New upstream version 18.11-rc1
[deb_dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq *rxq)
43 {
44         rxq->state |= SFC_RXQ_FLUSHED;
45         rxq->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
50 {
51         rxq->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58         unsigned int free_space;
59         unsigned int bulks;
60         void *objs[SFC_RX_REFILL_BULK];
61         efsys_dma_addr_t addr[RTE_DIM(objs)];
62         unsigned int added = rxq->added;
63         unsigned int id;
64         unsigned int i;
65         struct sfc_efx_rx_sw_desc *rxd;
66         struct rte_mbuf *m;
67         uint16_t port_id = rxq->dp.dpq.port_id;
68
69         free_space = rxq->max_fill_level - (added - rxq->completed);
70
71         if (free_space < rxq->refill_threshold)
72                 return;
73
74         bulks = free_space / RTE_DIM(objs);
75         /* refill_threshold guarantees that bulks is positive */
76         SFC_ASSERT(bulks > 0);
77
78         id = added & rxq->ptr_mask;
79         do {
80                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81                                                   RTE_DIM(objs)) < 0)) {
82                         /*
83                          * It is hardly a safe way to increment counter
84                          * from different contexts, but all PMDs do it.
85                          */
86                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87                                 RTE_DIM(objs);
88                         /* Return if we have posted nothing yet */
89                         if (added == rxq->added)
90                                 return;
91                         /* Push posted */
92                         break;
93                 }
94
95                 for (i = 0; i < RTE_DIM(objs);
96                      ++i, id = (id + 1) & rxq->ptr_mask) {
97                         m = objs[i];
98
99                         MBUF_RAW_ALLOC_CHECK(m);
100
101                         rxd = &rxq->sw_desc[id];
102                         rxd->mbuf = m;
103
104                         m->data_off = RTE_PKTMBUF_HEADROOM;
105                         m->port = port_id;
106
107                         addr[i] = rte_pktmbuf_iova(m);
108                 }
109
110                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
111                              RTE_DIM(objs), rxq->completed, added);
112                 added += RTE_DIM(objs);
113         } while (--bulks > 0);
114
115         SFC_ASSERT(added != rxq->added);
116         rxq->added = added;
117         efx_rx_qpush(rxq->common, added, &rxq->pushed);
118 }
119
120 static uint64_t
121 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
122 {
123         uint64_t mbuf_flags = 0;
124
125         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
126         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
127                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
128                 break;
129         case EFX_PKT_IPV4:
130                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
131                 break;
132         default:
133                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
134                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
135                            PKT_RX_IP_CKSUM_UNKNOWN);
136                 break;
137         }
138
139         switch ((desc_flags &
140                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
141         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
142         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
143                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
144                 break;
145         case EFX_PKT_TCP:
146         case EFX_PKT_UDP:
147                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
148                 break;
149         default:
150                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
151                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
152                            PKT_RX_L4_CKSUM_UNKNOWN);
153                 break;
154         }
155
156         return mbuf_flags;
157 }
158
159 static uint32_t
160 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
161 {
162         return RTE_PTYPE_L2_ETHER |
163                 ((desc_flags & EFX_PKT_IPV4) ?
164                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
165                 ((desc_flags & EFX_PKT_IPV6) ?
166                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
167                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
168                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
169 }
170
171 static const uint32_t *
172 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
173 {
174         static const uint32_t ptypes[] = {
175                 RTE_PTYPE_L2_ETHER,
176                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
177                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
178                 RTE_PTYPE_L4_TCP,
179                 RTE_PTYPE_L4_UDP,
180                 RTE_PTYPE_UNKNOWN
181         };
182
183         return ptypes;
184 }
185
186 static void
187 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
188                         struct rte_mbuf *m)
189 {
190         uint8_t *mbuf_data;
191
192
193         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
194                 return;
195
196         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
197
198         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
199                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
200                                                       EFX_RX_HASHALG_TOEPLITZ,
201                                                       mbuf_data);
202
203                 m->ol_flags |= PKT_RX_RSS_HASH;
204         }
205 }
206
207 static uint16_t
208 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
209 {
210         struct sfc_dp_rxq *dp_rxq = rx_queue;
211         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
212         unsigned int completed;
213         unsigned int prefix_size = rxq->prefix_size;
214         unsigned int done_pkts = 0;
215         boolean_t discard_next = B_FALSE;
216         struct rte_mbuf *scatter_pkt = NULL;
217
218         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
219                 return 0;
220
221         sfc_ev_qpoll(rxq->evq);
222
223         completed = rxq->completed;
224         while (completed != rxq->pending && done_pkts < nb_pkts) {
225                 unsigned int id;
226                 struct sfc_efx_rx_sw_desc *rxd;
227                 struct rte_mbuf *m;
228                 unsigned int seg_len;
229                 unsigned int desc_flags;
230
231                 id = completed++ & rxq->ptr_mask;
232                 rxd = &rxq->sw_desc[id];
233                 m = rxd->mbuf;
234                 desc_flags = rxd->flags;
235
236                 if (discard_next)
237                         goto discard;
238
239                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
240                         goto discard;
241
242                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
243                         uint16_t tmp_size;
244                         int rc __rte_unused;
245
246                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
247                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
248                         SFC_ASSERT(rc == 0);
249                         seg_len = tmp_size;
250                 } else {
251                         seg_len = rxd->size - prefix_size;
252                 }
253
254                 rte_pktmbuf_data_len(m) = seg_len;
255                 rte_pktmbuf_pkt_len(m) = seg_len;
256
257                 if (scatter_pkt != NULL) {
258                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
259                                 rte_pktmbuf_free(scatter_pkt);
260                                 goto discard;
261                         }
