741         /* FW finished processing, wait for HW to transmit all tx packets */
742         DELAY(2000);
743
744         return 0;
745 }
746
747 /* Stops a given TX queue in the HW */
748 static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
749 {
750         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
751         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
752         struct ecore_hwfn *p_hwfn;
753         struct qede_tx_queue *txq;
754         int hwfn_index;
755         int rc;
756
757         if (tx_queue_id < eth_dev->data->nb_tx_queues) {
758                 txq = eth_dev->data->tx_queues[tx_queue_id];
759                 /* Drain txq */
760                 if (qede_drain_txq(qdev, txq, true))
761                         return -1; /* For the lack of retcodes */
762                 /* Stop txq */
763                 hwfn_index = tx_queue_id % edev->num_hwfns;
764                 p_hwfn = &edev->hwfns[hwfn_index];
765                 rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
766                 if (rc != ECORE_SUCCESS) {
767                         DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
768                         return -1;
769                 }
770                 qede_tx_queue_release_mbufs(txq);
771                 qede_tx_queue_reset(qdev, txq);
772                 eth_dev->data->tx_queue_state[tx_queue_id] =
773                         RTE_ETH_QUEUE_STATE_STOPPED;
774                 DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
775         } else {
776                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
777                 rc = -EINVAL;
778         }
779
780         return rc;
781 }
782
783 int qede_start_queues(struct rte_eth_dev *eth_dev)
784 {
785         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
786         uint8_t id;
787         int rc = -1;
788
789         for_each_rss(id) {
790                 rc = qede_rx_queue_start(eth_dev, id);
791                 if (rc != ECORE_SUCCESS)
792                         return -1;
793         }
794
795         for_each_tss(id) {
796                 rc = qede_tx_queue_start(eth_dev, id);
797                 if (rc != ECORE_SUCCESS)
798                         return -1;
799         }
800
801         return rc;
802 }
803
804 void qede_stop_queues(struct rte_eth_dev *eth_dev)
805 {
806         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
807         uint8_t id;
808
809         /* Stopping RX/TX queues */
810         for_each_tss(id) {
811                 qede_tx_queue_stop(eth_dev, id);
812         }
813
814         for_each_rss(id) {
815                 qede_rx_queue_stop(eth_dev, id);
816         }
817 }
818
819 static inline bool qede_tunn_exist(uint16_t flag)
820 {
821         return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
822                     PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
823 }
824
825 static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
826 {
827         return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
828                 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
829 }
830
831 /*
832  * qede_check_tunn_csum_l4:
833  * Returns:
834  * 1 : If L4 csum is enabled AND if the validation has failed.
835  * 0 : Otherwise
836  */
837 static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
838 {
839         if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
840              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
841                 return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
842                         PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
843
844         return 0;
845 }
846
847 static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
848 {
849         if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
850              PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
851                 return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
852                            PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
853
854         return 0;
855 }
856
857 /* Returns outer L2, L3 and L4 packet_type for tunneled packets */
858 static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
859 {
860         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
861         struct ether_hdr *eth_hdr;
862         struct ipv4_hdr *ipv4_hdr;
863         struct ipv6_hdr *ipv6_hdr;
864         struct vlan_hdr *vlan_hdr;
865         uint16_t ethertype;
866         bool vlan_tagged = 0;
867         uint16_t len;
868
869         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
870         len = sizeof(struct ether_hdr);
871         ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);
872
873          /* Note: Valid only if VLAN stripping is disabled */
874         if (ethertype == ETHER_TYPE_VLAN) {
875                 vlan_tagged = 1;
876                 vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
877                 len += sizeof(struct vlan_hdr);
878                 ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
879         }
880
881         if (ethertype == ETHER_TYPE_IPv4) {
882                 packet_type |= RTE_PTYPE_L3_IPV4;
883                 ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, len);
884                 if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
885                         packet_type |= RTE_PTYPE_L4_TCP;
886                 else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
887                         packet_type |= RTE_PTYPE_L4_UDP;
888         } else if (ethertype == ETHER_TYPE_IPv6) {
889                 packet_type |= RTE_PTYPE_L3_IPV6;
890                 ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, len);
891                 if (ipv6_hdr->proto == IPPROTO_TCP)
892                         packet_type |= RTE_PTYPE_L4_TCP;
893                 else if (ipv6_hdr->proto == IPPROTO_UDP)
894                         packet_type |= RTE_PTYPE_L4_UDP;
895         }
896
897         if (vlan_tagged)
898                 packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
899         else
900                 packet_type |= RTE_PTYPE_L2_ETHER;
901
902         return packet_type;
903 }
904
905 static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
906 {
907         uint16_t val;
908
909         /* Lookup table */
910         static const uint32_t
911         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
912                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4          |
913                                        RTE_PTYPE_INNER_L2_ETHER,
914                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6          |
915                                        RTE_PTYPE_INNER_L2_ETHER,
916                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4      |
917                                            RTE_PTYPE_INNER_L4_TCP       |
918                                            RTE_PTYPE_INNER_L2_ETHER,
919                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6      |
920                                            RTE_PTYPE_INNER_L4_TCP       |
921                                            RTE_PTYPE_INNER_L2_ETHER,
922                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4      |
923                                            RTE_PTYPE_INNER_L4_UDP       |
924                                            RTE_PTYPE_INNER_L2_ETHER,
925                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6      |
926                                            RTE_PTYPE_INNER_L4_UDP       |
927                                            RTE_PTYPE_INNER_L2_ETHER,
928                 /* Frags with no VLAN */
929                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4     |
930                                             RTE_PTYPE_INNER_L4_FRAG     |
931                                             RTE_PTYPE_INNER_L2_ETHER,
932                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6     |
933                                             RTE_PTYPE_INNER_L4_FRAG     |
934                                             RTE_PTYPE_INNER_L2_ETHER,
935                 /* VLANs */
936                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4     |
937                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
938                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6     |
939                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
940                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
941                                                 RTE_PTYPE_INNER_L4_TCP  |
942                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
943                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
944                                                 RTE_PTYPE_INNER_L4_TCP  |
945                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
946                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
947                                                 RTE_PTYPE_INNER_L4_UDP  |
948                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
