New upstream version 18.08
[deb_dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq *rxq)
43 {
44         rxq->state |= SFC_RXQ_FLUSHED;
45         rxq->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
50 {
51         rxq->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58         unsigned int free_space;
59         unsigned int bulks;
60         void *objs[SFC_RX_REFILL_BULK];
61         efsys_dma_addr_t addr[RTE_DIM(objs)];
62         unsigned int added = rxq->added;
63         unsigned int id;
64         unsigned int i;
65         struct sfc_efx_rx_sw_desc *rxd;
66         struct rte_mbuf *m;
67         uint16_t port_id = rxq->dp.dpq.port_id;
68
69         free_space = rxq->max_fill_level - (added - rxq->completed);
70
71         if (free_space < rxq->refill_threshold)
72                 return;
73
74         bulks = free_space / RTE_DIM(objs);
75         /* refill_threshold guarantees that bulks is positive */
76         SFC_ASSERT(bulks > 0);
77
78         id = added & rxq->ptr_mask;
79         do {
80                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81                                                   RTE_DIM(objs)) < 0)) {
82                         /*
83                          * It is hardly a safe way to increment counter
84                          * from different contexts, but all PMDs do it.
85                          */
86                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87                                 RTE_DIM(objs);
88                         /* Return if we have posted nothing yet */
89                         if (added == rxq->added)
90                                 return;
91                         /* Push posted */
92                         break;
93                 }
94
95                 for (i = 0; i < RTE_DIM(objs);
96                      ++i, id = (id + 1) & rxq->ptr_mask) {
97                         m = objs[i];
98
99                         rxd = &rxq->sw_desc[id];
100                         rxd->mbuf = m;
101
102                         SFC_ASSERT(rte_mbuf_refcnt_read(m) == 1);
103                         m->data_off = RTE_PKTMBUF_HEADROOM;
104                         SFC_ASSERT(m->next == NULL);
105                         SFC_ASSERT(m->nb_segs == 1);
106                         m->port = port_id;
107
108                         addr[i] = rte_pktmbuf_iova(m);
109                 }
110
111                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
112                              RTE_DIM(objs), rxq->completed, added);
113                 added += RTE_DIM(objs);
114         } while (--bulks > 0);
115
116         SFC_ASSERT(added != rxq->added);
117         rxq->added = added;
118         efx_rx_qpush(rxq->common, added, &rxq->pushed);
119 }
120
121 static uint64_t
122 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
123 {
124         uint64_t mbuf_flags = 0;
125
126         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
127         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
128                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
129                 break;
130         case EFX_PKT_IPV4:
131                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
132                 break;
133         default:
134                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
135                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
136                            PKT_RX_IP_CKSUM_UNKNOWN);
137                 break;
138         }
139
140         switch ((desc_flags &
141                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
142         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
143         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
144                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
145                 break;
146         case EFX_PKT_TCP:
147         case EFX_PKT_UDP:
148                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
149                 break;
150         default:
151                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
152                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
153                            PKT_RX_L4_CKSUM_UNKNOWN);
154                 break;
155         }
156
157         return mbuf_flags;
158 }
159
160 static uint32_t
161 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
162 {
163         return RTE_PTYPE_L2_ETHER |
164                 ((desc_flags & EFX_PKT_IPV4) ?
165                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
166                 ((desc_flags & EFX_PKT_IPV6) ?
167                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
168                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
169                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
170 }
171
172 static const uint32_t *
173 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
174 {
175         static const uint32_t ptypes[] = {
176                 RTE_PTYPE_L2_ETHER,
177                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
178                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
179                 RTE_PTYPE_L4_TCP,
180                 RTE_PTYPE_L4_UDP,
181                 RTE_PTYPE_UNKNOWN
182         };
183
184         return ptypes;
185 }
186
187 static void
188 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
189                         struct rte_mbuf *m)
190 {
191         uint8_t *mbuf_data;
192
193
194         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
195                 return;
196
197         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
198
199         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
200                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
201                                                       EFX_RX_HASHALG_TOEPLITZ,
202                                                       mbuf_data);
203
204                 m->ol_flags |= PKT_RX_RSS_HASH;
205         }
206 }
207
208 static uint16_t
209 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
210 {
211         struct sfc_dp_rxq *dp_rxq = rx_queue;
212         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
213         unsigned int completed;
214         unsigned int prefix_size = rxq->prefix_size;
215         unsigned int done_pkts = 0;
216         boolean_t discard_next = B_FALSE;
217         struct rte_mbuf *scatter_pkt = NULL;
218
219         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
220                 return 0;
221
222         sfc_ev_qpoll(rxq->evq);
223
224         completed = rxq->completed;
225         while (completed != rxq->pending && done_pkts < nb_pkts) {
226                 unsigned int id;
227                 struct sfc_efx_rx_sw_desc *rxd;
228                 struct rte_mbuf *m;
229                 unsigned int seg_len;
230                 unsigned int desc_flags;
231
232                 id = completed++ & rxq->ptr_mask;
233                 rxd = &rxq->sw_desc[id];
234                 m = rxd->mbuf;
235                 desc_flags = rxd->flags;
236
237                 if (discard_next)
238                         goto discard;
239
240                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
241                         goto discard;
242
243                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
244                         uint16_t tmp_size;
245                         int rc __rte_unused;
246
247                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
248                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
249                         SFC_ASSERT(rc == 0);
250                         seg_len = tmp_size;
251                 } else {
252                         seg_len = rxd->size - prefix_size;
253                 }
254
255                 rte_pktmbuf_data_len(m) = seg_len;
256                 rte_pktmbuf_pkt_len(m) = seg_len;
257
258                 if (scatter_pkt != NULL) {
259                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
260                                 rte_pktmbuf_free(scatter_pkt);
261                                 goto discard;
