New upstream version 18.08
[deb_dpdk.git] / drivers / net / tap / rte_eth_tap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_atomic.h>
6 #include <rte_branch_prediction.h>
7 #include <rte_byteorder.h>
8 #include <rte_common.h>
9 #include <rte_mbuf.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_bus_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_net.h>
16 #include <rte_debug.h>
17 #include <rte_ip.h>
18 #include <rte_string_fns.h>
19
20 #include <assert.h>
21 #include <sys/types.h>
22 #include <sys/stat.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/utsname.h>
26 #include <sys/mman.h>
27 #include <errno.h>
28 #include <signal.h>
29 #include <stdbool.h>
30 #include <stdint.h>
31 #include <sys/uio.h>
32 #include <unistd.h>
33 #include <arpa/inet.h>
34 #include <net/if.h>
35 #include <linux/if_tun.h>
36 #include <linux/if_ether.h>
37 #include <fcntl.h>
38
39 #include <tap_rss.h>
40 #include <rte_eth_tap.h>
41 #include <tap_flow.h>
42 #include <tap_netlink.h>
43 #include <tap_tcmsgs.h>
44
45 /* Linux based path to the TUN device */
46 #define TUN_TAP_DEV_PATH        "/dev/net/tun"
47 #define DEFAULT_TAP_NAME        "dtap"
48 #define DEFAULT_TUN_NAME        "dtun"
49
50 #define ETH_TAP_IFACE_ARG       "iface"
51 #define ETH_TAP_REMOTE_ARG      "remote"
52 #define ETH_TAP_MAC_ARG         "mac"
53 #define ETH_TAP_MAC_FIXED       "fixed"
54
55 #define ETH_TAP_USR_MAC_FMT     "xx:xx:xx:xx:xx:xx"
56 #define ETH_TAP_CMP_MAC_FMT     "0123456789ABCDEFabcdef"
57 #define ETH_TAP_MAC_ARG_FMT     ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
58
59 #define TAP_GSO_MBUFS_PER_CORE  128
60 #define TAP_GSO_MBUF_SEG_SIZE   128
61 #define TAP_GSO_MBUF_CACHE_SIZE 4
62 #define TAP_GSO_MBUFS_NUM \
63         (TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
64
65 static struct rte_vdev_driver pmd_tap_drv;
66 static struct rte_vdev_driver pmd_tun_drv;
67
68 static const char *valid_arguments[] = {
69         ETH_TAP_IFACE_ARG,
70         ETH_TAP_REMOTE_ARG,
71         ETH_TAP_MAC_ARG,
72         NULL
73 };
74
75 static unsigned int tap_unit;
76 static unsigned int tun_unit;
77
78 static char tuntap_name[8];
79
80 static volatile uint32_t tap_trigger;   /* Rx trigger */
81
82 static struct rte_eth_link pmd_link = {
83         .link_speed = ETH_SPEED_NUM_10G,
84         .link_duplex = ETH_LINK_FULL_DUPLEX,
85         .link_status = ETH_LINK_DOWN,
86         .link_autoneg = ETH_LINK_FIXED,
87 };
88
89 static void
90 tap_trigger_cb(int sig __rte_unused)
91 {
92         /* Valid trigger values are nonzero */
93         tap_trigger = (tap_trigger + 1) | 0x80000000;
94 }
95
96 /* Specifies on what netdevices the ioctl should be applied */
97 enum ioctl_mode {
98         LOCAL_AND_REMOTE,
99         LOCAL_ONLY,
100         REMOTE_ONLY,
101 };
102
103 static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
104
105 /**
106  * Tun/Tap allocation routine
107  *
108  * @param[in] pmd
109  *   Pointer to private structure.
110  *
111  * @param[in] is_keepalive
112  *   Keepalive flag
113  *
114  * @return
115  *   -1 on failure, fd on success
116  */
117 static int
118 tun_alloc(struct pmd_internals *pmd, int is_keepalive)
119 {
120         struct ifreq ifr;
121 #ifdef IFF_MULTI_QUEUE
122         unsigned int features;
123 #endif
124         int fd;
125
126         memset(&ifr, 0, sizeof(struct ifreq));
127
128         /*
129          * Do not set IFF_NO_PI as packet information header will be needed
130          * to check if a received packet has been truncated.
