New upstream version 17.11.5
[deb_dpdk.git] / drivers / net / qede / qede_rxtx.c
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8
9 #include <rte_net.h>
10 #include "qede_rxtx.h"
11
12 static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
13 {
14         struct rte_mbuf *new_mb = NULL;
15         struct eth_rx_bd *rx_bd;
16         dma_addr_t mapping;
17         uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
18
19         new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
20         if (unlikely(!new_mb)) {
21                 PMD_RX_LOG(ERR, rxq,
22                            "Failed to allocate rx buffer "
23                            "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
24                            idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
25                            rte_mempool_avail_count(rxq->mb_pool),
26                            rte_mempool_in_use_count(rxq->mb_pool));
27                 return -ENOMEM;
28         }
29         rxq->sw_rx_ring[idx].mbuf = new_mb;
30         rxq->sw_rx_ring[idx].page_offset = 0;
31         mapping = rte_mbuf_data_iova_default(new_mb);
32         /* Advance PROD and get BD pointer */
33         rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
34         rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
35         rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
36         rxq->sw_rx_prod++;
37         return 0;
38 }
39
40 /* Criterias for calculating Rx buffer size -
41  * 1) rx_buf_size should not exceed the size of mbuf
42  * 2) In scattered_rx mode - minimum rx_buf_size should be
43  *    (MTU + Maximum L2 Header Size + 2) / ETH_RX_MAX_BUFF_PER_PKT
44  * 3) In regular mode - minimum rx_buf_size should be
45  *    (MTU + Maximum L2 Header Size + 2)
46  *    In above cases +2 corrosponds to 2 bytes padding in front of L2
47  *    header.
48  * 4) rx_buf_size should be cacheline-size aligned. So considering
49  *    criteria 1, we need to adjust the size to floor instead of ceil,
50  *    so that we don't exceed mbuf size while ceiling rx_buf_size.
51  */
52 int
53 qede_calc_rx_buf_size(struct rte_eth_dev *dev, uint16_t mbufsz,
54                       uint16_t max_frame_size)
55 {
56         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
57         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
58         int rx_buf_size;
59
60         if (dev->data->scattered_rx) {
61                 /* per HW limitation, only ETH_RX_MAX_BUFF_PER_PKT number of
62                  * bufferes can be used for single packet. So need to make sure
63                  * mbuf size is sufficient enough for this.
64                  */
65                 if ((mbufsz * ETH_RX_MAX_BUFF_PER_PKT) <
66                      (max_frame_size + QEDE_ETH_OVERHEAD)) {
67                         DP_ERR(edev, "mbuf %d size is not enough to hold max fragments (%d) for max rx packet length (%d)\n",
68                                mbufsz, ETH_RX_MAX_BUFF_PER_PKT, max_frame_size);
69                         return -EINVAL;
70                 }
71
72                 rx_buf_size = RTE_MAX(mbufsz,
73                                       (max_frame_size + QEDE_ETH_OVERHEAD) /
74                                        ETH_RX_MAX_BUFF_PER_PKT);
75         } else {
76                 rx_buf_size = max_frame_size + QEDE_ETH_OVERHEAD;
77         }
78
79         /* Align to cache-line size if needed */
80         return QEDE_FLOOR_TO_CACHE_LINE_SIZE(rx_buf_size);
81 }
82
83 int
84 qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
85                     uint16_t nb_desc, unsigned int socket_id,
86                     __rte_unused const struct rte_eth_rxconf *rx_conf,
87                     struct rte_mempool *mp)
88 {
89         struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
90         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
91         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
92         struct qede_rx_queue *rxq;
93         uint16_t max_rx_pkt_len;
94         uint16_t bufsz;
95         size_t size;
96         int rc;
97
98         PMD_INIT_FUNC_TRACE(edev);
99
100         /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
101         if (!rte_is_power_of_2(nb_desc)) {
102                 DP_ERR(edev, "Ring size %u is not power of 2\n",
103                           nb_desc);
104                 return -EINVAL;
105         }
106
107         /* Free memory prior to re-allocation if needed... */
108         if (dev->data->rx_queues[queue_idx] != NULL) {
109                 qede_rx_queue_release(dev->data->rx_queues[queue_idx]);
110                 dev->data->rx_queues[queue_idx] = NULL;
111         }
112
113         /* First allocate the rx queue data structure */
114         rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
115                                  RTE_CACHE_LINE_SIZE, socket_id);
116
117         if (!rxq) {
118                 DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
119                           socket_id);
120                 return -ENOMEM;
121         }
122
123         rxq->qdev = qdev;
124         rxq->mb_pool = mp;
125         rxq->nb_rx_desc = nb_desc;
126         rxq->queue_id = queue_idx;
127         rxq->port_id = dev->data->port_id;
128
129         max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
130
131         /* Fix up RX buffer size */
132         bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
133         /* cache align the mbuf size to simplfy rx_buf_size calculation */
134         bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz);
135
136         if ((rxmode->enable_scatter)                    ||
137             (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
138                 if (!dev->data->scattered_rx) {
139                         DP_INFO(edev, "Forcing scatter-gather mode\n");
140                         dev->data->scattered_rx = 1;
141                 }
142         }
143
144         rc = qede_calc_rx_buf_size(dev, bufsz, max_rx_pkt_len);
145         if (rc < 0) {
146                 rte_free(rxq);
147                 return rc;
148         }
149
150         rxq->rx_buf_size = rc;
151
152         DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
153                 qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
154
155         /* Allocate the parallel driver ring for Rx buffers */
156         size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
157         rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
158                                              RTE_CACHE_LINE_SIZE, socket_id);
159         if (!rxq->sw_rx_ring) {
160                 DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
161                        " socket %u\n", socket_id);
162                 rte_free(rxq);
163                 return -ENOMEM;
164         }
165
166         /* Allocate FW Rx ring  */
167         rc = qdev->ops->common->chain_alloc(edev,
168                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
169                                             ECORE_CHAIN_MODE_NEXT_PTR,
170                                             ECORE_CHAIN_CNT_TYPE_U16,
171                                             rxq->nb_rx_desc,
172                                             sizeof(struct eth_rx_bd),
173                                             &rxq->rx_bd_ring,
174                                             NULL);
175
176         if (rc != ECORE_SUCCESS) {
177                 DP_ERR(edev, "Memory allocation fails for RX BD ring"
178                        " on socket %u\n", socket_id);
179                 rte_free(rxq->sw_rx_ring);
180                 rte_free(rxq);
181                 return -ENOMEM;
182         }
183
184         /* Allocate FW completion ring */
185         rc = qdev->ops->common->chain_alloc(edev,
186                                             ECORE_CHAIN_USE_TO_CONSUME,
187                                             ECORE_CHAIN_MODE_PBL,
188                                             ECORE_CHAIN_CNT_TYPE_U16,
189                                             rxq->nb_rx_desc,
190                                             sizeof(union eth_rx_cqe),
191                                             &rxq->rx_comp_ring,
192                                             NULL);
193
194         if (rc != ECORE_SUCCESS) {
195                 DP_ERR(edev, "Memory allocation fails for RX CQE ring"
196                        " on socket %u\n", socket_id);
197                 qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
198                 rte_free(rxq->sw_rx_ring);
199                 rte_free(rxq);
200                 return -ENOMEM;
201         }
202
203         dev->data->rx_queues[queue_idx] = rxq;
204         qdev->fp_array[queue_idx].rxq = rxq;
205
206         DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
207                   queue_idx, nb_desc, rxq->rx_buf_size, socket_id);
208
209         return 0;
210 }
211
212 static void
213 qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
214                     struct qede_rx_queue *rxq)
215 {
216         DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
217         ecore_chain_reset(&rxq->rx_bd_ring);
218         ecore_chain_reset(&rxq->rx_comp_ring);
219         rxq->sw_rx_prod = 0;
220         rxq->sw_rx_cons = 0;
221         *rxq->hw_cons_ptr = 0;
222 }
223
224 static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
225 {
226         uint16_t i;
227
228         if (rxq->sw_rx_ring) {
229                 for (i = 0; i < rxq->nb_rx_desc; i++) {
230                         if (rxq->sw_rx_ring[i].mbuf) {
231                                 rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
232                                 rxq->sw_rx_ring[i].mbuf = NULL;
233                         }
234                 }
235         }
236 }
237
238 void qede_rx_queue_release(void *rx_queue)
239 {
240         struct qede_rx_queue *rxq = rx_queue;
241         struct qede_dev *qdev;
242         struct ecore_dev *edev;
243
244         if (rxq) {
245                 qdev = rxq->qdev;
246                 edev = QEDE_INIT_EDEV(qdev);
247                 PMD_INIT_FUNC_TRACE(edev);
248                 qede_rx_queue_release_mbufs(rxq);
249                 qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
250                 qdev->ops->common->chain_free(edev, &rxq->rx_comp_ring);
251                 rte_free(rxq->sw_rx_ring);
252                 rte_free(rxq);
253         }
254 }
255
256 /* Stops a given RX queue in the HW */
257 static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
258 {
259         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
260         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
261         struct ecore_hwfn *p_hwfn;
262         struct qede_rx_queue *rxq;
263         int hwfn_index;
264         int rc;
265
266         if (rx_queue_id < eth_dev->data->nb_rx_queues) {
267                 rxq = eth_dev->data->rx_queues[rx_queue_id];
268                 hwfn_index = rx_queue_id % edev->num_hwfns;
269                 p_hwfn = &edev->hwfns[hwfn_index];
270                 rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
271                                 true, false);