262                         }
263                         /* The packet to deliver */
264                         m = scatter_pkt;
265                 }
266
267                 if (desc_flags & EFX_PKT_CONT) {
268                         /* The packet is scattered, more fragments to come */
269                         scatter_pkt = m;
270                         /* Further fragments have no prefix */
271                         prefix_size = 0;
272                         continue;
273                 }
274
275                 /* Scattered packet is done */
276                 scatter_pkt = NULL;
277                 /* The first fragment of the packet has prefix */
278                 prefix_size = rxq->prefix_size;
279
280                 m->ol_flags =
281                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
282                 m->packet_type =
283                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
284
285                 /*
286                  * Extract RSS hash from the packet prefix and
287                  * set the corresponding field (if needed and possible)
288                  */
289                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
290
291                 m->data_off += prefix_size;
292
293                 *rx_pkts++ = m;
294                 done_pkts++;
295                 continue;
296
297 discard:
298                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
299                 rte_mempool_put(rxq->refill_mb_pool, m);
300                 rxd->mbuf = NULL;
301         }
302
303         /* pending is only moved when entire packet is received */
304         SFC_ASSERT(scatter_pkt == NULL);
305
306         rxq->completed = completed;
307
308         sfc_efx_rx_qrefill(rxq);
309
310         return done_pkts;
311 }
312
313 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
314 static unsigned int
315 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
316 {
317         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
318
319         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
320                 return 0;
321
322         sfc_ev_qpoll(rxq->evq);
323
324         return rxq->pending - rxq->completed;
325 }
326
327 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
328 static int
329 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
330 {
331         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
332
333         if (unlikely(offset > rxq->ptr_mask))
334                 return -EINVAL;
335
336         /*
337          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
338          * it is required for the queue to be running, but the
339          * check is omitted because API design assumes that it
340          * is the duty of the caller to satisfy all conditions
341          */
342         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
343                    SFC_EFX_RXQ_FLAG_RUNNING);
344         sfc_ev_qpoll(rxq->evq);
345
346         /*
347          * There is a handful of reserved entries in the ring,
348          * but an explicit check whether the offset points to
349          * a reserved entry is neglected since the two checks
350          * below rely on the figures which take the HW limits
351          * into account and thus if an entry is reserved, the
352          * checks will fail and UNAVAIL code will be returned
353          */
354
355         if (offset < (rxq->pending - rxq->completed))
356                 return RTE_ETH_RX_DESC_DONE;
357
358         if (offset < (rxq->added - rxq->completed))
359                 return RTE_ETH_RX_DESC_AVAIL;
360
361         return RTE_ETH_RX_DESC_UNAVAIL;
362 }
363
364 struct sfc_rxq *
365 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
366 {
367         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
368         struct rte_eth_dev *eth_dev;
369         struct sfc_adapter *sa;
370         struct sfc_rxq *rxq;
371
372         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
373         eth_dev = &rte_eth_devices[dpq->port_id];
374
375         sa = eth_dev->data->dev_private;
376
377         SFC_ASSERT(dpq->queue_id < sa->rxq_count);
378         rxq = sa->rxq_info[dpq->queue_id].rxq;
379
380         SFC_ASSERT(rxq != NULL);
381         return rxq;
382 }
383
384 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
385 static int
386 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
387                           __rte_unused struct rte_mempool *mb_pool,
388                           unsigned int *rxq_entries,
389                           unsigned int *evq_entries,
390                           unsigned int *rxq_max_fill_level)
391 {
392         *rxq_entries = nb_rx_desc;
393         *evq_entries = nb_rx_desc;
394         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
395         return 0;
396 }
397
398 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
399 static int
400 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
401                    const struct rte_pci_addr *pci_addr, int socket_id,
402                    const struct sfc_dp_rx_qcreate_info *info,
403                    struct sfc_dp_rxq **dp_rxqp)
404 {
405         struct sfc_efx_rxq *rxq;
406         int rc;
407
408         rc = ENOMEM;
409         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
410                                  RTE_CACHE_LINE_SIZE, socket_id);
411         if (rxq == NULL)
412                 goto fail_rxq_alloc;
413
414         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
415
416         rc = ENOMEM;
417         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
418                                          info->rxq_entries,
419                                          sizeof(*rxq->sw_desc),
420                                          RTE_CACHE_LINE_SIZE, socket_id);
421         if (rxq->sw_desc == NULL)
422                 goto fail_desc_alloc;
423
424         /* efx datapath is bound to efx control path */
425         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
426         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
427                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
428         rxq->ptr_mask = info->rxq_entries - 1;
429         rxq->batch_max = info->batch_max;
430         rxq->prefix_size = info->prefix_size;
431         rxq->max_fill_level = info->max_fill_level;
432         rxq->refill_threshold = info->refill_threshold;
433         rxq->buf_size = info->buf_size;
434         rxq->refill_mb_pool = info->refill_mb_pool;
435
436         *dp_rxqp = &rxq->dp;
437         return 0;
438
439 fail_desc_alloc:
440         rte_free(rxq);
441
442 fail_rxq_alloc:
443         return rc;
444 }
445
446 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
447 static void
448 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
449 {
450         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
451
452         rte_free(rxq->sw_desc);
453         rte_free(rxq);
454 }
455
456 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
457 static int
458 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
459                   __rte_unused unsigned int evq_read_ptr)
460 {
461         /* libefx-based datapath is specific to libefx-based PMD */
462         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
463         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
464
465         rxq->common = crxq->common;
466
467         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
468
469         sfc_efx_rx_qrefill(rxq);
470
471         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
472
473         return 0;
474 }
475
476 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
477 static void
478 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
479                  __rte_unused unsigned int *evq_read_ptr)
480 {
481         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
482
483         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
484
485         /* libefx-based datapath is bound to libefx-based PMD and uses
486          * event queue structure directly. So, there is no necessity to
487          * return EvQ read pointer.
