9c0d57cc14c0c3124c2218a838de18a2941bff39
[deb_dpdk.git] / drivers / net / szedata2 / rte_eth_szedata2.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) 2015 - 2016 CESNET
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of CESNET nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <unistd.h>
36 #include <stdbool.h>
37 #include <err.h>
38 #include <sys/types.h>
39 #include <dirent.h>
40 #include <sys/stat.h>
41 #include <fcntl.h>
42 #include <sys/mman.h>
43
44 #include <libsze2.h>
45
46 #include <rte_mbuf.h>
47 #include <rte_ethdev.h>
48 #include <rte_ethdev_pci.h>
49 #include <rte_malloc.h>
50 #include <rte_memcpy.h>
51 #include <rte_kvargs.h>
52 #include <rte_dev.h>
53 #include <rte_atomic.h>
54
55 #include "rte_eth_szedata2.h"
56 #include "szedata2_iobuf.h"
57
58 #define RTE_ETH_SZEDATA2_MAX_RX_QUEUES 32
59 #define RTE_ETH_SZEDATA2_MAX_TX_QUEUES 32
60 #define RTE_ETH_SZEDATA2_TX_LOCK_SIZE (32 * 1024 * 1024)
61
62 /**
63  * size of szedata2_packet header with alignment
64  */
65 #define RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED 8
66
67 #define RTE_SZEDATA2_DRIVER_NAME net_szedata2
68
69 #define SZEDATA2_DEV_PATH_FMT "/dev/szedataII%u"
70
71 struct szedata2_rx_queue {
72         struct szedata *sze;
73         uint8_t rx_channel;
74         uint8_t in_port;
75         struct rte_mempool *mb_pool;
76         volatile uint64_t rx_pkts;
77         volatile uint64_t rx_bytes;
78         volatile uint64_t err_pkts;
79 };
80
81 struct szedata2_tx_queue {
82         struct szedata *sze;
83         uint8_t tx_channel;
84         volatile uint64_t tx_pkts;
85         volatile uint64_t tx_bytes;
86         volatile uint64_t err_pkts;
87 };
88
89 struct pmd_internals {
90         struct szedata2_rx_queue rx_queue[RTE_ETH_SZEDATA2_MAX_RX_QUEUES];
91         struct szedata2_tx_queue tx_queue[RTE_ETH_SZEDATA2_MAX_TX_QUEUES];
92         uint16_t max_rx_queues;
93         uint16_t max_tx_queues;
94         char sze_dev[PATH_MAX];
95         struct rte_mem_resource *pci_rsc;
96 };
97
98 static struct ether_addr eth_addr = {
99         .addr_bytes = { 0x00, 0x11, 0x17, 0x00, 0x00, 0x00 }
100 };
101
102 static uint16_t
103 eth_szedata2_rx(void *queue,
104                 struct rte_mbuf **bufs,
105                 uint16_t nb_pkts)
106 {
107         unsigned int i;
108         struct rte_mbuf *mbuf;
109         struct szedata2_rx_queue *sze_q = queue;
110         struct rte_pktmbuf_pool_private *mbp_priv;
111         uint16_t num_rx = 0;
112         uint16_t buf_size;
113         uint16_t sg_size;
114         uint16_t hw_size;
115         uint16_t packet_size;
116         uint64_t num_bytes = 0;
117         struct szedata *sze = sze_q->sze;
118         uint8_t *header_ptr = NULL; /* header of packet */
119         uint8_t *packet_ptr1 = NULL;
120         uint8_t *packet_ptr2 = NULL;
121         uint16_t packet_len1 = 0;
122         uint16_t packet_len2 = 0;
123         uint16_t hw_data_align;
124
125         if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
126                 return 0;
127
128         /*
129          * Reads the given number of packets from szedata2 channel given
130          * by queue and copies the packet data into a newly allocated mbuf
131          * to return.
132          */
133         for (i = 0; i < nb_pkts; i++) {
134                 mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);
135
136                 if (unlikely(mbuf == NULL))
137                         break;
138
139                 /* get the next sze packet */
140                 if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
141                                 sze->ct_rx_lck->next == NULL) {
142                         /* unlock old data */
143                         szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
144                         sze->ct_rx_lck_orig = NULL;
145                         sze->ct_rx_lck = NULL;
146                 }
147
148                 if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
149                         /* nothing to read, lock new data */
150                         sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
151                         sze->ct_rx_lck_orig = sze->ct_rx_lck;
152
153                         if (sze->ct_rx_lck == NULL) {
154                                 /* nothing to lock */
155                                 rte_pktmbuf_free(mbuf);
156                                 break;
157                         }
158
159                         sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
160                         sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;
161
162                         if (!sze->ct_rx_rem_bytes) {
163                                 rte_pktmbuf_free(mbuf);
164                                 break;
165                         }
166                 }
167
168                 if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
169                         /*
170                          * cut in header
171                          * copy parts of header to merge buffer
172                          */
173                         if (sze->ct_rx_lck->next == NULL) {
174                                 rte_pktmbuf_free(mbuf);
175                                 break;
176                         }
177
178                         /* copy first part of header */
179                         rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
180                                         sze->ct_rx_rem_bytes);
181
182                         /* copy second part of header */
183                         sze->ct_rx_lck = sze->ct_rx_lck->next;
184                         sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
185                         rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
186                                 sze->ct_rx_cur_ptr,
187                                 RTE_SZE2_PACKET_HEADER_SIZE -
188                                 sze->ct_rx_rem_bytes);
189
190                         sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
191                                 sze->ct_rx_rem_bytes;
192                         sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
193                                 RTE_SZE2_PACKET_HEADER_SIZE +
194                                 sze->ct_rx_rem_bytes;
195
196                         header_ptr = (uint8_t *)sze->ct_rx_buffer;
197                 } else {
198                         /* not cut */
199                         header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
200                         sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
201                         sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
202                 }
203
204                 sg_size = le16toh(*((uint16_t *)header_ptr));
205                 hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
206                 packet_size = sg_size -
207                         RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);
208
209
210                 /* checks if packet all right */
211                 if (!sg_size)
212                         errx(5, "Zero segsize");
213
214                 /* check sg_size and hwsize */
215                 if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
216                         errx(10, "Hwsize bigger than expected. Segsize: %d, "
217                                 "hwsize: %d", sg_size, hw_size);
218                 }
219
220                 hw_data_align =
221                         RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size) -
222                         RTE_SZE2_PACKET_HEADER_SIZE;
223
224                 if (sze->ct_rx_rem_bytes >=
225                                 (uint16_t)(sg_size -
226                                 RTE_SZE2_PACKET_HEADER_SIZE)) {
227                         /* no cut */
228                         /* one packet ready - go to another */
229                         packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
230                         packet_len1 = packet_size;
231                         packet_ptr2 = NULL;
232                         packet_len2 = 0;
233
234                         sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
235                                 RTE_SZE2_PACKET_HEADER_SIZE;
236                         sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
237                                 RTE_SZE2_PACKET_HEADER_SIZE;
238                 } else {
239                         /* cut in data */
240                         if (sze->ct_rx_lck->next == NULL) {
241                                 errx(6, "Need \"next\" lock, "
242                                         "but it is missing: %u",
243                                         sze->ct_rx_rem_bytes);
244                         }
245
246                         /* skip hw data */
247                         if (sze->ct_rx_rem_bytes <= hw_data_align) {
248                                 uint16_t rem_size = hw_data_align -
249                                         sze->ct_rx_rem_bytes;
250
251                                 /* MOVE to next lock */
252                                 sze->ct_rx_lck = sze->ct_rx_lck->next;
253                                 sze->ct_rx_cur_ptr =
254                                         (void *)(((uint8_t *)
255                                         (sze->ct_rx_lck->start)) + rem_size);
256
257                                 packet_ptr1 = sze->ct_rx_cur_ptr;