949                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
950                                                 RTE_PTYPE_INNER_L4_UDP  |
951                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
952                 /* Frags with VLAN */
953                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
954                                                  RTE_PTYPE_INNER_L4_FRAG |
955                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
956                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
957                                                  RTE_PTYPE_INNER_L4_FRAG |
958                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
959         };
960
961         /* Bits (0..3) provides L3/L4 protocol type */
962         /* Bits (4,5) provides frag and VLAN info */
963         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
964                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
965                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
966                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
967                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
968                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
969                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
970                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
971
972         if (val < QEDE_PKT_TYPE_MAX)
973                 return ptype_lkup_tbl[val];
974
975         return RTE_PTYPE_UNKNOWN;
976 }
977
978 static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
979 {
980         uint16_t val;
981
982         /* Lookup table */
983         static const uint32_t
984         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
985                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
986                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
987                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4    |
988                                            RTE_PTYPE_L4_TCP     |
989                                            RTE_PTYPE_L2_ETHER,
990                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6    |
991                                            RTE_PTYPE_L4_TCP     |
992                                            RTE_PTYPE_L2_ETHER,
993                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4    |
994                                            RTE_PTYPE_L4_UDP     |
995                                            RTE_PTYPE_L2_ETHER,
996                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6    |
997                                            RTE_PTYPE_L4_UDP     |
998                                            RTE_PTYPE_L2_ETHER,
999                 /* Frags with no VLAN */
1000                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4   |
1001                                             RTE_PTYPE_L4_FRAG   |
1002                                             RTE_PTYPE_L2_ETHER,
1003                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6   |
1004                                             RTE_PTYPE_L4_FRAG   |
1005                                             RTE_PTYPE_L2_ETHER,
1006                 /* VLANs */
1007                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4           |
1008                                             RTE_PTYPE_L2_ETHER_VLAN,
1009                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6           |
1010                                             RTE_PTYPE_L2_ETHER_VLAN,
1011                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4       |
1012                                                 RTE_PTYPE_L4_TCP        |
1013                                                 RTE_PTYPE_L2_ETHER_VLAN,
1014                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6       |
1015                                                 RTE_PTYPE_L4_TCP        |
1016                                                 RTE_PTYPE_L2_ETHER_VLAN,
1017                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4       |
1018                                                 RTE_PTYPE_L4_UDP        |
1019                                                 RTE_PTYPE_L2_ETHER_VLAN,
1020                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6       |
1021                                                 RTE_PTYPE_L4_UDP        |
1022                                                 RTE_PTYPE_L2_ETHER_VLAN,
1023                 /* Frags with VLAN */
1024                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4      |
1025                                                  RTE_PTYPE_L4_FRAG      |
1026                                                  RTE_PTYPE_L2_ETHER_VLAN,
1027                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6      |
1028                                                  RTE_PTYPE_L4_FRAG      |
1029                                                  RTE_PTYPE_L2_ETHER_VLAN,
1030         };
1031
1032         /* Bits (0..3) provides L3/L4 protocol type */
1033         /* Bits (4,5) provides frag and VLAN info */
1034         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1035                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1036                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1037                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1038                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1039                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1040                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1041                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1042
1043         if (val < QEDE_PKT_TYPE_MAX)
1044                 return ptype_lkup_tbl[val];
1045
1046         return RTE_PTYPE_UNKNOWN;
1047 }
1048
1049 static inline uint8_t
1050 qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
1051 {
1052         struct ipv4_hdr *ip;
1053         uint16_t pkt_csum;
1054         uint16_t calc_csum;
1055         uint16_t val;
1056
1057         val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1058                 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
1059
1060         if (unlikely(val)) {
1061                 m->packet_type = qede_rx_cqe_to_pkt_type(flag);
1062                 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1063                         ip = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
1064                                            sizeof(struct ether_hdr));
1065                         pkt_csum = ip->hdr_checksum;
1066                         ip->hdr_checksum = 0;
1067                         calc_csum = rte_ipv4_cksum(ip);
1068                         ip->hdr_checksum = pkt_csum;
1069                         return (calc_csum != pkt_csum);
1070                 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1071                         return 1;
1072                 }
1073         }
1074         return 0;
1075 }
1076
1077 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
1078 {
1079         ecore_chain_consume(&rxq->rx_bd_ring);
1080         rxq->sw_rx_cons++;
1081 }
1082
1083 static inline void
1084 qede_reuse_page(__rte_unused struct qede_dev *qdev,
1085                 struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
1086 {
1087         struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
1088         uint16_t idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1089         struct qede_rx_entry *curr_prod;
1090         dma_addr_t new_mapping;
1091
1092         curr_prod = &rxq->sw_rx_ring[idx];
1093         *curr_prod = *curr_cons;
1094
1095         new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) +
1096                       curr_prod->page_offset;
1097
1098         rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
1099         rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
1100
1101         rxq->sw_rx_prod++;
1102 }
1103
1104 static inline void
1105 qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
1106                         struct qede_dev *qdev, uint8_t count)
1107 {
1108         struct qede_rx_entry *curr_cons;
1109
1110         for (; count > 0; count--) {
1111                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
1112                 qede_reuse_page(qdev, rxq, curr_cons);
1113                 qede_rx_bd_ring_consume(rxq);
1114         }
1115 }
1116
1117 static inline void
1118 qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
1119                                      struct qede_rx_queue *rxq,
1120                                      uint8_t agg_index, uint16_t len)
1121 {
1122         struct qede_agg_info *tpa_info;
1123         struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
1124         uint16_t cons_idx;
1125
1126         /* Under certain conditions it is possible that FW may not consume
1127          * additional or new BD. So decision to consume the BD must be made
1128          * based on len_list[0].