488          */
489 }
490
491 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
492 static void
493 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
494 {
495         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
496         unsigned int i;
497         struct sfc_efx_rx_sw_desc *rxd;
498
499         for (i = rxq->completed; i != rxq->added; ++i) {
500                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
501                 rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
502                 rxd->mbuf = NULL;
503                 /* Packed stream relies on 0 in inactive SW desc.
504                  * Rx queue stop is not performance critical, so
505                  * there is no harm to do it always.
506                  */
507                 rxd->flags = 0;
508                 rxd->size = 0;
509         }
510
511         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
512 }
513
514 struct sfc_dp_rx sfc_efx_rx = {
515         .dp = {
516                 .name           = SFC_KVARG_DATAPATH_EFX,
517                 .type           = SFC_DP_RX,
518                 .hw_fw_caps     = 0,
519         },
520         .features               = SFC_DP_RX_FEAT_SCATTER |
521                                   SFC_DP_RX_FEAT_CHECKSUM,
522         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
523         .qcreate                = sfc_efx_rx_qcreate,
524         .qdestroy               = sfc_efx_rx_qdestroy,
525         .qstart                 = sfc_efx_rx_qstart,
526         .qstop                  = sfc_efx_rx_qstop,
527         .qpurge                 = sfc_efx_rx_qpurge,
528         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
529         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
530         .qdesc_status           = sfc_efx_rx_qdesc_status,
531         .pkt_burst              = sfc_efx_recv_pkts,
532 };
533
534 unsigned int
535 sfc_rx_qdesc_npending(struct sfc_adapter *sa, unsigned int sw_index)
536 {
537         struct sfc_rxq *rxq;
538
539         SFC_ASSERT(sw_index < sa->rxq_count);
540         rxq = sa->rxq_info[sw_index].rxq;
541
542         if (rxq == NULL || (rxq->state & SFC_RXQ_STARTED) == 0)
543                 return 0;
544
545         return sa->dp_rx->qdesc_npending(rxq->dp);
546 }
547
548 int
549 sfc_rx_qdesc_done(struct sfc_dp_rxq *dp_rxq, unsigned int offset)
550 {
551         struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
552
553         return offset < rxq->evq->sa->dp_rx->qdesc_npending(dp_rxq);
554 }
555
556 static void
557 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
558 {
559         struct sfc_rxq *rxq;
560         unsigned int retry_count;
561         unsigned int wait_count;
562         int rc;
563
564         rxq = sa->rxq_info[sw_index].rxq;
565         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
566
567         /*
568          * Retry Rx queue flushing in the case of flush failed or
569          * timeout. In the worst case it can delay for 6 seconds.
570          */
571         for (retry_count = 0;
572              ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
573              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
574              ++retry_count) {
575                 rc = efx_rx_qflush(rxq->common);
576                 if (rc != 0) {
577                         rxq->state |= (rc == EALREADY) ?
578                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
579                         break;
580                 }
581                 rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
582                 rxq->state |= SFC_RXQ_FLUSHING;
583
584                 /*
585                  * Wait for Rx queue flush done or failed event at least
586                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
587                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
588                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
589                  */
590                 wait_count = 0;
591                 do {
592                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
593                         sfc_ev_qpoll(rxq->evq);
594                 } while ((rxq->state & SFC_RXQ_FLUSHING) &&
595                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
596
597                 if (rxq->state & SFC_RXQ_FLUSHING)
598                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
599
600                 if (rxq->state & SFC_RXQ_FLUSH_FAILED)
601                         sfc_err(sa, "RxQ %u flush failed", sw_index);
602
603                 if (rxq->state & SFC_RXQ_FLUSHED)
604                         sfc_notice(sa, "RxQ %u flushed", sw_index);
605         }
606
607         sa->dp_rx->qpurge(rxq->dp);
608 }
609
610 static int
611 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
612 {
613         struct sfc_rss *rss = &sa->rss;
614         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
615         struct sfc_port *port = &sa->port;
616         int rc;
617
618         /*
619          * If promiscuous or all-multicast mode has been requested, setting
620          * filter for the default Rx queue might fail, in particular, while
621          * running over PCI function which is not a member of corresponding
622          * privilege groups; if this occurs, few iterations will be made to
623          * repeat this step without promiscuous and all-multicast flags set
624          */
625 retry:
626         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
627         if (rc == 0)
628                 return 0;
629         else if (rc != EOPNOTSUPP)
630                 return rc;
631
632         if (port->promisc) {
633                 sfc_warn(sa, "promiscuous mode has been requested, "
634                              "but the HW rejects it");
635                 sfc_warn(sa, "promiscuous mode will be disabled");
636
637                 port->promisc = B_FALSE;
638                 rc = sfc_set_rx_mode(sa);
639                 if (rc != 0)
640                         return rc;
641
642                 goto retry;
643         }
644
645         if (port->allmulti) {
646                 sfc_warn(sa, "all-multicast mode has been requested, "
647                              "but the HW rejects it");
648                 sfc_warn(sa, "all-multicast mode will be disabled");
649
650                 port->allmulti = B_FALSE;
651                 rc = sfc_set_rx_mode(sa);
652                 if (rc != 0)
653                         return rc;
654
655                 goto retry;
656         }
657
658         return rc;
659 }
660
661 int
662 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
663 {
664         struct sfc_port *port = &sa->port;
665         struct sfc_rxq_info *rxq_info;
666         struct sfc_rxq *rxq;
667         struct sfc_evq *evq;
668         int rc;
669
670         sfc_log_init(sa, "sw_index=%u", sw_index);
671
672         SFC_ASSERT(sw_index < sa->rxq_count);
673
674         rxq_info = &sa->rxq_info[sw_index];
675         rxq = rxq_info->rxq;
676         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
677
678         evq = rxq->evq;
679