131          */
132         ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
133                 IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
134         snprintf(ifr.ifr_name, IFNAMSIZ, "%s", pmd->name);
135
136         TAP_LOG(DEBUG, "ifr_name '%s'", ifr.ifr_name);
137
138         fd = open(TUN_TAP_DEV_PATH, O_RDWR);
139         if (fd < 0) {
140                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
141                 goto error;
142         }
143
144 #ifdef IFF_MULTI_QUEUE
145         /* Grab the TUN features to verify we can work multi-queue */
146         if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
147                 TAP_LOG(ERR, "%s unable to get TUN/TAP features",
148                         tuntap_name);
149                 goto error;
150         }
151         TAP_LOG(DEBUG, "%s Features %08x", tuntap_name, features);
152
153         if (features & IFF_MULTI_QUEUE) {
154                 TAP_LOG(DEBUG, "  Multi-queue support for %d queues",
155                         RTE_PMD_TAP_MAX_QUEUES);
156                 ifr.ifr_flags |= IFF_MULTI_QUEUE;
157         } else
158 #endif
159         {
160                 ifr.ifr_flags |= IFF_ONE_QUEUE;
161                 TAP_LOG(DEBUG, "  Single queue only support");
162         }
163
164         /* Set the TUN/TAP configuration and set the name if needed */
165         if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
166                 TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
167                         ifr.ifr_name, strerror(errno));
168                 goto error;
169         }
170
171         if (is_keepalive) {
172                 /*
173                  * Detach the TUN/TAP keep-alive queue
174                  * to avoid traffic through it
175                  */
176                 ifr.ifr_flags = IFF_DETACH_QUEUE;
177                 if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
178                         TAP_LOG(WARNING,
179                                 "Unable to detach keep-alive queue for %s: %s",
180                                 ifr.ifr_name, strerror(errno));
181                         goto error;
182                 }
183         }
184
185         /* Always set the file descriptor to non-blocking */
186         if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) {
187                 TAP_LOG(WARNING,
188                         "Unable to set %s to nonblocking: %s",
189                         ifr.ifr_name, strerror(errno));
190                 goto error;
191         }
192
193         /* Set up trigger to optimize empty Rx bursts */
194         errno = 0;
195         do {
196                 struct sigaction sa;
197                 int flags = fcntl(fd, F_GETFL);
198
199                 if (flags == -1 || sigaction(SIGIO, NULL, &sa) == -1)
200                         break;
201                 if (sa.sa_handler != tap_trigger_cb) {
202                         /*
203                          * Make sure SIGIO is not already taken. This is done
204                          * as late as possible to leave the application a
205                          * chance to set up its own signal handler first.
206                          */
207                         if (sa.sa_handler != SIG_IGN &&
208                             sa.sa_handler != SIG_DFL) {
209                                 errno = EBUSY;
210                                 break;
211                         }
212                         sa = (struct sigaction){
213                                 .sa_flags = SA_RESTART,
214                                 .sa_handler = tap_trigger_cb,
215                         };
216                         if (sigaction(SIGIO, &sa, NULL) == -1)
217                                 break;
218                 }
219                 /* Enable SIGIO on file descriptor */
220                 fcntl(fd, F_SETFL, flags | O_ASYNC);
221                 fcntl(fd, F_SETOWN, getpid());
222         } while (0);
223
224         if (errno) {
225                 /* Disable trigger globally in case of error */
226                 tap_trigger = 0;
227                 TAP_LOG(WARNING, "Rx trigger disabled: %s",
228                         strerror(errno));
229         }
230
231         return fd;
232
233 error:
234         if (fd > 0)
235                 close(fd);
236         return -1;
237 }
238
239 static void
240 tap_verify_csum(struct rte_mbuf *mbuf)
241 {
242         uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
243         uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
244         uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
245         unsigned int l2_len = sizeof(struct ether_hdr);
246         unsigned int l3_len;
247         uint16_t cksum = 0;
248         void *l3_hdr;
249         void *l4_hdr;
250
251         if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
252                 l2_len += 4;
253         else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
254                 l2_len += 8;
255         /* Don't verify checksum for packets with discontinuous L2 header */
256         if (unlikely(l2_len + sizeof(struct ipv4_hdr) >
257                      rte_pktmbuf_data_len(mbuf)))
258                 return;
259         l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
260         if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
261                 struct ipv4_hdr *iph = l3_hdr;
262
263                 /* ihl contains the number of 4-byte words in the header */
264                 l3_len = 4 * (iph->version_ihl & 0xf);
265                 if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
266                         return;
267
268                 cksum = ~rte_raw_cksum(iph, l3_len);
269                 mbuf->ol_flags |= cksum ?
