New upstream version 17.11.1
[deb_dpdk.git] / drivers / net / qede / qede_rxtx.c
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8
9 #include <rte_net.h>
10 #include "qede_rxtx.h"
11
12 static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
13 {
14         struct rte_mbuf *new_mb = NULL;
15         struct eth_rx_bd *rx_bd;
16         dma_addr_t mapping;
17         uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
18
19         new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
20         if (unlikely(!new_mb)) {
21                 PMD_RX_LOG(ERR, rxq,
22                            "Failed to allocate rx buffer "
23                            "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
24                            idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
25                            rte_mempool_avail_count(rxq->mb_pool),
26                            rte_mempool_in_use_count(rxq->mb_pool));
27                 return -ENOMEM;
28         }
29         rxq->sw_rx_ring[idx].mbuf = new_mb;
30         rxq->sw_rx_ring[idx].page_offset = 0;
31         mapping = rte_mbuf_data_iova_default(new_mb);
32         /* Advance PROD and get BD pointer */
33         rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
34         rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
35         rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
36         rxq->sw_rx_prod++;
37         return 0;
38 }
39
40 int
41 qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
42                     uint16_t nb_desc, unsigned int socket_id,
43                     __rte_unused const struct rte_eth_rxconf *rx_conf,
44                     struct rte_mempool *mp)
45 {
46         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
47         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
48         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
49         struct qede_rx_queue *rxq;
50         uint16_t max_rx_pkt_len;
51         uint16_t bufsz;
52         size_t size;
53         int rc;
54
55         PMD_INIT_FUNC_TRACE(edev);
56
57         /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
58         if (!rte_is_power_of_2(nb_desc)) {
59                 DP_ERR(edev, "Ring size %u is not power of 2\n",
60                           nb_desc);
61                 return -EINVAL;
62         }
63
64         /* Free memory prior to re-allocation if needed... */
65         if (dev->data->rx_queues[queue_idx] != NULL) {
66                 qede_rx_queue_release(dev->data->rx_queues[queue_idx]);
67                 dev->data->rx_queues[queue_idx] = NULL;
68         }
69
70         /* First allocate the rx queue data structure */
71         rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
72                                  RTE_CACHE_LINE_SIZE, socket_id);
73
74         if (!rxq) {
75                 DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
76                           socket_id);
77                 return -ENOMEM;
78         }
79
80         rxq->qdev = qdev;
81         rxq->mb_pool = mp;
82         rxq->nb_rx_desc = nb_desc;
83         rxq->queue_id = queue_idx;
84         rxq->port_id = dev->data->port_id;
85
86         max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
87
88         /* Fix up RX buffer size */
89         bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
90         if ((rxmode->enable_scatter)                    ||
91             (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
92                 if (!dev->data->scattered_rx) {
93                         DP_INFO(edev, "Forcing scatter-gather mode\n");
94                         dev->data->scattered_rx = 1;
95                 }
96         }
97
98         if (dev->data->scattered_rx)
99                 rxq->rx_buf_size = bufsz + ETHER_HDR_LEN +
100                                    ETHER_CRC_LEN + QEDE_ETH_OVERHEAD;
101         else
102                 rxq->rx_buf_size = max_rx_pkt_len + QEDE_ETH_OVERHEAD;
103         /* Align to cache-line size if needed */
104         rxq->rx_buf_size = QEDE_CEIL_TO_CACHE_LINE_SIZE(rxq->rx_buf_size);
105
106         DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
107                 qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
108
109         /* Allocate the parallel driver ring for Rx buffers */
110         size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
111         rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
112                                              RTE_CACHE_LINE_SIZE, socket_id);
113         if (!rxq->sw_rx_ring) {
114                 DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
115                        " socket %u\n", socket_id);
116                 rte_free(rxq);
117                 return -ENOMEM;
118         }
119
120         /* Allocate FW Rx ring  */
121         rc = qdev->ops->common->chain_alloc(edev,
122                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
123                                             ECORE_CHAIN_MODE_NEXT_PTR,
124                                             ECORE_CHAIN_CNT_TYPE_U16,
125                                             rxq->nb_rx_desc,
126                                             sizeof(struct eth_rx_bd),
127                                             &rxq->rx_bd_ring,
128                                             NULL);
129
130         if (rc != ECORE_SUCCESS) {
131                 DP_ERR(edev, "Memory allocation fails for RX BD ring"
132                        " on socket %u\n", socket_id);
133                 rte_free(rxq->sw_rx_ring);
134                 rte_free(rxq);
135                 return -ENOMEM;
136         }
137
138         /* Allocate FW completion ring */
139         rc = qdev->ops->common->chain_alloc(edev,
140                                             ECORE_CHAIN_USE_TO_CONSUME,
141                                             ECORE_CHAIN_MODE_PBL,
142                                             ECORE_CHAIN_CNT_TYPE_U16,
143                                             rxq->nb_rx_desc,
144                                             sizeof(union eth_rx_cqe),
145                                             &rxq->rx_comp_ring,
146                                             NULL);
147
148         if (rc != ECORE_SUCCESS) {
149                 DP_ERR(edev, "Memory allocation fails for RX CQE ring"
150                        " on socket %u\n", socket_id);
151                 qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
152                 rte_free(rxq->sw_rx_ring);
153                 rte_free(rxq);
154                 return -ENOMEM;
155         }
156
157         dev->data->rx_queues[queue_idx] = rxq;
158         qdev->fp_array[queue_idx].rxq = rxq;
159
160         DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
161                   queue_idx, nb_desc, rxq->rx_buf_size, socket_id);
162
163         return 0;
164 }
165
166 static void
167 qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
168                     struct qede_rx_queue *rxq)
169 {
170         DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
171         ecore_chain_reset(&rxq->rx_bd_ring);
172         ecore_chain_reset(&rxq->rx_comp_ring);
173         rxq->sw_rx_prod = 0;
174         rxq->sw_rx_cons = 0;
175         *rxq->hw_cons_ptr = 0;
176 }
177
178 static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
179 {
180         uint16_t i;
181
182         if (rxq->sw_rx_ring) {
183                 for (i = 0; i < rxq->nb_rx_desc; i++) {
184                         if (rxq->sw_rx_ring[i].mbuf) {
185                                 rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
186                                 rxq->sw_rx_ring[i].mbuf = NULL;
187                         }
188                 }
189         }
190 }
191
192 void qede_rx_queue_release(void *rx_queue)
193 {
194         struct qede_rx_queue *rxq = rx_queue;
195
196         if (rxq) {
197                 qede_rx_queue_release_mbufs(rxq);
198                 rte_free(rxq->sw_rx_ring);
199                 rte_free(rxq);
200         }
201 }
202
203 /* Stops a given RX queue in the HW */
204 static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
205 {
206         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
207         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
208         struct ecore_hwfn *p_hwfn;
209         struct qede_rx_queue *rxq;
210         int hwfn_index;
211         int rc;
212
213         if (rx_queue_id < eth_dev->data->nb_rx_queues) {
214                 rxq = eth_dev->data->rx_queues[rx_queue_id];
215                 hwfn_index = rx_queue_id % edev->num_hwfns;
216                 p_hwfn = &edev->hwfns[hwfn_index];
217                 rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
218                                 true, false);
219                 if (rc != ECORE_SUCCESS) {
220                         DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
221                         return -1;
222                 }
223                 qede_rx_queue_release_mbufs(rxq);
224                 qede_rx_queue_reset(qdev, rxq);
225                 eth_dev->data->rx_queue_state[rx_queue_id] =
226                         RTE_ETH_QUEUE_STATE_STOPPED;
227                 DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
228         } else {
229                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
230                 rc = -EINVAL;
231         }
232
233         return rc;
234 }
235
236 int
237 qede_tx_queue_setup(struct rte_eth_dev *dev,
238                     uint16_t queue_idx,
239                     uint16_t nb_desc,
240                     unsigned int socket_id,
241                     const struct rte_eth_txconf *tx_conf)
242 {
243         struct qede_dev *qdev = dev->data->dev_private;
244         struct ecore_dev *edev = &qdev->edev;
245         struct qede_tx_queue *txq;
246         int rc;
247
248         PMD_INIT_FUNC_TRACE(edev);
249
250         if (!rte_is_power_of_2(nb_desc)) {
251                 DP_ERR(edev, "Ring size %u is not power of 2\n",
252                        nb_desc);
253                 return -EINVAL;
254         }
255
256         /* Free memory prior to re-allocation if needed... */
257         if (dev->data->tx_queues[queue_idx] != NULL) {
258                 qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