262                         /* The packet to deliver */
263                         m = scatter_pkt;
264                 }
265
266                 if (desc_flags & EFX_PKT_CONT) {
267                         /* The packet is scattered, more fragments to come */
268                         scatter_pkt = m;
269                         /* Further fragments have no prefix */
270                         prefix_size = 0;
271                         continue;
272                 }
273
274                 /* Scattered packet is done */
275                 scatter_pkt = NULL;
276                 /* The first fragment of the packet has prefix */
277                 prefix_size = rxq->prefix_size;
278
279                 m->ol_flags =
280                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
281                 m->packet_type =
282                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
283
284                 /*
285                  * Extract RSS hash from the packet prefix and
286                  * set the corresponding field (if needed and possible)
287                  */
288                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
289
290                 m->data_off += prefix_size;
291
292                 *rx_pkts++ = m;
293                 done_pkts++;
294                 continue;
295
296 discard:
297                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
298                 rte_mbuf_raw_free(m);
299                 rxd->mbuf = NULL;
300         }
301
302         /* pending is only moved when entire packet is received */
303         SFC_ASSERT(scatter_pkt == NULL);
304
305         rxq->completed = completed;
306
307         sfc_efx_rx_qrefill(rxq);
308
309         return done_pkts;
310 }
311
312 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
313 static unsigned int
314 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
315 {
316         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
317
318         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
319                 return 0;
320
321         sfc_ev_qpoll(rxq->evq);
322
323         return rxq->pending - rxq->completed;
324 }
325
326 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
327 static int
328 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
329 {
330         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
331
332         if (unlikely(offset > rxq->ptr_mask))
333                 return -EINVAL;
334
335         /*
336          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
337          * it is required for the queue to be running, but the
338          * check is omitted because API design assumes that it
339          * is the duty of the caller to satisfy all conditions
340          */
341         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
342                    SFC_EFX_RXQ_FLAG_RUNNING);
343         sfc_ev_qpoll(rxq->evq);
344
345         /*
346          * There is a handful of reserved entries in the ring,
347          * but an explicit check whether the offset points to
348          * a reserved entry is neglected since the two checks
349          * below rely on the figures which take the HW limits
350          * into account and thus if an entry is reserved, the
351          * checks will fail and UNAVAIL code will be returned
352          */
353
354         if (offset < (rxq->pending - rxq->completed))
355                 return RTE_ETH_RX_DESC_DONE;
356
357         if (offset < (rxq->added - rxq->completed))
358                 return RTE_ETH_RX_DESC_AVAIL;
359
360         return RTE_ETH_RX_DESC_UNAVAIL;
361 }
362
363 struct sfc_rxq *
364 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
365 {
366         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
367         struct rte_eth_dev *eth_dev;
368         struct sfc_adapter *sa;
369         struct sfc_rxq *rxq;
370
371         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
372         eth_dev = &rte_eth_devices[dpq->port_id];
373
374         sa = eth_dev->data->dev_private;
375
376         SFC_ASSERT(dpq->queue_id < sa->rxq_count);
377         rxq = sa->rxq_info[dpq->queue_id].rxq;
378
379         SFC_ASSERT(rxq != NULL);
380         return rxq;
381 }
382
383 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
384 static int
385 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
386                           __rte_unused struct rte_mempool *mb_pool,
387                           unsigned int *rxq_entries,
388                           unsigned int *evq_entries,
389                           unsigned int *rxq_max_fill_level)
390 {
391         *rxq_entries = nb_rx_desc;
392         *evq_entries = nb_rx_desc;
393         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
394         return 0;
395 }
396
397 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
398 static int
399 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
400                    const struct rte_pci_addr *pci_addr, int socket_id,
401                    const struct sfc_dp_rx_qcreate_info *info,
402                    struct sfc_dp_rxq **dp_rxqp)
403 {
404         struct sfc_efx_rxq *rxq;
405         int rc;
406
407         rc = ENOMEM;
408         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
409                                  RTE_CACHE_LINE_SIZE, socket_id);
410         if (rxq == NULL)
411                 goto fail_rxq_alloc;
412
413         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
414
415         rc = ENOMEM;
416         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
417                                          info->rxq_entries,
418                                          sizeof(*rxq->sw_desc),
419                                          RTE_CACHE_LINE_SIZE, socket_id);
420         if (rxq->sw_desc == NULL)
421                 goto fail_desc_alloc;
422
423         /* efx datapath is bound to efx control path */
424         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
425         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
426                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
427         rxq->ptr_mask = info->rxq_entries - 1;
428         rxq->batch_max = info->batch_max;
429         rxq->prefix_size = info->prefix_size;
430         rxq->max_fill_level = info->max_fill_level;
431         rxq->refill_threshold = info->refill_threshold;
432         rxq->buf_size = info->buf_size;
433         rxq->refill_mb_pool = info->refill_mb_pool;
434
435         *dp_rxqp = &rxq->dp;
436         return 0;
437
438 fail_desc_alloc:
439         rte_free(rxq);
440
441 fail_rxq_alloc:
442         return rc;
443 }
444
445 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
446 static void
447 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
448 {
449         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
450
451         rte_free(rxq->sw_desc);
452         rte_free(rxq);
453 }
454
455 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
456 static int
457 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
458                   __rte_unused unsigned int evq_read_ptr)
459 {
460         /* libefx-based datapath is specific to libefx-based PMD */
461         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
462         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
463
464         rxq->common = crxq->common;
465
466         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
467
468         sfc_efx_rx_qrefill(rxq);
469
470         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
471
472         return 0;
473 }
474
475 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
476 static void
477 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
478                  __rte_unused unsigned int *evq_read_ptr)
479 {
480         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
481
482         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
483
484         /* libefx-based datapath is bound to libefx-based PMD and uses
485          * event queue structure directly. So, there is no necessity to
486          * return EvQ read pointer.