258                                 packet_len1 = packet_size;
259                                 packet_ptr2 = NULL;
260                                 packet_len2 = 0;
261
262                                 sze->ct_rx_cur_ptr +=
263                                         RTE_SZE2_ALIGN8(packet_size);
264                                 sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
265                                         rem_size - RTE_SZE2_ALIGN8(packet_size);
266                         } else {
267                                 /* get pointer and length from first part */
268                                 packet_ptr1 = sze->ct_rx_cur_ptr +
269                                         hw_data_align;
270                                 packet_len1 = sze->ct_rx_rem_bytes -
271                                         hw_data_align;
272
273                                 /* MOVE to next lock */
274                                 sze->ct_rx_lck = sze->ct_rx_lck->next;
275                                 sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
276
277                                 /* get pointer and length from second part */
278                                 packet_ptr2 = sze->ct_rx_cur_ptr;
279                                 packet_len2 = packet_size - packet_len1;
280
281                                 sze->ct_rx_cur_ptr +=
282                                         RTE_SZE2_ALIGN8(packet_size) -
283                                         packet_len1;
284                                 sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
285                                         (RTE_SZE2_ALIGN8(packet_size) -
286                                          packet_len1);
287                         }
288                 }
289
290                 if (unlikely(packet_ptr1 == NULL)) {
291                         rte_pktmbuf_free(mbuf);
292                         break;
293                 }
294
295                 /* get the space available for data in the mbuf */
296                 mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
297                 buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
298                                 RTE_PKTMBUF_HEADROOM);
299
300                 if (packet_size <= buf_size) {
301                         /* sze packet will fit in one mbuf, go ahead and copy */
302                         rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
303                                         packet_ptr1, packet_len1);
304                         if (packet_ptr2 != NULL) {
305                                 rte_memcpy((void *)(rte_pktmbuf_mtod(mbuf,
306                                         uint8_t *) + packet_len1),
307                                         packet_ptr2, packet_len2);
308                         }
309                         mbuf->data_len = (uint16_t)packet_size;
310
311                         mbuf->pkt_len = packet_size;
312                         mbuf->port = sze_q->in_port;
313                         bufs[num_rx] = mbuf;
314                         num_rx++;
315                         num_bytes += packet_size;
316                 } else {
317                         /*
318                          * sze packet will not fit in one mbuf,
319                          * scattered mode is not enabled, drop packet
320                          */
321                         RTE_LOG(ERR, PMD,
322                                 "SZE segment %d bytes will not fit in one mbuf "
323                                 "(%d bytes), scattered mode is not enabled, "
324                                 "drop packet!!\n",
325                                 packet_size, buf_size);
326                         rte_pktmbuf_free(mbuf);
327                 }
328         }
329
330         sze_q->rx_pkts += num_rx;
331         sze_q->rx_bytes += num_bytes;
332         return num_rx;
333 }
334
335 static uint16_t
336 eth_szedata2_rx_scattered(void *queue,
337                 struct rte_mbuf **bufs,
338                 uint16_t nb_pkts)
339 {
340         unsigned int i;
341         struct rte_mbuf *mbuf;
342         struct szedata2_rx_queue *sze_q = queue;
343         struct rte_pktmbuf_pool_private *mbp_priv;
344         uint16_t num_rx = 0;
345         uint16_t buf_size;
346         uint16_t sg_size;
347         uint16_t hw_size;
348         uint16_t packet_size;
349         uint64_t num_bytes = 0;
350         struct szedata *sze = sze_q->sze;
351         uint8_t *header_ptr = NULL; /* header of packet */
352         uint8_t *packet_ptr1 = NULL;
353         uint8_t *packet_ptr2 = NULL;
354         uint16_t packet_len1 = 0;
355         uint16_t packet_len2 = 0;
356         uint16_t hw_data_align;
357
358         if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
359                 return 0;
360
361         /*
362          * Reads the given number of packets from szedata2 channel given
363          * by queue and copies the packet data into a newly allocated mbuf
364          * to return.
365          */
366         for (i = 0; i < nb_pkts; i++) {
367                 const struct szedata_lock *ct_rx_lck_backup;
368                 unsigned int ct_rx_rem_bytes_backup;
369                 unsigned char *ct_rx_cur_ptr_backup;
370
371                 /* get the next sze packet */
372                 if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
373                                 sze->ct_rx_lck->next == NULL) {
374                         /* unlock old data */
375                         szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
376                         sze->ct_rx_lck_orig = NULL;
377                         sze->ct_rx_lck = NULL;
378                 }
379
380                 /*
381                  * Store items from sze structure which can be changed
382                  * before mbuf allocating. Use these items in case of mbuf
383                  * allocating failure.
384                  */
385                 ct_rx_lck_backup = sze->ct_rx_lck;
386                 ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
387                 ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;
388
389                 if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
390                         /* nothing to read, lock new data */
391                         sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
392                         sze->ct_rx_lck_orig = sze->ct_rx_lck;
393
394                         /*
395                          * Backup items from sze structure must be updated
396                          * after locking to contain pointers to new locks.
397                          */
398                         ct_rx_lck_backup = sze->ct_rx_lck;
399                         ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
400                         ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;
401
402                         if (sze->ct_rx_lck == NULL)
403                                 /* nothing to lock */
404                                 break;
405
406                         sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
407                         sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;
408
409                         if (!sze->ct_rx_rem_bytes)
410                                 break;
411                 }
412
413                 if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
414                         /*
415                          * cut in header - copy parts of header to merge buffer
416                          */
417                         if (sze->ct_rx_lck->next == NULL)
418                                 break;
419
420                         /* copy first part of header */
421                         rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
422                                         sze->ct_rx_rem_bytes);
423
424                         /* copy second part of header */
425                         sze->ct_rx_lck = sze->ct_rx_lck->next;
426                         sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
427                         rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
428                                 sze->ct_rx_cur_ptr,
429                                 RTE_SZE2_PACKET_HEADER_SIZE -
430                                 sze->ct_rx_rem_bytes);
431
432                         sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
433                                 sze->ct_rx_rem_bytes;
434                         sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
435                                 RTE_SZE2_PACKET_HEADER_SIZE +
436                                 sze->ct_rx_rem_bytes;
437
438                         header_ptr = (uint8_t *)sze->ct_rx_buffer;
439                 } else {
440                         /* not cut */
441                         header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
442                         sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
443                         sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
444                 }
445
446                 sg_size = le16toh(*((uint16_t *)header_ptr));
447                 hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
448                 packet_size = sg_size -
449                         RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);
450
451
452                 /* checks if packet all right */
453                 if (!sg_size)