272                 if (rc != ECORE_SUCCESS) {
273                         DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
274                         return -1;
275                 }
276                 qede_rx_queue_release_mbufs(rxq);
277                 qede_rx_queue_reset(qdev, rxq);
278                 eth_dev->data->rx_queue_state[rx_queue_id] =
279                         RTE_ETH_QUEUE_STATE_STOPPED;
280                 DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
281         } else {
282                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
283                 rc = -EINVAL;
284         }
285
286         return rc;
287 }
288
289 int
290 qede_tx_queue_setup(struct rte_eth_dev *dev,
291                     uint16_t queue_idx,
292                     uint16_t nb_desc,
293                     unsigned int socket_id,
294                     const struct rte_eth_txconf *tx_conf)
295 {
296         struct qede_dev *qdev = dev->data->dev_private;
297         struct ecore_dev *edev = &qdev->edev;
298         struct qede_tx_queue *txq;
299         int rc;
300
301         PMD_INIT_FUNC_TRACE(edev);
302
303         if (!rte_is_power_of_2(nb_desc)) {
304                 DP_ERR(edev, "Ring size %u is not power of 2\n",
305                        nb_desc);
306                 return -EINVAL;
307         }
308
309         /* Free memory prior to re-allocation if needed... */
310         if (dev->data->tx_queues[queue_idx] != NULL) {
311                 qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
312                 dev->data->tx_queues[queue_idx] = NULL;
313         }
314
315         txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
316                                  RTE_CACHE_LINE_SIZE, socket_id);
317
318         if (txq == NULL) {
319                 DP_ERR(edev,
320                        "Unable to allocate memory for txq on socket %u",
321                        socket_id);
322                 return -ENOMEM;
323         }
324
325         txq->nb_tx_desc = nb_desc;
326         txq->qdev = qdev;
327         txq->port_id = dev->data->port_id;
328
329         rc = qdev->ops->common->chain_alloc(edev,
330                                             ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
331                                             ECORE_CHAIN_MODE_PBL,
332                                             ECORE_CHAIN_CNT_TYPE_U16,
333                                             txq->nb_tx_desc,
334                                             sizeof(union eth_tx_bd_types),
335                                             &txq->tx_pbl,
336                                             NULL);
337         if (rc != ECORE_SUCCESS) {
338                 DP_ERR(edev,
339                        "Unable to allocate memory for txbd ring on socket %u",
340                        socket_id);
341                 qede_tx_queue_release(txq);
342                 return -ENOMEM;
343         }
344
345         /* Allocate software ring */
346         txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
347                                              (sizeof(struct qede_tx_entry) *
348                                               txq->nb_tx_desc),
349                                              RTE_CACHE_LINE_SIZE, socket_id);
350
351         if (!txq->sw_tx_ring) {
352                 DP_ERR(edev,
353                        "Unable to allocate memory for txbd ring on socket %u",
354                        socket_id);
355                 qdev->ops->common->chain_free(edev, &txq->tx_pbl);
356                 qede_tx_queue_release(txq);
357                 return -ENOMEM;
358         }
359
360         txq->queue_id = queue_idx;
361
362         txq->nb_tx_avail = txq->nb_tx_desc;
363
364         txq->tx_free_thresh =
365             tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
366             (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
367
368         dev->data->tx_queues[queue_idx] = txq;
369         qdev->fp_array[queue_idx].txq = txq;
370
371         DP_INFO(edev,
372                   "txq %u num_desc %u tx_free_thresh %u socket %u\n",
373                   queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
374
375         return 0;
376 }
377
378 static void
379 qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
380                     struct qede_tx_queue *txq)
381 {
382         DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
383         ecore_chain_reset(&txq->tx_pbl);
384         txq->sw_tx_cons = 0;
385         txq->sw_tx_prod = 0;
386         *txq->hw_cons_ptr = 0;
387 }
388
389 static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
390 {
391         uint16_t i;
392
393         if (txq->sw_tx_ring) {
394                 for (i = 0; i < txq->nb_tx_desc; i++) {
395                         if (txq->sw_tx_ring[i].mbuf) {
396                                 rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
397                                 txq->sw_tx_ring[i].mbuf = NULL;
398                         }
399                 }
400         }
401 }
402
403 void qede_tx_queue_release(void *tx_queue)
404 {
405         struct qede_tx_queue *txq = tx_queue;
406         struct qede_dev *qdev;
407         struct ecore_dev *edev;
408
409         if (txq) {
410                 qdev = txq->qdev;
411                 edev = QEDE_INIT_EDEV(qdev);
412                 PMD_INIT_FUNC_TRACE(edev);
413                 qede_tx_queue_release_mbufs(txq);
414                 qdev->ops->common->chain_free(edev, &txq->tx_pbl);
415                 rte_free(txq->sw_tx_ring);
416                 rte_free(txq);
417         }
418 }
419
420 /* This function allocates fast-path status block memory */
421 static int
422 qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
423                   uint16_t sb_id)
424 {
425         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
426         struct status_block_e4 *sb_virt;
427         dma_addr_t sb_phys;
428         int rc;
429
430         sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
431                                           sizeof(struct status_block_e4));
432         if (!sb_virt) {
433                 DP_ERR(edev, "Status block allocation failed\n");
434                 return -ENOMEM;
435         }
436         rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
437                                         sb_phys, sb_id);
438         if (rc) {
439                 DP_ERR(edev, "Status block initialization failed\n");
440                 OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
441                                        sizeof(struct status_block_e4));
442                 return rc;
443         }
444
445         return 0;
446 }
447
448 int qede_alloc_fp_resc(struct qede_dev *qdev)
449 {
450         struct ecore_dev *edev = &qdev->edev;
451         struct qede_fastpath *fp;
452         uint32_t num_sbs;
453         uint16_t sb_idx;
454
455         if (IS_VF(edev))
456                 ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
457         else
458                 num_sbs = ecore_cxt_get_proto_cid_count
459                           (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
460
461         if (num_sbs == 0) {
462                 DP_ERR(edev, "No status blocks available\n");
463                 return -EINVAL;
464         }
465
466         qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
467                                 sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);
468
469         if (!qdev->fp_array) {
470                 DP_ERR(edev, "fp array allocation failed\n");
471                 return -ENOMEM;
472         }
473
474         memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
475                         sizeof(*qdev->fp_array));
476
477         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
478                 fp = &qdev->fp_array[sb_idx];
479                 if (!fp)
480                         continue;
481                 fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
482                                 RTE_CACHE_LINE_SIZE);
483                 if (!fp->sb_info) {
484                         DP_ERR(edev, "FP sb_info allocation fails\n");
485                         return -1;
486                 }
487                 if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
488                         DP_ERR(edev, "FP status block allocation fails\n");
489                         return -1;
490                 }
491                 DP_INFO(edev, "sb_info idx 0x%x initialized\n",
492                                 fp->sb_info->igu_sb_id);
493         }
494
495         return 0;
496 }
497
498 void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
499 {
500         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
501         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
502         struct qede_fastpath *fp;
503         uint16_t sb_idx;
504         uint8_t i;
505
506         PMD_INIT_FUNC_TRACE(edev);
507
508         for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
509                 fp = &qdev->fp_array[sb_idx];
510                 if (!fp)
511                         continue;
512                 DP_INFO(edev, "Free sb_info index 0x%x\n",
513                                 fp->sb_info->igu_sb_id);
514                 if (fp->sb_info) {
515                         OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
516                                 fp->sb_info->sb_phys,
517                                 sizeof(struct status_block_e4));
518                         rte_free(fp->sb_info);
519                         fp->sb_info = NULL;
520                 }
521         }
522
523         /* Free packet buffers and ring memories */
524         for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
525                 if (eth_dev->data->rx_queues[i]) {
526                         qede_rx_queue_release(eth_dev->data->rx_queues[i]);
527                         eth_dev->data->rx_queues[i] = NULL;
528                 }
529         }
530
531         for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
532                 if (eth_dev->data->tx_queues[i]) {
533                         qede_tx_queue_release(eth_dev->data->tx_queues[i]);
534                         eth_dev->data->tx_queues[i] = NULL;
535                 }
536         }
537
538         if (qdev->fp_array)
539                 rte_free(qdev->fp_array);
540         qdev->fp_array = NULL;
541 }
542
543 static inline void
544 qede_update_rx_prod(__rte_unused struct qede_dev *edev,
545                     struct qede_rx_queue *rxq)
546 {
547         uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
548         uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
549         struct eth_rx_prod_data rx_prods = { 0 };
550
551         /* Update producers */
552         rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
553         rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
554
555         /* Make sure that the BD and SGE data is updated before updating the
556          * producers since FW might read the BD/SGE right after the producer
557          * is updated.