487          */
488 }
489
490 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
491 static void
492 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
493 {
494         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
495         unsigned int i;
496         struct sfc_efx_rx_sw_desc *rxd;
497
498         for (i = rxq->completed; i != rxq->added; ++i) {
499                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
500                 rte_mbuf_raw_free(rxd->mbuf);
501                 rxd->mbuf = NULL;
502                 /* Packed stream relies on 0 in inactive SW desc.
503                  * Rx queue stop is not performance critical, so
504                  * there is no harm to do it always.
505                  */
506                 rxd->flags = 0;
507                 rxd->size = 0;
508         }
509
510         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
511 }
512
513 struct sfc_dp_rx sfc_efx_rx = {
514         .dp = {
515                 .name           = SFC_KVARG_DATAPATH_EFX,
516                 .type           = SFC_DP_RX,
517                 .hw_fw_caps     = 0,
518         },
519         .features               = SFC_DP_RX_FEAT_SCATTER |
520                                   SFC_DP_RX_FEAT_CHECKSUM,
521         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
522         .qcreate                = sfc_efx_rx_qcreate,
523         .qdestroy               = sfc_efx_rx_qdestroy,
524         .qstart                 = sfc_efx_rx_qstart,
525         .qstop                  = sfc_efx_rx_qstop,
526         .qpurge                 = sfc_efx_rx_qpurge,
527         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
528         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
529         .qdesc_status           = sfc_efx_rx_qdesc_status,
530         .pkt_burst              = sfc_efx_recv_pkts,
531 };
532
533 unsigned int
534 sfc_rx_qdesc_npending(struct sfc_adapter *sa, unsigned int sw_index)
535 {
536         struct sfc_rxq *rxq;
537
538         SFC_ASSERT(sw_index < sa->rxq_count);
539         rxq = sa->rxq_info[sw_index].rxq;
540
541         if (rxq == NULL || (rxq->state & SFC_RXQ_STARTED) == 0)
542                 return 0;
543
544         return sa->dp_rx->qdesc_npending(rxq->dp);
545 }
546
547 int
548 sfc_rx_qdesc_done(struct sfc_dp_rxq *dp_rxq, unsigned int offset)
549 {
550         struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
551
552         return offset < rxq->evq->sa->dp_rx->qdesc_npending(dp_rxq);
553 }
554
555 static void
556 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
557 {
558         struct sfc_rxq *rxq;
559         unsigned int retry_count;
560         unsigned int wait_count;
561         int rc;
562
563         rxq = sa->rxq_info[sw_index].rxq;
564         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
565
566         /*
567          * Retry Rx queue flushing in the case of flush failed or
568          * timeout. In the worst case it can delay for 6 seconds.
569          */
570         for (retry_count = 0;
571              ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
572              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
573              ++retry_count) {
574                 rc = efx_rx_qflush(rxq->common);
575                 if (rc != 0) {
576                         rxq->state |= (rc == EALREADY) ?
577                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
578                         break;
579                 }
580                 rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
581                 rxq->state |= SFC_RXQ_FLUSHING;
582
583                 /*
584                  * Wait for Rx queue flush done or failed event at least
585                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
586                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
587                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
588                  */
589                 wait_count = 0;
590                 do {
591                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
592                         sfc_ev_qpoll(rxq->evq);
593                 } while ((rxq->state & SFC_RXQ_FLUSHING) &&
594                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
595
596                 if (rxq->state & SFC_RXQ_FLUSHING)
597                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
598
599                 if (rxq->state & SFC_RXQ_FLUSH_FAILED)
600                         sfc_err(sa, "RxQ %u flush failed", sw_index);
601
602                 if (rxq->state & SFC_RXQ_FLUSHED)
603                         sfc_notice(sa, "RxQ %u flushed", sw_index);
604         }
605
606         sa->dp_rx->qpurge(rxq->dp);
607 }
608
609 static int
610 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
611 {
612         struct sfc_rss *rss = &sa->rss;
613         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
614         struct sfc_port *port = &sa->port;
615         int rc;
616
617         /*
618          * If promiscuous or all-multicast mode has been requested, setting
619          * filter for the default Rx queue might fail, in particular, while
620          * running over PCI function which is not a member of corresponding
621          * privilege groups; if this occurs, few iterations will be made to
622          * repeat this step without promiscuous and all-multicast flags set
623          */
624 retry:
625         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
626         if (rc == 0)
627                 return 0;
628         else if (rc != EOPNOTSUPP)
629                 return rc;
630
631         if (port->promisc) {
632                 sfc_warn(sa, "promiscuous mode has been requested, "
633                              "but the HW rejects it");
634                 sfc_warn(sa, "promiscuous mode will be disabled");
635
636                 port->promisc = B_FALSE;
637                 rc = sfc_set_rx_mode(sa);
638                 if (rc != 0)
639                         return rc;
640
641                 goto retry;
642         }
643
644         if (port->allmulti) {
645                 sfc_warn(sa, "all-multicast mode has been requested, "
646                              "but the HW rejects it");
647                 sfc_warn(sa, "all-multicast mode will be disabled");
648
649                 port->allmulti = B_FALSE;
650                 rc = sfc_set_rx_mode(sa);
651                 if (rc != 0)
652                         return rc;
653
654                 goto retry;
655         }
656
657         return rc;
658 }
659
660 int
661 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
662 {
663         struct sfc_port *port = &sa->port;
664         struct sfc_rxq_info *rxq_info;
665         struct sfc_rxq *rxq;
666         struct sfc_evq *evq;
667         int rc;
668
669         sfc_log_init(sa, "sw_index=%u", sw_index);
670
671         SFC_ASSERT(sw_index < sa->rxq_count);
672
673         rxq_info = &sa->rxq_info[sw_index];
674         rxq = rxq_info->rxq;
675         SFC_ASSERT(rxq != NULL);
676         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
677
678         evq = rxq->evq;
679