1129          */
1130         if (rte_le_to_cpu_16(len)) {
1131                 tpa_info = &rxq->tpa_info[agg_index];
1132                 cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1133                 curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
1134                 assert(curr_frag);
1135                 curr_frag->nb_segs = 1;
1136                 curr_frag->pkt_len = rte_le_to_cpu_16(len);
1137                 curr_frag->data_len = curr_frag->pkt_len;
1138                 tpa_info->tpa_tail->next = curr_frag;
1139                 tpa_info->tpa_tail = curr_frag;
1140                 qede_rx_bd_ring_consume(rxq);
1141                 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1142                         PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
1143                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1144                         rxq->rx_alloc_errors++;
1145                 }
1146         }
1147 }
1148
1149 static inline void
1150 qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
1151                              struct qede_rx_queue *rxq,
1152                              struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1153 {
1154         PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
1155                    cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
1156         /* only len_list[0] will have value */
1157         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1158                                              cqe->len_list[0]);
1159 }
1160
1161 static inline void
1162 qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
1163                             struct qede_rx_queue *rxq,
1164                             struct eth_fast_path_rx_tpa_end_cqe *cqe)
1165 {
1166         struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */
1167
1168         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1169                                              cqe->len_list[0]);
1170         /* Update total length and frags based on end TPA */
1171         rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
1172         /* TODO:  Add Sanity Checks */
1173         rx_mb->nb_segs = cqe->num_of_bds;
1174         rx_mb->pkt_len = cqe->total_packet_len;
1175
1176         PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
1177                    " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
1178                    rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
1179                    rx_mb->pkt_len);
1180 }
1181
1182 static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
1183 {
1184         uint32_t val;
1185
1186         /* Lookup table */
1187         static const uint32_t
1188         ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
1189                 [QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
1190                 [QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
1191                 [QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
1192                 [QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
1193                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
1194                                 RTE_PTYPE_TUNNEL_GENEVE,
1195                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
1196                                 RTE_PTYPE_TUNNEL_GRE,
1197                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
1198                                 RTE_PTYPE_TUNNEL_VXLAN,
1199                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
1200                                 RTE_PTYPE_TUNNEL_GENEVE,
1201                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
1202                                 RTE_PTYPE_TUNNEL_GRE,
1203                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
1204                                 RTE_PTYPE_TUNNEL_VXLAN,
1205                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
1206                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1207                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
1208                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1209                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
1210                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1211                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
1212                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1213                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
1214                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1215                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
1216                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1217                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
1218                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1219                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
1220                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1221                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
1222                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1223                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
1224                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1225                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
1226                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1227                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
1228                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1229         };
1230
1231         /* Cover bits[4-0] to include tunn_type and next protocol */
1232         val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
1233                 ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
1234                 (ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
1235                 ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
1236
1237         if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
1238                 return ptype_tunn_lkup_tbl[val];
1239         else
1240                 return RTE_PTYPE_UNKNOWN;
1241 }
1242
1243 static inline int
1244 qede_process_sg_pkts(void *p_rxq,  struct rte_mbuf *rx_mb,
1245                      uint8_t num_segs, uint16_t pkt_len)
1246 {
1247         struct qede_rx_queue *rxq = p_rxq;
1248         struct qede_dev *qdev = rxq->qdev;
1249         register struct rte_mbuf *seg1 = NULL;
1250         register struct rte_mbuf *seg2 = NULL;
1251         uint16_t sw_rx_index;
1252         uint16_t cur_size;
1253
1254         seg1 = rx_mb;
1255         while (num_segs) {
1256                 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1257                                                         pkt_len;
1258                 if (unlikely(!cur_size)) {
1259                         PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
1260                                    " left for mapping jumbo\n", num_segs);
1261                         qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
1262                         return -EINVAL;
1263                 }
1264                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1265                 seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
1266                 qede_rx_bd_ring_consume(rxq);
1267                 pkt_len -= cur_size;
1268                 seg2->data_len = cur_size;
1269                 seg1->next = seg2;
1270                 seg1 = seg1->next;
1271                 num_segs--;
1272                 rxq->rx_segs++;
1273         }
1274
1275         return 0;
1276 }
1277
1278 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1279 static inline void
1280 print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
1281                  uint8_t bitfield)
1282 {
1283         PMD_RX_LOG(INFO, rxq,
1284                 "len 0x%04x bf 0x%04x hash_val 0x%x"
1285                 " ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
1286                 " inner_l2=%s inner_l3=%s inner_l4=%s\n",
1287                 m->data_len, bitfield, m->hash.rss,
1288                 (unsigned long)m->ol_flags,
1289                 rte_get_ptype_l2_name(m->packet_type),
1290                 rte_get_ptype_l3_name(m->packet_type),
1291                 rte_get_ptype_l4_name(m->packet_type),
1292                 rte_get_ptype_tunnel_name(m->packet_type),
1293                 rte_get_ptype_inner_l2_name(m->packet_type),
1294                 rte_get_ptype_inner_l3_name(m->packet_type),