558          */
559         rte_wmb();
560
561         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
562                         (uint32_t *)&rx_prods);
563
564         /* mmiowb is needed to synchronize doorbell writes from more than one
565          * processor. It guarantees that the write arrives to the device before
566          * the napi lock is released and another qede_poll is called (possibly
567          * on another CPU). Without this barrier, the next doorbell can bypass
568          * this doorbell. This is applicable to IA64/Altix systems.
569          */
570         rte_wmb();
571
572         PMD_RX_LOG(DEBUG, rxq, "bd_prod %u  cqe_prod %u", bd_prod, cqe_prod);
573 }
574
575 /* Starts a given RX queue in HW */
576 static int
577 qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
578 {
579         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
580         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
581         struct ecore_queue_start_common_params params;
582         struct ecore_rxq_start_ret_params ret_params;
583         struct qede_rx_queue *rxq;
584         struct qede_fastpath *fp;
585         struct ecore_hwfn *p_hwfn;
586         dma_addr_t p_phys_table;
587         uint16_t page_cnt;
588         uint16_t j;
589         int hwfn_index;
590         int rc;
591
592         if (rx_queue_id < eth_dev->data->nb_rx_queues) {
593                 fp = &qdev->fp_array[rx_queue_id];
594                 rxq = eth_dev->data->rx_queues[rx_queue_id];
595                 /* Allocate buffers for the Rx ring */
596                 for (j = 0; j < rxq->nb_rx_desc; j++) {
597                         rc = qede_alloc_rx_buffer(rxq);
598                         if (rc) {
599                                 DP_ERR(edev, "RX buffer allocation failed"
600                                                 " for rxq = %u\n", rx_queue_id);
601                                 return -ENOMEM;
602                         }
603                 }
604                 /* disable interrupts */
605                 ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
606                 /* Prepare ramrod */
607                 memset(&params, 0, sizeof(params));
608                 params.queue_id = rx_queue_id / edev->num_hwfns;
609                 params.vport_id = 0;
610                 params.stats_id = params.vport_id;
611                 params.p_sb = fp->sb_info;
612                 DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
613                                 fp->rxq->queue_id, fp->sb_info->igu_sb_id);
614                 params.sb_idx = RX_PI;
615                 hwfn_index = rx_queue_id % edev->num_hwfns;
616                 p_hwfn = &edev->hwfns[hwfn_index];
617                 p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
618                 page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
619                 memset(&ret_params, 0, sizeof(ret_params));
620                 rc = ecore_eth_rx_queue_start(p_hwfn,
621                                 p_hwfn->hw_info.opaque_fid,
622                                 &params, fp->rxq->rx_buf_size,
623                                 fp->rxq->rx_bd_ring.p_phys_addr,
624                                 p_phys_table, page_cnt,
625                                 &ret_params);
626                 if (rc) {
627                         DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
628                                         rx_queue_id, rc);
629                         return -1;
630                 }
631                 /* Update with the returned parameters */
632                 fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
633                 fp->rxq->handle = ret_params.p_handle;
634
635                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
636                 qede_update_rx_prod(qdev, fp->rxq);
637                 eth_dev->data->rx_queue_state[rx_queue_id] =
638                         RTE_ETH_QUEUE_STATE_STARTED;
639                 DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
640         } else {
641                 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
642                 rc = -EINVAL;
643         }
644
645         return rc;
646 }
647
648 static int
649 qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
650 {
651         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
652         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
653         struct ecore_queue_start_common_params params;
654         struct ecore_txq_start_ret_params ret_params;
655         struct ecore_hwfn *p_hwfn;
656         dma_addr_t p_phys_table;
657         struct qede_tx_queue *txq;
658         struct qede_fastpath *fp;
659         uint16_t page_cnt;
660         int hwfn_index;
661         int rc;
662
663         if (tx_queue_id < eth_dev->data->nb_tx_queues) {
664                 txq = eth_dev->data->tx_queues[tx_queue_id];
665                 fp = &qdev->fp_array[tx_queue_id];
666                 memset(&params, 0, sizeof(params));
667                 params.queue_id = tx_queue_id / edev->num_hwfns;
668                 params.vport_id = 0;
669                 params.stats_id = params.vport_id;
670                 params.p_sb = fp->sb_info;
671                 DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
672                                 fp->txq->queue_id, fp->sb_info->igu_sb_id);
673                 params.sb_idx = TX_PI(0); /* tc = 0 */
674                 p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
675                 page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
676                 hwfn_index = tx_queue_id % edev->num_hwfns;
677                 p_hwfn = &edev->hwfns[hwfn_index];
678                 if (qdev->dev_info.is_legacy)
679                         fp->txq->is_legacy = true;
680                 rc = ecore_eth_tx_queue_start(p_hwfn,
681                                 p_hwfn->hw_info.opaque_fid,
682                                 &params, 0 /* tc */,
683                                 p_phys_table, page_cnt,
684                                 &ret_params);
685                 if (rc != ECORE_SUCCESS) {
686                         DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
687                                         tx_queue_id, rc);
688                         return -1;
689                 }
690                 txq->doorbell_addr = ret_params.p_doorbell;
691                 txq->handle = ret_params.p_handle;
692
693                 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[TX_PI(0)];
694                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
695                                 DB_DEST_XCM);
696                 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
697                                 DB_AGG_CMD_SET);
698                 SET_FIELD(txq->tx_db.data.params,
699                                 ETH_DB_DATA_AGG_VAL_SEL,
700                                 DQ_XCM_ETH_TX_BD_PROD_CMD);
701                 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
702                 eth_dev->data->tx_queue_state[tx_queue_id] =
703                         RTE_ETH_QUEUE_STATE_STARTED;
704                 DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
705         } else {
706                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
707                 rc = -EINVAL;
708         }
709
710         return rc;
711 }
712
713 static inline void
714 qede_free_tx_pkt(struct qede_tx_queue *txq)
715 {
716         struct rte_mbuf *mbuf;
717         uint16_t nb_segs;
718         uint16_t idx;
719
720         idx = TX_CONS(txq);
721         mbuf = txq->sw_tx_ring[idx].mbuf;
722         if (mbuf) {
723                 nb_segs = mbuf->nb_segs;
724                 PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
725                 while (nb_segs) {
726                         /* It's like consuming rxbuf in recv() */
727                         ecore_chain_consume(&txq->tx_pbl);
728                         txq->nb_tx_avail++;
729                         nb_segs--;
730                 }
731                 rte_pktmbuf_free(mbuf);
732                 txq->sw_tx_ring[idx].mbuf = NULL;
733                 txq->sw_tx_cons++;
734                 PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
735         } else {
736                 ecore_chain_consume(&txq->tx_pbl);
737                 txq->nb_tx_avail++;
738         }
739 }
740
741 static inline void
742 qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
743                       struct qede_tx_queue *txq)
744 {
745         uint16_t hw_bd_cons;
746 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
747         uint16_t sw_tx_cons;
748 #endif
749
750         rte_compiler_barrier();
751         hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
752 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
753         sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
754         PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
755                    abs(hw_bd_cons - sw_tx_cons));
756 #endif
757         while (hw_bd_cons !=  ecore_chain_get_cons_idx(&txq->tx_pbl))
758                 qede_free_tx_pkt(txq);
759 }
760
761 static int qede_drain_txq(struct qede_dev *qdev,
762                           struct qede_tx_queue *txq, bool allow_drain)
763 {
764         struct ecore_dev *edev = &qdev->edev;
765         int rc, cnt = 1000;
766
767         while (txq->sw_tx_cons != txq->sw_tx_prod) {
768                 qede_process_tx_compl(edev, txq);
769                 if (!cnt) {
770                         if (allow_drain) {
771                                 DP_ERR(edev, "Tx queue[%u] is stuck,"
772                                           "requesting MCP to drain\n",
773                                           txq->queue_id);
774                                 rc = qdev->ops->common->drain(edev);
775                                 if (rc)
776                                         return rc;
777                                 return qede_drain_txq(qdev, txq, false);
778                         }
779                         DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
780                                   "PROD=%d, CONS=%d\n",
781                                   txq->queue_id, txq->sw_tx_prod,
782                                   txq->sw_tx_cons);
783                         return -1;
784                 }
785                 cnt--;
786                 DELAY(1000);
787                 rte_compiler_barrier();
788         }
789
790         /* FW finished processing, wait for HW to transmit all tx packets */
791         DELAY(2000);
792
793         return 0;
794 }
795
796 /* Stops a given TX queue in the HW */
797 static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
798 {
799         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
800         struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
801         struct ecore_hwfn *p_hwfn;
802         struct qede_tx_queue *txq;
803         int hwfn_index;
804         int rc;
805
806         if (tx_queue_id < eth_dev->data->nb_tx_queues) {
807                 txq = eth_dev->data->tx_queues[tx_queue_id];
808                 /* Drain txq */
809                 if (qede_drain_txq(qdev, txq, true))
810                         return -1; /* For the lack of retcodes */
811                 /* Stop txq */
812                 hwfn_index = tx_queue_id % edev->num_hwfns;
813                 p_hwfn = &edev->hwfns[hwfn_index];
814                 rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
815                 if (rc != ECORE_SUCCESS) {
816                         DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
817                         return -1;
818                 }
819                 qede_tx_queue_release_mbufs(txq);
820                 qede_tx_queue_reset(qdev, txq);
821                 eth_dev->data->tx_queue_state[tx_queue_id] =
822                         RTE_ETH_QUEUE_STATE_STOPPED;
823                 DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
824         } else {
825                 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
826                 rc = -EINVAL;
827         }
828
829         return rc;
830 }
831
832 int qede_start_queues(struct rte_eth_dev *eth_dev)
833 {
834         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
835         uint8_t id;
836         int rc = -1;
837
838         for_each_rss(id) {
839                 rc = qede_rx_queue_start(eth_dev, id);
840                 if (rc != ECORE_SUCCESS)
841                         return -1;
842         }
843
844         for_each_tss(id) {
845                 rc = qede_tx_queue_start(eth_dev, id);
846                 if (rc != ECORE_SUCCESS)
847                         return -1;
848         }
849
850         return rc;
851 }
852
853 void qede_stop_queues(struct rte_eth_dev *eth_dev)
854 {
855         struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
856         uint8_t id;
857
858         /* Stopping RX/TX queues */
859         for_each_tss(id) {
860                 qede_tx_queue_stop(eth_dev, id);
861         }
862
863         for_each_rss(id) {
864                 qede_rx_queue_stop(eth_dev, id);
865         }
866 }
867
868 static inline bool qede_tunn_exist(uint16_t flag)
869 {
870         return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
871                     PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
872 }
873
874 static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
875 {
876         return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
877                 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
878 }
879
880 /*
881  * qede_check_tunn_csum_l4:
882  * Returns:
883  * 1 : If L4 csum is enabled AND if the validation has failed.