454                         errx(5, "Zero segsize");
455
456                 /* check sg_size and hwsize */
457                 if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
458                         errx(10, "Hwsize bigger than expected. Segsize: %d, "
459                                         "hwsize: %d", sg_size, hw_size);
460                 }
461
462                 hw_data_align =
463                         RTE_SZE2_ALIGN8((RTE_SZE2_PACKET_HEADER_SIZE +
464                         hw_size)) - RTE_SZE2_PACKET_HEADER_SIZE;
465
466                 if (sze->ct_rx_rem_bytes >=
467                                 (uint16_t)(sg_size -
468                                 RTE_SZE2_PACKET_HEADER_SIZE)) {
469                         /* no cut */
470                         /* one packet ready - go to another */
471                         packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
472                         packet_len1 = packet_size;
473                         packet_ptr2 = NULL;
474                         packet_len2 = 0;
475
476                         sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
477                                 RTE_SZE2_PACKET_HEADER_SIZE;
478                         sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
479                                 RTE_SZE2_PACKET_HEADER_SIZE;
480                 } else {
481                         /* cut in data */
482                         if (sze->ct_rx_lck->next == NULL) {
483                                 errx(6, "Need \"next\" lock, but it is "
484                                         "missing: %u", sze->ct_rx_rem_bytes);
485                         }
486
487                         /* skip hw data */
488                         if (sze->ct_rx_rem_bytes <= hw_data_align) {
489                                 uint16_t rem_size = hw_data_align -
490                                         sze->ct_rx_rem_bytes;
491
492                                 /* MOVE to next lock */
493                                 sze->ct_rx_lck = sze->ct_rx_lck->next;
494                                 sze->ct_rx_cur_ptr =
495                                         (void *)(((uint8_t *)
496                                         (sze->ct_rx_lck->start)) + rem_size);
497
498                                 packet_ptr1 = sze->ct_rx_cur_ptr;
499                                 packet_len1 = packet_size;
500                                 packet_ptr2 = NULL;
501                                 packet_len2 = 0;
502
503                                 sze->ct_rx_cur_ptr +=
504                                         RTE_SZE2_ALIGN8(packet_size);
505                                 sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
506                                         rem_size - RTE_SZE2_ALIGN8(packet_size);
507                         } else {
508                                 /* get pointer and length from first part */
509                                 packet_ptr1 = sze->ct_rx_cur_ptr +
510                                         hw_data_align;
511                                 packet_len1 = sze->ct_rx_rem_bytes -
512                                         hw_data_align;
513
514                                 /* MOVE to next lock */
515                                 sze->ct_rx_lck = sze->ct_rx_lck->next;
516                                 sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
517
518                                 /* get pointer and length from second part */
519                                 packet_ptr2 = sze->ct_rx_cur_ptr;
520                                 packet_len2 = packet_size - packet_len1;
521
522                                 sze->ct_rx_cur_ptr +=
523                                         RTE_SZE2_ALIGN8(packet_size) -
524                                         packet_len1;
525                                 sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
526                                         (RTE_SZE2_ALIGN8(packet_size) -
527                                          packet_len1);
528                         }
529                 }
530
531                 if (unlikely(packet_ptr1 == NULL))
532                         break;
533
534                 mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);
535
536                 if (unlikely(mbuf == NULL)) {
537                         /*
538                          * Restore items from sze structure to state after
539                          * unlocking (eventually locking).
540                          */
541                         sze->ct_rx_lck = ct_rx_lck_backup;
542                         sze->ct_rx_rem_bytes = ct_rx_rem_bytes_backup;
543                         sze->ct_rx_cur_ptr = ct_rx_cur_ptr_backup;
544                         break;
545                 }
546
547                 /* get the space available for data in the mbuf */
548                 mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
549                 buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
550                                 RTE_PKTMBUF_HEADROOM);
551
552                 if (packet_size <= buf_size) {
553                         /* sze packet will fit in one mbuf, go ahead and copy */
554                         rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
555                                         packet_ptr1, packet_len1);
556                         if (packet_ptr2 != NULL) {
557                                 rte_memcpy((void *)
558                                         (rte_pktmbuf_mtod(mbuf, uint8_t *) +
559                                         packet_len1), packet_ptr2, packet_len2);
560                         }
561                         mbuf->data_len = (uint16_t)packet_size;
562                 } else {
563                         /*
564                          * sze packet will not fit in one mbuf,
565                          * scatter packet into more mbufs
566                          */
567                         struct rte_mbuf *m = mbuf;
568                         uint16_t len = rte_pktmbuf_tailroom(mbuf);
569
570                         /* copy first part of packet */
571                         /* fill first mbuf */
572                         rte_memcpy(rte_pktmbuf_append(mbuf, len), packet_ptr1,
573                                 len);
574                         packet_len1 -= len;
575                         packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
576
577                         while (packet_len1 > 0) {
578                                 /* fill new mbufs */
579                                 m->next = rte_pktmbuf_alloc(sze_q->mb_pool);
580
581                                 if (unlikely(m->next == NULL)) {
582                                         rte_pktmbuf_free(mbuf);
583                                         /*
584                                          * Restore items from sze structure
585                                          * to state after unlocking (eventually
586                                          * locking).
587                                          */
588                                         sze->ct_rx_lck = ct_rx_lck_backup;
589                                         sze->ct_rx_rem_bytes =
590                                                 ct_rx_rem_bytes_backup;
591                                         sze->ct_rx_cur_ptr =
592                                                 ct_rx_cur_ptr_backup;
593                                         goto finish;
594                                 }
595
596                                 m = m->next;
597
598                                 len = RTE_MIN(rte_pktmbuf_tailroom(m),
599                                         packet_len1);
600                                 rte_memcpy(rte_pktmbuf_append(mbuf, len),
601                                         packet_ptr1, len);
602
603                                 (mbuf->nb_segs)++;
604                                 packet_len1 -= len;
605                                 packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
606                         }
607
608                         if (packet_ptr2 != NULL) {
609                                 /* copy second part of packet, if exists */
610                                 /* fill the rest of currently last mbuf */
611                                 len = rte_pktmbuf_tailroom(m);
612                                 rte_memcpy(rte_pktmbuf_append(mbuf, len),
613                                         packet_ptr2, len);
614                                 packet_len2 -= len;
615                                 packet_ptr2 = ((uint8_t *)packet_ptr2) + len;
616
617                                 while (packet_len2 > 0) {
618                                         /* fill new mbufs */
619                                         m->next = rte_pktmbuf_alloc(
620                                                         sze_q->mb_pool);
621
622                                         if (unlikely(m->next == NULL)) {
623                                                 rte_pktmbuf_free(mbuf);
624                                                 /*
625                                                  * Restore items from sze
626                                                  * structure to state after
627                                                  * unlocking (eventually
628                                                  * locking).