1295                 rte_get_ptype_inner_l4_name(m->packet_type));
1296 }
1297 #endif
1298
1299 uint16_t
1300 qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1301 {
1302         struct qede_rx_queue *rxq = p_rxq;
1303         struct qede_dev *qdev = rxq->qdev;
1304         struct ecore_dev *edev = &qdev->edev;
1305         uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
1306         uint16_t rx_pkt = 0;
1307         union eth_rx_cqe *cqe;
1308         struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1309         register struct rte_mbuf *rx_mb = NULL;
1310         register struct rte_mbuf *seg1 = NULL;
1311         enum eth_rx_cqe_type cqe_type;
1312         uint16_t pkt_len = 0; /* Sum of all BD segments */
1313         uint16_t len; /* Length of first BD */
1314         uint8_t num_segs = 1;
1315         uint16_t preload_idx;
1316         uint16_t parse_flag;
1317 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1318         uint8_t bitfield_val;
1319 #endif
1320         uint8_t tunn_parse_flag;
1321         uint8_t j;
1322         struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
1323         uint64_t ol_flags;
1324         uint32_t packet_type;
1325         uint16_t vlan_tci;
1326         bool tpa_start_flg;
1327         uint8_t offset, tpa_agg_idx, flags;
1328         struct qede_agg_info *tpa_info = NULL;
1329         uint32_t rss_hash;
1330
1331         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1332         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1333
1334         rte_rmb();
1335
1336         if (hw_comp_cons == sw_comp_cons)
1337                 return 0;
1338
1339         while (sw_comp_cons != hw_comp_cons) {
1340                 ol_flags = 0;
1341                 packet_type = RTE_PTYPE_UNKNOWN;
1342                 vlan_tci = 0;
1343                 tpa_start_flg = false;
1344                 rss_hash = 0;
1345
1346                 /* Get the CQE from the completion ring */
1347                 cqe =
1348                     (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1349                 cqe_type = cqe->fast_path_regular.type;
1350                 PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1351
1352                 switch (cqe_type) {
1353                 case ETH_RX_CQE_TYPE_REGULAR:
1354                         fp_cqe = &cqe->fast_path_regular;
1355                 break;
1356                 case ETH_RX_CQE_TYPE_TPA_START:
1357                         cqe_start_tpa = &cqe->fast_path_tpa_start;
1358                         tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
1359                         tpa_start_flg = true;
1360                         /* Mark it as LRO packet */
1361                         ol_flags |= PKT_RX_LRO;
1362                         /* In split mode,  seg_len is same as len_on_first_bd
1363                          * and ext_bd_len_list will be empty since there are
1364                          * no additional buffers
1365                          */
1366                         PMD_RX_LOG(INFO, rxq,
1367                             "TPA start[%d] - len_on_first_bd %d header %d"
1368                             " [bd_list[0] %d], [seg_len %d]\n",
1369                             cqe_start_tpa->tpa_agg_index,
1370                             rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
1371                             cqe_start_tpa->header_len,
1372                             rte_le_to_cpu_16(cqe_start_tpa->ext_bd_len_list[0]),
1373                             rte_le_to_cpu_16(cqe_start_tpa->seg_len));
1374
1375                 break;
1376                 case ETH_RX_CQE_TYPE_TPA_CONT:
1377                         qede_rx_process_tpa_cont_cqe(qdev, rxq,
1378                                                      &cqe->fast_path_tpa_cont);
1379                         goto next_cqe;
1380                 case ETH_RX_CQE_TYPE_TPA_END:
1381                         qede_rx_process_tpa_end_cqe(qdev, rxq,
1382                                                     &cqe->fast_path_tpa_end);
1383                         tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
1384                         tpa_info = &rxq->tpa_info[tpa_agg_idx];
1385                         rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
1386                         goto tpa_end;
1387                 case ETH_RX_CQE_TYPE_SLOW_PATH:
1388                         PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1389                         ecore_eth_cqe_completion(
1390                                 &edev->hwfns[rxq->queue_id % edev->num_hwfns],
1391                                 (struct eth_slow_path_rx_cqe *)cqe);
1392                         /* fall-thru */
1393                 default:
1394                         goto next_cqe;
1395                 }
1396
1397                 /* Get the data from the SW ring */
1398                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1399                 rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
1400                 assert(rx_mb != NULL);
1401
1402                 /* Handle regular CQE or TPA start CQE */
1403                 if (!tpa_start_flg) {
1404                         parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1405                         offset = fp_cqe->placement_offset;
1406                         len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1407                         pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1408                         vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1409                         rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1410 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1411                         bitfield_val = fp_cqe->bitfields;
1412 #endif
1413                 } else {
1414                         parse_flag =
1415                             rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
1416                         offset = cqe_start_tpa->placement_offset;
1417                         /* seg_len = len_on_first_bd */
1418                         len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
1419                         vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
1420 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1421                         bitfield_val = cqe_start_tpa->bitfields;
1422 #endif
1423                         rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
1424                 }
1425                 if (qede_tunn_exist(parse_flag)) {
1426                         PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1427                         if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1428                                 PMD_RX_LOG(ERR, rxq,
1429                                             "L4 csum failed, flags = 0x%x\n",
1430                                             parse_flag);
1431                                 rxq->rx_hw_errors++;
1432                                 ol_flags |= PKT_RX_L4_CKSUM_BAD;
1433                         } else {
1434                                 ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1435                         }
1436
1437                         if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1438                                 PMD_RX_LOG(ERR, rxq,
1439                                         "Outer L3 csum failed, flags = 0x%x\n",
1440                                         parse_flag);
1441                                   rxq->rx_hw_errors++;
1442                                   ol_flags |= PKT_RX_EIP_CKSUM_BAD;
1443                         } else {
1444                                   ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1445                         }
1446
1447                         if (tpa_start_flg)
1448                                 flags = cqe_start_tpa->tunnel_pars_flags.flags;
1449                         else
1450                                 flags = fp_cqe->tunnel_pars_flags.flags;
1451                         tunn_parse_flag = flags;
1452
1453                         /* Tunnel_type */
1454                         packet_type =
1455                                 qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
1456
1457                         /* Inner header */
1458                         packet_type |=
1459                               qede_rx_cqe_to_pkt_type_inner(parse_flag);
1460
1461                         /* Outer L3/L4 types is not available in CQE */
1462                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1463
1464                         /* Outer L3/L4 types is not available in CQE.