884  * 0 : Otherwise
885  */
886 static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
887 {
888         if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
889              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
890                 return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
891                         PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
892
893         return 0;
894 }
895
896 static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
897 {
898         if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
899              PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
900                 return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
901                            PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
902
903         return 0;
904 }
905
906 /* Returns outer L2, L3 and L4 packet_type for tunneled packets */
907 static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
908 {
909         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
910         struct ether_hdr *eth_hdr;
911         struct ipv4_hdr *ipv4_hdr;
912         struct ipv6_hdr *ipv6_hdr;
913         struct vlan_hdr *vlan_hdr;
914         uint16_t ethertype;
915         bool vlan_tagged = 0;
916         uint16_t len;
917
918         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
919         len = sizeof(struct ether_hdr);
920         ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);
921
922          /* Note: Valid only if VLAN stripping is disabled */
923         if (ethertype == ETHER_TYPE_VLAN) {
924                 vlan_tagged = 1;
925                 vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
926                 len += sizeof(struct vlan_hdr);
927                 ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
928         }
929
930         if (ethertype == ETHER_TYPE_IPv4) {
931                 packet_type |= RTE_PTYPE_L3_IPV4;
932                 ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, len);
933                 if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
934                         packet_type |= RTE_PTYPE_L4_TCP;
935                 else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
936                         packet_type |= RTE_PTYPE_L4_UDP;
937         } else if (ethertype == ETHER_TYPE_IPv6) {
938                 packet_type |= RTE_PTYPE_L3_IPV6;
939                 ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, len);
940                 if (ipv6_hdr->proto == IPPROTO_TCP)
941                         packet_type |= RTE_PTYPE_L4_TCP;
942                 else if (ipv6_hdr->proto == IPPROTO_UDP)
943                         packet_type |= RTE_PTYPE_L4_UDP;
944         }
945
946         if (vlan_tagged)
947                 packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
948         else
949                 packet_type |= RTE_PTYPE_L2_ETHER;
950
951         return packet_type;
952 }
953
954 static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
955 {
956         uint16_t val;
957
958         /* Lookup table */
959         static const uint32_t
960         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
961                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4          |
962                                        RTE_PTYPE_INNER_L2_ETHER,
963                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6          |
964                                        RTE_PTYPE_INNER_L2_ETHER,
965                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4      |
966                                            RTE_PTYPE_INNER_L4_TCP       |
967                                            RTE_PTYPE_INNER_L2_ETHER,
968                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6      |
969                                            RTE_PTYPE_INNER_L4_TCP       |
970                                            RTE_PTYPE_INNER_L2_ETHER,
971                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4      |
972                                            RTE_PTYPE_INNER_L4_UDP       |
973                                            RTE_PTYPE_INNER_L2_ETHER,
974                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6      |
975                                            RTE_PTYPE_INNER_L4_UDP       |
976                                            RTE_PTYPE_INNER_L2_ETHER,
977                 /* Frags with no VLAN */
978                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4     |
979                                             RTE_PTYPE_INNER_L4_FRAG     |
980                                             RTE_PTYPE_INNER_L2_ETHER,
981                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6     |
982                                             RTE_PTYPE_INNER_L4_FRAG     |
983                                             RTE_PTYPE_INNER_L2_ETHER,
984                 /* VLANs */
985                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4     |
986                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
987                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6     |
988                                             RTE_PTYPE_INNER_L2_ETHER_VLAN,
989                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
990                                                 RTE_PTYPE_INNER_L4_TCP  |
991                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
992                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
993                                                 RTE_PTYPE_INNER_L4_TCP  |
994                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
995                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
996                                                 RTE_PTYPE_INNER_L4_UDP  |
997                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
998                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
999                                                 RTE_PTYPE_INNER_L4_UDP  |
1000                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1001                 /* Frags with VLAN */
1002                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
1003                                                  RTE_PTYPE_INNER_L4_FRAG |
1004                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
1005                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
1006                                                  RTE_PTYPE_INNER_L4_FRAG |
1007                                                  RTE_PTYPE_INNER_L2_ETHER_VLAN,
1008         };
1009
1010         /* Bits (0..3) provides L3/L4 protocol type */
1011         /* Bits (4,5) provides frag and VLAN info */
1012         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1013                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1014                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1015                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1016                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1017                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1018                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1019                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1020
1021         if (val < QEDE_PKT_TYPE_MAX)
1022                 return ptype_lkup_tbl[val];
1023
1024         return RTE_PTYPE_UNKNOWN;
1025 }
1026
1027 static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
1028 {
1029         uint16_t val;
1030
1031         /* Lookup table */
1032         static const uint32_t
1033         ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1034                 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
1035                 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
1036                 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4    |
1037                                            RTE_PTYPE_L4_TCP     |
1038                                            RTE_PTYPE_L2_ETHER,
1039                 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6    |
1040                                            RTE_PTYPE_L4_TCP     |
1041                                            RTE_PTYPE_L2_ETHER,
1042                 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4    |
1043                                            RTE_PTYPE_L4_UDP     |
1044                                            RTE_PTYPE_L2_ETHER,
1045                 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6    |
1046                                            RTE_PTYPE_L4_UDP     |
1047                                            RTE_PTYPE_L2_ETHER,
1048                 /* Frags with no VLAN */
1049                 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4   |
1050                                             RTE_PTYPE_L4_FRAG   |
1051                                             RTE_PTYPE_L2_ETHER,
1052                 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6   |
1053                                             RTE_PTYPE_L4_FRAG   |
1054                                             RTE_PTYPE_L2_ETHER,
1055                 /* VLANs */
1056                 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4           |
1057                                             RTE_PTYPE_L2_ETHER_VLAN,
1058                 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6           |
1059                                             RTE_PTYPE_L2_ETHER_VLAN,
1060                 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4       |
1061                                                 RTE_PTYPE_L4_TCP        |
1062                                                 RTE_PTYPE_L2_ETHER_VLAN,
1063                 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6       |
1064                                                 RTE_PTYPE_L4_TCP        |
1065                                                 RTE_PTYPE_L2_ETHER_VLAN,
1066                 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4       |
1067                                                 RTE_PTYPE_L4_UDP        |
1068                                                 RTE_PTYPE_L2_ETHER_VLAN,
1069                 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6       |
1070                                                 RTE_PTYPE_L4_UDP        |
1071                                                 RTE_PTYPE_L2_ETHER_VLAN,
1072                 /* Frags with VLAN */
1073                 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4      |
1074                                                  RTE_PTYPE_L4_FRAG      |
1075                                                  RTE_PTYPE_L2_ETHER_VLAN,
1076                 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6      |
1077                                                  RTE_PTYPE_L4_FRAG      |
1078                                                  RTE_PTYPE_L2_ETHER_VLAN,
1079         };
1080
1081         /* Bits (0..3) provides L3/L4 protocol type */
1082         /* Bits (4,5) provides frag and VLAN info */
1083         val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1084                PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1085                (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1086                 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1087                (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1088                 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1089                 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1090                  PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1091
1092         if (val < QEDE_PKT_TYPE_MAX)
1093                 return ptype_lkup_tbl[val];
1094
1095         return RTE_PTYPE_UNKNOWN;
1096 }
1097
1098 static inline uint8_t
1099 qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
1100 {
1101         struct ipv4_hdr *ip;
1102         uint16_t pkt_csum;
1103         uint16_t calc_csum;
1104         uint16_t val;
1105
1106         val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1107                 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
1108
1109         if (unlikely(val)) {
1110                 m->packet_type = qede_rx_cqe_to_pkt_type(flag);
1111                 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1112                         ip = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
1113                                            sizeof(struct ether_hdr));
1114                         pkt_csum = ip->hdr_checksum;
1115                         ip->hdr_checksum = 0;
1116                         calc_csum = rte_ipv4_cksum(ip);
1117                         ip->hdr_checksum = pkt_csum;
1118                         return (calc_csum != pkt_csum);
1119                 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1120                         return 1;
1121                 }
1122         }
1123         return 0;
1124 }
1125
1126 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
1127 {
1128         ecore_chain_consume(&rxq->rx_bd_ring);
1129         rxq->sw_rx_cons++;
1130 }
1131
1132 static inline void
1133 qede_reuse_page(__rte_unused struct qede_dev *qdev,
1134                 struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
1135 {
1136         struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
1137         uint16_t idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1138         struct qede_rx_entry *curr_prod;
1139         dma_addr_t new_mapping;
1140
1141         curr_prod = &rxq->sw_rx_ring[idx];
1142         *curr_prod = *curr_cons;
1143
1144         new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) +
1145                       curr_prod->page_offset;
1146
1147         rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
1148         rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
1149
1150         rxq->sw_rx_prod++;
1151 }
1152
1153 static inline void
1154 qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
1155                         struct qede_dev *qdev, uint8_t count)
1156 {
1157         struct qede_rx_entry *curr_cons;
1158
1159         for (; count > 0; count--) {
1160                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
1161                 qede_reuse_page(qdev, rxq, curr_cons);
1162                 qede_rx_bd_ring_consume(rxq);
1163         }
1164 }
1165
1166 static inline void
1167 qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
1168                                      struct qede_rx_queue *rxq,
1169                                      uint8_t agg_index, uint16_t len)
1170 {
1171         struct qede_agg_info *tpa_info;
1172         struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
1173         uint16_t cons_idx;
1174
1175         /* Under certain conditions it is possible that FW may not consume
1176          * additional or new BD. So decision to consume the BD must be made
1177          * based on len_list[0].