680         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
681         if (rc != 0)
682                 goto fail_ev_qstart;
683
684         switch (rxq_info->type) {
685         case EFX_RXQ_TYPE_DEFAULT:
686                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
687                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
688                         rxq_info->type_flags, evq->common, &rxq->common);
689                 break;
690         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
691                 struct rte_mempool *mp = rxq->refill_mb_pool;
692                 struct rte_mempool_info mp_info;
693
694                 rc = rte_mempool_ops_get_info(mp, &mp_info);
695                 if (rc != 0) {
696                         /* Positive errno is used in the driver */
697                         rc = -rc;
698                         goto fail_mp_get_info;
699                 }
700                 if (mp_info.contig_block_size <= 0) {
701                         rc = EINVAL;
702                         goto fail_bad_contig_block_size;
703                 }
704                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
705                         mp_info.contig_block_size, rxq->buf_size,
706                         mp->header_size + mp->elt_size + mp->trailer_size,
707                         sa->rxd_wait_timeout_ns,
708                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
709                         evq->common, &rxq->common);
710                 break;
711         }
712         default:
713                 rc = ENOTSUP;
714         }
715         if (rc != 0)
716                 goto fail_rx_qcreate;
717
718         efx_rx_qenable(rxq->common);
719
720         rc = sa->dp_rx->qstart(rxq->dp, evq->read_ptr);
721         if (rc != 0)
722                 goto fail_dp_qstart;
723
724         rxq->state |= SFC_RXQ_STARTED;
725
726         if ((sw_index == 0) && !port->isolated) {
727                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
728                 if (rc != 0)
729                         goto fail_mac_filter_default_rxq_set;
730         }
731
732         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
733         sa->eth_dev->data->rx_queue_state[sw_index] =
734                 RTE_ETH_QUEUE_STATE_STARTED;
735
736         return 0;
737
738 fail_mac_filter_default_rxq_set:
739         sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
740
741 fail_dp_qstart:
742         sfc_rx_qflush(sa, sw_index);
743
744 fail_rx_qcreate:
745 fail_bad_contig_block_size:
746 fail_mp_get_info:
747         sfc_ev_qstop(evq);
748
749 fail_ev_qstart:
750         return rc;
751 }
752
753 void
754 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
755 {
756         struct sfc_rxq_info *rxq_info;
757         struct sfc_rxq *rxq;
758
759         sfc_log_init(sa, "sw_index=%u", sw_index);
760
761         SFC_ASSERT(sw_index < sa->rxq_count);
762
763         rxq_info = &sa->rxq_info[sw_index];
764         rxq = rxq_info->rxq;
765
766         if (rxq->state == SFC_RXQ_INITIALIZED)
767                 return;
768         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
769
770         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
771         sa->eth_dev->data->rx_queue_state[sw_index] =
772                 RTE_ETH_QUEUE_STATE_STOPPED;
773
774         sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
775
776         if (sw_index == 0)
777                 efx_mac_filter_default_rxq_clear(sa->nic);
778
779         sfc_rx_qflush(sa, sw_index);
780
781         rxq->state = SFC_RXQ_INITIALIZED;
782
783         efx_rx_qdestroy(rxq->common);
784
785         sfc_ev_qstop(rxq->evq);
786 }
787
788 uint64_t
789 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
790 {
791         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
792         uint64_t caps = 0;
793
794         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
795         caps |= DEV_RX_OFFLOAD_CRC_STRIP;
796
797         if (sa->dp_rx->features & SFC_DP_RX_FEAT_CHECKSUM) {
798                 caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
799                 caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
800                 caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
801         }
802
803         if (encp->enc_tunnel_encapsulations_supported &&
804             (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
805                 caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
806
807         return caps;
808 }
809
810 uint64_t
811 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
812 {
813         uint64_t caps = 0;
814
815         if (sa->dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
816                 caps |= DEV_RX_OFFLOAD_SCATTER;
817
818         return caps;
819 }
820
821 static int
822 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
823                    const struct rte_eth_rxconf *rx_conf,
824                    __rte_unused uint64_t offloads)
825 {
826         int rc = 0;
827
828         if (rx_conf->rx_thresh.pthresh != 0 ||
829             rx_conf->rx_thresh.hthresh != 0 ||
830             rx_conf->rx_thresh.wthresh != 0) {
831                 sfc_warn(sa,
832                         "RxQ prefetch/host/writeback thresholds are not supported");
833         }
834
835         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
836                 sfc_err(sa,
837                         "RxQ free threshold too large: %u vs maximum %u",
838                         rx_conf->rx_free_thresh, rxq_max_fill_level);
839                 rc = EINVAL;
840         }
841
842         if (rx_conf->rx_drop_en == 0) {
843                 sfc_err(sa, "RxQ drop disable is not supported");
844                 rc = EINVAL;
845         }
846
847         return rc;
848 }
849
850 static unsigned int
851 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
852 {
853         uint32_t data_off;
854         uint32_t order;
855
856         /* The mbuf object itself is always cache line aligned */
857         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
858
859         /* Data offset from mbuf object start */
860         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
861                 RTE_PKTMBUF_HEADROOM;
862
863         order = MIN(order, rte_bsf32(data_off));
864
865         return 1u << order;
866 }
867
868 static uint16_t
869 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
870 {
871         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
872         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
873         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
874         uint16_t buf_size;
875         unsigned int buf_aligned;
876         unsigned int start_alignment;
877         unsigned int end_padding_alignment;
878
879         /* Below it is assumed that both alignments are power of 2 */
880         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
881         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
882
883         /*
884          * mbuf is always cache line aligned, double-check
885          * that it meets rx buffer start alignment requirements.