629                                                  */
630                                                 sze->ct_rx_lck =
631                                                         ct_rx_lck_backup;
632                                                 sze->ct_rx_rem_bytes =
633                                                         ct_rx_rem_bytes_backup;
634                                                 sze->ct_rx_cur_ptr =
635                                                         ct_rx_cur_ptr_backup;
636                                                 goto finish;
637                                         }
638
639                                         m = m->next;
640
641                                         len = RTE_MIN(rte_pktmbuf_tailroom(m),
642                                                 packet_len2);
643                                         rte_memcpy(
644                                                 rte_pktmbuf_append(mbuf, len),
645                                                 packet_ptr2, len);
646
647                                         (mbuf->nb_segs)++;
648                                         packet_len2 -= len;
649                                         packet_ptr2 = ((uint8_t *)packet_ptr2) +
650                                                 len;
651                                 }
652                         }
653                 }
654                 mbuf->pkt_len = packet_size;
655                 mbuf->port = sze_q->in_port;
656                 bufs[num_rx] = mbuf;
657                 num_rx++;
658                 num_bytes += packet_size;
659         }
660
661 finish:
662         sze_q->rx_pkts += num_rx;
663         sze_q->rx_bytes += num_bytes;
664         return num_rx;
665 }
666
667 static uint16_t
668 eth_szedata2_tx(void *queue,
669                 struct rte_mbuf **bufs,
670                 uint16_t nb_pkts)
671 {
672         struct rte_mbuf *mbuf;
673         struct szedata2_tx_queue *sze_q = queue;
674         uint16_t num_tx = 0;
675         uint64_t num_bytes = 0;
676
677         const struct szedata_lock *lck;
678         uint32_t lock_size;
679         uint32_t lock_size2;
680         void *dst;
681         uint32_t pkt_len;
682         uint32_t hwpkt_len;
683         uint32_t unlock_size;
684         uint32_t rem_len;
685         uint8_t mbuf_segs;
686         uint16_t pkt_left = nb_pkts;
687
688         if (sze_q->sze == NULL || nb_pkts == 0)
689                 return 0;
690
691         while (pkt_left > 0) {
692                 unlock_size = 0;
693                 lck = szedata_tx_lock_data(sze_q->sze,
694                         RTE_ETH_SZEDATA2_TX_LOCK_SIZE,
695                         sze_q->tx_channel);
696                 if (lck == NULL)
697                         continue;
698
699                 dst = lck->start;
700                 lock_size = lck->len;
701                 lock_size2 = lck->next ? lck->next->len : 0;
702
703 next_packet:
704                 mbuf = bufs[nb_pkts - pkt_left];
705
706                 pkt_len = mbuf->pkt_len;
707                 mbuf_segs = mbuf->nb_segs;
708
709                 hwpkt_len = RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
710                         RTE_SZE2_ALIGN8(pkt_len);
711
712                 if (lock_size + lock_size2 < hwpkt_len) {
713                         szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
714                         continue;
715                 }
716
717                 num_bytes += pkt_len;
718
719                 if (lock_size > hwpkt_len) {
720                         void *tmp_dst;
721
722                         rem_len = 0;
723
724                         /* write packet length at first 2 bytes in 8B header */
725                         *((uint16_t *)dst) = htole16(
726                                         RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
727                                         pkt_len);
728                         *(((uint16_t *)dst) + 1) = htole16(0);
729
730                         /* copy packet from mbuf */
731                         tmp_dst = ((uint8_t *)(dst)) +
732                                 RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
733                         if (mbuf_segs == 1) {
734                                 /*
735                                  * non-scattered packet,
736                                  * transmit from one mbuf
737                                  */
738                                 rte_memcpy(tmp_dst,
739                                         rte_pktmbuf_mtod(mbuf, const void *),
740                                         pkt_len);
741                         } else {
742                                 /* scattered packet, transmit from more mbufs */
743                                 struct rte_mbuf *m = mbuf;
744                                 while (m) {
745                                         rte_memcpy(tmp_dst,
746                                                 rte_pktmbuf_mtod(m,
747                                                 const void *),
748                                                 m->data_len);
749                                         tmp_dst = ((uint8_t *)(tmp_dst)) +
750                                                 m->data_len;
751                                         m = m->next;
752                                 }
753                         }
754
755
756                         dst = ((uint8_t *)dst) + hwpkt_len;
757                         unlock_size += hwpkt_len;
758                         lock_size -= hwpkt_len;
759
760                         rte_pktmbuf_free(mbuf);
761                         num_tx++;
762                         pkt_left--;
763                         if (pkt_left == 0) {
764                                 szedata_tx_unlock_data(sze_q->sze, lck,
765                                         unlock_size);
766                                 break;
767                         }
768                         goto next_packet;
769                 } else if (lock_size + lock_size2 >= hwpkt_len) {
770                         void *tmp_dst;
771                         uint16_t write_len;
772
773                         /* write packet length at first 2 bytes in 8B header */
774                         *((uint16_t *)dst) =
775                                 htole16(RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
776                                         pkt_len);
777                         *(((uint16_t *)dst) + 1) = htole16(0);
778
779                         /*
780                          * If the raw packet (pkt_len) is smaller than lock_size
781                          * get the correct length for memcpy
782                          */
783                         write_len =
784                                 pkt_len < lock_size -
785                                 RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED ?
786                                 pkt_len :
787                                 lock_size - RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
788
789                         rem_len = hwpkt_len - lock_size;
790
791                         tmp_dst = ((uint8_t *)(dst)) +
792                                 RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
793                         if (mbuf_segs == 1) {
794                                 /*
795                                  * non-scattered packet,
796                                  * transmit from one mbuf
797                                  */
798                                 /* copy part of packet to first area */
799                                 rte_memcpy(tmp_dst,
800                                         rte_pktmbuf_mtod(mbuf, const void *),
801                                         write_len);
802
803                                 if (lck->next)
804                                         dst = lck->next->start;
805
806                                 /* copy part of packet to second area */
807                                 rte_memcpy(dst,
808                                         (const void *)(rte_pktmbuf_mtod(mbuf,
809                                                         const uint8_t *) +
810                                         write_len), pkt_len - write_len);
811                         } else {
812                                 /* scattered packet, transmit from more mbufs */
813                                 struct rte_mbuf *m = mbuf;
814                                 uint16_t written = 0;
815                                 uint16_t to_write = 0;
816                                 bool new_mbuf = true;
817                                 uint16_t write_off = 0;
818
819                                 /* copy part of packet to first area */
820                                 while (m && written < write_len) {
821                                         to_write = RTE_MIN(m->data_len,
822                                                         write_len - written);
823                                         rte_memcpy(tmp_dst,
824                                                 rte_pktmbuf_mtod(m,
825                                                         const void *),
826                                                 to_write);
827
828                                         tmp_dst = ((uint8_t *)(tmp_dst)) +
829                                                 to_write;
830                                         if (m->data_len <= write_len -
831                                                         written) {
832                                                 m = m->next;
833                                                 new_mbuf = true;
834                                         } else {
835                                                 new_mbuf = false;
836                                         }
837                                         written += to_write;
838                                 }
839
840                                 if (lck->next)
841                                         dst = lck->next->start;
842
843                                 tmp_dst = dst;
844                                 written = 0;
845                                 write_off = new_mbuf ? 0 : to_write;
846
847                                 /* copy part of packet to second area */