680         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
681         if (rc != 0)
682                 goto fail_ev_qstart;
683
684         switch (rxq_info->type) {
685         case EFX_RXQ_TYPE_DEFAULT:
686                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
687                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
688                         rxq_info->type_flags, evq->common, &rxq->common);
689                 break;
690         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
691                 struct rte_mempool *mp = rxq->refill_mb_pool;
692                 struct rte_mempool_info mp_info;
693
694                 rc = rte_mempool_ops_get_info(mp, &mp_info);
695                 if (rc != 0) {
696                         /* Positive errno is used in the driver */
697                         rc = -rc;
698                         goto fail_mp_get_info;
699                 }
700                 if (mp_info.contig_block_size <= 0) {
701                         rc = EINVAL;
702                         goto fail_bad_contig_block_size;
703                 }
704                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
705                         mp_info.contig_block_size, rxq->buf_size,
706                         mp->header_size + mp->elt_size + mp->trailer_size,
707                         sa->rxd_wait_timeout_ns,
708                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
709                         evq->common, &rxq->common);
710                 break;
711         }
712         default:
713                 rc = ENOTSUP;
714         }
715         if (rc != 0)
716                 goto fail_rx_qcreate;
717
718         efx_rx_qenable(rxq->common);
719
720         rc = sa->dp_rx->qstart(rxq->dp, evq->read_ptr);
721         if (rc != 0)
722                 goto fail_dp_qstart;
723
724         rxq->state |= SFC_RXQ_STARTED;
725
726         if ((sw_index == 0) && !port->isolated) {
727                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
728                 if (rc != 0)
729                         goto fail_mac_filter_default_rxq_set;
730         }
731
732         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
733         sa->eth_dev->data->rx_queue_state[sw_index] =
734                 RTE_ETH_QUEUE_STATE_STARTED;
735
736         return 0;
737
738 fail_mac_filter_default_rxq_set:
739         sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
740
741 fail_dp_qstart:
742         sfc_rx_qflush(sa, sw_index);
743
744 fail_rx_qcreate:
745 fail_bad_contig_block_size:
746 fail_mp_get_info:
747         sfc_ev_qstop(evq);
748
749 fail_ev_qstart:
750         return rc;
751 }
752
753 void
754 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
755 {
756         struct sfc_rxq_info *rxq_info;
757         struct sfc_rxq *rxq;
758
759         sfc_log_init(sa, "sw_index=%u", sw_index);
760
761         SFC_ASSERT(sw_index < sa->rxq_count);
762
763         rxq_info = &sa->rxq_info[sw_index];
764         rxq = rxq_info->rxq;
765
766         if (rxq == NULL || rxq->state == SFC_RXQ_INITIALIZED)
767                 return;
768         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
769
770         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
771         sa->eth_dev->data->rx_queue_state[sw_index] =
772                 RTE_ETH_QUEUE_STATE_STOPPED;
773
774         sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
775
776         if (sw_index == 0)
777                 efx_mac_filter_default_rxq_clear(sa->nic);
778
779         sfc_rx_qflush(sa, sw_index);
780
781         rxq->state = SFC_RXQ_INITIALIZED;
782
783         efx_rx_qdestroy(rxq->common);
784
785         sfc_ev_qstop(rxq->evq);
786 }
787
788 uint64_t
789 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
790 {
791         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
792         uint64_t caps = 0;
793
794         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
795
796         if (sa->dp_rx->features & SFC_DP_RX_FEAT_CHECKSUM) {
797                 caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
798                 caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
799                 caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
800         }
801
802         if (encp->enc_tunnel_encapsulations_supported &&
803             (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
804                 caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
805
806         return caps;
807 }
808
809 uint64_t
810 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
811 {
812         uint64_t caps = 0;
813
814         if (sa->dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
815                 caps |= DEV_RX_OFFLOAD_SCATTER;
816
817         return caps;
818 }
819
820 static int
821 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
822                    const struct rte_eth_rxconf *rx_conf,
823                    __rte_unused uint64_t offloads)
824 {
825         int rc = 0;
826
827         if (rx_conf->rx_thresh.pthresh != 0 ||
828             rx_conf->rx_thresh.hthresh != 0 ||
829             rx_conf->rx_thresh.wthresh != 0) {
830                 sfc_warn(sa,
831                         "RxQ prefetch/host/writeback thresholds are not supported");
832         }
833
834         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
835                 sfc_err(sa,
836                         "RxQ free threshold too large: %u vs maximum %u",
837                         rx_conf->rx_free_thresh, rxq_max_fill_level);
838                 rc = EINVAL;
839         }
840
841         if (rx_conf->rx_drop_en == 0) {
842                 sfc_err(sa, "RxQ drop disable is not supported");
843                 rc = EINVAL;
844         }
845
846         return rc;
847 }
848
849 static unsigned int
850 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
851 {
852         uint32_t data_off;
853         uint32_t order;
854
855         /* The mbuf object itself is always cache line aligned */
856         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
857
858         /* Data offset from mbuf object start */
859         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
860                 RTE_PKTMBUF_HEADROOM;
861
862         order = MIN(order, rte_bsf32(data_off));
863
864         return 1u << order;
865 }
866
867 static uint16_t
868 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
869 {
870         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
871         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
872         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
873         uint16_t buf_size;
874         unsigned int buf_aligned;
875         unsigned int start_alignment;
876         unsigned int end_padding_alignment;
877
878         /* Below it is assumed that both alignments are power of 2 */
879         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
880         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
881
882         /*
883          * mbuf is always cache line aligned, double-check
884          * that it meets rx buffer start alignment requirements.