1465                          * Need to add offset to parse correctly,
1466                          */
1467                         rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1468                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1469                 }
1470
1471                 /* Common handling for non-tunnel packets and for inner
1472                  * headers in the case of tunnel.
1473                  */
1474                 if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1475                         PMD_RX_LOG(ERR, rxq,
1476                                     "L4 csum failed, flags = 0x%x\n",
1477                                     parse_flag);
1478                         rxq->rx_hw_errors++;
1479                         ol_flags |= PKT_RX_L4_CKSUM_BAD;
1480                 } else {
1481                         ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1482                 }
1483                 if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1484                         PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1485                                    parse_flag);
1486                         rxq->rx_hw_errors++;
1487                         ol_flags |= PKT_RX_IP_CKSUM_BAD;
1488                 } else {
1489                         ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1490                         packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1491                 }
1492
1493                 if (CQE_HAS_VLAN(parse_flag) ||
1494                     CQE_HAS_OUTER_VLAN(parse_flag)) {
1495                         /* Note: FW doesn't indicate Q-in-Q packet */
1496                         ol_flags |= PKT_RX_VLAN;
1497                         if (qdev->vlan_strip_flg) {
1498                                 ol_flags |= PKT_RX_VLAN_STRIPPED;
1499                                 rx_mb->vlan_tci = vlan_tci;
1500                         }
1501                 }
1502
1503                 /* RSS Hash */
1504                 if (qdev->rss_enable) {
1505                         ol_flags |= PKT_RX_RSS_HASH;
1506                         rx_mb->hash.rss = rss_hash;
1507                 }
1508
1509                 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1510                         PMD_RX_LOG(ERR, rxq,
1511                                    "New buffer allocation failed,"
1512                                    "dropping incoming packet\n");
1513                         qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num);
1514                         rte_eth_devices[rxq->port_id].
1515                             data->rx_mbuf_alloc_failed++;
1516                         rxq->rx_alloc_errors++;
1517                         break;
1518                 }
1519                 qede_rx_bd_ring_consume(rxq);
1520
1521                 if (!tpa_start_flg && fp_cqe->bd_num > 1) {
1522                         PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
1523                                    " len on first: %04x Total Len: %04x",
1524                                    fp_cqe->bd_num, len, pkt_len);
1525                         num_segs = fp_cqe->bd_num - 1;
1526                         seg1 = rx_mb;
1527                         if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
1528                                                  pkt_len - len))
1529                                 goto next_cqe;
1530                         for (j = 0; j < num_segs; j++) {
1531                                 if (qede_alloc_rx_buffer(rxq)) {
1532                                         PMD_RX_LOG(ERR, rxq,
1533                                                 "Buffer allocation failed");
1534                                         rte_eth_devices[rxq->port_id].
1535                                                 data->rx_mbuf_alloc_failed++;
1536                                         rxq->rx_alloc_errors++;
1537                                         break;
1538                                 }
1539                                 rxq->rx_segs++;
1540                         }
1541                 }
1542                 rxq->rx_segs++; /* for the first segment */
1543
1544                 /* Prefetch next mbuf while processing current one. */
1545                 preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1546                 rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
1547
1548                 /* Update rest of the MBUF fields */
1549                 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1550                 rx_mb->port = rxq->port_id;
1551                 rx_mb->ol_flags = ol_flags;
1552                 rx_mb->data_len = len;
1553                 rx_mb->packet_type = packet_type;
1554 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1555                 print_rx_bd_info(rx_mb, rxq, bitfield_val);
1556 #endif
1557                 if (!tpa_start_flg) {
1558                         rx_mb->nb_segs = fp_cqe->bd_num;
1559                         rx_mb->pkt_len = pkt_len;
1560                 } else {
1561                         /* store ref to the updated mbuf */
1562                         tpa_info->tpa_head = rx_mb;
1563                         tpa_info->tpa_tail = tpa_info->tpa_head;
1564                 }
1565                 rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
1566 tpa_end:
1567                 if (!tpa_start_flg) {
1568                         rx_pkts[rx_pkt] = rx_mb;
1569                         rx_pkt++;
1570                 }
1571 next_cqe:
1572                 ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
1573                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1574                 if (rx_pkt == nb_pkts) {
1575                         PMD_RX_LOG(DEBUG, rxq,
1576                                    "Budget reached nb_pkts=%u received=%u",
1577                                    rx_pkt, nb_pkts);
1578                         break;
1579                 }
1580         }
1581
1582         qede_update_rx_prod(qdev, rxq);
1583
1584         rxq->rcv_pkts += rx_pkt;
1585
1586         PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
1587
1588         return rx_pkt;
1589 }
1590
1591
1592 /* Populate scatter gather buffer descriptor fields */
1593 static inline uint16_t
1594 qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
1595                   struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
1596                   uint16_t start_seg)
1597 {
1598         struct qede_tx_queue *txq = p_txq;
1599         struct eth_tx_bd *tx_bd = NULL;
1600         dma_addr_t mapping;
1601         uint16_t nb_segs = 0;
1602
1603         /* Check for scattered buffers */
1604         while (m_seg) {
1605                 if (start_seg == 0) {
1606                         if (!*bd2) {
1607                                 *bd2 = (struct eth_tx_2nd_bd *)
1608                                         ecore_chain_produce(&txq->tx_pbl);
1609                                 memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
1610                                 nb_segs++;
1611                         }
1612                         mapping = rte_mbuf_data_iova(m_seg);
1613                         QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
1614                         PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
1615                 } else if (start_seg == 1) {
1616                         if (!*bd3) {
1617                                 *bd3 = (struct eth_tx_3rd_bd *)
1618                                         ecore_chain_produce(&txq->tx_pbl);
1619                                 memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
1620                                 nb_segs++;
1621                         }
1622                         mapping = rte_mbuf_data_iova(m_seg);
1623                         QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
1624                         PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
1625                 } else {
1626                         tx_bd = (struct eth_tx_bd *)
1627                                 ecore_chain_produce(&txq->tx_pbl);
1628                         memset(tx_bd, 0, sizeof(*tx_bd));
1629                         nb_segs++;
1630                         mapping = rte_mbuf_data_iova(m_seg);