259                 dev->data->tx_queues[queue_idx] = NULL;
260         }
261
262         txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
263                                  RTE_CACHE_LINE_SIZE, socket_id);
264
265         if (txq == NULL) {
266                 DP_ERR(edev,
267                        "Unable to allocate memory for txq on socket %u",
268                        socket_id);
269                 return -ENOMEM;
270         }
271
272         txq->nb_tx_desc = nb_desc;
273         txq->qdev = qdev;
274         txq->port_id = dev->data->port_id;
275
276         rc = qdev->ops->common->chain_alloc(edev,
277                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
278                                             ECORE_CHAIN_MODE_PBL,
279                                             ECORE_CHAIN_CNT_TYPE_U16,
280                                             txq->nb_tx_desc,
281                                             sizeof(union eth_tx_bd_types),
282                                             &txq->tx_pbl,
283                                             NULL);
284         if (rc != ECORE_SUCCESS) {
285                 DP_ERR(edev,
286                        "Unable to allocate memory for txbd ring on socket %u",
287                        socket_id);
288                 qede_tx_queue_release(txq);
289                 return -ENOMEM;
290         }
291
292         /* Allocate software ring */
293         txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
294                                              (sizeof(struct qede_tx_entry) *
295                                               txq->nb_tx_desc),
296                                              RTE_CACHE_LINE_SIZE, socket_id);
297
298         if (!txq->sw_tx_ring) {
299                 DP_ERR(edev,
300                        "Unable to allocate memory for txbd ring on socket %u",
301                        socket_id);
302                 qdev->ops->common->chain_free(edev, &txq->tx_pbl);
303                 qede_tx_queue_release(txq);
304                 return -ENOMEM;
305         }
306
307         txq->queue_id = queue_idx;
308
309         txq->nb_tx_avail = txq->nb_tx_desc;
310
311         txq->tx_free_thresh =
312             tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
313             (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
314
315         dev->data->tx_queues[queue_idx] = txq;
316         qdev->fp_array[queue_idx].txq = txq;
317
318         DP_INFO(edev,
319                   "txq %u num_desc %u tx_free_thresh %u socket %u\n",
320                   queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
321
322         return 0;
323 }
324
325 static void
326 qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
327                     struct qede_tx_queue *txq)
328 {
329         DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
330         ecore_chain_reset(&txq->tx_pbl);
331         txq->sw_tx_cons = 0;
332         txq->sw_tx_prod = 0;
333         *txq->hw_cons_ptr = 0;
334 }
335
336 static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
337 {
338         uint16_t i;
339
340         if (txq->sw_tx_ring) {
341                 for (i = 0; i < txq->nb_tx_desc; i++) {
342                         if (txq->sw_tx_ring[i].mbuf) {
343                                 rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
344                                 txq->sw_tx_ring[i].mbuf = NULL;
345                         }
346                 }
347         }
348 }
349
350 void qede_tx_queue_release(void *tx_queue)
351 {
352         struct qede_tx_queue *txq = tx_queue;
353
354         if (txq) {
355                 qede_tx_queue_release_mbufs(txq);
356                 rte_free(txq->sw_tx_ring);
357                 rte_free(txq);
358         }
359 }
360
361 /* This function allocates fast-path status block memory */
362 static int
363 qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
364                   uint16_t sb_id)
365 {
366         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
367         struct status_block_e4 *sb_virt;
368         dma_addr_t sb_phys;
369         int rc;
370
371         sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
372                                           sizeof(struct status_block_e4));
373         if (!sb_virt) {
374                 DP_ERR(edev, "Status block allocation failed\n");
375                 return -ENOMEM;
376         }
377         rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
378                                         sb_phys, sb_id);
379         if (rc) {
380                 DP_ERR(edev, "Status block initialization failed\n");
381                 OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
382                                        sizeof(struct status_block_e4));
383                 return rc;
384         }
385
386         return 0;
387 }
388
389 int qede_alloc_fp_resc(struct qede_dev *qdev)
390 {
391         struct ecore_dev *edev = &qdev->edev;
392         struct qede_fastpath *fp;
393         uint32_t num_sbs;
394         uint16_t sb_idx;
395
396         if (IS_VF(edev))
397                 ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
398         else
399                 num_sbs = ecore_cxt_get_proto_cid_count
400                           (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
401
402         if (num_sbs == 0) {
403                 DP_ERR(edev, "No status blocks available\n");
404                 return -EINVAL;
405         }
406
407         qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
408                                 sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);
409
410         if (!qdev->fp_array) {
411                 DP_ERR(edev, "fp array allocation failed\n");
412                 return -ENOMEM;
413         }
414
415         memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
416                         sizeof(*qdev->fp_array));
417
418         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
419                 fp = &qdev->fp_array[sb_idx];
420                 fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
421                                 RTE_CACHE_LINE_SIZE);
422                 if (!fp->sb_info) {
423                         DP_ERR(edev, "FP sb_info allocation fails\n");
424                         return -1;
425                 }
426                 if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
427                         DP_ERR(edev, "FP status block allocation fails\n");
428                         return -1;
429                 }
430                 DP_INFO(edev, "sb_info idx 0x%x initialized\n",
431                                 fp->sb_info->igu_sb_id);
432         }
433
434         return 0;
435 }
436
437 void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
438 {
439         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
440         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
441         struct qede_fastpath *fp;
442         struct qede_rx_queue *rxq;
443         struct qede_tx_queue *txq;
444         uint16_t sb_idx;
445         uint8_t i;
446
447         PMD_INIT_FUNC_TRACE(edev);
448
449         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
450                 fp = &qdev->fp_array[sb_idx];
451                 DP_INFO(edev, "Free sb_info index 0x%x\n",
452                                 fp->sb_info->igu_sb_id);
453                 if (fp->sb_info) {
454                         OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
455                                 fp->sb_info->sb_phys,
456                                 sizeof(struct status_block_e4));
457                         rte_free(fp->sb_info);
458                         fp->sb_info = NULL;
459                 }
460         }
461
462         /* Free packet buffers and ring memories */
463         for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
464                 if (eth_dev->data->rx_queues[i]) {
465                         qede_rx_queue_release(eth_dev->data->rx_queues[i]);
466                         rxq = eth_dev->data->rx_queues[i];
467                         qdev->ops->common->chain_free(edev,
468                                                       &rxq->rx_bd_ring);
469                         qdev->ops->common->chain_free(edev,
470                                                       &rxq->rx_comp_ring);
471                         eth_dev->data->rx_queues[i] = NULL;
472                 }
473         }
474
475         for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
476                 if (eth_dev->data->tx_queues[i]) {
477                         txq = eth_dev->data->tx_queues[i];
478                         qede_tx_queue_release(eth_dev->data->tx_queues[i]);
479                         qdev->ops->common->chain_free(edev,
480                                                       &txq->tx_pbl);
481                         eth_dev->data->tx_queues[i] = NULL;
482                 }
483         }
484
485         if (qdev->fp_array)
486                 rte_free(qdev->fp_array);
487         qdev->fp_array = NULL;
488 }
489
490 static inline void
491 qede_update_rx_prod(__rte_unused struct qede_dev *edev,
492                     struct qede_rx_queue *rxq)
493 {
494         uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
495         uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
496         struct eth_rx_prod_data rx_prods = { 0 };
497
498         /* Update producers */
499         rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
500         rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
501
502         /* Make sure that the BD and SGE data is updated before updating the
503          * producers since FW might read the BD/SGE right after the producer
504          * is updated.
505          */
506         rte_wmb();
507
508         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
509                         (uint32_t *)&rx_prods);
510
511         /* mmiowb is needed to synchronize doorbell writes from more than one
512          * processor. It guarantees that the write arrives to the device before
513          * the napi lock is released and another qede_poll is called (possibly
514          * on another CPU). Without this barrier, the next doorbell can bypass
515          * this doorbell. This is applicable to IA64/Altix systems.