885          */
886
887         /* Start from mbuf pool data room size */
888         buf_size = rte_pktmbuf_data_room_size(mb_pool);
889
890         /* Remove headroom */
891         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
892                 sfc_err(sa,
893                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
894                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
895                 return 0;
896         }
897         buf_size -= RTE_PKTMBUF_HEADROOM;
898
899         /* Calculate guaranteed data start alignment */
900         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
901
902         /* Reserve space for start alignment */
903         if (buf_aligned < nic_align_start) {
904                 start_alignment = nic_align_start - buf_aligned;
905                 if (buf_size <= start_alignment) {
906                         sfc_err(sa,
907                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
908                                 mb_pool->name,
909                                 rte_pktmbuf_data_room_size(mb_pool),
910                                 RTE_PKTMBUF_HEADROOM, start_alignment);
911                         return 0;
912                 }
913                 buf_aligned = nic_align_start;
914                 buf_size -= start_alignment;
915         } else {
916                 start_alignment = 0;
917         }
918
919         /* Make sure that end padding does not write beyond the buffer */
920         if (buf_aligned < nic_align_end) {
921                 /*
922                  * Estimate space which can be lost. If guarnteed buffer
923                  * size is odd, lost space is (nic_align_end - 1). More
924                  * accurate formula is below.
925                  */
926                 end_padding_alignment = nic_align_end -
927                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
928                 if (buf_size <= end_padding_alignment) {
929                         sfc_err(sa,
930                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
931                                 mb_pool->name,
932                                 rte_pktmbuf_data_room_size(mb_pool),
933                                 RTE_PKTMBUF_HEADROOM, start_alignment,
934                                 end_padding_alignment);
935                         return 0;
936                 }
937                 buf_size -= end_padding_alignment;
938         } else {
939                 /*
940                  * Start is aligned the same or better than end,
941                  * just align length.
942                  */
943                 buf_size = P2ALIGN(buf_size, nic_align_end);
944         }
945
946         return buf_size;
947 }
948
949 int
950 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
951              uint16_t nb_rx_desc, unsigned int socket_id,
952              const struct rte_eth_rxconf *rx_conf,
953              struct rte_mempool *mb_pool)
954 {
955         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
956         struct sfc_rss *rss = &sa->rss;
957         int rc;
958         unsigned int rxq_entries;
959         unsigned int evq_entries;
960         unsigned int rxq_max_fill_level;
961         uint64_t offloads;
962         uint16_t buf_size;
963         struct sfc_rxq_info *rxq_info;
964         struct sfc_evq *evq;
965         struct sfc_rxq *rxq;
966         struct sfc_dp_rx_qcreate_info info;
967
968         rc = sa->dp_rx->qsize_up_rings(nb_rx_desc, mb_pool, &rxq_entries,
969                                        &evq_entries, &rxq_max_fill_level);
970         if (rc != 0)
971                 goto fail_size_up_rings;
972         SFC_ASSERT(rxq_entries >= EFX_RXQ_MINNDESCS);
973         SFC_ASSERT(rxq_entries <= EFX_RXQ_MAXNDESCS);
974         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
975
976         offloads = rx_conf->offloads |
977                 sa->eth_dev->data->dev_conf.rxmode.offloads;
978         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
979         if (rc != 0)
980                 goto fail_bad_conf;
981
982         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
983         if (buf_size == 0) {
984                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
985                         sw_index);
986                 rc = EINVAL;
987                 goto fail_bad_conf;
988         }
989
990         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
991             (~offloads & DEV_RX_OFFLOAD_SCATTER)) {
992                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
993                         "object size is too small", sw_index);
994                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
995                         "PDU size %u plus Rx prefix %u bytes",
996                         sw_index, buf_size, (unsigned int)sa->port.pdu,
997                         encp->enc_rx_prefix_size);
998                 rc = EINVAL;
999                 goto fail_bad_conf;
1000         }
1001
1002         SFC_ASSERT(sw_index < sa->rxq_count);
1003         rxq_info = &sa->rxq_info[sw_index];
1004
1005         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1006         rxq_info->entries = rxq_entries;
1007
1008         if (sa->dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1009                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1010         else
1011                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1012
1013         rxq_info->type_flags =
1014                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1015                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1016
1017         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1018             (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1019                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1020
1021         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1022                           evq_entries, socket_id, &evq);
1023         if (rc != 0)
1024                 goto fail_ev_qinit;
1025
1026         rc = ENOMEM;
1027         rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
1028                                  socket_id);
1029         if (rxq == NULL)
1030                 goto fail_rxq_alloc;
1031
1032         rxq_info->rxq = rxq;
1033
1034         rxq->evq = evq;
1035         rxq->hw_index = sw_index;
1036         rxq->refill_threshold =
1037                 RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
1038         rxq->refill_mb_pool = mb_pool;
1039         rxq->buf_size = buf_size;
1040
1041         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
1042                            socket_id, &rxq->mem);
1043         if (rc != 0)
1044                 goto fail_dma_alloc;
1045
1046         memset(&info, 0, sizeof(info));
1047         info.refill_mb_pool = rxq->refill_mb_pool;