1631                         QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
1632                         PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
1633                 }
1634                 m_seg = m_seg->next;
1635         }
1636
1637         /* Return total scattered buffers */
1638         return nb_segs;
1639 }
1640
1641 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1642 static inline void
1643 print_tx_bd_info(struct qede_tx_queue *txq,
1644                  struct eth_tx_1st_bd *bd1,
1645                  struct eth_tx_2nd_bd *bd2,
1646                  struct eth_tx_3rd_bd *bd3,
1647                  uint64_t tx_ol_flags)
1648 {
1649         char ol_buf[256] = { 0 }; /* for verbose prints */
1650
1651         if (bd1)
1652                 PMD_TX_LOG(INFO, txq,
1653                    "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
1654                    rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
1655                    bd1->data.bd_flags.bitfields,
1656                    rte_cpu_to_le_16(bd1->data.bitfields));
1657         if (bd2)
1658                 PMD_TX_LOG(INFO, txq,
1659                    "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
1660                    rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
1661                    bd2->data.bitfields2, bd2->data.tunn_ip_size);
1662         if (bd3)
1663                 PMD_TX_LOG(INFO, txq,
1664                    "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
1665                    "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
1666                    rte_cpu_to_le_16(bd3->nbytes),
1667                    rte_cpu_to_le_16(bd3->data.bitfields),
1668                    rte_cpu_to_le_16(bd3->data.lso_mss),
1669                    bd3->data.tunn_l4_hdr_start_offset_w,
1670                    bd3->data.tunn_hdr_size_w);
1671
1672         rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
1673         PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
1674 }
1675 #endif
1676
1677 /* TX prepare to check packets meets TX conditions */
1678 uint16_t
1679 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1680 qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
1681                     uint16_t nb_pkts)
1682 {
1683         struct qede_tx_queue *txq = p_txq;
1684 #else
1685 qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
1686                     uint16_t nb_pkts)
1687 {
1688 #endif
1689         uint64_t ol_flags;
1690         struct rte_mbuf *m;
1691         uint16_t i;
1692 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1693         int ret;
1694 #endif
1695
1696         for (i = 0; i < nb_pkts; i++) {
1697                 m = tx_pkts[i];
1698                 ol_flags = m->ol_flags;
1699                 if (ol_flags & PKT_TX_TCP_SEG) {
1700                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
1701                                 rte_errno = -EINVAL;
1702                                 break;
1703                         }
1704                         /* TBD: confirm its ~9700B for both ? */
1705                         if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
1706                                 rte_errno = -EINVAL;
1707                                 break;
1708                         }
1709                 } else {
1710                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
1711                                 rte_errno = -EINVAL;
1712                                 break;
1713                         }
1714                 }
1715                 if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
1716                         rte_errno = -ENOTSUP;
1717                         break;
1718                 }
1719
1720 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1721                 ret = rte_validate_tx_offload(m);
1722                 if (ret != 0) {
1723                         rte_errno = ret;
1724                         break;
1725                 }
1726 #endif
1727         }
1728
1729 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1730         if (unlikely(i != nb_pkts))
1731                 PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
1732                            nb_pkts - i);
1733 #endif
1734         return i;
1735 }
1736
1737 #define MPLSINUDP_HDR_SIZE                      (12)
1738
1739 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1740 static inline void
1741 qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
1742                                struct qede_tx_queue *txq)
1743 {
1744         if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
1745                 PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
1746         if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
1747                 MPLSINUDP_HDR_SIZE) / 2) > 0xff)
1748                 PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
1749         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
1750                 ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
1751                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1752         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
1753                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
1754                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1755 }
1756 #endif
1757
1758 uint16_t
1759 qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1760 {
1761         struct qede_tx_queue *txq = p_txq;
1762         struct qede_dev *qdev = txq->qdev;
1763         struct ecore_dev *edev = &qdev->edev;
1764         struct rte_mbuf *mbuf;
1765         struct rte_mbuf *m_seg = NULL;
1766         uint16_t nb_tx_pkts;
1767         uint16_t bd_prod;
1768         uint16_t idx;
1769         uint16_t nb_frags;
1770         uint16_t nb_pkt_sent = 0;
1771         uint8_t nbds;
1772         bool lso_flg;
1773         bool mplsoudp_flg;
1774         __rte_unused bool tunn_flg;
1775         bool tunn_ipv6_ext_flg;
1776         struct eth_tx_1st_bd *bd1;
1777         struct eth_tx_2nd_bd *bd2;
1778         struct eth_tx_3rd_bd *bd3;
1779         uint64_t tx_ol_flags;
1780         uint16_t hdr_size;
1781         /* BD1 */
1782         uint16_t bd1_bf;
1783         uint8_t bd1_bd_flags_bf;
1784         uint16_t vlan;
1785         /* BD2 */
1786         uint16_t bd2_bf1;
1787         uint16_t bd2_bf2;
1788         /* BD3 */
1789         uint16_t mss;
1790         uint16_t bd3_bf;
1791
1792         uint8_t tunn_l4_hdr_start_offset;
1793         uint8_t tunn_hdr_size;
1794         uint8_t inner_l2_hdr_size;
1795         uint16_t inner_l4_hdr_offset;
1796
1797         if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
1798                 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
1799                            nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
1800                 qede_process_tx_compl(edev, txq);
1801         }
1802
1803         nb_tx_pkts  = nb_pkts;
1804         bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
1805         while (nb_tx_pkts--) {
1806                 /* Init flags/values */
1807                 tunn_flg = false;
1808                 lso_flg = false;
1809                 nbds = 0;
1810                 vlan = 0;
1811                 bd1 = NULL;
1812                 bd2 = NULL;
1813                 bd3 = NULL;
1814                 hdr_size = 0;
1815                 bd1_bf = 0;
1816                 bd1_bd_flags_bf = 0;
1817                 bd2_bf1 = 0;
1818                 bd2_bf2 = 0;
1819                 mss = 0;
1820                 bd3_bf = 0;
1821                 mplsoudp_flg = false;
1822                 tunn_ipv6_ext_flg = false;
1823                 tunn_hdr_size = 0;
1824                 tunn_l4_hdr_start_offset = 0;
1825
1826                 mbuf = *tx_pkts++;
1827                 assert(mbuf);
1828
1829                 /* Check minimum TX BDS availability against available BDs */
1830                 if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
1831                         break;
1832
1833                 tx_ol_flags = mbuf->ol_flags;
1834                 bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1835
1836                 /* TX prepare would have already checked supported tunnel Tx
1837                  * offloads. Don't rely on pkt_type marked by Rx, instead use
1838                  * tx_ol_flags to decide.