270                         PKT_RX_IP_CKSUM_BAD :
271                         PKT_RX_IP_CKSUM_GOOD;
272         } else if (l3 == RTE_PTYPE_L3_IPV6) {
273                 l3_len = sizeof(struct ipv6_hdr);
274         } else {
275                 /* IPv6 extensions are not supported */
276                 return;
277         }
278         if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
279                 l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
280                 /* Don't verify checksum for multi-segment packets. */
281                 if (mbuf->nb_segs > 1)
282                         return;
283                 if (l3 == RTE_PTYPE_L3_IPV4)
284                         cksum = ~rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
285                 else if (l3 == RTE_PTYPE_L3_IPV6)
286                         cksum = ~rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
287                 mbuf->ol_flags |= cksum ?
288                         PKT_RX_L4_CKSUM_BAD :
289                         PKT_RX_L4_CKSUM_GOOD;
290         }
291 }
292
293 static uint64_t
294 tap_rx_offload_get_port_capa(void)
295 {
296         /*
297          * No specific port Rx offload capabilities.
298          */
299         return 0;
300 }
301
302 static uint64_t
303 tap_rx_offload_get_queue_capa(void)
304 {
305         return DEV_RX_OFFLOAD_SCATTER |
306                DEV_RX_OFFLOAD_IPV4_CKSUM |
307                DEV_RX_OFFLOAD_UDP_CKSUM |
308                DEV_RX_OFFLOAD_TCP_CKSUM |
309                DEV_RX_OFFLOAD_CRC_STRIP;
310 }
311
312 /* Callback to handle the rx burst of packets to the correct interface and
313  * file descriptor(s) in a multi-queue setup.
314  */
315 static uint16_t
316 pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
317 {
318         struct rx_queue *rxq = queue;
319         uint16_t num_rx;
320         unsigned long num_rx_bytes = 0;
321         uint32_t trigger = tap_trigger;
322
323         if (trigger == rxq->trigger_seen)
324                 return 0;
325         if (trigger)
326                 rxq->trigger_seen = trigger;
327         rte_compiler_barrier();
328         for (num_rx = 0; num_rx < nb_pkts; ) {
329                 struct rte_mbuf *mbuf = rxq->pool;
330                 struct rte_mbuf *seg = NULL;
331                 struct rte_mbuf *new_tail = NULL;
332                 uint16_t data_off = rte_pktmbuf_headroom(mbuf);
333                 int len;
334
335                 len = readv(rxq->fd, *rxq->iovecs,
336                             1 +
337                             (rxq->rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ?