1048         info.max_fill_level = rxq_max_fill_level;
1049         info.refill_threshold = rxq->refill_threshold;
1050         info.buf_size = buf_size;
1051         info.batch_max = encp->enc_rx_batch_max;
1052         info.prefix_size = encp->enc_rx_prefix_size;
1053
1054         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1055                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1056
1057         info.rxq_entries = rxq_info->entries;
1058         info.rxq_hw_ring = rxq->mem.esm_base;
1059         info.evq_entries = evq_entries;
1060         info.evq_hw_ring = evq->mem.esm_base;
1061         info.hw_index = rxq->hw_index;
1062         info.mem_bar = sa->mem_bar.esb_base;
1063         info.vi_window_shift = encp->enc_vi_window_shift;
1064
1065         rc = sa->dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1066                                 &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1067                                 socket_id, &info, &rxq->dp);
1068         if (rc != 0)
1069                 goto fail_dp_rx_qcreate;
1070
1071         evq->dp_rxq = rxq->dp;
1072
1073         rxq->state = SFC_RXQ_INITIALIZED;
1074
1075         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1076
1077         return 0;
1078
1079 fail_dp_rx_qcreate:
1080         sfc_dma_free(sa, &rxq->mem);
1081
1082 fail_dma_alloc:
1083         rxq_info->rxq = NULL;
1084         rte_free(rxq);
1085
1086 fail_rxq_alloc:
1087         sfc_ev_qfini(evq);
1088
1089 fail_ev_qinit:
1090         rxq_info->entries = 0;
1091
1092 fail_bad_conf:
1093 fail_size_up_rings:
1094         sfc_log_init(sa, "failed %d", rc);
1095         return rc;
1096 }
1097
1098 void
1099 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1100 {
1101         struct sfc_rxq_info *rxq_info;
1102         struct sfc_rxq *rxq;
1103
1104         SFC_ASSERT(sw_index < sa->rxq_count);
1105         sa->eth_dev->data->rx_queues[sw_index] = NULL;
1106
1107         rxq_info = &sa->rxq_info[sw_index];
1108
1109         rxq = rxq_info->rxq;
1110         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
1111
1112         sa->dp_rx->qdestroy(rxq->dp);
1113         rxq->dp = NULL;
1114
1115         rxq_info->rxq = NULL;
1116         rxq_info->entries = 0;
1117
1118         sfc_dma_free(sa, &rxq->mem);
1119
1120         sfc_ev_qfini(rxq->evq);
1121         rxq->evq = NULL;
1122
1123         rte_free(rxq);
1124 }
1125
1126 /*
1127  * Mapping between RTE RSS hash functions and their EFX counterparts.
1128  */
1129 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1130         { ETH_RSS_NONFRAG_IPV4_TCP,
1131           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1132         { ETH_RSS_NONFRAG_IPV4_UDP,
1133           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1134         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1135           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1136         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1137           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1138         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1139           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1140           EFX_RX_HASH(IPV4, 2TUPLE) },
1141         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1142           ETH_RSS_IPV6_EX,
1143           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1144           EFX_RX_HASH(IPV6, 2TUPLE) }
1145 };
1146
1147 static efx_rx_hash_type_t
1148 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1149                             unsigned int *hash_type_flags_supported,
1150                             unsigned int nb_hash_type_flags_supported)
1151 {
1152         efx_rx_hash_type_t hash_type_masked = 0;
1153         unsigned int i, j;
1154
1155         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1156                 unsigned int class_tuple_lbn[] = {
1157                         EFX_RX_CLASS_IPV4_TCP_LBN,
1158                         EFX_RX_CLASS_IPV4_UDP_LBN,
1159                         EFX_RX_CLASS_IPV4_LBN,
1160                         EFX_RX_CLASS_IPV6_TCP_LBN,
1161                         EFX_RX_CLASS_IPV6_UDP_LBN,
1162                         EFX_RX_CLASS_IPV6_LBN
1163                 };
1164
1165                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1166                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1167                         unsigned int flag;
1168
1169                         tuple_mask <<= class_tuple_lbn[j];
1170                         flag = hash_type & tuple_mask;
1171
1172                         if (flag == hash_type_flags_supported[i])
1173                                 hash_type_masked |= flag;
1174                 }
1175         }
1176
1177         return hash_type_masked;
1178 }
1179
1180 int
1181 sfc_rx_hash_init(struct sfc_adapter *sa)
1182 {
1183         struct sfc_rss *rss = &sa->rss;
1184         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1185         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1186         efx_rx_hash_alg_t alg;
1187         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1188         unsigned int nb_flags_supp;
1189         struct sfc_rss_hf_rte_to_efx *hf_map;
1190         struct sfc_rss_hf_rte_to_efx *entry;
1191         efx_rx_hash_type_t efx_hash_types;
1192         unsigned int i;
1193         int rc;
1194
1195         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1196                 alg = EFX_RX_HASHALG_TOEPLITZ;
1197         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1198                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1199         else
1200                 return EINVAL;
1201
1202         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1203                                          RTE_DIM(flags_supp), &nb_flags_supp);
1204         if (rc != 0)
1205                 return rc;
1206
1207         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1208                                    RTE_DIM(sfc_rss_hf_map),
1209                                    sizeof(*hf_map), 0, sa->socket_id);
1210         if (hf_map == NULL)
1211                 return ENOMEM;
1212
1213         entry = hf_map;
1214         efx_hash_types = 0;
1215         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1216                 efx_rx_hash_type_t ht;
1217
1218                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1219                                                  flags_supp, nb_flags_supp);
1220                 if (ht != 0) {
1221                         entry->rte = sfc_rss_hf_map[i].rte;
1222                         entry->efx = ht;
1223                         efx_hash_types |= ht;
1224                         ++entry;
1225                 }
1226         }
1227
1228         rss->hash_alg = alg;
1229         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1230         rss->hf_map = hf_map;