886          */
887
888         /* Start from mbuf pool data room size */
889         buf_size = rte_pktmbuf_data_room_size(mb_pool);
890
891         /* Remove headroom */
892         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
893                 sfc_err(sa,
894                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
895                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
896                 return 0;
897         }
898         buf_size -= RTE_PKTMBUF_HEADROOM;
899
900         /* Calculate guaranteed data start alignment */
901         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
902
903         /* Reserve space for start alignment */
904         if (buf_aligned < nic_align_start) {
905                 start_alignment = nic_align_start - buf_aligned;
906                 if (buf_size <= start_alignment) {
907                         sfc_err(sa,
908                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
909                                 mb_pool->name,
910                                 rte_pktmbuf_data_room_size(mb_pool),
911                                 RTE_PKTMBUF_HEADROOM, start_alignment);
912                         return 0;
913                 }
914                 buf_aligned = nic_align_start;
915                 buf_size -= start_alignment;
916         } else {
917                 start_alignment = 0;
918         }
919
920         /* Make sure that end padding does not write beyond the buffer */
921         if (buf_aligned < nic_align_end) {
922                 /*
923                  * Estimate space which can be lost. If guarnteed buffer
924                  * size is odd, lost space is (nic_align_end - 1). More
925                  * accurate formula is below.
926                  */
927                 end_padding_alignment = nic_align_end -
928                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
929                 if (buf_size <= end_padding_alignment) {
930                         sfc_err(sa,
931                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
932                                 mb_pool->name,
933                                 rte_pktmbuf_data_room_size(mb_pool),
934                                 RTE_PKTMBUF_HEADROOM, start_alignment,
935                                 end_padding_alignment);
936                         return 0;
937                 }
938                 buf_size -= end_padding_alignment;
939         } else {
940                 /*
941                  * Start is aligned the same or better than end,
942                  * just align length.
943                  */
944                 buf_size = P2ALIGN(buf_size, nic_align_end);
945         }
946
947         return buf_size;
948 }
949
950 int
951 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
952              uint16_t nb_rx_desc, unsigned int socket_id,
953              const struct rte_eth_rxconf *rx_conf,
954              struct rte_mempool *mb_pool)
955 {
956         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
957         struct sfc_rss *rss = &sa->rss;
958         int rc;
959         unsigned int rxq_entries;
960         unsigned int evq_entries;
961         unsigned int rxq_max_fill_level;
962         uint64_t offloads;
963         uint16_t buf_size;
964         struct sfc_rxq_info *rxq_info;
965         struct sfc_evq *evq;
966         struct sfc_rxq *rxq;
967         struct sfc_dp_rx_qcreate_info info;
968
969         rc = sa->dp_rx->qsize_up_rings(nb_rx_desc, mb_pool, &rxq_entries,
970                                        &evq_entries, &rxq_max_fill_level);
971         if (rc != 0)
972                 goto fail_size_up_rings;
973         SFC_ASSERT(rxq_entries >= EFX_RXQ_MINNDESCS);
974         SFC_ASSERT(rxq_entries <= EFX_RXQ_MAXNDESCS);
975         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
976
977         offloads = rx_conf->offloads |
978                 sa->eth_dev->data->dev_conf.rxmode.offloads;
979         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
980         if (rc != 0)
981                 goto fail_bad_conf;
982
983         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
984         if (buf_size == 0) {
985                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
986                         sw_index);
987                 rc = EINVAL;
988                 goto fail_bad_conf;
989         }
990
991         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
992             (~offloads & DEV_RX_OFFLOAD_SCATTER)) {
993                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
994                         "object size is too small", sw_index);
995                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
996                         "PDU size %u plus Rx prefix %u bytes",
997                         sw_index, buf_size, (unsigned int)sa->port.pdu,
998                         encp->enc_rx_prefix_size);
999                 rc = EINVAL;
1000                 goto fail_bad_conf;
1001         }
1002
1003         SFC_ASSERT(sw_index < sa->rxq_count);
1004         rxq_info = &sa->rxq_info[sw_index];
1005
1006         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1007         rxq_info->entries = rxq_entries;
1008
1009         if (sa->dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1010                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1011         else
1012                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1013
1014         rxq_info->type_flags =
1015                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1016                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1017
1018         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1019             (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1020                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1021
1022         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1023                           evq_entries, socket_id, &evq);
1024         if (rc != 0)
1025                 goto fail_ev_qinit;
1026
1027         rc = ENOMEM;
1028         rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
1029                                  socket_id);
1030         if (rxq == NULL)
1031                 goto fail_rxq_alloc;
1032
1033         rxq_info->rxq = rxq;
1034
1035         rxq->evq = evq;
1036         rxq->hw_index = sw_index;
1037         rxq->refill_threshold =
1038                 RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
1039         rxq->refill_mb_pool = mb_pool;
1040         rxq->buf_size = buf_size;
1041
1042         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
1043                            socket_id, &rxq->mem);
1044         if (rc != 0)
1045                 goto fail_dma_alloc;
1046
1047         memset(&info, 0, sizeof(info));
1048         info.refill_mb_pool = rxq->refill_mb_pool;
1049         info.max_fill_level = rxq_max_fill_level;
1050         info.refill_threshold = rxq->refill_threshold;