338                              rxq->nb_rx_desc : 1));
339                 if (len < (int)sizeof(struct tun_pi))
340                         break;
341
342                 /* Packet couldn't fit in the provided mbuf */
343                 if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
344                         rxq->stats.ierrors++;
345                         continue;
346                 }
347
348                 len -= sizeof(struct tun_pi);
349
350                 mbuf->pkt_len = len;
351                 mbuf->port = rxq->in_port;
352                 while (1) {
353                         struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
354
355                         if (unlikely(!buf)) {
356                                 rxq->stats.rx_nombuf++;
357                                 /* No new buf has been allocated: do nothing */
358                                 if (!new_tail || !seg)
359                                         goto end;
360
361                                 seg->next = NULL;
362                                 rte_pktmbuf_free(mbuf);
363
364                                 goto end;
365                         }
366                         seg = seg ? seg->next : mbuf;
367                         if (rxq->pool == mbuf)
368                                 rxq->pool = buf;
369                         if (new_tail)
370                                 new_tail->next = buf;
371                         new_tail = buf;
372                         new_tail->next = seg->next;
373
374                         /* iovecs[0] is reserved for packet info (pi) */
375                         (*rxq->iovecs)[mbuf->nb_segs].iov_len =
376                                 buf->buf_len - data_off;
377                         (*rxq->iovecs)[mbuf->nb_segs].iov_base =
378                                 (char *)buf->buf_addr + data_off;
379
380                         seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
381                         seg->data_off = data_off;
382
383                         len -= seg->data_len;
384                         if (len <= 0)
385                                 break;
386                         mbuf->nb_segs++;
387                         /* First segment has headroom, not the others */
388                         data_off = 0;
389                 }
390                 seg->next = NULL;
391                 mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
392                                                       RTE_PTYPE_ALL_MASK);
393                 if (rxq->rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
394                         tap_verify_csum(mbuf);
395
396                 /* account for the receive frame */
397                 bufs[num_rx++] = mbuf;
398                 num_rx_bytes += mbuf->pkt_len;
399         }
400 end:
401         rxq->stats.ipackets += num_rx;
402         rxq->stats.ibytes += num_rx_bytes;
403
404         return num_rx;
405 }
406
407 static uint64_t
408 tap_tx_offload_get_port_capa(void)
409 {
410         /*
411          * No specific port Tx offload capabilities.
412          */
413         return 0;
414 }
415
416 static uint64_t
417 tap_tx_offload_get_queue_capa(void)
418 {
419         return DEV_TX_OFFLOAD_MULTI_SEGS |
420                DEV_TX_OFFLOAD_IPV4_CKSUM |
421                DEV_TX_OFFLOAD_UDP_CKSUM |
422                DEV_TX_OFFLOAD_TCP_CKSUM |
423                DEV_TX_OFFLOAD_TCP_TSO;
424 }
425
426 /* Finalize l4 checksum calculation */
427 static void
428 tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
429                 uint32_t l4_raw_cksum)
430 {
431         if (l4_cksum) {
432                 uint32_t cksum;
433
434                 cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
435                 cksum += l4_phdr_cksum;
436
437                 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
438                 cksum = (~cksum) & 0xffff;
439                 if (cksum == 0)
440                         cksum = 0xffff;
441                 *l4_cksum = cksum;
442         }
443 }
444
445 /* Accumaulate L4 raw checksums */
446 static void
447 tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
448                         uint32_t *l4_raw_cksum)
449 {
450         if (l4_cksum == NULL)
451                 return;
452
453         *l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
454 }
455
456 /* L3 and L4 pseudo headers checksum offloads */
457 static void
458 tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
459                 unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
460                 uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
461 {
462         void *l3_hdr = packet + l2_len;
463
464         if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4)) {
465                 struct ipv4_hdr *iph = l3_hdr;
466                 uint16_t cksum;
467
468                 iph->hdr_checksum = 0;
469                 cksum = rte_raw_cksum(iph, l3_len);
470                 iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
471         }
472         if (ol_flags & PKT_TX_L4_MASK) {
473                 void *l4_hdr;
474
475                 l4_hdr = packet + l2_len + l3_len;
476                 if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM)
477                         *l4_cksum = &((struct udp_hdr *)l4_hdr)->dgram_cksum;
478                 else if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM)
479                         *l4_cksum = &((struct tcp_hdr *)l4_hdr)->cksum;
480                 else
481                         return;
482                 **l4_cksum = 0;
483                 if (ol_flags & PKT_TX_IPV4)
484                         *l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
485                 else
486                         *l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
487                 *l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
488         }
489 }
490
491 static inline void
492 tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
493                         struct rte_mbuf **pmbufs,
494                         uint16_t *num_packets, unsigned long *num_tx_bytes)
495 {
496         int i;
497         uint16_t l234_hlen;
498
499         for (i = 0; i < num_mbufs; i++) {
500                 struct rte_mbuf *mbuf = pmbufs[i];
501                 struct iovec iovecs[mbuf->nb_segs + 2];
502                 struct tun_pi pi = { .flags = 0, .proto = 0x00 };
503                 struct rte_mbuf *seg = mbuf;
504                 char m_copy[mbuf->data_len];
505                 int proto;
506                 int n;
507                 int j;
508                 int k; /* current index in iovecs for copying segments */
509                 uint16_t seg_len; /* length of first segment */
510                 uint16_t nb_segs;
511                 uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
512                 uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
513                 uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
514                 uint16_t is_cksum = 0; /* in case cksum should be offloaded */
515
516                 l4_cksum = NULL;
517                 if (txq->type == ETH_TUNTAP_TYPE_TUN) {
518                         /*
519                          * TUN and TAP are created with IFF_NO_PI disabled.