848                                 while (m && written < pkt_len - write_len) {
849                                         rte_memcpy(tmp_dst, (const void *)
850                                                 (rte_pktmbuf_mtod(m,
851                                                 uint8_t *) + write_off),
852                                                 m->data_len - write_off);
853
854                                         tmp_dst = ((uint8_t *)(tmp_dst)) +
855                                                 (m->data_len - write_off);
856                                         written += m->data_len - write_off;
857                                         m = m->next;
858                                         write_off = 0;
859                                 }
860                         }
861
862                         dst = ((uint8_t *)dst) + rem_len;
863                         unlock_size += hwpkt_len;
864                         lock_size = lock_size2 - rem_len;
865                         lock_size2 = 0;
866
867                         rte_pktmbuf_free(mbuf);
868                         num_tx++;
869                 }
870
871                 szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
872                 pkt_left--;
873         }
874
875         sze_q->tx_pkts += num_tx;
876         sze_q->err_pkts += nb_pkts - num_tx;
877         sze_q->tx_bytes += num_bytes;
878         return num_tx;
879 }
880
881 static int
882 eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rxq_id)
883 {
884         struct szedata2_rx_queue *rxq = dev->data->rx_queues[rxq_id];
885         int ret;
886         struct pmd_internals *internals = (struct pmd_internals *)
887                 dev->data->dev_private;
888
889         if (rxq->sze == NULL) {
890                 uint32_t rx = 1 << rxq->rx_channel;
891                 uint32_t tx = 0;
892                 rxq->sze = szedata_open(internals->sze_dev);
893                 if (rxq->sze == NULL)
894                         return -EINVAL;
895                 ret = szedata_subscribe3(rxq->sze, &rx, &tx);
896                 if (ret != 0 || rx == 0)
897                         goto err;
898         }
899
900         ret = szedata_start(rxq->sze);
901         if (ret != 0)
902                 goto err;
903         dev->data->rx_queue_state[rxq_id] = RTE_ETH_QUEUE_STATE_STARTED;
904         return 0;
905
906 err:
907         szedata_close(rxq->sze);
908         rxq->sze = NULL;
909         return -EINVAL;
910 }
911
912 static int
913 eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rxq_id)
914 {
915         struct szedata2_rx_queue *rxq = dev->data->rx_queues[rxq_id];
916
917         if (rxq->sze != NULL) {
918                 szedata_close(rxq->sze);
919                 rxq->sze = NULL;
920         }
921
922         dev->data->rx_queue_state[rxq_id] = RTE_ETH_QUEUE_STATE_STOPPED;
923         return 0;
924 }
925
926 static int
927 eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t txq_id)
928 {
929         struct szedata2_tx_queue *txq = dev->data->tx_queues[txq_id];
930         int ret;
931         struct pmd_internals *internals = (struct pmd_internals *)
932                 dev->data->dev_private;
933
934         if (txq->sze == NULL) {
935                 uint32_t rx = 0;
936                 uint32_t tx = 1 << txq->tx_channel;
937                 txq->sze = szedata_open(internals->sze_dev);
938                 if (txq->sze == NULL)
939                         return -EINVAL;
940                 ret = szedata_subscribe3(txq->sze, &rx, &tx);
941                 if (ret != 0 || tx == 0)
942                         goto err;
943         }
944
945         ret = szedata_start(txq->sze);
946         if (ret != 0)
947                 goto err;
948         dev->data->tx_queue_state[txq_id] = RTE_ETH_QUEUE_STATE_STARTED;
949         return 0;
950
951 err:
952         szedata_close(txq->sze);
953         txq->sze = NULL;
954         return -EINVAL;
955 }
956
957 static int
958 eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t txq_id)
959 {
960         struct szedata2_tx_queue *txq = dev->data->tx_queues[txq_id];
961
962         if (txq->sze != NULL) {
963                 szedata_close(txq->sze);
964                 txq->sze = NULL;
965         }
966
967         dev->data->tx_queue_state[txq_id] = RTE_ETH_QUEUE_STATE_STOPPED;
968         return 0;
969 }
970
971 static int
972 eth_dev_start(struct rte_eth_dev *dev)
973 {
974         int ret;
975         uint16_t i;
976         uint16_t nb_rx = dev->data->nb_rx_queues;
977         uint16_t nb_tx = dev->data->nb_tx_queues;
978
979         for (i = 0; i < nb_rx; i++) {
980                 ret = eth_rx_queue_start(dev, i);
981                 if (ret != 0)
982                         goto err_rx;
983         }
984
985         for (i = 0; i < nb_tx; i++) {
986                 ret = eth_tx_queue_start(dev, i);
987                 if (ret != 0)
988                         goto err_tx;
989         }
990
991         return 0;
992
993 err_tx:
994         for (i = 0; i < nb_tx; i++)
995                 eth_tx_queue_stop(dev, i);
996 err_rx:
997         for (i = 0; i < nb_rx; i++)
998                 eth_rx_queue_stop(dev, i);
999         return ret;
1000 }
1001
1002 static void
1003 eth_dev_stop(struct rte_eth_dev *dev)
1004 {
1005         uint16_t i;
1006         uint16_t nb_rx = dev->data->nb_rx_queues;
1007         uint16_t nb_tx = dev->data->nb_tx_queues;
1008
1009         for (i = 0; i < nb_tx; i++)
1010                 eth_tx_queue_stop(dev, i);
1011
1012         for (i = 0; i < nb_rx; i++)
1013                 eth_rx_queue_stop(dev, i);
1014 }
1015
1016 static int
1017 eth_dev_configure(struct rte_eth_dev *dev)
1018 {
1019         struct rte_eth_dev_data *data = dev->data;
1020         if (data->dev_conf.rxmode.enable_scatter == 1) {
1021                 dev->rx_pkt_burst = eth_szedata2_rx_scattered;
1022                 data->scattered_rx = 1;
1023         } else {
1024                 dev->rx_pkt_burst = eth_szedata2_rx;
1025                 data->scattered_rx = 0;
1026         }
1027         return 0;
1028 }
1029
1030 static void
1031 eth_dev_info(struct rte_eth_dev *dev,
1032                 struct rte_eth_dev_info *dev_info)
1033 {
1034         struct pmd_internals *internals = dev->data->dev_private;
1035         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1036         dev_info->if_index = 0;
1037         dev_info->max_mac_addrs = 1;
1038         dev_info->max_rx_pktlen = (uint32_t)-1;
1039         dev_info->max_rx_queues = internals->max_rx_queues;
1040         dev_info->max_tx_queues = internals->max_tx_queues;
1041         dev_info->min_rx_bufsize = 0;
1042         dev_info->speed_capa = ETH_LINK_SPEED_100G;
1043 }
1044
1045 static void
1046 eth_stats_get(struct rte_eth_dev *dev,
1047                 struct rte_eth_stats *stats)
1048 {
1049         uint16_t i;
1050         uint16_t nb_rx = dev->data->nb_rx_queues;
1051         uint16_t nb_tx = dev->data->nb_tx_queues;
1052         uint64_t rx_total = 0;
1053         uint64_t tx_total = 0;
1054         uint64_t tx_err_total = 0;
1055         uint64_t rx_total_bytes = 0;
1056         uint64_t tx_total_bytes = 0;
1057         const struct pmd_internals *internals = dev->data->dev_private;
1058
1059         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS && i < nb_rx; i++) {
1060                 stats->q_ipackets[i] = internals->rx_queue[i].rx_pkts;
1061                 stats->q_ibytes[i] = internals->rx_queue[i].rx_bytes;
1062                 rx_total += stats->q_ipackets[i];
1063                 rx_total_bytes += stats->q_ibytes[i];
1064         }
1065
1066         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS && i < nb_tx; i++) {
1067                 stats->q_opackets[i] = internals->tx_queue[i].tx_pkts;
1068                 stats->q_obytes[i] = internals->tx_queue[i].tx_bytes;
1069                 stats->q_errors[i] = internals->tx_queue[i].err_pkts;
1070                 tx_total += stats->q_opackets[i];
1071                 tx_total_bytes += stats->q_obytes[i];
1072                 tx_err_total += stats->q_errors[i];
1073         }
1074
1075         stats->ipackets = rx_total;
1076         stats->opackets = tx_total;
1077         stats->ibytes = rx_total_bytes;
1078         stats->obytes = tx_total_bytes;
1079         stats->oerrors = tx_err_total;
1080 }
1081
1082 static void
1083 eth_stats_reset(struct rte_eth_dev *dev)
1084 {
1085         uint16_t i;
1086         uint16_t nb_rx = dev->data->nb_rx_queues;
1087         uint16_t nb_tx = dev->data->nb_tx_queues;
1088         struct pmd_internals *internals = dev->data->dev_private;
1089
1090         for (i = 0; i < nb_rx; i++) {
1091                 internals->rx_queue[i].rx_pkts = 0;
1092                 internals->rx_queue[i].rx_bytes = 0;
1093                 internals->rx_queue[i].err_pkts = 0;
1094         }
1095         for (i = 0; i < nb_tx; i++) {
1096                 internals->tx_queue[i].tx_pkts = 0;
1097                 internals->tx_queue[i].tx_bytes = 0;
1098                 internals->tx_queue[i].err_pkts = 0;
1099         }
1100 }
1101
1102 static void
1103 eth_rx_queue_release(void *q)
1104 {
1105         struct szedata2_rx_queue *rxq = (struct szedata2_rx_queue *)q;
1106         if (rxq->sze != NULL) {
1107                 szedata_close(rxq->sze);
1108                 rxq->sze = NULL;
1109         }
1110 }
1111
1112 static void
1113 eth_tx_queue_release(void *q)
1114 {
1115         struct szedata2_tx_queue *txq = (struct szedata2_tx_queue *)q;
1116         if (txq->sze != NULL) {
1117                 szedata_close(txq->sze);
1118                 txq->sze = NULL;
1119         }
1120 }
1121
1122 static void
1123 eth_dev_close(struct rte_eth_dev *dev)
1124 {
1125         uint16_t i;
1126         uint16_t nb_rx = dev->data->nb_rx_queues;
1127         uint16_t nb_tx = dev->data->nb_tx_queues;
1128
1129         eth_dev_stop(dev);
1130
1131         for (i = 0; i < nb_rx; i++) {
1132                 eth_rx_queue_release(dev->data->rx_queues[i]);
1133                 dev->data->rx_queues[i] = NULL;
1134         }
1135         dev->data->nb_rx_queues = 0;
1136         for (i = 0; i < nb_tx; i++) {
1137                 eth_tx_queue_release(dev->data->tx_queues[i]);
1138                 dev->data->tx_queues[i] = NULL;
1139         }
1140         dev->data->nb_tx_queues = 0;
1141 }
1142
1143 /**
1144  * Function takes value from first IBUF status register.