1839                  */
1840                 if (((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1841                                                 PKT_TX_TUNNEL_VXLAN) ||
1842                     ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1843                                                 PKT_TX_TUNNEL_MPLSINUDP) ||
1844                     ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1845                                                 PKT_TX_TUNNEL_GENEVE)) {
1846                         /* Check against max which is Tunnel IPv6 + ext */
1847                         if (unlikely(txq->nb_tx_avail <
1848                                 ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
1849                                         break;
1850                         tunn_flg = true;
1851                         /* First indicate its a tunnel pkt */
1852                         bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
1853                                   ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1854                         /* Legacy FW had flipped behavior in regard to this bit
1855                          * i.e. it needed to set to prevent FW from touching
1856                          * encapsulated packets when it didn't need to.
1857                          */
1858                         if (unlikely(txq->is_legacy)) {
1859                                 bd1_bf ^= 1 <<
1860                                         ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1861                         }
1862
1863                         /* Outer IP checksum offload */
1864                         if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM |
1865                                            PKT_TX_OUTER_IPV4)) {
1866                                 bd1_bd_flags_bf |=
1867                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
1868                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1869                         }
1870
1871                         /**
1872                          * Currently, only inner checksum offload in MPLS-in-UDP
1873                          * tunnel with one MPLS label is supported. Both outer
1874                          * and inner layers  lengths need to be provided in
1875                          * mbuf.
1876                          */
1877                         if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1878                                                 PKT_TX_TUNNEL_MPLSINUDP) {
1879                                 mplsoudp_flg = true;
1880 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1881                                 qede_mpls_tunn_tx_sanity_check(mbuf, txq);
1882 #endif
1883                                 /* Outer L4 offset in two byte words */
1884                                 tunn_l4_hdr_start_offset =
1885                                   (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
1886                                 /* Tunnel header size in two byte words */
1887                                 tunn_hdr_size = (mbuf->outer_l2_len +
1888                                                 mbuf->outer_l3_len +
1889                                                 MPLSINUDP_HDR_SIZE) / 2;
1890                                 /* Inner L2 header size in two byte words */
1891                                 inner_l2_hdr_size = (mbuf->l2_len -
1892                                                 MPLSINUDP_HDR_SIZE) / 2;
1893                                 /* Inner L4 header offset from the beggining
1894                                  * of inner packet in two byte words
1895                                  */
1896                                 inner_l4_hdr_offset = (mbuf->l2_len -
1897                                         MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;
1898
1899                                 /* Inner L2 size and address type */
1900                                 bd2_bf1 |= (inner_l2_hdr_size &
1901                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
1902                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
1903                                 bd2_bf1 |= (UNICAST_ADDRESS &
1904                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
1905                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
1906                                 /* Treated as IPv6+Ext */
1907                                 bd2_bf1 |=
1908                                     1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;
1909
1910                                 /* Mark inner IPv6 if present */
1911                                 if (tx_ol_flags & PKT_TX_IPV6)
1912                                         bd2_bf1 |=
1913                                                 1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;
1914
1915                                 /* Inner L4 offsets */
1916                                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
1917                                      (tx_ol_flags & (PKT_TX_UDP_CKSUM |
1918                                                         PKT_TX_TCP_CKSUM))) {
1919                                         /* Determines if BD3 is needed */
1920                                         tunn_ipv6_ext_flg = true;
1921                                         if ((tx_ol_flags & PKT_TX_L4_MASK) ==
1922                                                         PKT_TX_UDP_CKSUM) {
1923                                                 bd2_bf1 |=
1924                                                         1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
1925                                         }
1926
1927                                         /* TODO other pseudo checksum modes are
1928                                          * not supported
1929                                          */
1930                                         bd2_bf1 |=
1931                                         ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
1932                                         ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
1933                                         bd2_bf2 |= (inner_l4_hdr_offset &
1934                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
1935                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
1936                                 }
1937                         } /* End MPLSoUDP */
1938                 } /* End Tunnel handling */
1939
1940                 if (tx_ol_flags & PKT_TX_TCP_SEG) {
1941                         lso_flg = true;
1942                         if (unlikely(txq->nb_tx_avail <
1943                                                 ETH_TX_MIN_BDS_PER_LSO_PKT))
1944                                 break;
1945                         /* For LSO, packet header and payload must reside on
1946                          * buffers pointed by different BDs. Using BD1 for HDR
1947                          * and BD2 onwards for data.