1178          */
1179         if (rte_le_to_cpu_16(len)) {
1180                 tpa_info = &rxq->tpa_info[agg_index];
1181                 cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1182                 curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
1183                 assert(curr_frag);
1184                 curr_frag->nb_segs = 1;
1185                 curr_frag->pkt_len = rte_le_to_cpu_16(len);
1186                 curr_frag->data_len = curr_frag->pkt_len;
1187                 tpa_info->tpa_tail->next = curr_frag;
1188                 tpa_info->tpa_tail = curr_frag;
1189                 qede_rx_bd_ring_consume(rxq);
1190                 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1191                         PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
1192                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1193                         rxq->rx_alloc_errors++;
1194                 }
1195         }
1196 }
1197
1198 static inline void
1199 qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
1200                              struct qede_rx_queue *rxq,
1201                              struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1202 {
1203         PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
1204                    cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
1205         /* only len_list[0] will have value */
1206         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1207                                              cqe->len_list[0]);
1208 }
1209
1210 static inline void
1211 qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
1212                             struct qede_rx_queue *rxq,
1213                             struct eth_fast_path_rx_tpa_end_cqe *cqe)
1214 {
1215         struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */
1216
1217         qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1218                                              cqe->len_list[0]);
1219         /* Update total length and frags based on end TPA */
1220         rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
1221         /* TODO:  Add Sanity Checks */
1222         rx_mb->nb_segs = cqe->num_of_bds;
1223         rx_mb->pkt_len = cqe->total_packet_len;
1224
1225         PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
1226                    " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
1227                    rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
1228                    rx_mb->pkt_len);
1229 }
1230
1231 static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
1232 {
1233         uint32_t val;
1234
1235         /* Lookup table */
1236         static const uint32_t
1237         ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
1238                 [QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
1239                 [QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
1240                 [QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
1241                 [QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
1242                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
1243                                 RTE_PTYPE_TUNNEL_GENEVE,
1244                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
1245                                 RTE_PTYPE_TUNNEL_GRE,
1246                 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
1247                                 RTE_PTYPE_TUNNEL_VXLAN,
1248                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
1249                                 RTE_PTYPE_TUNNEL_GENEVE,
1250                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
1251                                 RTE_PTYPE_TUNNEL_GRE,
1252                 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
1253                                 RTE_PTYPE_TUNNEL_VXLAN,
1254                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
1255                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1256                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
1257                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1258                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
1259                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1260                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
1261                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1262                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
1263                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1264                 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
1265                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1266                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
1267                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1268                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
1269                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1270                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
1271                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1272                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
1273                                 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1274                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
1275                                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1276                 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
1277                                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1278         };
1279
1280         /* Cover bits[4-0] to include tunn_type and next protocol */
1281         val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
1282                 ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
1283                 (ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
1284                 ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
1285
1286         if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
1287                 return ptype_tunn_lkup_tbl[val];
1288         else
1289                 return RTE_PTYPE_UNKNOWN;
1290 }
1291
1292 static inline int
1293 qede_process_sg_pkts(void *p_rxq,  struct rte_mbuf *rx_mb,
1294                      uint8_t num_segs, uint16_t pkt_len)
1295 {
1296         struct qede_rx_queue *rxq = p_rxq;
1297         struct qede_dev *qdev = rxq->qdev;
1298         register struct rte_mbuf *seg1 = NULL;
1299         register struct rte_mbuf *seg2 = NULL;
1300         uint16_t sw_rx_index;
1301         uint16_t cur_size;
1302
1303         seg1 = rx_mb;
1304         while (num_segs) {
1305                 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1306                                                         pkt_len;
1307                 if (unlikely(!cur_size)) {
1308                         PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
1309                                    " left for mapping jumbo\n", num_segs);
1310                         qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
1311                         return -EINVAL;
1312                 }
1313                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1314                 seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
1315                 qede_rx_bd_ring_consume(rxq);
1316                 pkt_len -= cur_size;
1317                 seg2->data_len = cur_size;
1318                 seg1->next = seg2;
1319                 seg1 = seg1->next;
1320                 num_segs--;
1321                 rxq->rx_segs++;
1322         }
1323
1324         return 0;
1325 }
1326
1327 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1328 static inline void
1329 print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
1330                  uint8_t bitfield)
1331 {
1332         PMD_RX_LOG(INFO, rxq,
1333                 "len 0x%04x bf 0x%04x hash_val 0x%x"
1334                 " ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
1335                 " inner_l2=%s inner_l3=%s inner_l4=%s\n",
1336                 m->data_len, bitfield, m->hash.rss,
1337                 (unsigned long)m->ol_flags,
1338                 rte_get_ptype_l2_name(m->packet_type),
1339                 rte_get_ptype_l3_name(m->packet_type),
1340                 rte_get_ptype_l4_name(m->packet_type),
1341                 rte_get_ptype_tunnel_name(m->packet_type),
1342                 rte_get_ptype_inner_l2_name(m->packet_type),
1343                 rte_get_ptype_inner_l3_name(m->packet_type),
1344                 rte_get_ptype_inner_l4_name(m->packet_type));
1345 }
1346 #endif
1347
1348 uint16_t
1349 qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1350 {
1351         struct qede_rx_queue *rxq = p_rxq;
1352         struct qede_dev *qdev = rxq->qdev;
1353         struct ecore_dev *edev = &qdev->edev;
1354         uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
1355         uint16_t rx_pkt = 0;
1356         union eth_rx_cqe *cqe;
1357         struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1358         register struct rte_mbuf *rx_mb = NULL;
1359         register struct rte_mbuf *seg1 = NULL;
1360         enum eth_rx_cqe_type cqe_type;
1361         uint16_t pkt_len = 0; /* Sum of all BD segments */
1362         uint16_t len; /* Length of first BD */
1363         uint8_t num_segs = 1;
1364         uint16_t preload_idx;
1365         uint16_t parse_flag;
1366 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1367         uint8_t bitfield_val;
1368 #endif
1369         uint8_t tunn_parse_flag;
1370         uint8_t j;
1371         struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
1372         uint64_t ol_flags;
1373         uint32_t packet_type;
1374         uint16_t vlan_tci;
1375         bool tpa_start_flg;
1376         uint8_t offset, tpa_agg_idx, flags;
1377         struct qede_agg_info *tpa_info = NULL;
1378         uint32_t rss_hash;
1379
1380         hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1381         sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1382
1383         rte_rmb();
1384
1385         if (hw_comp_cons == sw_comp_cons)
1386                 return 0;
1387
1388         while (sw_comp_cons != hw_comp_cons) {
1389                 ol_flags = 0;
1390                 packet_type = RTE_PTYPE_UNKNOWN;
1391                 vlan_tci = 0;
1392                 tpa_start_flg = false;
1393                 rss_hash = 0;
1394