1145  * Values in IBUF and OBUF should be same.
1146  *
1147  * @param internals
1148  *     Pointer to device private structure.
1149  * @return
1150  *     Link speed constant.
1151  */
1152 static inline enum szedata2_link_speed
1153 get_link_speed(const struct pmd_internals *internals)
1154 {
1155         const volatile struct szedata2_ibuf *ibuf =
1156                 ibuf_ptr_by_index(internals->pci_rsc, 0);
1157         uint32_t speed = (szedata2_read32(&ibuf->ibuf_st) & 0x70) >> 4;
1158         switch (speed) {
1159         case 0x03:
1160                 return SZEDATA2_LINK_SPEED_10G;
1161         case 0x04:
1162                 return SZEDATA2_LINK_SPEED_40G;
1163         case 0x05:
1164                 return SZEDATA2_LINK_SPEED_100G;
1165         default:
1166                 return SZEDATA2_LINK_SPEED_DEFAULT;
1167         }
1168 }
1169
1170 static int
1171 eth_link_update(struct rte_eth_dev *dev,
1172                 int wait_to_complete __rte_unused)
1173 {
1174         struct rte_eth_link link;
1175         struct rte_eth_link *link_ptr = &link;
1176         struct rte_eth_link *dev_link = &dev->data->dev_link;
1177         struct pmd_internals *internals = (struct pmd_internals *)
1178                 dev->data->dev_private;
1179         const volatile struct szedata2_ibuf *ibuf;
1180         uint32_t i;
1181         bool link_is_up = false;
1182
1183         switch (get_link_speed(internals)) {
1184         case SZEDATA2_LINK_SPEED_10G:
1185                 link.link_speed = ETH_SPEED_NUM_10G;
1186                 break;
1187         case SZEDATA2_LINK_SPEED_40G:
1188                 link.link_speed = ETH_SPEED_NUM_40G;
1189                 break;
1190         case SZEDATA2_LINK_SPEED_100G:
1191                 link.link_speed = ETH_SPEED_NUM_100G;
1192                 break;
1193         default:
1194                 link.link_speed = ETH_SPEED_NUM_10G;
1195                 break;
1196         }
1197
1198         /* szedata2 uses only full duplex */
1199         link.link_duplex = ETH_LINK_FULL_DUPLEX;
1200
1201         for (i = 0; i < szedata2_ibuf_count; i++) {
1202                 ibuf = ibuf_ptr_by_index(internals->pci_rsc, i);
1203                 /*
1204                  * Link is considered up if at least one ibuf is enabled
1205                  * and up.
1206                  */
1207                 if (ibuf_is_enabled(ibuf) && ibuf_is_link_up(ibuf)) {
1208                         link_is_up = true;
1209                         break;
1210                 }
1211         }
1212
1213         link.link_status = (link_is_up) ? ETH_LINK_UP : ETH_LINK_DOWN;
1214
1215         link.link_autoneg = ETH_LINK_SPEED_FIXED;
1216
1217         rte_atomic64_cmpset((uint64_t *)dev_link, *(uint64_t *)dev_link,
1218                         *(uint64_t *)link_ptr);
1219
1220         return 0;
1221 }
1222
1223 static int
1224 eth_dev_set_link_up(struct rte_eth_dev *dev)
1225 {
1226         struct pmd_internals *internals = (struct pmd_internals *)
1227                 dev->data->dev_private;
1228         uint32_t i;
1229
1230         for (i = 0; i < szedata2_ibuf_count; i++)
1231                 ibuf_enable(ibuf_ptr_by_index(internals->pci_rsc, i));
1232         for (i = 0; i < szedata2_obuf_count; i++)
1233                 obuf_enable(obuf_ptr_by_index(internals->pci_rsc, i));
1234         return 0;
1235 }
1236
1237 static int
1238 eth_dev_set_link_down(struct rte_eth_dev *dev)
1239 {
1240         struct pmd_internals *internals = (struct pmd_internals *)
1241                 dev->data->dev_private;
1242         uint32_t i;
1243
1244         for (i = 0; i < szedata2_ibuf_count; i++)
1245                 ibuf_disable(ibuf_ptr_by_index(internals->pci_rsc, i));
1246         for (i = 0; i < szedata2_obuf_count; i++)
1247                 obuf_disable(obuf_ptr_by_index(internals->pci_rsc, i));
1248         return 0;
1249 }
1250
1251 static int
1252 eth_rx_queue_setup(struct rte_eth_dev *dev,
1253                 uint16_t rx_queue_id,
1254                 uint16_t nb_rx_desc __rte_unused,
1255                 unsigned int socket_id __rte_unused,
1256                 const struct rte_eth_rxconf *rx_conf __rte_unused,
1257                 struct rte_mempool *mb_pool)
1258 {
1259         struct pmd_internals *internals = dev->data->dev_private;
1260         struct szedata2_rx_queue *rxq = &internals->rx_queue[rx_queue_id];
1261         int ret;
1262         uint32_t rx = 1 << rx_queue_id;
1263         uint32_t tx = 0;
1264
1265         rxq->sze = szedata_open(internals->sze_dev);
1266         if (rxq->sze == NULL)
1267                 return -EINVAL;
1268         ret = szedata_subscribe3(rxq->sze, &rx, &tx);
1269         if (ret != 0 || rx == 0) {
1270                 szedata_close(rxq->sze);
1271                 rxq->sze = NULL;
1272                 return -EINVAL;
1273         }
1274         rxq->rx_channel = rx_queue_id;
1275         rxq->in_port = dev->data->port_id;
1276         rxq->mb_pool = mb_pool;
1277         rxq->rx_pkts = 0;
1278         rxq->rx_bytes = 0;
1279         rxq->err_pkts = 0;
1280
1281         dev->data->rx_queues[rx_queue_id] = rxq;
1282         return 0;
1283 }
1284
1285 static int
1286 eth_tx_queue_setup(struct rte_eth_dev *dev,
1287                 uint16_t tx_queue_id,
1288                 uint16_t nb_tx_desc __rte_unused,
1289                 unsigned int socket_id __rte_unused,
1290                 const struct rte_eth_txconf *tx_conf __rte_unused)
1291 {
1292         struct pmd_internals *internals = dev->data->dev_private;
1293         struct szedata2_tx_queue *txq = &internals->tx_queue[tx_queue_id];
1294         int ret;
1295         uint32_t rx = 0;
1296         uint32_t tx = 1 << tx_queue_id;
1297
1298         txq->sze = szedata_open(internals->sze_dev);
1299         if (txq->sze == NULL)
1300                 return -EINVAL;
1301         ret = szedata_subscribe3(txq->sze, &rx, &tx);
1302         if (ret != 0 || tx == 0) {
1303                 szedata_close(txq->sze);
1304                 txq->sze = NULL;
1305                 return -EINVAL;
1306         }
1307         txq->tx_channel = tx_queue_id;
1308         txq->tx_pkts = 0;
1309         txq->tx_bytes = 0;
1310         txq->err_pkts = 0;
1311
1312         dev->data->tx_queues[tx_queue_id] = txq;
1313         return 0;
1314 }
1315
1316 static void
1317 eth_mac_addr_set(struct rte_eth_dev *dev __rte_unused,
1318                 struct ether_addr *mac_addr __rte_unused)
1319 {
1320 }
1321
1322 static void
1323 eth_promiscuous_enable(struct rte_eth_dev *dev)
1324 {
1325         struct pmd_internals *internals = (struct pmd_internals *)
1326                 dev->data->dev_private;
1327         uint32_t i;
1328
1329         for (i = 0; i < szedata2_ibuf_count; i++) {
1330                 ibuf_mac_mode_write(ibuf_ptr_by_index(internals->pci_rsc, i),