1051         info.buf_size = buf_size;
1052         info.batch_max = encp->enc_rx_batch_max;
1053         info.prefix_size = encp->enc_rx_prefix_size;
1054
1055         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1056                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1057
1058         info.rxq_entries = rxq_info->entries;
1059         info.rxq_hw_ring = rxq->mem.esm_base;
1060         info.evq_entries = evq_entries;
1061         info.evq_hw_ring = evq->mem.esm_base;
1062         info.hw_index = rxq->hw_index;
1063         info.mem_bar = sa->mem_bar.esb_base;
1064         info.vi_window_shift = encp->enc_vi_window_shift;
1065
1066         rc = sa->dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1067                                 &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1068                                 socket_id, &info, &rxq->dp);
1069         if (rc != 0)
1070                 goto fail_dp_rx_qcreate;
1071
1072         evq->dp_rxq = rxq->dp;
1073
1074         rxq->state = SFC_RXQ_INITIALIZED;
1075
1076         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1077
1078         return 0;
1079
1080 fail_dp_rx_qcreate:
1081         sfc_dma_free(sa, &rxq->mem);
1082
1083 fail_dma_alloc:
1084         rxq_info->rxq = NULL;
1085         rte_free(rxq);
1086
1087 fail_rxq_alloc:
1088         sfc_ev_qfini(evq);
1089
1090 fail_ev_qinit:
1091         rxq_info->entries = 0;
1092
1093 fail_bad_conf:
1094 fail_size_up_rings:
1095         sfc_log_init(sa, "failed %d", rc);
1096         return rc;
1097 }
1098
1099 void
1100 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1101 {
1102         struct sfc_rxq_info *rxq_info;
1103         struct sfc_rxq *rxq;
1104
1105         SFC_ASSERT(sw_index < sa->rxq_count);
1106
1107         rxq_info = &sa->rxq_info[sw_index];
1108
1109         rxq = rxq_info->rxq;
1110         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
1111
1112         sa->dp_rx->qdestroy(rxq->dp);
1113         rxq->dp = NULL;
1114
1115         rxq_info->rxq = NULL;
1116         rxq_info->entries = 0;
1117
1118         sfc_dma_free(sa, &rxq->mem);
1119
1120         sfc_ev_qfini(rxq->evq);
1121         rxq->evq = NULL;
1122
1123         rte_free(rxq);
1124 }
1125
1126 /*
1127  * Mapping between RTE RSS hash functions and their EFX counterparts.
1128  */
1129 struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1130         { ETH_RSS_NONFRAG_IPV4_TCP,
1131           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1132         { ETH_RSS_NONFRAG_IPV4_UDP,
1133           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1134         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1135           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1136         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1137           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1138         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1139           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1140           EFX_RX_HASH(IPV4, 2TUPLE) },
1141         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1142           ETH_RSS_IPV6_EX,
1143           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1144           EFX_RX_HASH(IPV6, 2TUPLE) }
1145 };
1146
1147 static efx_rx_hash_type_t
1148 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1149                             unsigned int *hash_type_flags_supported,
1150                             unsigned int nb_hash_type_flags_supported)
1151 {
1152         efx_rx_hash_type_t hash_type_masked = 0;
1153         unsigned int i, j;
1154
1155         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1156                 unsigned int class_tuple_lbn[] = {
1157                         EFX_RX_CLASS_IPV4_TCP_LBN,
1158                         EFX_RX_CLASS_IPV4_UDP_LBN,
1159                         EFX_RX_CLASS_IPV4_LBN,
1160                         EFX_RX_CLASS_IPV6_TCP_LBN,
1161                         EFX_RX_CLASS_IPV6_UDP_LBN,
1162                         EFX_RX_CLASS_IPV6_LBN
1163                 };
1164
1165                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1166                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1167                         unsigned int flag;
1168
1169                         tuple_mask <<= class_tuple_lbn[j];
1170                         flag = hash_type & tuple_mask;
1171
1172                         if (flag == hash_type_flags_supported[i])
1173                                 hash_type_masked |= flag;
1174                 }
1175         }
1176
1177         return hash_type_masked;
1178 }
1179
1180 int
1181 sfc_rx_hash_init(struct sfc_adapter *sa)
1182 {
1183         struct sfc_rss *rss = &sa->rss;
1184         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1185         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1186         efx_rx_hash_alg_t alg;
1187         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1188         unsigned int nb_flags_supp;
1189         struct sfc_rss_hf_rte_to_efx *hf_map;
1190         struct sfc_rss_hf_rte_to_efx *entry;
1191         efx_rx_hash_type_t efx_hash_types;
1192         unsigned int i;
1193         int rc;
1194
1195         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1196                 alg = EFX_RX_HASHALG_TOEPLITZ;
1197         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1198                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1199         else
1200                 return EINVAL;
1201
1202         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1203                                          &nb_flags_supp);
1204         if (rc != 0)
1205                 return rc;
1206
1207         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1208                                    RTE_DIM(sfc_rss_hf_map),
1209                                    sizeof(*hf_map), 0, sa->socket_id);
1210         if (hf_map == NULL)
1211                 return ENOMEM;
1212
1213         entry = hf_map;
1214         efx_hash_types = 0;
1215         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1216                 efx_rx_hash_type_t ht;
1217
1218                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1219                                                  flags_supp, nb_flags_supp);
1220                 if (ht != 0) {
1221                         entry->rte = sfc_rss_hf_map[i].rte;
1222                         entry->efx = ht;
1223                         efx_hash_types |= ht;
1224                         ++entry;
1225                 }
1226         }
1227
1228         rss->hash_alg = alg;
1229         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1230         rss->hf_map = hf_map;
1231         rss->hash_types = efx_hash_types;
1232
1233         return 0;
1234 }
1235
1236 void
1237 sfc_rx_hash_fini(struct sfc_adapter *sa)
1238 {
1239         struct sfc_rss *rss = &sa->rss;
1240
1241         rte_free(rss->hf_map);
1242 }