516          */
517         rte_wmb();
518
519         PMD_RX_LOG(DEBUG, rxq, "bd_prod %u  cqe_prod %u", bd_prod, cqe_prod);
520 }
521
522 /* Starts a given RX queue in HW */
523 static int
524 qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
525 {
526         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
527         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
528         struct ecore_queue_start_common_params params;
529         struct ecore_rxq_start_ret_params ret_params;
530         struct qede_rx_queue *rxq;
531         struct qede_fastpath *fp;
532         struct ecore_hwfn *p_hwfn;
533         dma_addr_t p_phys_table;
534         uint16_t page_cnt;
535         uint16_t j;
536         int hwfn_index;
537         int rc;
538
539         if (rx_queue_id < eth_dev->data->nb_rx_queues) {
540                 fp = &qdev->fp_array[rx_queue_id];
541                 rxq = eth_dev->data->rx_queues[rx_queue_id];
542                 /* Allocate buffers for the Rx ring */
543                 for (j = 0; j < rxq->nb_rx_desc; j++) {
544                         rc = qede_alloc_rx_buffer(rxq);
545                         if (rc) {
546                                 DP_ERR(edev, "RX buffer allocation failed"
547                                                 " for rxq = %u\n", rx_queue_id);
548                                 return -ENOMEM;
549                         }
550                 }
551                 /* disable interrupts */
552                 ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
553                 /* Prepare ramrod */
554                 memset(&params, 0, sizeof(params));
555                 params.queue_id = rx_queue_id / edev->num_hwfns;
556                 params.vport_id = 0;
557                 params.stats_id = params.vport_id;
558                 params.p_sb = fp->sb_info;
559                 DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
560                                 fp->rxq->queue_id, fp->sb_info->igu_sb_id);
561                 params.sb_idx = RX_PI;
562                 hwfn_index = rx_queue_id % edev->num_hwfns;
563                 p_hwfn = &edev->hwfns[hwfn_index];
564                 p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
565                 page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
566                 memset(&ret_params, 0, sizeof(ret_params));
567                 rc = ecore_eth_rx_queue_start(p_hwfn,
568                                 p_hwfn->hw_info.opaque_fid,
569                                 &params, fp->rxq->rx_buf_size,
570                                 fp->rxq->rx_bd_ring.p_phys_addr,
571                                 p_phys_table, page_cnt,
572                                 &ret_params);
573                 if (rc) {
574                         DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
575                                         rx_queue_id, rc);
576                         return -1;
577                 }
578                 /* Update with the returned parameters */
579                 fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
580                 fp->rxq->handle = ret_params.p_handle;
581
582                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
583                 qede_update_rx_prod(qdev, fp->rxq);
584                 eth_dev->data->rx_queue_state[rx_queue_id] =
585                         RTE_ETH_QUEUE_STATE_STARTED;
586                 DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
587         } else {
588                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
589                 rc = -EINVAL;
590         }
591
592         return rc;
593 }
594
595 static int
596 qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
597 {
598         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
599         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
600         struct ecore_queue_start_common_params params;
601         struct ecore_txq_start_ret_params ret_params;
602         struct ecore_hwfn *p_hwfn;
603         dma_addr_t p_phys_table;
604         struct qede_tx_queue *txq;
605         struct qede_fastpath *fp;
606         uint16_t page_cnt;
607         int hwfn_index;
608         int rc;
609
610         if (tx_queue_id < eth_dev->data->nb_tx_queues) {
611                 txq = eth_dev->data->tx_queues[tx_queue_id];
612                 fp = &qdev->fp_array[tx_queue_id];
613                 memset(&params, 0, sizeof(params));
614                 params.queue_id = tx_queue_id / edev->num_hwfns;
615                 params.vport_id = 0;
616                 params.stats_id = params.vport_id;
617                 params.p_sb = fp->sb_info;
618                 DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
619                                 fp->txq->queue_id, fp->sb_info->igu_sb_id);
620                 params.sb_idx = TX_PI(0); /* tc = 0 */
621                 p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
622                 page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
623                 hwfn_index = tx_queue_id % edev->num_hwfns;
624                 p_hwfn = &edev->hwfns[hwfn_index];
625                 if (qdev->dev_info.is_legacy)
626                         fp->txq->is_legacy = true;
627                 rc = ecore_eth_tx_queue_start(p_hwfn,
628                                 p_hwfn->hw_info.opaque_fid,
629                                 &params, 0 /* tc */,
630                                 p_phys_table, page_cnt,
631                                 &ret_params);
632                 if (rc != ECORE_SUCCESS) {
633                         DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
634                                         tx_queue_id, rc);
635                         return -1;
636                 }
637                 txq->doorbell_addr = ret_params.p_doorbell;
638                 txq->handle = ret_params.p_handle;
639
640                 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[TX_PI(0)];
641                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
642                                 DB_DEST_XCM);
643                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
644                                 DB_AGG_CMD_SET);
645                 SET_FIELD(txq->tx_db.data.params,
646                                 ETH_DB_DATA_AGG_VAL_SEL,
647                                 DQ_XCM_ETH_TX_BD_PROD_CMD);
648                 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
649                 eth_dev->data->tx_queue_state[tx_queue_id] =
650                         RTE_ETH_QUEUE_STATE_STARTED;
651                 DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
652         } else {
653                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
654                 rc = -EINVAL;
655         }
656
657         return rc;
658 }
659
660 static inline void
661 qede_free_tx_pkt(struct qede_tx_queue *txq)
662 {
663         struct rte_mbuf *mbuf;
664         uint16_t nb_segs;
665         uint16_t idx;
666
667         idx = TX_CONS(txq);
668         mbuf = txq->sw_tx_ring[idx].mbuf;
669         if (mbuf) {
670                 nb_segs = mbuf->nb_segs;
671                 PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
672                 while (nb_segs) {
673                         /* It's like consuming rxbuf in recv() */
674                         ecore_chain_consume(&txq->tx_pbl);
675                         txq->nb_tx_avail++;
676                         nb_segs--;
677                 }
678                 rte_pktmbuf_free(mbuf);
679                 txq->sw_tx_ring[idx].mbuf = NULL;
680                 txq->sw_tx_cons++;
681                 PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
682         } else {
683                 ecore_chain_consume(&txq->tx_pbl);
684                 txq->nb_tx_avail++;
685         }
686 }
687
688 static inline void
689 qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
690                       struct qede_tx_queue *txq)
691 {
692         uint16_t hw_bd_cons;
693 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
694         uint16_t sw_tx_cons;
695 #endif
696
697         rte_compiler_barrier();
698         hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
699 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
700         sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
701         PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
702                    abs(hw_bd_cons - sw_tx_cons));
703 #endif
704         while (hw_bd_cons !=  ecore_chain_get_cons_idx(&txq->tx_pbl))
705                 qede_free_tx_pkt(txq);
706 }
707
708 static int qede_drain_txq(struct qede_dev *qdev,
709                           struct qede_tx_queue *txq, bool allow_drain)
710 {
711         struct ecore_dev *edev = &qdev->edev;
712         int rc, cnt = 1000;
713
714         while (txq->sw_tx_cons != txq->sw_tx_prod) {
715                 qede_process_tx_compl(edev, txq);
716                 if (!cnt) {
717                         if (allow_drain) {
718                                 DP_ERR(edev, "Tx queue[%u] is stuck,"
719                                           "requesting MCP to drain\n",
720                                           txq->queue_id);
721                                 rc = qdev->ops->common->drain(edev);
722                                 if (rc)
723                                         return rc;
724                                 return qede_drain_txq(qdev, txq, false);
725                         }
726                         DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
727                                   "PROD=%d, CONS=%d\n",
728                                   txq->queue_id, txq->sw_tx_prod,
729                                   txq->sw_tx_cons);
730                         return -1;
731                 }
732                 cnt--;
733                 DELAY(1000);
734                 rte_compiler_barrier();
735         }
736
737         /* FW finished processing, wait for HW to transmit all tx packets */
738         DELAY(2000);
739
740         return 0;
741 }
742
743 /* Stops a given TX queue in the HW */
744 static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
745 {
746         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
747         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
748         struct ecore_hwfn *p_hwfn;
749         struct qede_tx_queue *txq;
750         int hwfn_index;
751         int rc;
752
753         if (tx_queue_id < eth_dev->data->nb_tx_queues) {
754                 txq = eth_dev->data->tx_queues[tx_queue_id];
755                 /* Drain txq */
756                 if (qede_drain_txq(qdev, txq, true))
757                         return -1; /* For the lack of retcodes */
758                 /* Stop txq */
759                 hwfn_index = tx_queue_id % edev->num_hwfns;
760                 p_hwfn = &edev->hwfns[hwfn_index];
761                 rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
762                 if (rc != ECORE_SUCCESS) {
763                         DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
764                         return -1;
765                 }
766                 qede_tx_queue_release_mbufs(txq);
767                 qede_tx_queue_reset(qdev, txq);
768                 eth_dev->data->tx_queue_state[tx_queue_id] =
769                         RTE_ETH_QUEUE_STATE_STOPPED;
770                 DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
771         } else {
772                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
773                 rc = -EINVAL;
774         }
775
776         return rc;
777 }
778
779 int qede_start_queues(struct rte_eth_dev *eth_dev)
780 {
781         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
782         uint8_t id;
783         int rc = -1;
784
785         for_each_rss(id) {
786                 rc = qede_rx_queue_start(eth_dev, id);
787                 if (rc != ECORE_SUCCESS)
788                         return -1;
789         }
790
791         for_each_tss(id) {
792                 rc = qede_tx_queue_start(eth_dev, id);
793                 if (rc != ECORE_SUCCESS)
794                         return -1;
795         }
796
797         return rc;
798 }
799
800 void qede_stop_queues(struct rte_eth_dev *eth_dev)
801 {
802         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
803         uint8_t id;
804
805         /* Stopping RX/TX queues */
806         for_each_tss(id) {
807                 qede_tx_queue_stop(eth_dev, id);
808         }
809
810         for_each_rss(id) {
811                 qede_rx_queue_stop(eth_dev, id);
812         }
813 }
814
815 static inline bool qede_tunn_exist(uint16_t flag)
816 {
817         return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
818                     PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
819 }
820
821 static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
822 {
823         return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
824                 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
825 }
826
827 /*
828  * qede_check_tunn_csum_l4:
829  * Returns:
830  * 1 : If L4 csum is enabled AND if the validation has failed.