1231         rss->hash_types = efx_hash_types;
1232
1233         return 0;
1234 }
1235
1236 void
1237 sfc_rx_hash_fini(struct sfc_adapter *sa)
1238 {
1239         struct sfc_rss *rss = &sa->rss;
1240
1241         rte_free(rss->hf_map);
1242 }
1243
1244 int
1245 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1246                      efx_rx_hash_type_t *efx)
1247 {
1248         struct sfc_rss *rss = &sa->rss;
1249         efx_rx_hash_type_t hash_types = 0;
1250         unsigned int i;
1251
1252         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1253                 uint64_t rte_mask = rss->hf_map[i].rte;
1254
1255                 if ((rte & rte_mask) != 0) {
1256                         rte &= ~rte_mask;
1257                         hash_types |= rss->hf_map[i].efx;
1258                 }
1259         }
1260
1261         if (rte != 0) {
1262                 sfc_err(sa, "unsupported hash functions requested");
1263                 return EINVAL;
1264         }
1265
1266         *efx = hash_types;
1267
1268         return 0;
1269 }
1270
1271 uint64_t
1272 sfc_rx_hf_efx_to_rte(struct sfc_adapter *sa, efx_rx_hash_type_t efx)
1273 {
1274         struct sfc_rss *rss = &sa->rss;
1275         uint64_t rte = 0;
1276         unsigned int i;
1277
1278         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1279                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1280
1281                 if ((efx & hash_type) == hash_type)
1282                         rte |= rss->hf_map[i].rte;
1283         }
1284
1285         return rte;
1286 }
1287
1288 static int
1289 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1290                             struct rte_eth_rss_conf *conf)
1291 {
1292         struct sfc_rss *rss = &sa->rss;
1293         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1294         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(sa, efx_hash_types);
1295         int rc;
1296
1297         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1298                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1299                     conf->rss_key != NULL)
1300                         return EINVAL;
1301         }
1302
1303         if (conf->rss_hf != 0) {
1304                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1305                 if (rc != 0)
1306                         return rc;
1307         }
1308
1309         if (conf->rss_key != NULL) {
1310                 if (conf->rss_key_len != sizeof(rss->key)) {
1311                         sfc_err(sa, "RSS key size is wrong (should be %lu)",
1312                                 sizeof(rss->key));
1313                         return EINVAL;
1314                 }
1315                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1316         }
1317
1318         rss->hash_types = efx_hash_types;
1319
1320         return 0;
1321 }
1322
1323 static int
1324 sfc_rx_rss_config(struct sfc_adapter *sa)
1325 {
1326         struct sfc_rss *rss = &sa->rss;
1327         int rc = 0;
1328
1329         if (rss->channels > 0) {
1330                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1331                                            rss->hash_alg, rss->hash_types,
1332                                            B_TRUE);
1333                 if (rc != 0)
1334                         goto finish;
1335
1336                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1337                                           rss->key, sizeof(rss->key));
1338                 if (rc != 0)
1339                         goto finish;
1340
1341                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1342                                           rss->tbl, RTE_DIM(rss->tbl));
1343         }
1344
1345 finish:
1346         return rc;
1347 }
1348
1349 int
1350 sfc_rx_start(struct sfc_adapter *sa)
1351 {
1352         unsigned int sw_index;
1353         int rc;
1354
1355         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1356
1357         rc = efx_rx_init(sa->nic);
1358         if (rc != 0)
1359                 goto fail_rx_init;
1360
1361         rc = sfc_rx_rss_config(sa);
1362         if (rc != 0)
1363                 goto fail_rss_config;
1364
1365         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1366                 if (sa->rxq_info[sw_index].rxq != NULL &&
1367                     (!sa->rxq_info[sw_index].deferred_start ||
1368                      sa->rxq_info[sw_index].deferred_started)) {
1369                         rc = sfc_rx_qstart(sa, sw_index);
1370                         if (rc != 0)
1371                                 goto fail_rx_qstart;
1372                 }
1373         }
1374
1375         return 0;
1376
1377 fail_rx_qstart:
1378         while (sw_index-- > 0)
1379                 sfc_rx_qstop(sa, sw_index);
1380
1381 fail_rss_config:
1382         efx_rx_fini(sa->nic);
1383
1384 fail_rx_init:
1385         sfc_log_init(sa, "failed %d", rc);
1386         return rc;
1387 }
1388
1389 void
1390 sfc_rx_stop(struct sfc_adapter *sa)
1391 {
1392         unsigned int sw_index;
1393
1394         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1395
1396         sw_index = sa->rxq_count;
1397         while (sw_index-- > 0) {
1398                 if (sa->rxq_info[sw_index].rxq != NULL)
1399                         sfc_rx_qstop(sa, sw_index);
1400         }
1401
1402         efx_rx_fini(sa->nic);
1403 }
1404
1405 static int
1406 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1407 {
1408         struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
1409         unsigned int max_entries;
1410
1411         max_entries = EFX_RXQ_MAXNDESCS;
1412         SFC_ASSERT(rte_is_power_of_2(max_entries));
1413
1414         rxq_info->max_entries = max_entries;
1415
1416         return 0;
1417 }
1418
1419 static int
1420 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1421 {
1422         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1423                                       sfc_rx_get_queue_offload_caps(sa);
1424         struct sfc_rss *rss = &sa->rss;
1425         int rc = 0;
1426
1427         switch (rxmode->mq_mode) {
1428         case ETH_MQ_RX_NONE:
1429                 /* No special checks are required */
1430                 break;
1431         case ETH_MQ_RX_RSS:
1432                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1433                         sfc_err(sa, "RSS is not available");
1434                         rc = EINVAL;
1435                 }
1436                 break;
1437         default:
1438                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1439                         rxmode->mq_mode);
1440                 rc = EINVAL;
1441         }
1442
1443         /*
1444          * Requested offloads are validated against supported by ethdev,
1445          * so unsupported offloads cannot be added as the result of
1446          * below check.