1395                 /* Get the CQE from the completion ring */
1396                 cqe =
1397                     (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1398                 cqe_type = cqe->fast_path_regular.type;
1399                 PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1400
1401                 switch (cqe_type) {
1402                 case ETH_RX_CQE_TYPE_REGULAR:
1403                         fp_cqe = &cqe->fast_path_regular;
1404                 break;
1405                 case ETH_RX_CQE_TYPE_TPA_START:
1406                         cqe_start_tpa = &cqe->fast_path_tpa_start;
1407                         tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
1408                         tpa_start_flg = true;
1409                         /* Mark it as LRO packet */
1410                         ol_flags |= PKT_RX_LRO;
1411                         /* In split mode,  seg_len is same as len_on_first_bd
1412                          * and ext_bd_len_list will be empty since there are
1413                          * no additional buffers
1414                          */
1415                         PMD_RX_LOG(INFO, rxq,
1416                             "TPA start[%d] - len_on_first_bd %d header %d"
1417                             " [bd_list[0] %d], [seg_len %d]\n",
1418                             cqe_start_tpa->tpa_agg_index,
1419                             rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
1420                             cqe_start_tpa->header_len,
1421                             rte_le_to_cpu_16(cqe_start_tpa->ext_bd_len_list[0]),
1422                             rte_le_to_cpu_16(cqe_start_tpa->seg_len));
1423
1424                 break;
1425                 case ETH_RX_CQE_TYPE_TPA_CONT:
1426                         qede_rx_process_tpa_cont_cqe(qdev, rxq,
1427                                                      &cqe->fast_path_tpa_cont);
1428                         goto next_cqe;
1429                 case ETH_RX_CQE_TYPE_TPA_END:
1430                         qede_rx_process_tpa_end_cqe(qdev, rxq,
1431                                                     &cqe->fast_path_tpa_end);
1432                         tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
1433                         tpa_info = &rxq->tpa_info[tpa_agg_idx];
1434                         rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
1435                         goto tpa_end;
1436                 case ETH_RX_CQE_TYPE_SLOW_PATH:
1437                         PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1438                         ecore_eth_cqe_completion(
1439                                 &edev->hwfns[rxq->queue_id % edev->num_hwfns],
1440                                 (struct eth_slow_path_rx_cqe *)cqe);
1441                         /* fall-thru */
1442                 default:
1443                         goto next_cqe;
1444                 }
1445
1446                 /* Get the data from the SW ring */
1447                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1448                 rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
1449                 assert(rx_mb != NULL);
1450
1451                 /* Handle regular CQE or TPA start CQE */
1452                 if (!tpa_start_flg) {
1453                         parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1454                         offset = fp_cqe->placement_offset;
1455                         len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1456                         pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1457                         vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1458                         rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1459 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1460                         bitfield_val = fp_cqe->bitfields;
1461 #endif
1462                 } else {
1463                         parse_flag =
1464                             rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
1465                         offset = cqe_start_tpa->placement_offset;
1466                         /* seg_len = len_on_first_bd */
1467                         len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
1468                         vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
1469 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1470                         bitfield_val = cqe_start_tpa->bitfields;
1471 #endif
1472                         rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
1473                 }
1474                 if (qede_tunn_exist(parse_flag)) {
1475                         PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1476                         if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1477                                 PMD_RX_LOG(ERR, rxq,
1478                                             "L4 csum failed, flags = 0x%x\n",
1479                                             parse_flag);
1480                                 rxq->rx_hw_errors++;
1481                                 ol_flags |= PKT_RX_L4_CKSUM_BAD;
1482                         } else {
1483                                 ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1484                         }
1485
1486                         if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1487                                 PMD_RX_LOG(ERR, rxq,
1488                                         "Outer L3 csum failed, flags = 0x%x\n",
1489                                         parse_flag);
1490                                   rxq->rx_hw_errors++;
1491                                   ol_flags |= PKT_RX_EIP_CKSUM_BAD;
1492                         } else {
1493                                   ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1494                         }
1495
1496                         if (tpa_start_flg)
1497                                 flags = cqe_start_tpa->tunnel_pars_flags.flags;
1498                         else
1499                                 flags = fp_cqe->tunnel_pars_flags.flags;
1500                         tunn_parse_flag = flags;
1501
1502                         /* Tunnel_type */
1503                         packet_type =
1504                                 qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
1505
1506                         /* Inner header */
1507                         packet_type |=
1508                               qede_rx_cqe_to_pkt_type_inner(parse_flag);
1509
1510                         /* Outer L3/L4 types is not available in CQE */
1511                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1512
1513                         /* Outer L3/L4 types is not available in CQE.
1514                          * Need to add offset to parse correctly,
1515                          */
1516                         rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1517                         packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1518                 } else {
1519                         packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1520                 }
1521
1522                 /* Common handling for non-tunnel packets and for inner
1523                  * headers in the case of tunnel.
1524                  */
1525                 if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1526                         PMD_RX_LOG(ERR, rxq,
1527                                     "L4 csum failed, flags = 0x%x\n",
1528                                     parse_flag);
1529                         rxq->rx_hw_errors++;
1530                         ol_flags |= PKT_RX_L4_CKSUM_BAD;
1531                 } else {
1532                         ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1533                 }
1534                 if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1535                         PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1536                                    parse_flag);
1537                         rxq->rx_hw_errors++;
1538                         ol_flags |= PKT_RX_IP_CKSUM_BAD;
1539                 } else {
1540                         ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1541                 }
1542
1543                 if (CQE_HAS_VLAN(parse_flag) ||
1544                     CQE_HAS_OUTER_VLAN(parse_flag)) {
1545                         /* Note: FW doesn't indicate Q-in-Q packet */
1546                         ol_flags |= PKT_RX_VLAN;
1547                         if (qdev->vlan_strip_flg) {
1548                                 ol_flags |= PKT_RX_VLAN_STRIPPED;
1549                                 rx_mb->vlan_tci = vlan_tci;
1550                         }
1551                 }
1552
1553                 /* RSS Hash */
1554                 if (qdev->rss_enable) {
1555                         ol_flags |= PKT_RX_RSS_HASH;
1556                         rx_mb->hash.rss = rss_hash;
1557                 }
1558
1559                 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1560                         PMD_RX_LOG(ERR, rxq,
1561                                    "New buffer allocation failed,"
1562                                    "dropping incoming packet\n");
1563                         qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num);
1564                         rte_eth_devices[rxq->port_id].
1565                             data->rx_mbuf_alloc_failed++;
1566                         rxq->rx_alloc_errors++;
1567                         break;
1568                 }
1569                 qede_rx_bd_ring_consume(rxq);
1570
1571                 if (!tpa_start_flg && fp_cqe->bd_num > 1) {
1572                         PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
1573                                    " len on first: %04x Total Len: %04x",
1574                                    fp_cqe->bd_num, len, pkt_len);
1575                         num_segs = fp_cqe->bd_num - 1;
1576                         seg1 = rx_mb;
1577                         if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
1578                                                  pkt_len - len))
1579                                 goto next_cqe;
1580                         for (j = 0; j < num_segs; j++) {
1581                                 if (qede_alloc_rx_buffer(rxq)) {
1582                                         PMD_RX_LOG(ERR, rxq,
1583                                                 "Buffer allocation failed");
1584                                         rte_eth_devices[rxq->port_id].