831  * 0 : Otherwise
832  */
833 static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
834 {
835         if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
836              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
837                 return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
838                         PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
839
840         return 0;
841 }
842
843 static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
844 {
845         if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
846              PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
847                 return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
848                            PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
849
850         return 0;
851 }
852
853 /* Returns outer L2, L3 and L4 packet_type for tunneled packets */
854 static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
855 {
856         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
857         struct ether_hdr *eth_hdr;
858         struct ipv4_hdr *ipv4_hdr;
859         struct ipv6_hdr *ipv6_hdr;
860         struct vlan_hdr *vlan_hdr;
861         uint16_t ethertype;
862         bool vlan_tagged = 0;
863         uint16_t len;
864
865         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
866         len = sizeof(struct ether_hdr);
867         ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);
868
869          /* Note: Valid only if VLAN stripping is disabled */
870         if (ethertype == ETHER_TYPE_VLAN) {
871                 vlan_tagged = 1;
872                 vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
873                 len += sizeof(struct vlan_hdr);
874                 ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
875         }
876
877         if (ethertype == ETHER_TYPE_IPv4) {
878                 packet_type |= RTE_PTYPE_L3_IPV4;
879                 ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, len);
880                 if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
881                         packet_type |= RTE_PTYPE_L4_TCP;
882                 else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
883                         packet_type |= RTE_PTYPE_L4_UDP;
884         } else if (ethertype == ETHER_TYPE_IPv6) {
885                 packet_type |= RTE_PTYPE_L3_IPV6;
886                 ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, len);
887                 if (ipv6_hdr->proto == IPPROTO_TCP)
888                         packet_type |= RTE_PTYPE_L4_TCP;
889                 else if (ipv6_hdr->proto == IPPROTO_UDP)
890                         packet_type |= RTE_PTYPE_L4_UDP;
891         }
892
893         if (vlan_tagged)
894                 packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
895         else
896                 packet_type |= RTE_PTYPE_L2_ETHER;
897
898         return packet_type;
899 }
900
901 static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
902 {
903         uint16_t val;
904
905         /* Lookup table */
906         static const uint32_t
907         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
908                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4          |
909                                        RTE_PTYPE_INNER_L2_ETHER,
910                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6          |
911                                        RTE_PTYPE_INNER_L2_ETHER,
912                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4      |
913                                            RTE_PTYPE_INNER_L4_TCP       |
914                                            RTE_PTYPE_INNER_L2_ETHER,
915                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6      |
916                                            RTE_PTYPE_INNER_L4_TCP       |
917                                            RTE_PTYPE_INNER_L2_ETHER,
918                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4      |
919                                            RTE_PTYPE_INNER_L4_UDP       |
920                                            RTE_PTYPE_INNER_L2_ETHER,
921                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6      |
922                                            RTE_PTYPE_INNER_L4_UDP       |
923                                            RTE_PTYPE_INNER_L2_ETHER,
924                 /* Frags with no VLAN */
925                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4     |
926                                             RTE_PTYPE_INNER_L4_FRAG     |
927                                             RTE_PTYPE_INNER_L2_ETHER,
928                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6     |
929                                             RTE_PTYPE_INNER_L4_FRAG     |
930                                             RTE_PTYPE_INNER_L2_ETHER,
931                 /* VLANs */
932                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4     |
933                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
934                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6     |
935                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
936                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
937                                                 RTE_PTYPE_INNER_L4_TCP  |
938                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
939                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
940                                                 RTE_PTYPE_INNER_L4_TCP  |
941                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
942                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
943                                                 RTE_PTYPE_INNER_L4_UDP  |
944                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
945                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
946                                                 RTE_PTYPE_INNER_L4_UDP  |
947                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
948                 /* Frags with VLAN */
949                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
950                                                  RTE_PTYPE_INNER_L4_FRAG |
951                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
952                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
953                                                  RTE_PTYPE_INNER_L4_FRAG |
954                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
955         };
956
957         /* Bits (0..3) provides L3/L4 protocol type */
958         /* Bits (4,5) provides frag and VLAN info */
959         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
960                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
961                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
962                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
963                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
964                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
965                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
966                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
967
968         if (val < QEDE_PKT_TYPE_MAX)
969                 return ptype_lkup_tbl[val];
970
971         return RTE_PTYPE_UNKNOWN;
972 }
973
974 static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
975 {
976         uint16_t val;
977
978         /* Lookup table */
979         static const uint32_t
980         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
981                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
982                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
983                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4    |
984                                            RTE_PTYPE_L4_TCP     |
985                                            RTE_PTYPE_L2_ETHER,
986                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6    |
987                                            RTE_PTYPE_L4_TCP     |
988                                            RTE_PTYPE_L2_ETHER,
989                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4    |
990                                            RTE_PTYPE_L4_UDP     |
991                                            RTE_PTYPE_L2_ETHER,
992                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6    |
993                                            RTE_PTYPE_L4_UDP     |
994                                            RTE_PTYPE_L2_ETHER,
995                 /* Frags with no VLAN */
996                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4   |
997                                             RTE_PTYPE_L4_FRAG   |
998                                             RTE_PTYPE_L2_ETHER,
999                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6   |
1000                                             RTE_PTYPE_L4_FRAG   |
1001                                             RTE_PTYPE_L2_ETHER,
1002                 /* VLANs */
1003                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4           |
1004                                             RTE_PTYPE_L2_ETHER_VLAN,
1005                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6           |
1006                                             RTE_PTYPE_L2_ETHER_VLAN,
1007                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4       |
1008                                                 RTE_PTYPE_L4_TCP        |
1009                                                 RTE_PTYPE_L2_ETHER_VLAN,
1010                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6       |
1011                                                 RTE_PTYPE_L4_TCP        |
1012                                                 RTE_PTYPE_L2_ETHER_VLAN,
1013                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4       |
1014                                                 RTE_PTYPE_L4_UDP        |
1015                                                 RTE_PTYPE_L2_ETHER_VLAN,
1016                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6       |
1017                                                 RTE_PTYPE_L4_UDP        |
1018                                                 RTE_PTYPE_L2_ETHER_VLAN,
1019                 /* Frags with VLAN */
1020                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4      |
1021                                                  RTE_PTYPE_L4_FRAG      |
1022                                                  RTE_PTYPE_L2_ETHER_VLAN,
1023                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6      |
1024                                                  RTE_PTYPE_L4_FRAG      |
1025                                                  RTE_PTYPE_L2_ETHER_VLAN,
1026         };
1027
1028         /* Bits (0..3) provides L3/L4 protocol type */
1029         /* Bits (4,5) provides frag and VLAN info */
1030         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1031                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1032                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1033                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1034                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1035                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1036                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1037                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1038
1039         if (val < QEDE_PKT_TYPE_MAX)
1040                 return ptype_lkup_tbl[val];
1041
1042         return RTE_PTYPE_UNKNOWN;
1043 }
1044
1045 static inline uint8_t
1046 qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
1047 {
1048         struct ipv4_hdr *ip;
1049         uint16_t pkt_csum;
1050         uint16_t calc_csum;
1051         uint16_t val;
1052
1053         val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1054                 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
1055
1056         if (unlikely(val)) {
1057                 m->packet_type = qede_rx_cqe_to_pkt_type(flag);
1058                 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1059                         ip = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
1060                                            sizeof(struct ether_hdr));
1061                         pkt_csum = ip->hdr_checksum;
1062                         ip->hdr_checksum = 0;
1063                         calc_csum = rte_ipv4_cksum(ip);
1064                         ip->hdr_checksum = pkt_csum;
1065                         return (calc_csum != pkt_csum);
1066                 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1067                         return 1;
1068                 }
1069         }
1070         return 0;
1071 }
1072
1073 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
1074 {
1075         ecore_chain_consume(&rxq->rx_bd_ring);
1076         rxq->sw_rx_cons++;
1077 }
1078
1079 static inline void
1080 qede_reuse_page(__rte_unused struct qede_dev *qdev,
1081                 struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
1082 {
1083         struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
1084         uint16_t idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1085         struct qede_rx_entry *curr_prod;
1086         dma_addr_t new_mapping;
1087
1088         curr_prod = &rxq->sw_rx_ring[idx];
1089         *curr_prod = *curr_cons;
1090
1091         new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) +
1092                       curr_prod->page_offset;
1093
1094         rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
1095         rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
1096
1097         rxq->sw_rx_prod++;
1098 }
1099
1100 static inline void
1101 qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
1102                         struct qede_dev *qdev, uint8_t count)
1103 {
1104         struct qede_rx_entry *curr_cons;
1105
1106         for (; count > 0; count--) {
1107                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
1108                 qede_reuse_page(qdev, rxq, curr_cons);
1109                 qede_rx_bd_ring_consume(rxq);
1110         }
1111 }
1112
1113 static inline void
1114 qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
1115                                      struct qede_rx_queue *rxq,
1116                                      uint8_t agg_index, uint16_t len)
1117 {
1118         struct qede_agg_info *tpa_info;
1119         struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
1120         uint16_t cons_idx;
1121
1122         /* Under certain conditions it is possible that FW may not consume
1123          * additional or new BD. So decision to consume the BD must be made
1124          * based on len_list[0].