1948                          */
1949                         hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
1950                         if (tunn_flg)
1951                                 hdr_size += mbuf->outer_l2_len +
1952                                             mbuf->outer_l3_len;
1953
1954                         bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
1955                         bd1_bd_flags_bf |=
1956                                         1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1957                         /* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
1958                         bd1_bd_flags_bf |=
1959                                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1960                         mss = rte_cpu_to_le_16(mbuf->tso_segsz);
1961                         /* Using one header BD */
1962                         bd3_bf |= rte_cpu_to_le_16(1 <<
1963                                         ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1964                 } else {
1965                         if (unlikely(txq->nb_tx_avail <
1966                                         ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
1967                                 break;
1968                         bd1_bf |=
1969                                (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
1970                                 << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
1971                 }
1972
1973                 /* Descriptor based VLAN insertion */
1974                 if (tx_ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1975                         vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
1976                         bd1_bd_flags_bf |=
1977                             1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1978                 }
1979
1980                 /* Offload the IP checksum in the hardware */
1981                 if (tx_ol_flags & PKT_TX_IP_CKSUM) {
1982                         bd1_bd_flags_bf |=
1983                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1984                         /* There's no DPDK flag to request outer-L4 csum
1985                          * offload. But in the case of tunnel if inner L3 or L4
1986                          * csum offload is requested then we need to force
1987                          * recalculation of L4 tunnel header csum also.
1988                          */
1989                         if (tunn_flg) {
1990                                 bd1_bd_flags_bf |=
1991                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
1992                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1993                         }
1994                 }
1995
1996                 /* L4 checksum offload (tcp or udp) */
1997                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
1998                     (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) {
1999                         bd1_bd_flags_bf |=
2000                                 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2001                         /* There's no DPDK flag to request outer-L4 csum
2002                          * offload. But in the case of tunnel if inner L3 or L4
2003                          * csum offload is requested then we need to force
2004                          * recalculation of L4 tunnel header csum also.
2005                          */
2006                         if (tunn_flg) {
2007                                 bd1_bd_flags_bf |=
2008                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2009                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2010                         }
2011                 }
2012
2013                 /* Fill the entry in the SW ring and the BDs in the FW ring */
2014                 idx = TX_PROD(txq);
2015                 txq->sw_tx_ring[idx].mbuf = mbuf;
2016
2017                 /* BD1 */
2018                 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2019                 memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2020                 nbds++;
2021
2022                 /* Map MBUF linear data for DMA and set in the BD1 */
2023                 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2024                                      mbuf->data_len);
2025                 bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2026                 bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2027                 bd1->data.vlan = vlan;
2028
2029                 if (lso_flg || mplsoudp_flg) {
2030                         bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
2031                                                         (&txq->tx_pbl);
2032                         memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
2033                         nbds++;
2034
2035                         /* BD1 */
2036                         QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2037                                              hdr_size);
2038                         /* BD2 */
2039                         QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
2040                                              rte_mbuf_data_iova(mbuf)),
2041                                              mbuf->data_len - hdr_size);
2042                         bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
2043                         if (mplsoudp_flg) {
2044                                 bd2->data.bitfields2 =
2045                                         rte_cpu_to_le_16(bd2_bf2);
2046                                 /* Outer L3 size */
2047                                 bd2->data.tunn_ip_size =
2048                                         rte_cpu_to_le_16(mbuf->outer_l3_len);
2049                         }
2050                         /* BD3 */
2051                         if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
2052                                 bd3 = (struct eth_tx_3rd_bd *)
2053                                         ecore_chain_produce(&txq->tx_pbl);
2054                                 memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
2055                                 nbds++;
2056                                 bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
2057                                 if (lso_flg)
2058                                         bd3->data.lso_mss = mss;
2059                                 if (mplsoudp_flg) {
2060                                         bd3->data.tunn_l4_hdr_start_offset_w =
2061                                                 tunn_l4_hdr_start_offset;
2062                                         bd3->data.tunn_hdr_size_w =
2063                                                 tunn_hdr_size;
2064                                 }
2065                         }
2066                 }
2067
2068                 /* Handle fragmented MBUF */
2069                 m_seg = mbuf->next;
2070
2071                 /* Encode scatter gather buffer descriptors if required */
2072                 nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
2073                 bd1->data.nbds = nbds + nb_frags;
2074
2075                 txq->nb_tx_avail -= bd1->data.nbds;
2076                 txq->sw_tx_prod++;
2077                 rte_prefetch0(txq->sw_tx_ring[TX_PROD(txq)].mbuf);
2078                 bd_prod =
2079                     rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2080 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2081                 print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2082 #endif
2083                 nb_pkt_sent++;
2084                 txq->xmit_pkts++;
2085         }
2086
2087         /* Write value of prod idx into bd_prod */
2088         txq->tx_db.data.bd_prod = bd_prod;
2089         rte_wmb();
2090         rte_compiler_barrier();
2091         DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2092         rte_wmb();
2093
2094         /* Check again for Tx completions */
2095         qede_process_tx_compl(edev, txq);
2096
2097         PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2098                    nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2099
2100         return nb_pkt_sent;
2101 }
2102
2103 uint16_t
2104 qede_rxtx_pkts_dummy(__rte_unused void *p_rxq,
2105                      __rte_unused struct rte_mbuf **pkts,
2106                      __rte_unused uint16_t nb_pkts)
2107 {
2108         return 0;
2109 }