1585                                                 data->rx_mbuf_alloc_failed++;
1586                                         rxq->rx_alloc_errors++;
1587                                         break;
1588                                 }
1589                                 rxq->rx_segs++;
1590                         }
1591                 }
1592                 rxq->rx_segs++; /* for the first segment */
1593
1594                 /* Prefetch next mbuf while processing current one. */
1595                 preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1596                 rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
1597
1598                 /* Update rest of the MBUF fields */
1599                 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1600                 rx_mb->port = rxq->port_id;
1601                 rx_mb->ol_flags = ol_flags;
1602                 rx_mb->data_len = len;
1603                 rx_mb->packet_type = packet_type;
1604 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1605                 print_rx_bd_info(rx_mb, rxq, bitfield_val);
1606 #endif
1607                 if (!tpa_start_flg) {
1608                         rx_mb->nb_segs = fp_cqe->bd_num;
1609                         rx_mb->pkt_len = pkt_len;
1610                 } else {
1611                         /* store ref to the updated mbuf */
1612                         tpa_info->tpa_head = rx_mb;
1613                         tpa_info->tpa_tail = tpa_info->tpa_head;
1614                 }
1615                 rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
1616 tpa_end:
1617                 if (!tpa_start_flg) {
1618                         rx_pkts[rx_pkt] = rx_mb;
1619                         rx_pkt++;
1620                 }
1621 next_cqe:
1622                 ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
1623                 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1624                 if (rx_pkt == nb_pkts) {
1625                         PMD_RX_LOG(DEBUG, rxq,
1626                                    "Budget reached nb_pkts=%u received=%u",
1627                                    rx_pkt, nb_pkts);
1628                         break;
1629                 }
1630         }
1631
1632         qede_update_rx_prod(qdev, rxq);
1633
1634         rxq->rcv_pkts += rx_pkt;
1635
1636         PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
1637
1638         return rx_pkt;
1639 }
1640
1641
1642 /* Populate scatter gather buffer descriptor fields */
1643 static inline uint16_t
1644 qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
1645                   struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
1646                   uint16_t start_seg)
1647 {
1648         struct qede_tx_queue *txq = p_txq;
1649         struct eth_tx_bd *tx_bd = NULL;
1650         dma_addr_t mapping;
1651         uint16_t nb_segs = 0;
1652
1653         /* Check for scattered buffers */
1654         while (m_seg) {
1655                 if (start_seg == 0) {
1656                         if (!*bd2) {
1657                                 *bd2 = (struct eth_tx_2nd_bd *)
1658                                         ecore_chain_produce(&txq->tx_pbl);
1659                                 memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
1660                                 nb_segs++;
1661                         }
1662                         mapping = rte_mbuf_data_iova(m_seg);
1663                         QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
1664                         PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
1665                 } else if (start_seg == 1) {
1666                         if (!*bd3) {
1667                                 *bd3 = (struct eth_tx_3rd_bd *)
1668                                         ecore_chain_produce(&txq->tx_pbl);
1669                                 memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
1670                                 nb_segs++;
1671                         }
1672                         mapping = rte_mbuf_data_iova(m_seg);
1673                         QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
1674                         PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
1675                 } else {
1676                         tx_bd = (struct eth_tx_bd *)
1677                                 ecore_chain_produce(&txq->tx_pbl);
1678                         memset(tx_bd, 0, sizeof(*tx_bd));
1679                         nb_segs++;
1680                         mapping = rte_mbuf_data_iova(m_seg);
1681                         QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
1682                         PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
1683                 }
1684                 start_seg++;
1685                 m_seg = m_seg->next;
1686         }
1687
1688         /* Return total scattered buffers */
1689         return nb_segs;
1690 }
1691
1692 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1693 static inline void
1694 print_tx_bd_info(struct qede_tx_queue *txq,
1695                  struct eth_tx_1st_bd *bd1,
1696                  struct eth_tx_2nd_bd *bd2,
1697                  struct eth_tx_3rd_bd *bd3,
1698                  uint64_t tx_ol_flags)
1699 {
1700         char ol_buf[256] = { 0 }; /* for verbose prints */
1701
1702         if (bd1)
1703                 PMD_TX_LOG(INFO, txq,
1704                    "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
1705                    rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
1706                    bd1->data.bd_flags.bitfields,
1707                    rte_cpu_to_le_16(bd1->data.bitfields));
1708         if (bd2)
1709                 PMD_TX_LOG(INFO, txq,
1710                    "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
1711                    rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
1712                    bd2->data.bitfields2, bd2->data.tunn_ip_size);
1713         if (bd3)
1714                 PMD_TX_LOG(INFO, txq,
1715                    "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
1716                    "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
1717                    rte_cpu_to_le_16(bd3->nbytes),
1718                    rte_cpu_to_le_16(bd3->data.bitfields),
1719                    rte_cpu_to_le_16(bd3->data.lso_mss),
1720                    bd3->data.tunn_l4_hdr_start_offset_w,
1721                    bd3->data.tunn_hdr_size_w);
1722
1723         rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
1724         PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
1725 }
1726 #endif
1727
1728 /* TX prepare to check packets meets TX conditions */
1729 uint16_t
1730 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1731 qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
1732                     uint16_t nb_pkts)
1733 {
1734         struct qede_tx_queue *txq = p_txq;
1735 #else
1736 qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
1737                     uint16_t nb_pkts)
1738 {
1739 #endif
1740         uint64_t ol_flags;
1741         struct rte_mbuf *m;
1742         uint16_t i;
1743 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1744         int ret;
1745 #endif
1746
1747         for (i = 0; i < nb_pkts; i++) {
1748                 m = tx_pkts[i];
1749                 ol_flags = m->ol_flags;
1750                 if (ol_flags & PKT_TX_TCP_SEG) {
1751                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
1752                                 rte_errno = -EINVAL;
1753                                 break;
1754                         }
1755                         /* TBD: confirm its ~9700B for both ? */
1756                         if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
1757                                 rte_errno = -EINVAL;
1758                                 break;
1759                         }
1760                 } else {
1761                         if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
1762                                 rte_errno = -EINVAL;
1763                                 break;
1764                         }
1765                 }
1766                 if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
1767                         /* We support only limited tunnel protocols */
1768                         if (ol_flags & PKT_TX_TUNNEL_MASK) {
1769                                 uint64_t temp;
1770
1771                                 temp = ol_flags & PKT_TX_TUNNEL_MASK;
1772                                 if (temp == PKT_TX_TUNNEL_VXLAN ||
1773                                     temp == PKT_TX_TUNNEL_MPLSINUDP)
1774                                         break;
1775                         }
1776
1777                         rte_errno = -ENOTSUP;
1778                         break;
1779                 }
1780
1781 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1782                 ret = rte_validate_tx_offload(m);
1783                 if (ret != 0) {
1784                         rte_errno = ret;
1785                         break;
1786                 }
1787 #endif
1788         }
1789
1790 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1791         if (unlikely(i != nb_pkts))
1792                 PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
1793                            nb_pkts - i);
1794 #endif
1795         return i;
1796 }
1797
1798 #define MPLSINUDP_HDR_SIZE                      (12)
1799
1800 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1801 static inline void
1802 qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
1803                                struct qede_tx_queue *txq)
1804 {
1805         if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
1806                 PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
1807         if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
1808                 MPLSINUDP_HDR_SIZE) / 2) > 0xff)
1809                 PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
1810         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
1811                 ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
1812                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1813         if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
1814                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
1815                 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1816 }
1817 #endif
1818
1819 uint16_t
1820 qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1821 {
1822         struct qede_tx_queue *txq = p_txq;
1823         struct qede_dev *qdev = txq->qdev;
1824         struct ecore_dev *edev = &qdev->edev;
1825         struct rte_mbuf *mbuf;
1826         struct rte_mbuf *m_seg = NULL;
1827         uint16_t nb_tx_pkts;
1828         uint16_t bd_prod;
1829         uint16_t idx;
1830         uint16_t nb_frags;
1831         uint16_t nb_pkt_sent = 0;
1832         uint8_t nbds;
1833         bool lso_flg;
1834         bool mplsoudp_flg;
1835         __rte_unused bool tunn_flg;
1836         bool tunn_ipv6_ext_flg;
1837         struct eth_tx_1st_bd *bd1;
1838         struct eth_tx_2nd_bd *bd2;
1839         struct eth_tx_3rd_bd *bd3;
1840         uint64_t tx_ol_flags;
1841         uint16_t hdr_size;
1842         /* BD1 */
1843         uint16_t bd1_bf;
1844         uint8_t bd1_bd_flags_bf;
1845         uint16_t vlan;
1846         /* BD2 */
1847         uint16_t bd2_bf1;
1848         uint16_t bd2_bf2;
1849         /* BD3 */
1850         uint16_t mss;
1851         uint16_t bd3_bf;
1852
1853         uint8_t tunn_l4_hdr_start_offset;
1854         uint8_t tunn_hdr_size;
1855         uint8_t inner_l2_hdr_size;
1856         uint16_t inner_l4_hdr_offset;
1857
1858         if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
1859                 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
1860                            nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
1861                 qede_process_tx_compl(edev, txq);
1862         }
1863
1864         nb_tx_pkts  = nb_pkts;
1865         bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
1866         while (nb_tx_pkts--) {
1867                 /* Init flags/values */
1868                 tunn_flg = false;
1869                 lso_flg = false;
1870                 nbds = 0;
1871                 vlan = 0;
1872                 bd1 = NULL;
1873                 bd2 = NULL;
1874                 bd3 = NULL;
1875                 hdr_size = 0;
1876                 bd1_bf = 0;
1877                 bd1_bd_flags_bf = 0;
1878                 bd2_bf1 = 0;
1879                 bd2_bf2 = 0;
1880                 mss = 0;
1881                 bd3_bf = 0;
1882                 mplsoudp_flg = false;
1883                 tunn_ipv6_ext_flg = false;
1884                 tunn_hdr_size = 0;
1885                 tunn_l4_hdr_start_offset = 0;
1886
1887                 mbuf = *tx_pkts++;
1888                 assert(mbuf);
1889
1890                 /* Check minimum TX BDS availability against available BDs */
1891                 if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
1892                         break;
1893
1894                 tx_ol_flags = mbuf->ol_flags;
1895                 bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1896
1897                 /* TX prepare would have already checked supported tunnel Tx
1898                  * offloads. Don't rely on pkt_type marked by Rx, instead use
1899                  * tx_ol_flags to decide.
1900                  */
1901                 if (((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1902                                                 PKT_TX_TUNNEL_VXLAN) ||
1903                     ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1904                                                 PKT_TX_TUNNEL_MPLSINUDP)) {
1905                         /* Check against max which is Tunnel IPv6 + ext */
1906                         if (unlikely(txq->nb_tx_avail <
1907                                 ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
1908                                         break;
1909                         tunn_flg = true;
1910                         /* First indicate its a tunnel pkt */
1911                         bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
1912                                   ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1913                         /* Legacy FW had flipped behavior in regard to this bit
1914                          * i.e. it needed to set to prevent FW from touching
1915                          * encapsulated packets when it didn't need to.