1125          */
1126         if (rte_le_to_cpu_16(len)) {
1127                 tpa_info = &rxq->tpa_info[agg_index];
1128                 cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1129                 curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
1130                 assert(curr_frag);
1131                 curr_frag->nb_segs = 1;
1132                 curr_frag->pkt_len = rte_le_to_cpu_16(len);
1133                 curr_frag->data_len = curr_frag->pkt_len;
1134                 tpa_info->tpa_tail->next = curr_frag;
1135                 tpa_info->tpa_tail = curr_frag;
1136                 qede_rx_bd_ring_consume(rxq);
1137                 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1138                         PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
1139                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1140                         rxq->rx_alloc_errors++;
1141                 }
1142         }
1143 }
1144
1145 static inline void
1146 qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
1147                              struct qede_rx_queue *rxq,
1148                              struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1149 {
1150         PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
1151                    cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
1152         /* only len_list[0] will have value */
1153         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1154                                              cqe->len_list[0]);
1155 }
1156
1157 static inline void
1158 qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
1159                             struct qede_rx_queue *rxq,
1160                             struct eth_fast_path_rx_tpa_end_cqe *cqe)
1161 {
1162         struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */
1163
1164         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1165                                              cqe->len_list[0]);
1166         /* Update total length and frags based on end TPA */
1167         rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
1168         /* TODO:  Add Sanity Checks */
1169         rx_mb->nb_segs = cqe->num_of_bds;
1170         rx_mb->pkt_len = cqe->total_packet_len;
1171
1172         PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
1173                    " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
1174                    rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
1175                    rx_mb->pkt_len);
1176 }
1177
1178 static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
1179 {
1180         uint32_t val;
1181
1182         /* Lookup table */
1183         static const uint32_t
1184         ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
1185                 [QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
1186                 [QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
1187                 [QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
1188                 [QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
1189                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
1190                                 RTE_PTYPE_TUNNEL_GENEVE,
1191                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
1192                                 RTE_PTYPE_TUNNEL_GRE,
1193                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
1194                                 RTE_PTYPE_TUNNEL_VXLAN,
1195                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
1196                                 RTE_PTYPE_TUNNEL_GENEVE,
1197                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
1198                                 RTE_PTYPE_TUNNEL_GRE,
1199                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
1200                                 RTE_PTYPE_TUNNEL_VXLAN,
1201                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
1202                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1203                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
1204                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1205                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
1206                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1207                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
1208                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1209                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
1210                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1211                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
1212                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1213                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
1214                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1215                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
1216                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1217                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
1218                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1219                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
1220                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1221                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
1222                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1223                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
1224                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1225         };
1226
1227         /* Cover bits[4-0] to include tunn_type and next protocol */
1228         val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
1229                 ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
1230                 (ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
1231                 ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
1232
1233         if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
1234                 return ptype_tunn_lkup_tbl[val];
1235         else
1236                 return RTE_PTYPE_UNKNOWN;
1237 }
1238
1239 static inline int
1240 qede_process_sg_pkts(void *p_rxq,  struct rte_mbuf *rx_mb,
1241                      uint8_t num_segs, uint16_t pkt_len)
1242 {
1243         struct qede_rx_queue *rxq = p_rxq;
1244         struct qede_dev *qdev = rxq->qdev;
1245         register struct rte_mbuf *seg1 = NULL;
1246         register struct rte_mbuf *seg2 = NULL;
1247         uint16_t sw_rx_index;
1248         uint16_t cur_size;
1249
1250         seg1 = rx_mb;
1251         while (num_segs) {
1252                 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1253                                                         pkt_len;
1254                 if (unlikely(!cur_size)) {
1255                         PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
1256                                    " left for mapping jumbo\n", num_segs);
1257                         qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
1258                         return -EINVAL;
1259                 }
1260                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1261                 seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
1262                 qede_rx_bd_ring_consume(rxq);
1263                 pkt_len -= cur_size;
1264                 seg2->data_len = cur_size;
1265                 seg1->next = seg2;
1266                 seg1 = seg1->next;
1267                 num_segs--;
1268                 rxq->rx_segs++;
1269         }
1270
1271         return 0;
1272 }
1273
1274 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1275 static inline void
1276 print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
1277                  uint8_t bitfield)
1278 {
1279         PMD_RX_LOG(INFO, rxq,
1280                 "len 0x%04x bf 0x%04x hash_val 0x%x"
1281                 " ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
1282                 " inner_l2=%s inner_l3=%s inner_l4=%s\n",
1283                 m->data_len, bitfield, m->hash.rss,
1284                 (unsigned long)m->ol_flags,
1285                 rte_get_ptype_l2_name(m->packet_type),
1286                 rte_get_ptype_l3_name(m->packet_type),
1287                 rte_get_ptype_l4_name(m->packet_type),
1288                 rte_get_ptype_tunnel_name(m->packet_type),
1289                 rte_get_ptype_inner_l2_name(m->packet_type),
1290                 rte_get_ptype_inner_l3_name(m->packet_type),
1291                 rte_get_ptype_inner_l4_name(m->packet_type));
1292 }
1293 #endif
1294
1295 uint16_t
1296 qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1297 {
1298         struct qede_rx_queue *rxq = p_rxq;
1299         struct qede_dev *qdev = rxq->qdev;
1300         struct ecore_dev *edev = &qdev->edev;
1301         uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
1302         uint16_t rx_pkt = 0;
1303         union eth_rx_cqe *cqe;
1304         struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1305         register struct rte_mbuf *rx_mb = NULL;
1306         register struct rte_mbuf *seg1 = NULL;
1307         enum eth_rx_cqe_type cqe_type;
1308         uint16_t pkt_len = 0; /* Sum of all BD segments */
1309         uint16_t len; /* Length of first BD */
1310         uint8_t num_segs = 1;
1311         uint16_t preload_idx;
1312         uint16_t parse_flag;
1313 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1314         uint8_t bitfield_val;
1315 #endif
1316         uint8_t tunn_parse_flag;
1317         uint8_t j;
1318         struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
1319         uint64_t ol_flags;
1320         uint32_t packet_type;
1321         uint16_t vlan_tci;
1322         bool tpa_start_flg;
1323         uint8_t offset, tpa_agg_idx, flags;
1324         struct qede_agg_info *tpa_info = NULL;
1325         uint32_t rss_hash;
1326
1327         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1328         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1329
1330         rte_rmb();
1331
1332         if (hw_comp_cons == sw_comp_cons)
1333                 return 0;
1334
1335         while (sw_comp_cons != hw_comp_cons) {
1336                 ol_flags = 0;
1337                 packet_type = RTE_PTYPE_UNKNOWN;
1338                 vlan_tci = 0;
1339                 tpa_start_flg = false;
1340                 rss_hash = 0;
1341