1243
1244 int
1245 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1246                      efx_rx_hash_type_t *efx)
1247 {
1248         struct sfc_rss *rss = &sa->rss;
1249         efx_rx_hash_type_t hash_types = 0;
1250         unsigned int i;
1251
1252         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1253                 uint64_t rte_mask = rss->hf_map[i].rte;
1254
1255                 if ((rte & rte_mask) != 0) {
1256                         rte &= ~rte_mask;
1257                         hash_types |= rss->hf_map[i].efx;
1258                 }
1259         }
1260
1261         if (rte != 0) {
1262                 sfc_err(sa, "unsupported hash functions requested");
1263                 return EINVAL;
1264         }
1265
1266         *efx = hash_types;
1267
1268         return 0;
1269 }
1270
1271 uint64_t
1272 sfc_rx_hf_efx_to_rte(struct sfc_adapter *sa, efx_rx_hash_type_t efx)
1273 {
1274         struct sfc_rss *rss = &sa->rss;
1275         uint64_t rte = 0;
1276         unsigned int i;
1277
1278         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1279                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1280
1281                 if ((efx & hash_type) == hash_type)
1282                         rte |= rss->hf_map[i].rte;
1283         }
1284
1285         return rte;
1286 }
1287
1288 static int
1289 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1290                             struct rte_eth_rss_conf *conf)
1291 {
1292         struct sfc_rss *rss = &sa->rss;
1293         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1294         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(sa, efx_hash_types);
1295         int rc;
1296
1297         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1298                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1299                     conf->rss_key != NULL)
1300                         return EINVAL;
1301         }
1302
1303         if (conf->rss_hf != 0) {
1304                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1305                 if (rc != 0)
1306                         return rc;
1307         }
1308
1309         if (conf->rss_key != NULL) {
1310                 if (conf->rss_key_len != sizeof(rss->key)) {
1311                         sfc_err(sa, "RSS key size is wrong (should be %lu)",
1312                                 sizeof(rss->key));
1313                         return EINVAL;
1314                 }
1315                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1316         }
1317
1318         rss->hash_types = efx_hash_types;
1319
1320         return 0;
1321 }
1322
1323 static int
1324 sfc_rx_rss_config(struct sfc_adapter *sa)
1325 {
1326         struct sfc_rss *rss = &sa->rss;
1327         int rc = 0;
1328
1329         if (rss->channels > 0) {
1330                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1331                                            rss->hash_alg, rss->hash_types,
1332                                            B_TRUE);
1333                 if (rc != 0)
1334                         goto finish;
1335
1336                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1337                                           rss->key, sizeof(rss->key));
1338                 if (rc != 0)
1339                         goto finish;
1340
1341                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1342                                           rss->tbl, RTE_DIM(rss->tbl));
1343         }
1344
1345 finish:
1346         return rc;
1347 }
1348
1349 int
1350 sfc_rx_start(struct sfc_adapter *sa)
1351 {
1352         unsigned int sw_index;
1353         int rc;
1354
1355         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1356
1357         rc = efx_rx_init(sa->nic);
1358         if (rc != 0)
1359                 goto fail_rx_init;
1360
1361         rc = sfc_rx_rss_config(sa);
1362         if (rc != 0)
1363                 goto fail_rss_config;
1364
1365         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1366                 if ((!sa->rxq_info[sw_index].deferred_start ||
1367                      sa->rxq_info[sw_index].deferred_started)) {
1368                         rc = sfc_rx_qstart(sa, sw_index);
1369                         if (rc != 0)
1370                                 goto fail_rx_qstart;
1371                 }
1372         }
1373
1374         return 0;
1375
1376 fail_rx_qstart:
1377         while (sw_index-- > 0)
1378                 sfc_rx_qstop(sa, sw_index);
1379
1380 fail_rss_config:
1381         efx_rx_fini(sa->nic);
1382
1383 fail_rx_init:
1384         sfc_log_init(sa, "failed %d", rc);
1385         return rc;
1386 }
1387
1388 void
1389 sfc_rx_stop(struct sfc_adapter *sa)
1390 {
1391         unsigned int sw_index;
1392
1393         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1394
1395         sw_index = sa->rxq_count;
1396         while (sw_index-- > 0) {
1397                 if (sa->rxq_info[sw_index].rxq != NULL)
1398                         sfc_rx_qstop(sa, sw_index);
1399         }
1400
1401         efx_rx_fini(sa->nic);
1402 }
1403
1404 static int
1405 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1406 {
1407         struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
1408         unsigned int max_entries;
1409
1410         max_entries = EFX_RXQ_MAXNDESCS;
1411         SFC_ASSERT(rte_is_power_of_2(max_entries));
1412
1413         rxq_info->max_entries = max_entries;
1414
1415         return 0;
1416 }
1417
1418 static int
1419 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1420 {
1421         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1422                                       sfc_rx_get_queue_offload_caps(sa);
1423         struct sfc_rss *rss = &sa->rss;
1424         int rc = 0;
1425
1426         switch (rxmode->mq_mode) {
1427         case ETH_MQ_RX_NONE:
1428                 /* No special checks are required */
1429                 break;
1430         case ETH_MQ_RX_RSS:
1431                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1432                         sfc_err(sa, "RSS is not available");
1433                         rc = EINVAL;
1434                 }
1435                 break;
1436         default:
1437                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1438                         rxmode->mq_mode);
1439                 rc = EINVAL;
1440         }
1441
1442         /* KEEP_CRC offload flag is not supported by PMD
1443          * can remove the below block when DEV_RX_OFFLOAD_CRC_STRIP removed
1444          */
1445         if (rte_eth_dev_must_keep_crc(rxmode->offloads)) {
1446                 sfc_warn(sa, "FCS stripping cannot be disabled - always on");
1447                 rxmode->offloads |= DEV_RX_OFFLOAD_CRC_STRIP;
1448         }
1449
1450         /*
1451          * Requested offloads are validated against supported by ethdev,
1452          * so unsupported offloads cannot be added as the result of
1453          * below check.