1916                          */
1917                         if (unlikely(txq->is_legacy)) {
1918                                 bd1_bf ^= 1 <<
1919                                         ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1920                         }
1921
1922                         /* Outer IP checksum offload */
1923                         if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM |
1924                                            PKT_TX_OUTER_IPV4)) {
1925                                 bd1_bd_flags_bf |=
1926                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
1927                                         ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1928                         }
1929
1930                         /**
1931                          * Currently, only inner checksum offload in MPLS-in-UDP
1932                          * tunnel with one MPLS label is supported. Both outer
1933                          * and inner layers  lengths need to be provided in
1934                          * mbuf.
1935                          */
1936                         if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1937                                                 PKT_TX_TUNNEL_MPLSINUDP) {
1938                                 mplsoudp_flg = true;
1939 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1940                                 qede_mpls_tunn_tx_sanity_check(mbuf, txq);
1941 #endif
1942                                 /* Outer L4 offset in two byte words */
1943                                 tunn_l4_hdr_start_offset =
1944                                   (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
1945                                 /* Tunnel header size in two byte words */
1946                                 tunn_hdr_size = (mbuf->outer_l2_len +
1947                                                 mbuf->outer_l3_len +
1948                                                 MPLSINUDP_HDR_SIZE) / 2;
1949                                 /* Inner L2 header size in two byte words */
1950                                 inner_l2_hdr_size = (mbuf->l2_len -
1951                                                 MPLSINUDP_HDR_SIZE) / 2;
1952                                 /* Inner L4 header offset from the beggining
1953                                  * of inner packet in two byte words
1954                                  */
1955                                 inner_l4_hdr_offset = (mbuf->l2_len -
1956                                         MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;
1957
1958                                 /* Inner L2 size and address type */
1959                                 bd2_bf1 |= (inner_l2_hdr_size &
1960                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
1961                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
1962                                 bd2_bf1 |= (UNICAST_ADDRESS &
1963                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
1964                                         ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
1965                                 /* Treated as IPv6+Ext */
1966                                 bd2_bf1 |=
1967                                     1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;
1968
1969                                 /* Mark inner IPv6 if present */
1970                                 if (tx_ol_flags & PKT_TX_IPV6)
1971                                         bd2_bf1 |=
1972                                                 1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;
1973
1974                                 /* Inner L4 offsets */
1975                                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
1976                                      (tx_ol_flags & (PKT_TX_UDP_CKSUM |
1977                                                         PKT_TX_TCP_CKSUM))) {
1978                                         /* Determines if BD3 is needed */
1979                                         tunn_ipv6_ext_flg = true;
1980                                         if ((tx_ol_flags & PKT_TX_L4_MASK) ==
1981                                                         PKT_TX_UDP_CKSUM) {
1982                                                 bd2_bf1 |=
1983                                                         1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
1984                                         }
1985
1986                                         /* TODO other pseudo checksum modes are
1987                                          * not supported
1988                                          */
1989                                         bd2_bf1 |=
1990                                         ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
1991                                         ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
1992                                         bd2_bf2 |= (inner_l4_hdr_offset &
1993                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
1994                                                 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
1995                                 }
1996                         } /* End MPLSoUDP */
1997                 } /* End Tunnel handling */
1998
1999                 if (tx_ol_flags & PKT_TX_TCP_SEG) {
2000                         lso_flg = true;
2001                         if (unlikely(txq->nb_tx_avail <
2002                                                 ETH_TX_MIN_BDS_PER_LSO_PKT))
2003                                 break;
2004                         /* For LSO, packet header and payload must reside on
2005                          * buffers pointed by different BDs. Using BD1 for HDR
2006                          * and BD2 onwards for data.
2007                          */
2008                         hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
2009                         if (tunn_flg)
2010                                 hdr_size += mbuf->outer_l2_len +
2011                                             mbuf->outer_l3_len;
2012
2013                         bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
2014                         bd1_bd_flags_bf |=
2015                                         1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2016                         /* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
2017                         bd1_bd_flags_bf |=
2018                                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2019                         mss = rte_cpu_to_le_16(mbuf->tso_segsz);
2020                         /* Using one header BD */
2021                         bd3_bf |= rte_cpu_to_le_16(1 <<
2022                                         ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
2023                 } else {
2024                         if (unlikely(txq->nb_tx_avail <
2025                                         ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
2026                                 break;
2027                         bd1_bf |=
2028                                (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
2029                                 << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
2030                 }
2031
2032                 /* Descriptor based VLAN insertion */
2033                 if (tx_ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
2034                         vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
2035                         bd1_bd_flags_bf |=
2036                             1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
2037                 }
2038
2039                 /* Offload the IP checksum in the hardware */
2040                 if (tx_ol_flags & PKT_TX_IP_CKSUM) {
2041                         bd1_bd_flags_bf |=
2042                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2043                         /* There's no DPDK flag to request outer-L4 csum
2044                          * offload. But in the case of tunnel if inner L3 or L4
2045                          * csum offload is requested then we need to force
2046                          * recalculation of L4 tunnel header csum also.
2047                          */
2048                         if (tunn_flg) {
2049                                 bd1_bd_flags_bf |=
2050                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2051                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2052                         }
2053                 }
2054
2055                 /* L4 checksum offload (tcp or udp) */
2056                 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2057                     (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) {
2058                         bd1_bd_flags_bf |=
2059                                 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2060                         /* There's no DPDK flag to request outer-L4 csum
2061                          * offload. But in the case of tunnel if inner L3 or L4
2062                          * csum offload is requested then we need to force
2063                          * recalculation of L4 tunnel header csum also.
2064                          */
2065                         if (tunn_flg) {
2066                                 bd1_bd_flags_bf |=
2067                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2068                                         ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2069                         }
2070                 }
2071
2072                 /* Fill the entry in the SW ring and the BDs in the FW ring */
2073                 idx = TX_PROD(txq);
2074                 txq->sw_tx_ring[idx].mbuf = mbuf;
2075
2076                 /* BD1 */
2077                 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2078                 memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2079                 nbds++;
2080
2081                 /* Map MBUF linear data for DMA and set in the BD1 */
2082                 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2083                                      mbuf->data_len);
2084                 bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2085                 bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2086                 bd1->data.vlan = vlan;
2087
2088                 if (lso_flg || mplsoudp_flg) {
2089                         bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
2090                                                         (&txq->tx_pbl);
2091                         memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
2092                         nbds++;
2093
2094                         /* BD1 */
2095                         QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2096                                              hdr_size);
2097                         /* BD2 */
2098                         QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
2099                                              rte_mbuf_data_iova(mbuf)),
2100                                              mbuf->data_len - hdr_size);
2101                         bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
2102                         if (mplsoudp_flg) {
2103                                 bd2->data.bitfields2 =
2104                                         rte_cpu_to_le_16(bd2_bf2);
2105                                 /* Outer L3 size */
2106                                 bd2->data.tunn_ip_size =
2107                                         rte_cpu_to_le_16(mbuf->outer_l3_len);
2108                         }
2109                         /* BD3 */
2110                         if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
2111                                 bd3 = (struct eth_tx_3rd_bd *)
2112                                         ecore_chain_produce(&txq->tx_pbl);
2113                                 memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
2114                                 nbds++;
2115                                 bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
2116                                 if (lso_flg)
2117                                         bd3->data.lso_mss = mss;
2118                                 if (mplsoudp_flg) {
2119                                         bd3->data.tunn_l4_hdr_start_offset_w =
2120                                                 tunn_l4_hdr_start_offset;
2121                                         bd3->data.tunn_hdr_size_w =
2122                                                 tunn_hdr_size;
2123                                 }
2124                         }
2125                 }
2126
2127                 /* Handle fragmented MBUF */
2128                 m_seg = mbuf->next;
2129
2130                 /* Encode scatter gather buffer descriptors if required */
2131                 nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
2132                 bd1->data.nbds = nbds + nb_frags;
2133
2134                 txq->nb_tx_avail -= bd1->data.nbds;
2135                 txq->sw_tx_prod++;
2136                 rte_prefetch0(txq->sw_tx_ring[TX_PROD(txq)].mbuf);
2137                 bd_prod =
2138                     rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2139 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2140                 print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2141 #endif
2142                 nb_pkt_sent++;
2143                 txq->xmit_pkts++;
2144         }
2145
2146         /* Write value of prod idx into bd_prod */
2147         txq->tx_db.data.bd_prod = bd_prod;
2148         rte_wmb();
2149         rte_compiler_barrier();
2150         DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2151         rte_wmb();
2152
2153         /* Check again for Tx completions */
2154         qede_process_tx_compl(edev, txq);
2155
2156         PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2157                    nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2158
2159         return nb_pkt_sent;
2160 }
2161
2162 uint16_t
2163 qede_rxtx_pkts_dummy(__rte_unused void *p_rxq,
2164                      __rte_unused struct rte_mbuf **pkts,
2165                      __rte_unused uint16_t nb_pkts)
2166 {
2167         return 0;
2168 }