1342                 /* Get the CQE from the completion ring */
1343                 cqe =
1344                     (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1345                 cqe_type = cqe->fast_path_regular.type;
1346                 PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1347
1348                 switch (cqe_type) {
1349                 case ETH_RX_CQE_TYPE_REGULAR:
1350                         fp_cqe = &cqe->fast_path_regular;
1351                 break;
1352                 case ETH_RX_CQE_TYPE_TPA_START:
1353                         cqe_start_tpa = &cqe->fast_path_tpa_start;
1354                         tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
1355                         tpa_start_flg = true;
1356                         /* Mark it as LRO packet */
1357                         ol_flags |= PKT_RX_LRO;
1358                         /* In split mode,  seg_len is same as len_on_first_bd
1359                          * and ext_bd_len_list will be empty since there are
1360                          * no additional buffers
1361                          */
1362                         PMD_RX_LOG(INFO, rxq,
1363                             "TPA start[%d] - len_on_first_bd %d header %d"
1364                             " [bd_list[0] %d], [seg_len %d]\n",
1365                             cqe_start_tpa->tpa_agg_index,
1366                             rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
1367                             cqe_start_tpa->header_len,
1368                             rte_le_to_cpu_16(cqe_start_tpa->ext_bd_len_list[0]),
1369                             rte_le_to_cpu_16(cqe_start_tpa->seg_len));
1370
1371                 break;
1372                 case ETH_RX_CQE_TYPE_TPA_CONT:
1373                         qede_rx_process_tpa_cont_cqe(qdev, rxq,
1374                                                      &cqe->fast_path_tpa_cont);
1375                         goto next_cqe;
1376                 case ETH_RX_CQE_TYPE_TPA_END:
1377                         qede_rx_process_tpa_end_cqe(qdev, rxq,
1378                                                     &cqe->fast_path_tpa_end);
1379                         tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
1380                         tpa_info = &rxq->tpa_info[tpa_agg_idx];
1381                         rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
1382                         goto tpa_end;
1383                 case ETH_RX_CQE_TYPE_SLOW_PATH:
1384                         PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1385                         ecore_eth_cqe_completion(
1386                                 &edev->hwfns[rxq->queue_id % edev->num_hwfns],
1387                                 (struct eth_slow_path_rx_cqe *)cqe);
1388                         /* fall-thru */
1389                 default:
1390                         goto next_cqe;
1391                 }
1392
1393                 /* Get the data from the SW ring */
1394                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1395                 rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
1396                 assert(rx_mb != NULL);
1397
1398                 /* Handle regular CQE or TPA start CQE */
1399                 if (!tpa_start_flg) {
1400                         parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1401                         offset = fp_cqe->placement_offset;
1402                         len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1403                         pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1404                         vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1405                         rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1406 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1407                         bitfield_val = fp_cqe->bitfields;
1408 #endif
1409                 } else {
1410                         parse_flag =
1411                             rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
1412                         offset = cqe_start_tpa->placement_offset;
1413                         /* seg_len = len_on_first_bd */
1414                         len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
1415                         vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
1416 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1417                         bitfield_val = cqe_start_tpa->bitfields;
1418 #endif
1419                         rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
1420                 }
1421                 if (qede_tunn_exist(parse_flag)) {
1422                         PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1423                         if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1424                                 PMD_RX_LOG(ERR, rxq,
1425                                             "L4 csum failed, flags = 0x%x\n",
1426                                             parse_flag);
1427                                 rxq->rx_hw_errors++;
1428                                 ol_flags |= PKT_RX_L4_CKSUM_BAD;
1429                         } else {
1430                                 ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1431                         }
1432
1433                         if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1434                                 PMD_RX_LOG(ERR, rxq,
1435                                         "Outer L3 csum failed, flags = 0x%x\n",
1436                                         parse_flag);
1437                                   rxq->rx_hw_errors++;
1438                                   ol_flags |= PKT_RX_EIP_CKSUM_BAD;
1439                         } else {
1440                                   ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1441                         }
1442
1443                         if (tpa_start_flg)
1444                                 flags = cqe_start_tpa->tunnel_pars_flags.flags;
1445                         else
1446                                 flags = fp_cqe->tunnel_pars_flags.flags;
1447                         tunn_parse_flag = flags;
1448
1449                         /* Tunnel_type */
1450                         packet_type =
1451                                 qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
1452
1453                         /* Inner header */
1454                         packet_type |=
1455                               qede_rx_cqe_to_pkt_type_inner(parse_flag);
1456
1457                         /* Outer L3/L4 types is not available in CQE */
1458                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1459
1460                         /* Outer L3/L4 types is not available in CQE.
1461                          * Need to add offset to parse correctly,
1462                          */
1463                         rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1464                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1465                 }
1466
1467                 /* Common handling for non-tunnel packets and for inner
1468                  * headers in the case of tunnel.
1469                  */
1470                 if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1471                         PMD_RX_LOG(ERR, rxq,
1472                                     "L4 csum failed, flags = 0x%x\n",
1473                                     parse_flag);
1474                         rxq->rx_hw_errors++;
1475                         ol_flags |= PKT_RX_L4_CKSUM_BAD;
1476                 } else {
1477                         ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1478                 }
1479                 if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1480                         PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1481                                    parse_flag);
1482                         rxq->rx_hw_errors++;
1483                         ol_flags |= PKT_RX_IP_CKSUM_BAD;
1484                 } else {
1485                         ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1486                         packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1487                 }
1488
1489                 if (CQE_HAS_VLAN(parse_flag) ||
1490                     CQE_HAS_OUTER_VLAN(parse_flag)) {
1491                         /* Note: FW doesn't indicate Q-in-Q packet */
1492                         ol_flags |= PKT_RX_VLAN;
1493                         if (qdev->vlan_strip_flg) {
1494                                 ol_flags |= PKT_RX_VLAN_STRIPPED;
1495                                 rx_mb->vlan_tci = vlan_tci;
1496                         }
1497                 }
1498
1499                 /* RSS Hash */
1500                 if (qdev->rss_enable) {
1501                         ol_flags |= PKT_RX_RSS_HASH;
1502                         rx_mb->hash.rss = rss_hash;
1503                 }
1504
1505                 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1506                         PMD_RX_LOG(ERR, rxq,
1507                                    "New buffer allocation failed,"
1508                                    "dropping incoming packet\n");
1509                         qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num);
1510                         rte_eth_devices[rxq->port_id].
1511                             data->rx_mbuf_alloc_failed++;
1512                         rxq->rx_alloc_errors++;
1513                         break;
1514                 }
1515                 qede_rx_bd_ring_consume(rxq);
1516
1517                 if (!tpa_start_flg && fp_cqe->bd_num > 1) {
1518                         PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
1519                                    " len on first: %04x Total Len: %04x",
1520                                    fp_cqe->bd_num, len, pkt_len);
1521                         num_segs = fp_cqe->bd_num - 1;
1522                         seg1 = rx_mb;
1523                         if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
1524                                                  pkt_len - len))
1525                                 goto next_cqe;
1526                         for (j = 0; j < num_segs; j++) {
1527                                 if (qede_alloc_rx_buffer(rxq)) {
1528                                         PMD_RX_LOG(ERR, rxq,
1529                                                 "Buffer allocation failed");
1530                                         rte_eth_devices[rxq->port_id].