520                          * For TUN PMD this mandatory as fields are used by
521                          * Kernel tun.c to determine whether its IP or non IP
522                          * packets.
523                          *
524                          * The logic fetches the first byte of data from mbuf
525                          * then compares whether its v4 or v6. If first byte
526                          * is 4 or 6, then protocol field is updated.
527                          */
528                         char *buff_data = rte_pktmbuf_mtod(seg, void *);
529                         proto = (*buff_data & 0xf0);
530                         pi.proto = (proto == 0x40) ?
531                                 rte_cpu_to_be_16(ETHER_TYPE_IPv4) :
532                                 ((proto == 0x60) ?
533                                         rte_cpu_to_be_16(ETHER_TYPE_IPv6) :
534                                         0x00);
535                 }
536
537                 k = 0;
538                 iovecs[k].iov_base = &pi;
539                 iovecs[k].iov_len = sizeof(pi);
540                 k++;
541
542                 nb_segs = mbuf->nb_segs;
543                 if (txq->csum &&
544                     ((mbuf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4) ||
545                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM ||
546                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM))) {
547                         is_cksum = 1;
548
549                         /* Support only packets with at least layer 4
550                          * header included in the first segment
551                          */
552                         seg_len = rte_pktmbuf_data_len(mbuf);
553                         l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
554                         if (seg_len < l234_hlen)
555                                 break;
556
557                         /* To change checksums, work on a * copy of l2, l3
558                          * headers + l4 pseudo header
559                          */
560                         rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
561                                         l234_hlen);
562                         tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
563                                        mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
564                                        &l4_cksum, &l4_phdr_cksum,
565                                        &l4_raw_cksum);
566                         iovecs[k].iov_base = m_copy;
567                         iovecs[k].iov_len = l234_hlen;
568                         k++;
569
570                         /* Update next iovecs[] beyond l2, l3, l4 headers */
571                         if (seg_len > l234_hlen) {
572                                 iovecs[k].iov_len = seg_len - l234_hlen;
573                                 iovecs[k].iov_base =
574                                         rte_pktmbuf_mtod(seg, char *) +
575                                                 l234_hlen;
576                                 tap_tx_l4_add_rcksum(iovecs[k].iov_base,
577                                         iovecs[k].iov_len, l4_cksum,
578                                         &l4_raw_cksum);
579                                 k++;
580                                 nb_segs++;
581                         }
582                         seg = seg->next;
583                 }
584
585                 for (j = k; j <= nb_segs; j++) {
586                         iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
587                         iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
588                         if (is_cksum)
589                                 tap_tx_l4_add_rcksum(iovecs[j].iov_base,
590                                         iovecs[j].iov_len, l4_cksum,
591                                         &l4_raw_cksum);
592                         seg = seg->next;
593                 }
594
595                 if (is_cksum)
596                         tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
597
598                 /* copy the tx frame data */
599                 n = writev(txq->fd, iovecs, j);
600                 if (n <= 0)
601                         break;
602                 (*num_packets)++;
603                 (*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
604         }
605 }
606
607 /* Callback to handle sending packets from the tap interface
608  */
609 static uint16_t