1331                                 SZEDATA2_MAC_CHMODE_PROMISC);
1332         }
1333 }
1334
1335 static void
1336 eth_promiscuous_disable(struct rte_eth_dev *dev)
1337 {
1338         struct pmd_internals *internals = (struct pmd_internals *)
1339                 dev->data->dev_private;
1340         uint32_t i;
1341
1342         for (i = 0; i < szedata2_ibuf_count; i++) {
1343                 ibuf_mac_mode_write(ibuf_ptr_by_index(internals->pci_rsc, i),
1344                                 SZEDATA2_MAC_CHMODE_ONLY_VALID);
1345         }
1346 }
1347
1348 static void
1349 eth_allmulticast_enable(struct rte_eth_dev *dev)
1350 {
1351         struct pmd_internals *internals = (struct pmd_internals *)
1352                 dev->data->dev_private;
1353         uint32_t i;
1354
1355         for (i = 0; i < szedata2_ibuf_count; i++) {
1356                 ibuf_mac_mode_write(ibuf_ptr_by_index(internals->pci_rsc, i),
1357                                 SZEDATA2_MAC_CHMODE_ALL_MULTICAST);
1358         }
1359 }
1360
1361 static void
1362 eth_allmulticast_disable(struct rte_eth_dev *dev)
1363 {
1364         struct pmd_internals *internals = (struct pmd_internals *)
1365                 dev->data->dev_private;
1366         uint32_t i;
1367
1368         for (i = 0; i < szedata2_ibuf_count; i++) {
1369                 ibuf_mac_mode_write(ibuf_ptr_by_index(internals->pci_rsc, i),
1370                                 SZEDATA2_MAC_CHMODE_ONLY_VALID);
1371         }
1372 }
1373
1374 static const struct eth_dev_ops ops = {
1375         .dev_start          = eth_dev_start,
1376         .dev_stop           = eth_dev_stop,
1377         .dev_set_link_up    = eth_dev_set_link_up,
1378         .dev_set_link_down  = eth_dev_set_link_down,
1379         .dev_close          = eth_dev_close,
1380         .dev_configure      = eth_dev_configure,
1381         .dev_infos_get      = eth_dev_info,
1382         .promiscuous_enable   = eth_promiscuous_enable,
1383         .promiscuous_disable  = eth_promiscuous_disable,
1384         .allmulticast_enable  = eth_allmulticast_enable,
1385         .allmulticast_disable = eth_allmulticast_disable,
1386         .rx_queue_start     = eth_rx_queue_start,
1387         .rx_queue_stop      = eth_rx_queue_stop,
1388         .tx_queue_start     = eth_tx_queue_start,
1389         .tx_queue_stop      = eth_tx_queue_stop,
1390         .rx_queue_setup     = eth_rx_queue_setup,
1391         .tx_queue_setup     = eth_tx_queue_setup,
1392         .rx_queue_release   = eth_rx_queue_release,
1393         .tx_queue_release   = eth_tx_queue_release,
1394         .link_update        = eth_link_update,
1395         .stats_get          = eth_stats_get,
1396         .stats_reset        = eth_stats_reset,
1397         .mac_addr_set       = eth_mac_addr_set,
1398 };
1399
1400 /*
1401  * This function goes through sysfs and looks for an index of szedata2
1402  * device file (/dev/szedataIIX, where X is the index).
1403  *
1404  * @return
1405  *           0 on success
1406  *          -1 on error
1407  */
1408 static int
1409 get_szedata2_index(const struct rte_pci_addr *pcislot_addr, uint32_t *index)
1410 {
1411         DIR *dir;
1412         struct dirent *entry;
1413         int ret;
1414         uint32_t tmp_index;
1415         FILE *fd;
1416         char pcislot_path[PATH_MAX];
1417         uint32_t domain;
1418         uint32_t bus;
1419         uint32_t devid;
1420         uint32_t function;
1421
1422         dir = opendir("/sys/class/combo");
1423         if (dir == NULL)
1424                 return -1;
1425
1426         /*
1427          * Iterate through all combosixX directories.
1428          * When the value in /sys/class/combo/combosixX/device/pcislot
1429          * file is the location of the ethernet device dev, "X" is the
1430          * index of the device.
1431          */
1432         while ((entry = readdir(dir)) != NULL) {
1433                 ret = sscanf(entry->d_name, "combosix%u", &tmp_index);
1434                 if (ret != 1)
1435                         continue;
1436
1437                 snprintf(pcislot_path, PATH_MAX,
1438                         "/sys/class/combo/combosix%u/device/pcislot",
1439                         tmp_index);
1440
1441                 fd = fopen(pcislot_path, "r");
1442                 if (fd == NULL)
1443                         continue;
1444
1445                 ret = fscanf(fd, "%4" PRIx16 ":%2" PRIx8 ":%2" PRIx8 ".%" PRIx8,
1446                                 &domain, &bus, &devid, &function);
1447                 fclose(fd);
1448                 if (ret != 4)
1449                         continue;
1450
1451                 if (pcislot_addr->domain == domain &&
1452                                 pcislot_addr->bus == bus &&
1453                                 pcislot_addr->devid == devid &&
1454                                 pcislot_addr->function == function) {
1455                         *index = tmp_index;
1456                         closedir(dir);
1457                         return 0;
1458                 }
1459         }
1460
1461         closedir(dir);
1462         return -1;
1463 }
1464
1465 static int
1466 rte_szedata2_eth_dev_init(struct rte_eth_dev *dev)
1467 {
1468         struct rte_eth_dev_data *data = dev->data;
1469         struct pmd_internals *internals = (struct pmd_internals *)
1470                 data->dev_private;
1471         struct szedata *szedata_temp;
1472         int ret;
1473         uint32_t szedata2_index;
1474         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1475         struct rte_pci_addr *pci_addr = &pci_dev->addr;
1476         struct rte_mem_resource *pci_rsc =
1477                 &pci_dev->mem_resource[PCI_RESOURCE_NUMBER];
1478         char rsc_filename[PATH_MAX];
1479         void *pci_resource_ptr = NULL;
1480         int fd;
1481
1482         RTE_LOG(INFO, PMD, "Initializing szedata2 device (" PCI_PRI_FMT ")\n",
1483                         pci_addr->domain, pci_addr->bus, pci_addr->devid,
1484                         pci_addr->function);
1485
1486         /* Get index of szedata2 device file and create path to device file */
1487         ret = get_szedata2_index(pci_addr, &szedata2_index);
1488         if (ret != 0) {
1489                 RTE_LOG(ERR, PMD, "Failed to get szedata2 device index!\n");
1490                 return -ENODEV;
1491         }
1492         snprintf(internals->sze_dev, PATH_MAX, SZEDATA2_DEV_PATH_FMT,
1493                         szedata2_index);
1494
1495         RTE_LOG(INFO, PMD, "SZEDATA2 path: %s\n", internals->sze_dev);
1496
1497         /*
1498          * Get number of available DMA RX and TX channels, which is maximum
1499          * number of queues that can be created and store it in private device
1500          * data structure.