1531                                                 data->rx_mbuf_alloc_failed++;
1532                                         rxq->rx_alloc_errors++;
1533                                         break;
1534                                 }
1535                                 rxq->rx_segs++;
1536                         }
1537                 }
1538                 rxq->rx_segs++; /* for the first segment */
1539
1540                 /* Prefetch next mbuf while processing current one. */
1541                 preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1542                 rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
1543
1544                 /* Update rest of the MBUF fields */
1545                 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1546                 rx_mb->port = rxq->port_id;
1547                 rx_mb->ol_flags = ol_flags;
1548                 rx_mb->data_len = len;
1549                 rx_mb->packet_type = packet_type;
1550 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1551                 print_rx_bd_info(rx_mb, rxq, bitfield_val);
1552 #endif
1553                 if (!tpa_start_flg) {
1554                         rx_mb->nb_segs = fp_cqe->bd_num;
1555                         rx_mb->pkt_len = pkt_len;
1556                 } else {
1557                         /* store ref to the updated mbuf */
1558                         tpa_info->tpa_head = rx_mb;
1559                         tpa_info->tpa_tail = tpa_info->tpa_head;
1560                 }
1561                 rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
1562 tpa_end:
1563                 if (!tpa_start_flg) {
1564                         rx_pkts[rx_pkt] = rx_mb;
1565                         rx_pkt++;
1566                 }
1567 next_cqe:
1568                 ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
1569                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1570                 if (rx_pkt == nb_pkts) {
1571                         PMD_RX_LOG(DEBUG, rxq,
1572                                    "Budget reached nb_pkts=%u received=%u",
1573                                    rx_pkt, nb_pkts);
1574                         break;
1575                 }
1576         }
1577
1578         qede_update_rx_prod(qdev, rxq);
1579
1580         rxq->rcv_pkts += rx_pkt;
1581
1582         PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
1583
1584         return rx_pkt;
1585 }
1586
1587
1588 /* Populate scatter gather buffer descriptor fields */
1589 static inline uint16_t
1590 qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
1591                   struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
1592                   uint16_t start_seg)
1593 {
1594         struct qede_tx_queue *txq = p_txq;
1595         struct eth_tx_bd *tx_bd = NULL;
1596         dma_addr_t mapping;
1597         uint16_t nb_segs = 0;
1598
1599         /* Check for scattered buffers */
1600         while (m_seg) {
1601                 if (start_seg == 0) {
1602                         if (!*bd2) {
1603                                 *bd2 = (struct eth_tx_2nd_bd *)
1604                                         ecore_chain_produce(&txq->tx_pbl);
1605                                 memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
1606                                 nb_segs++;
1607                         }
1608                         mapping = rte_mbuf_data_iova(m_seg);
1609                         QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
1610                         PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
1611                 } else if (start_seg == 1) {
1612                         if (!*bd3) {
1613                                 *bd3 = (struct eth_tx_3rd_bd *)
1614                                         ecore_chain_produce(&txq->tx_pbl);
1615                                 memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
1616                                 nb_segs++;
1617                         }
1618                         mapping = rte_mbuf_data_iova(m_seg);
1619                         QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
1620                         PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
1621                 } else {
1622                         tx_bd = (struct eth_tx_bd *)
1623                                 ecore_chain_produce(&txq->tx_pbl);
1624                         memset(tx_bd, 0, sizeof(*tx_bd));
1625                         nb_segs++;
1626                         mapping = rte_mbuf_data_iova(m_seg);
1627                         QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
1628                         PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
1629                 }
1630                 m_seg = m_seg->next;
1631         }
1632
1633         /* Return total scattered buffers */
1634         return nb_segs;
1635 }
1636
1637 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1638 static inline void
1639 print_tx_bd_info(struct qede_tx_queue *txq,
1640                  struct eth_tx_1st_bd *bd1,
1641                  struct eth_tx_2nd_bd *bd2,
1642                  struct eth_tx_3rd_bd *bd3,
1643                  uint64_t tx_ol_flags)
1644 {
1645         char ol_buf[256] = { 0 }; /* for verbose prints */
1646
1647         if (bd1)
1648                 PMD_TX_LOG(INFO, txq,
1649                    "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
1650                    rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
1651                    bd1->data.bd_flags.bitfields,
1652                    rte_cpu_to_le_16(bd1->data.bitfields));
1653         if (bd2)
1654                 PMD_TX_LOG(INFO, txq,
1655                    "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
1656                    rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
1657                    bd2->data.bitfields2, bd2->data.tunn_ip_size);
1658         if (bd3)
1659                 PMD_TX_LOG(INFO, txq,
1660                    "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
1661                    "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
1662                    rte_cpu_to_le_16(bd3->nbytes),
1663                    rte_cpu_to_le_16(bd3->data.bitfields),
1664                    rte_cpu_to_le_16(bd3->data.lso_mss),
1665                    bd3->data.tunn_l4_hdr_start_offset_w,
1666                    bd3->data.tunn_hdr_size_w);
1667
1668         rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
1669         PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
1670 }
1671 #endif
1672
1673 /* TX prepare to check packets meets TX conditions */
1674 uint16_t
1675 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1676 qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
1677                     uint16_t nb_pkts)
1678 {
1679         struct qede_tx_queue *txq = p_txq;
1680 #else
1681 qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
1682                     uint16_t nb_pkts)
1683 {
1684 #endif
1685         uint64_t ol_flags;
1686         struct rte_mbuf *m;
1687         uint16_t i;
1688 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1689         int ret;
1690 #endif
1691
1692         for (i = 0; i < nb_pkts; i++) {
1693                 m = tx_pkts[i];
1694                 ol_flags = m->ol_flags;
1695                 if (ol_flags & PKT_TX_TCP_SEG) {
1696                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
1697                                 rte_errno = -EINVAL;
1698                                 break;
1699                         }
1700                         /* TBD: confirm its ~9700B for both ? */
1701                         if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
1702                                 rte_errno = -EINVAL;
1703                                 break;
1704                         }
1705                 } else {
1706                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
1707                                 rte_errno = -EINVAL;
1708                                 break;
1709                         }
1710                 }
1711                 if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
1712                         rte_errno = -ENOTSUP;
1713                         break;
1714                 }
1715
1716 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1717                 ret = rte_validate_tx_offload(m);
1718                 if (ret != 0) {
1719                         rte_errno = ret;
1720                         break;
1721                 }
1722 #endif
1723         }
1724
1725 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1726         if (unlikely(i != nb_pkts))
1727                 PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
1728                            nb_pkts - i);
1729 #endif
1730         return i;
1731 }
1732
1733 #define MPLSINUDP_HDR_SIZE                      (12)
1734
1735 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1736 static inline void
1737 qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
1738                                struct qede_tx_queue *txq)
1739 {
1740         if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
1741                 PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
1742         if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
1743                 MPLSINUDP_HDR_SIZE) / 2) > 0xff)
1744                 PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
1745         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
1746                 ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
1747                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1748         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
1749                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
1750                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1751 }
1752 #endif
1753
1754 uint16_t
1755 qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1756 {
1757         struct qede_tx_queue *txq = p_txq;
1758         struct qede_dev *qdev = txq->qdev;
1759         struct ecore_dev *edev = &qdev->edev;
1760         struct rte_mbuf *mbuf;
1761         struct rte_mbuf *m_seg = NULL;
1762         uint16_t nb_tx_pkts;
1763         uint16_t bd_prod;
1764         uint16_t idx;
1765         uint16_t nb_frags;
1766         uint16_t nb_pkt_sent = 0;
1767         uint8_t nbds;
1768         bool lso_flg;
1769         bool mplsoudp_flg;
1770         __rte_unused bool tunn_flg;
1771         bool tunn_ipv6_ext_flg;
1772         struct eth_tx_1st_bd *bd1;
1773         struct eth_tx_2nd_bd *bd2;
1774         struct eth_tx_3rd_bd *bd3;
1775         uint64_t tx_ol_flags;
1776         uint16_t hdr_size;
1777         /* BD1 */
1778         uint16_t bd1_bf;
1779         uint8_t bd1_bd_flags_bf;
1780         uint16_t vlan;
1781         /* BD2 */
1782         uint16_t bd2_bf1;
1783         uint16_t bd2_bf2;
1784         /* BD3 */
1785         uint16_t mss;
1786         uint16_t bd3_bf;
1787
1788         uint8_t tunn_l4_hdr_start_offset;
1789         uint8_t tunn_hdr_size;
1790         uint8_t inner_l2_hdr_size;
1791         uint16_t inner_l4_hdr_offset;
1792
1793         if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
1794                 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
1795                            nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
1796                 qede_process_tx_compl(edev, txq);
1797         }
1798
1799         nb_tx_pkts  = nb_pkts;
1800         bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
1801         while (nb_tx_pkts--) {
1802                 /* Init flags/values */
1803                 tunn_flg = false;
1804                 lso_flg = false;
1805                 nbds = 0;
1806                 vlan = 0;
1807                 bd1 = NULL;
1808                 bd2 = NULL;
1809                 bd3 = NULL;
1810                 hdr_size = 0;
1811                 bd1_bf = 0;
1812                 bd1_bd_flags_bf = 0;
1813                 bd2_bf1 = 0;
1814                 bd2_bf2 = 0;
1815                 mss = 0;
1816                 bd3_bf = 0;
1817                 mplsoudp_flg = false;
1818                 tunn_ipv6_ext_flg = false;
1819                 tunn_hdr_size = 0;
1820                 tunn_l4_hdr_start_offset = 0;
1821
1822                 mbuf = *tx_pkts++;
1823                 assert(mbuf);
1824
1825                 /* Check minimum TX BDS availability against available BDs */
1826                 if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
1827                         break;
1828
1829                 tx_ol_flags = mbuf->ol_flags;
1830                 bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1831
1832                 /* TX prepare would have already checked supported tunnel Tx
1833                  * offloads. Don't rely on pkt_type marked by Rx, instead use
1834                  * tx_ol_flags to decide.
1835                  */
1836                 if (((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1837                                                 PKT_TX_TUNNEL_VXLAN) ||
1838                     ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1839                                                 PKT_TX_TUNNEL_MPLSINUDP)) {
1840                         /* Check against max which is Tunnel IPv6 + ext */
1841                         if (unlikely(txq->nb_tx_avail <
1842                                 ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
1843                                         break;
1844                         tunn_flg = true;
1845                         /* First indicate its a tunnel pkt */
1846                         bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
1847                                   ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1848                         /* Legacy FW had flipped behavior in regard to this bit
1849                          * i.e. it needed to set to prevent FW from touching
1850                          * encapsulated packets when it didn't need to.