610 pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
611 {
612         struct tx_queue *txq = queue;
613         uint16_t num_tx = 0;
614         uint16_t num_packets = 0;
615         unsigned long num_tx_bytes = 0;
616         uint32_t max_size;
617         int i;
618
619         if (unlikely(nb_pkts == 0))
620                 return 0;
621
622         struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
623         max_size = *txq->mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN + 4);
624         for (i = 0; i < nb_pkts; i++) {
625                 struct rte_mbuf *mbuf_in = bufs[num_tx];
626                 struct rte_mbuf **mbuf;
627                 uint16_t num_mbufs = 0;
628                 uint16_t tso_segsz = 0;
629                 int ret;
630                 uint16_t hdrs_len;
631                 int j;
632                 uint64_t tso;
633
634                 tso = mbuf_in->ol_flags & PKT_TX_TCP_SEG;
635                 if (tso) {
636                         struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
637
638                         assert(gso_ctx != NULL);
639
640                         /* TCP segmentation implies TCP checksum offload */
641                         mbuf_in->ol_flags |= PKT_TX_TCP_CKSUM;
642
643                         /* gso size is calculated without ETHER_CRC_LEN */
644                         hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
645                                         mbuf_in->l4_len;
646                         tso_segsz = mbuf_in->tso_segsz + hdrs_len;
647                         if (unlikely(tso_segsz == hdrs_len) ||
648                                 tso_segsz > *txq->mtu) {
649                                 txq->stats.errs++;
650                                 break;
651                         }
652                         gso_ctx->gso_size = tso_segsz;
653                         ret = rte_gso_segment(mbuf_in, /* packet to segment */
654                                 gso_ctx, /* gso control block */
655                                 (struct rte_mbuf **)&gso_mbufs, /* out mbufs */
656                                 RTE_DIM(gso_mbufs)); /* max tso mbufs */
657
658                         /* ret contains the number of new created mbufs */
659                         if (ret < 0)
660                                 break;
661
662                         mbuf = gso_mbufs;
663                         num_mbufs = ret;
664                 } else {
665                         /* stats.errs will be incremented */
666                         if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
667                                 break;
668
669                         /* ret 0 indicates no new mbufs were created */
670                         ret = 0;
671                         mbuf = &mbuf_in;
672                         num_mbufs = 1;
673                 }
674
675                 tap_write_mbufs(txq, num_mbufs, mbuf,
676                                 &num_packets, &num_tx_bytes);
677                 num_tx++;
678                 /* free original mbuf */
679                 rte_pktmbuf_free(mbuf_in);
680                 /* free tso mbufs */
681                 for (j = 0; j < ret; j++)
682                         rte_pktmbuf_free(mbuf[j]);
683         }
684
685         txq->stats.opackets += num_packets;
686         txq->stats.errs += nb_pkts - num_tx;
687         txq->stats.obytes += num_tx_bytes;
688
689         return num_tx;
690 }
691
692 static const char *
693 tap_ioctl_req2str(unsigned long request)
694 {
695         switch (request) {
696         case SIOCSIFFLAGS:
697                 return "SIOCSIFFLAGS";
698         case SIOCGIFFLAGS:
699                 return "SIOCGIFFLAGS";
700         case SIOCGIFHWADDR:
701                 return "SIOCGIFHWADDR";
702         case SIOCSIFHWADDR:
703                 return "SIOCSIFHWADDR";
704         case SIOCSIFMTU:
705                 return "SIOCSIFMTU";
706         }
707         return "UNKNOWN";
708 }
709
710 static int
711 tap_ioctl(struct pmd_internals *pmd, unsigned long request,
712           struct ifreq *ifr, int set, enum ioctl_mode mode)
713 {
714         short req_flags = ifr->ifr_flags;
715         int remote = pmd->remote_if_index &&
716                 (mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
717
718         if (!pmd->remote_if_index && mode == REMOTE_ONLY)
719                 return 0;
720         /*
721          * If there is a remote netdevice, apply ioctl on it, then apply it on
722          * the tap netdevice.