1447          */
1448         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1449             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1450                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1451                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1452         }
1453
1454         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1455             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1456                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1457                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1458         }
1459
1460         return rc;
1461 }
1462
1463 /**
1464  * Destroy excess queues that are no longer needed after reconfiguration
1465  * or complete close.
1466  */
1467 static void
1468 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1469 {
1470         int sw_index;
1471
1472         SFC_ASSERT(nb_rx_queues <= sa->rxq_count);
1473
1474         sw_index = sa->rxq_count;
1475         while (--sw_index >= (int)nb_rx_queues) {
1476                 if (sa->rxq_info[sw_index].rxq != NULL)
1477                         sfc_rx_qfini(sa, sw_index);
1478         }
1479
1480         sa->rxq_count = nb_rx_queues;
1481 }
1482
1483 /**
1484  * Initialize Rx subsystem.
1485  *
1486  * Called at device (re)configuration stage when number of receive queues is
1487  * specified together with other device level receive configuration.
1488  *
1489  * It should be used to allocate NUMA-unaware resources.
1490  */
1491 int
1492 sfc_rx_configure(struct sfc_adapter *sa)
1493 {
1494         struct sfc_rss *rss = &sa->rss;
1495         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1496         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1497         int rc;
1498
1499         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1500                      nb_rx_queues, sa->rxq_count);
1501
1502         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1503         if (rc != 0)
1504                 goto fail_check_mode;
1505
1506         if (nb_rx_queues == sa->rxq_count)
1507                 goto configure_rss;
1508
1509         if (sa->rxq_info == NULL) {
1510                 rc = ENOMEM;
1511                 sa->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1512                                                  sizeof(sa->rxq_info[0]), 0,
1513                                                  sa->socket_id);
1514                 if (sa->rxq_info == NULL)
1515                         goto fail_rxqs_alloc;
1516         } else {
1517                 struct sfc_rxq_info *new_rxq_info;
1518
1519                 if (nb_rx_queues < sa->rxq_count)
1520                         sfc_rx_fini_queues(sa, nb_rx_queues);
1521
1522                 rc = ENOMEM;
1523                 new_rxq_info =
1524                         rte_realloc(sa->rxq_info,
1525                                     nb_rx_queues * sizeof(sa->rxq_info[0]), 0);
1526                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1527                         goto fail_rxqs_realloc;
1528
1529                 sa->rxq_info = new_rxq_info;
1530                 if (nb_rx_queues > sa->rxq_count)
1531                         memset(&sa->rxq_info[sa->rxq_count], 0,
1532                                (nb_rx_queues - sa->rxq_count) *
1533                                sizeof(sa->rxq_info[0]));
1534         }
1535
1536         while (sa->rxq_count < nb_rx_queues) {
1537                 rc = sfc_rx_qinit_info(sa, sa->rxq_count);
1538                 if (rc != 0)
1539                         goto fail_rx_qinit_info;
1540
1541                 sa->rxq_count++;
1542         }
1543
1544 configure_rss:
1545         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1546                          MIN(sa->rxq_count, EFX_MAXRSS) : 0;
1547
1548         if (rss->channels > 0) {
1549                 struct rte_eth_rss_conf *adv_conf_rss;
1550                 unsigned int sw_index;
1551
1552                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1553                         rss->tbl[sw_index] = sw_index % rss->channels;
1554
1555                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1556                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1557                 if (rc != 0)
1558                         goto fail_rx_process_adv_conf_rss;
1559         }
1560
1561         return 0;
1562
1563 fail_rx_process_adv_conf_rss:
1564 fail_rx_qinit_info:
1565 fail_rxqs_realloc:
1566 fail_rxqs_alloc:
1567         sfc_rx_close(sa);
1568
1569 fail_check_mode:
1570         sfc_log_init(sa, "failed %d", rc);
1571         return rc;
1572 }
1573
1574 /**
1575  * Shutdown Rx subsystem.
1576  *
1577  * Called at device close stage, for example, before device shutdown.
1578  */
1579 void
1580 sfc_rx_close(struct sfc_adapter *sa)
1581 {
1582         struct sfc_rss *rss = &sa->rss;
1583
1584         sfc_rx_fini_queues(sa, 0);
1585
1586         rss->channels = 0;
1587
1588         rte_free(sa->rxq_info);
1589         sa->rxq_info = NULL;
1590 }