1851                          */
1852                         if (unlikely(txq->is_legacy)) {
1853                                 bd1_bf ^= 1 <<
1854                                         ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1855                         }
1856
1857                         /* Outer IP checksum offload */
1858                         if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM |
1859                                            PKT_TX_OUTER_IPV4)) {
1860                                 bd1_bd_flags_bf |=
1861                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
1862                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1863                         }
1864
1865                         /**
1866                          * Currently, only inner checksum offload in MPLS-in-UDP
1867                          * tunnel with one MPLS label is supported. Both outer
1868                          * and inner layers  lengths need to be provided in
1869                          * mbuf.
1870                          */
1871                         if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1872                                                 PKT_TX_TUNNEL_MPLSINUDP) {
1873                                 mplsoudp_flg = true;
1874 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1875                                 qede_mpls_tunn_tx_sanity_check(mbuf, txq);
1876 #endif
1877                                 /* Outer L4 offset in two byte words */
1878                                 tunn_l4_hdr_start_offset =
1879                                   (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
1880                                 /* Tunnel header size in two byte words */
1881                                 tunn_hdr_size = (mbuf->outer_l2_len +
1882                                                 mbuf->outer_l3_len +
1883                                                 MPLSINUDP_HDR_SIZE) / 2;
1884                                 /* Inner L2 header size in two byte words */
1885                                 inner_l2_hdr_size = (mbuf->l2_len -
1886                                                 MPLSINUDP_HDR_SIZE) / 2;
1887                                 /* Inner L4 header offset from the beggining
1888                                  * of inner packet in two byte words
1889                                  */
1890                                 inner_l4_hdr_offset = (mbuf->l2_len -
1891                                         MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;
1892
1893                                 /* Inner L2 size and address type */
1894                                 bd2_bf1 |= (inner_l2_hdr_size &
1895                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
1896                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
1897                                 bd2_bf1 |= (UNICAST_ADDRESS &
1898                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
1899                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
1900                                 /* Treated as IPv6+Ext */
1901                                 bd2_bf1 |=
1902                                     1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;
1903
1904                                 /* Mark inner IPv6 if present */
1905                                 if (tx_ol_flags & PKT_TX_IPV6)
1906                                         bd2_bf1 |=
1907                                                 1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;
1908
1909                                 /* Inner L4 offsets */
1910                                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
1911                                      (tx_ol_flags & (PKT_TX_UDP_CKSUM |
1912                                                         PKT_TX_TCP_CKSUM))) {
1913                                         /* Determines if BD3 is needed */
1914                                         tunn_ipv6_ext_flg = true;
1915                                         if ((tx_ol_flags & PKT_TX_L4_MASK) ==
1916                                                         PKT_TX_UDP_CKSUM) {
1917                                                 bd2_bf1 |=
1918                                                         1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
1919                                         }
1920
1921                                         /* TODO other pseudo checksum modes are
1922                                          * not supported
1923                                          */
1924                                         bd2_bf1 |=
1925                                         ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
1926                                         ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
1927                                         bd2_bf2 |= (inner_l4_hdr_offset &
1928                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
1929                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
1930                                 }
1931                         } /* End MPLSoUDP */
1932                 } /* End Tunnel handling */
1933
1934                 if (tx_ol_flags & PKT_TX_TCP_SEG) {
1935                         lso_flg = true;
1936                         if (unlikely(txq->nb_tx_avail <
1937                                                 ETH_TX_MIN_BDS_PER_LSO_PKT))
1938                                 break;
1939                         /* For LSO, packet header and payload must reside on
1940                          * buffers pointed by different BDs. Using BD1 for HDR
1941                          * and BD2 onwards for data.
1942                          */
1943                         hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
1944                         if (tunn_flg)
1945                                 hdr_size += mbuf->outer_l2_len +
1946                                             mbuf->outer_l3_len;
1947
1948                         bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
1949                         bd1_bd_flags_bf |=
1950                                         1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1951                         /* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
1952                         bd1_bd_flags_bf |=
1953                                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1954                         mss = rte_cpu_to_le_16(mbuf->tso_segsz);
1955                         /* Using one header BD */
1956                         bd3_bf |= rte_cpu_to_le_16(1 <<
1957                                         ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1958                 } else {
1959                         if (unlikely(txq->nb_tx_avail <
1960                                         ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
1961                                 break;
1962                         bd1_bf |=
1963                                (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
1964                                 << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
1965                 }
1966
1967                 /* Descriptor based VLAN insertion */
1968                 if (tx_ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1969                         vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
1970                         bd1_bd_flags_bf |=
1971                             1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1972                 }
1973
1974                 /* Offload the IP checksum in the hardware */
1975                 if (tx_ol_flags & PKT_TX_IP_CKSUM) {
1976                         bd1_bd_flags_bf |=
1977                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1978                         /* There's no DPDK flag to request outer-L4 csum
1979                          * offload. But in the case of tunnel if inner L3 or L4
1980                          * csum offload is requested then we need to force
1981                          * recalculation of L4 tunnel header csum also.
1982                          */
1983                         if (tunn_flg) {
1984                                 bd1_bd_flags_bf |=
1985                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
1986                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1987                         }
1988                 }
1989
1990                 /* L4 checksum offload (tcp or udp) */
1991                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
1992                     (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) {
1993                         bd1_bd_flags_bf |=
1994                                 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1995                         /* There's no DPDK flag to request outer-L4 csum
1996                          * offload. But in the case of tunnel if inner L3 or L4
1997                          * csum offload is requested then we need to force
1998                          * recalculation of L4 tunnel header csum also.
1999                          */
2000                         if (tunn_flg) {
2001                                 bd1_bd_flags_bf |=
2002                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2003                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2004                         }
2005                 }
2006
2007                 /* Fill the entry in the SW ring and the BDs in the FW ring */
2008                 idx = TX_PROD(txq);
2009                 txq->sw_tx_ring[idx].mbuf = mbuf;
2010
2011                 /* BD1 */
2012                 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2013                 memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2014                 nbds++;
2015
2016                 /* Map MBUF linear data for DMA and set in the BD1 */
2017                 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2018                                      mbuf->data_len);
2019                 bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2020                 bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2021                 bd1->data.vlan = vlan;
2022
2023                 if (lso_flg || mplsoudp_flg) {
2024                         bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
2025                                                         (&txq->tx_pbl);
2026                         memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
2027                         nbds++;
2028
2029                         /* BD1 */
2030                         QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2031                                              hdr_size);
2032                         /* BD2 */
2033                         QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
2034                                              rte_mbuf_data_iova(mbuf)),
2035                                              mbuf->data_len - hdr_size);
2036                         bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
2037                         if (mplsoudp_flg) {
2038                                 bd2->data.bitfields2 =
2039                                         rte_cpu_to_le_16(bd2_bf2);
2040                                 /* Outer L3 size */
2041                                 bd2->data.tunn_ip_size =
2042                                         rte_cpu_to_le_16(mbuf->outer_l3_len);
2043                         }
2044                         /* BD3 */
2045                         if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
2046                                 bd3 = (struct eth_tx_3rd_bd *)
2047                                         ecore_chain_produce(&txq->tx_pbl);
2048                                 memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
2049                                 nbds++;
2050                                 bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
2051                                 if (lso_flg)
2052                                         bd3->data.lso_mss = mss;
2053                                 if (mplsoudp_flg) {
2054                                         bd3->data.tunn_l4_hdr_start_offset_w =
2055                                                 tunn_l4_hdr_start_offset;
2056                                         bd3->data.tunn_hdr_size_w =
2057                                                 tunn_hdr_size;
2058                                 }
2059                         }
2060                 }
2061
2062                 /* Handle fragmented MBUF */
2063                 m_seg = mbuf->next;
2064
2065                 /* Encode scatter gather buffer descriptors if required */
2066                 nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
2067                 bd1->data.nbds = nbds + nb_frags;
2068
2069                 txq->nb_tx_avail -= bd1->data.nbds;
2070                 txq->sw_tx_prod++;
2071                 rte_prefetch0(txq->sw_tx_ring[TX_PROD(txq)].mbuf);
2072                 bd_prod =
2073                     rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2074 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2075                 print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2076 #endif
2077                 nb_pkt_sent++;
2078                 txq->xmit_pkts++;
2079         }
2080
2081         /* Write value of prod idx into bd_prod */
2082         txq->tx_db.data.bd_prod = bd_prod;
2083         rte_wmb();
2084         rte_compiler_barrier();
2085         DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2086         rte_wmb();
2087
2088         /* Check again for Tx completions */
2089         qede_process_tx_compl(edev, txq);
2090
2091         PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2092                    nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2093
2094         return nb_pkt_sent;
2095 }
2096
2097 uint16_t
2098 qede_rxtx_pkts_dummy(__rte_unused void *p_rxq,
2099                      __rte_unused struct rte_mbuf **pkts,
2100                      __rte_unused uint16_t nb_pkts)
2101 {
2102         return 0;
2103 }