723          */
724 apply:
725         if (remote)
726                 snprintf(ifr->ifr_name, IFNAMSIZ, "%s", pmd->remote_iface);
727         else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
728                 snprintf(ifr->ifr_name, IFNAMSIZ, "%s", pmd->name);
729         switch (request) {
730         case SIOCSIFFLAGS:
731                 /* fetch current flags to leave other flags untouched */
732                 if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
733                         goto error;
734                 if (set)
735                         ifr->ifr_flags |= req_flags;
736                 else
737                         ifr->ifr_flags &= ~req_flags;
738                 break;
739         case SIOCGIFFLAGS:
740         case SIOCGIFHWADDR:
741         case SIOCSIFHWADDR:
742         case SIOCSIFMTU:
743                 break;
744         default:
745                 RTE_LOG(WARNING, PMD, "%s: ioctl() called with wrong arg\n",
746                         pmd->name);
747                 return -EINVAL;
748         }
749         if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
750                 goto error;
751         if (remote-- && mode == LOCAL_AND_REMOTE)
752                 goto apply;
753         return 0;
754
755 error:
756         TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
757                 tap_ioctl_req2str(request), strerror(errno), errno);
758         return -errno;
759 }
760
761 static int
762 tap_link_set_down(struct rte_eth_dev *dev)
763 {
764         struct pmd_internals *pmd = dev->data->dev_private;
765         struct ifreq ifr = { .ifr_flags = IFF_UP };
766
767         dev->data->dev_link.link_status = ETH_LINK_DOWN;
768         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
769 }
770
771 static int
772 tap_link_set_up(struct rte_eth_dev *dev)
773 {
774         struct pmd_internals *pmd = dev->data->dev_private;
775         struct ifreq ifr = { .ifr_flags = IFF_UP };
776
777         dev->data->dev_link.link_status = ETH_LINK_UP;
778         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
779 }
780
781 static int
782 tap_dev_start(struct rte_eth_dev *dev)
783 {
784         int err, i;
785
786         err = tap_intr_handle_set(dev, 1);
787         if (err)
788                 return err;
789
790         err = tap_link_set_up(dev);
791         if (err)
792                 return err;
793
794         for (i = 0; i < dev->data->nb_tx_queues; i++)
795                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
796         for (i = 0; i < dev->data->nb_rx_queues; i++)
797                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
798
799         return err;
800 }
801
802 /* This function gets called when the current port gets stopped.
803  */
804 static void
805 tap_dev_stop(struct rte_eth_dev *dev)
806 {
807         int i;
808
809         for (i = 0; i < dev->data->nb_tx_queues; i++)
810                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
811         for (i = 0; i < dev->data->nb_rx_queues; i++)
812                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
813
814         tap_intr_handle_set(dev, 0);
815         tap_link_set_down(dev);
816 }
817
818 static int
819 tap_dev_configure(struct rte_eth_dev *dev)
820 {
821         if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
822                 TAP_LOG(ERR,
823                         "%s: number of rx queues %d exceeds max num of queues %d",
824                         dev->device->name,
825                         dev->data->nb_rx_queues,
826                         RTE_PMD_TAP_MAX_QUEUES);
827                 return -1;
828         }
829         if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
830                 TAP_LOG(ERR,
831                         "%s: number of tx queues %d exceeds max num of queues %d",
832                         dev->device->name,
833                         dev->data->nb_tx_queues,
834                         RTE_PMD_TAP_MAX_QUEUES);
835                 return -1;
836         }
837
838         TAP_LOG(INFO, "%s: %p: TX configured queues number: %u",
839                 dev->device->name, (void *)dev, dev->data->nb_tx_queues);
840
841         TAP_LOG(INFO, "%s: %p: RX configured queues number: %u",
842                 dev->device->name, (void *)dev, dev->data->nb_rx_queues);
843
844         return 0;