1501          */
1502         szedata_temp = szedata_open(internals->sze_dev);
1503         if (szedata_temp == NULL) {
1504                 RTE_LOG(ERR, PMD, "szedata_open(): failed to open %s",
1505                                 internals->sze_dev);
1506                 return -EINVAL;
1507         }
1508         internals->max_rx_queues = szedata_ifaces_available(szedata_temp,
1509                         SZE2_DIR_RX);
1510         internals->max_tx_queues = szedata_ifaces_available(szedata_temp,
1511                         SZE2_DIR_TX);
1512         szedata_close(szedata_temp);
1513
1514         RTE_LOG(INFO, PMD, "Available DMA channels RX: %u TX: %u\n",
1515                         internals->max_rx_queues, internals->max_tx_queues);
1516
1517         /* Set rx, tx burst functions */
1518         if (data->dev_conf.rxmode.enable_scatter == 1 ||
1519                 data->scattered_rx == 1) {
1520                 dev->rx_pkt_burst = eth_szedata2_rx_scattered;
1521                 data->scattered_rx = 1;
1522         } else {
1523                 dev->rx_pkt_burst = eth_szedata2_rx;
1524                 data->scattered_rx = 0;
1525         }
1526         dev->tx_pkt_burst = eth_szedata2_tx;
1527
1528         /* Set function callbacks for Ethernet API */
1529         dev->dev_ops = &ops;
1530
1531         rte_eth_copy_pci_info(dev, pci_dev);
1532
1533         /* mmap pci resource0 file to rte_mem_resource structure */
1534         if (pci_dev->mem_resource[PCI_RESOURCE_NUMBER].phys_addr ==
1535                         0) {
1536                 RTE_LOG(ERR, PMD, "Missing resource%u file\n",
1537                                 PCI_RESOURCE_NUMBER);
1538                 return -EINVAL;
1539         }
1540         snprintf(rsc_filename, PATH_MAX,
1541                 "%s/" PCI_PRI_FMT "/resource%u", pci_get_sysfs_path(),
1542                 pci_addr->domain, pci_addr->bus,
1543                 pci_addr->devid, pci_addr->function, PCI_RESOURCE_NUMBER);
1544         fd = open(rsc_filename, O_RDWR);
1545         if (fd < 0) {
1546                 RTE_LOG(ERR, PMD, "Could not open file %s\n", rsc_filename);
1547                 return -EINVAL;
1548         }
1549
1550         pci_resource_ptr = mmap(0,
1551                         pci_dev->mem_resource[PCI_RESOURCE_NUMBER].len,
1552                         PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
1553         close(fd);
1554         if (pci_resource_ptr == NULL) {
1555                 RTE_LOG(ERR, PMD, "Could not mmap file %s (fd = %d)\n",
1556                                 rsc_filename, fd);
1557                 return -EINVAL;
1558         }
1559         pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr = pci_resource_ptr;
1560         internals->pci_rsc = pci_rsc;
1561
1562         RTE_LOG(DEBUG, PMD, "resource%u phys_addr = 0x%llx len = %llu "
1563                         "virt addr = %llx\n", PCI_RESOURCE_NUMBER,
1564                         (unsigned long long)pci_rsc->phys_addr,
1565                         (unsigned long long)pci_rsc->len,
1566                         (unsigned long long)pci_rsc->addr);
1567
1568         /* Get link state */
1569         eth_link_update(dev, 0);
1570
1571         /* Allocate space for one mac address */
1572         data->mac_addrs = rte_zmalloc(data->name, sizeof(struct ether_addr),
1573                         RTE_CACHE_LINE_SIZE);
1574         if (data->mac_addrs == NULL) {
1575                 RTE_LOG(ERR, PMD, "Could not alloc space for MAC address!\n");
1576                 munmap(pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr,
1577                        pci_dev->mem_resource[PCI_RESOURCE_NUMBER].len);
1578                 return -EINVAL;
1579         }
1580
1581         ether_addr_copy(&eth_addr, data->mac_addrs);
1582
1583         /* At initial state COMBO card is in promiscuous mode so disable it */
1584         eth_promiscuous_disable(dev);
1585
1586         RTE_LOG(INFO, PMD, "szedata2 device ("
1587                         PCI_PRI_FMT ") successfully initialized\n",
1588                         pci_addr->domain, pci_addr->bus, pci_addr->devid,
1589                         pci_addr->function);
1590
1591         return 0;
1592 }
1593
1594 static int
1595 rte_szedata2_eth_dev_uninit(struct rte_eth_dev *dev)
1596 {
1597         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1598         struct rte_pci_addr *pci_addr = &pci_dev->addr;
1599
1600         rte_free(dev->data->mac_addrs);
1601         dev->data->mac_addrs = NULL;
1602         munmap(pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr,
1603                pci_dev->mem_resource[PCI_RESOURCE_NUMBER].len);
1604
1605         RTE_LOG(INFO, PMD, "szedata2 device ("
1606                         PCI_PRI_FMT ") successfully uninitialized\n",
1607                         pci_addr->domain, pci_addr->bus, pci_addr->devid,
1608                         pci_addr->function);
1609
1610         return 0;
1611 }
1612
1613 static const struct rte_pci_id rte_szedata2_pci_id_table[] = {
1614         {
1615                 RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
1616                                 PCI_DEVICE_ID_NETCOPE_COMBO80G)
1617         },
1618         {
1619                 RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
1620                                 PCI_DEVICE_ID_NETCOPE_COMBO100G)
1621         },
1622         {
1623                 RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
1624                                 PCI_DEVICE_ID_NETCOPE_COMBO100G2)
1625         },
1626         {
1627                 .vendor_id = 0,
1628         }
1629 };
1630
1631 static int szedata2_eth_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1632         struct rte_pci_device *pci_dev)
1633 {
1634         return rte_eth_dev_pci_generic_probe(pci_dev,
1635                 sizeof(struct pmd_internals), rte_szedata2_eth_dev_init);
1636 }
1637
1638 static int szedata2_eth_pci_remove(struct rte_pci_device *pci_dev)
1639 {
1640         return rte_eth_dev_pci_generic_remove(pci_dev,
1641                 rte_szedata2_eth_dev_uninit);
1642 }
1643
1644 static struct rte_pci_driver szedata2_eth_driver = {
1645         .id_table = rte_szedata2_pci_id_table,
1646         .probe = szedata2_eth_pci_probe,
1647         .remove = szedata2_eth_pci_remove,
1648 };
1649
1650 RTE_PMD_REGISTER_PCI(RTE_SZEDATA2_DRIVER_NAME, szedata2_eth_driver);
1651 RTE_PMD_REGISTER_PCI_TABLE(RTE_SZEDATA2_DRIVER_NAME, rte_szedata2_pci_id_table);
1652 RTE_PMD_REGISTER_KMOD_DEP(RTE_SZEDATA2_DRIVER_NAME,
1653         "* combo6core & combov3 & szedata2 & szedata2_cv3");