1454          */
1455         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1456             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1457                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1458                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1459         }
1460
1461         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1462             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1463                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1464                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1465         }
1466
1467         return rc;
1468 }
1469
1470 /**
1471  * Destroy excess queues that are no longer needed after reconfiguration
1472  * or complete close.
1473  */
1474 static void
1475 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1476 {
1477         int sw_index;
1478
1479         SFC_ASSERT(nb_rx_queues <= sa->rxq_count);
1480
1481         sw_index = sa->rxq_count;
1482         while (--sw_index >= (int)nb_rx_queues) {
1483                 if (sa->rxq_info[sw_index].rxq != NULL)
1484                         sfc_rx_qfini(sa, sw_index);
1485         }
1486
1487         sa->rxq_count = nb_rx_queues;
1488 }
1489
1490 /**
1491  * Initialize Rx subsystem.
1492  *
1493  * Called at device (re)configuration stage when number of receive queues is
1494  * specified together with other device level receive configuration.
1495  *
1496  * It should be used to allocate NUMA-unaware resources.
1497  */
1498 int
1499 sfc_rx_configure(struct sfc_adapter *sa)
1500 {
1501         struct sfc_rss *rss = &sa->rss;
1502         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1503         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1504         int rc;
1505
1506         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1507                      nb_rx_queues, sa->rxq_count);
1508
1509         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1510         if (rc != 0)
1511                 goto fail_check_mode;
1512
1513         if (nb_rx_queues == sa->rxq_count)
1514                 goto done;
1515
1516         if (sa->rxq_info == NULL) {
1517                 rc = ENOMEM;
1518                 sa->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1519                                                  sizeof(sa->rxq_info[0]), 0,
1520                                                  sa->socket_id);
1521                 if (sa->rxq_info == NULL)
1522                         goto fail_rxqs_alloc;
1523         } else {
1524                 struct sfc_rxq_info *new_rxq_info;
1525
1526                 if (nb_rx_queues < sa->rxq_count)
1527                         sfc_rx_fini_queues(sa, nb_rx_queues);
1528
1529                 rc = ENOMEM;
1530                 new_rxq_info =
1531                         rte_realloc(sa->rxq_info,
1532                                     nb_rx_queues * sizeof(sa->rxq_info[0]), 0);
1533                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1534                         goto fail_rxqs_realloc;
1535
1536                 sa->rxq_info = new_rxq_info;
1537                 if (nb_rx_queues > sa->rxq_count)
1538                         memset(&sa->rxq_info[sa->rxq_count], 0,
1539                                (nb_rx_queues - sa->rxq_count) *
1540                                sizeof(sa->rxq_info[0]));
1541         }
1542
1543         while (sa->rxq_count < nb_rx_queues) {
1544                 rc = sfc_rx_qinit_info(sa, sa->rxq_count);
1545                 if (rc != 0)
1546                         goto fail_rx_qinit_info;
1547
1548                 sa->rxq_count++;
1549         }
1550
1551         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1552                          MIN(sa->rxq_count, EFX_MAXRSS) : 0;
1553
1554         if (rss->channels > 0) {
1555                 struct rte_eth_rss_conf *adv_conf_rss;
1556                 unsigned int sw_index;
1557
1558                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1559                         rss->tbl[sw_index] = sw_index % rss->channels;
1560
1561                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1562                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1563                 if (rc != 0)
1564                         goto fail_rx_process_adv_conf_rss;
1565         }
1566
1567 done:
1568         return 0;
1569
1570 fail_rx_process_adv_conf_rss:
1571 fail_rx_qinit_info:
1572 fail_rxqs_realloc:
1573 fail_rxqs_alloc:
1574         sfc_rx_close(sa);
1575
1576 fail_check_mode:
1577         sfc_log_init(sa, "failed %d", rc);
1578         return rc;
1579 }
1580
1581 /**
1582  * Shutdown Rx subsystem.
1583  *
1584  * Called at device close stage, for example, before device shutdown.
1585  */
1586 void
1587 sfc_rx_close(struct sfc_adapter *sa)
1588 {
1589         struct sfc_rss *rss = &sa->rss;
1590
1591         sfc_rx_fini_queues(sa, 0);
1592
1593         rss->channels = 0;
1594
1595         rte_free(sa->rxq_info);
1596         sa->rxq_info = NULL;
1597 }