845 }
846
847 static uint32_t
848 tap_dev_speed_capa(void)
849 {
850         uint32_t speed = pmd_link.link_speed;
851         uint32_t capa = 0;
852
853         if (speed >= ETH_SPEED_NUM_10M)
854                 capa |= ETH_LINK_SPEED_10M;
855         if (speed >= ETH_SPEED_NUM_100M)
856                 capa |= ETH_LINK_SPEED_100M;
857         if (speed >= ETH_SPEED_NUM_1G)
858                 capa |= ETH_LINK_SPEED_1G;
859         if (speed >= ETH_SPEED_NUM_5G)
860                 capa |= ETH_LINK_SPEED_2_5G;
861         if (speed >= ETH_SPEED_NUM_5G)
862                 capa |= ETH_LINK_SPEED_5G;
863         if (speed >= ETH_SPEED_NUM_10G)
864                 capa |= ETH_LINK_SPEED_10G;
865         if (speed >= ETH_SPEED_NUM_20G)
866                 capa |= ETH_LINK_SPEED_20G;
867         if (speed >= ETH_SPEED_NUM_25G)
868                 capa |= ETH_LINK_SPEED_25G;
869         if (speed >= ETH_SPEED_NUM_40G)
870                 capa |= ETH_LINK_SPEED_40G;
871         if (speed >= ETH_SPEED_NUM_50G)
872                 capa |= ETH_LINK_SPEED_50G;
873         if (speed >= ETH_SPEED_NUM_56G)
874                 capa |= ETH_LINK_SPEED_56G;
875         if (speed >= ETH_SPEED_NUM_100G)
876                 capa |= ETH_LINK_SPEED_100G;
877
878         return capa;
879 }
880
881 static void
882 tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
883 {
884         struct pmd_internals *internals = dev->data->dev_private;
885
886         dev_info->if_index = internals->if_index;
887         dev_info->max_mac_addrs = 1;
888         dev_info->max_rx_pktlen = (uint32_t)ETHER_MAX_VLAN_FRAME_LEN;
889         dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
890         dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
891         dev_info->min_rx_bufsize = 0;
892         dev_info->speed_capa = tap_dev_speed_capa();
893         dev_info->rx_queue_offload_capa = tap_rx_offload_get_queue_capa();
894         dev_info->rx_offload_capa = tap_rx_offload_get_port_capa() |
895                                     dev_info->rx_queue_offload_capa;
896         dev_info->tx_queue_offload_capa = tap_tx_offload_get_queue_capa();
897         dev_info->tx_offload_capa = tap_tx_offload_get_port_capa() |
898                                     dev_info->tx_queue_offload_capa;
899         dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
900         /*
901          * limitation: TAP supports all of IP, UDP and TCP hash
902          * functions together and not in partial combinations
903          */
904         dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
905 }
906
907 static int
908 tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
909 {
910         unsigned int i, imax;
911         unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
912         unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
913         unsigned long rx_nombuf = 0, ierrors = 0;
914         const struct pmd_internals *pmd = dev->data->dev_private;
915
916         /* rx queue statistics */
917         imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
918                 dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
919         for (i = 0; i < imax; i++) {
920                 tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
921                 tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
922                 rx_total += tap_stats->q_ipackets[i];
923                 rx_bytes_total += tap_stats->q_ibytes[i];
924                 rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
925                 ierrors += pmd->rxq[i].stats.ierrors;
926         }
927
928         /* tx queue statistics */
929         imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
930                 dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
931
932         for (i = 0; i < imax; i++) {
933                 tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
934                 tap_stats->q_errors[i] = pmd->txq[i].stats.errs;
935                 tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
936                 tx_total += tap_stats->q_opackets[i];
937                 tx_err_total += tap_stats->q_errors[i];
938                 tx_bytes_total += tap_stats->q_obytes[i];
939         }
940
941         tap_stats->ipackets = rx_total;
942         tap_stats->ibytes = rx_bytes_total;
943         tap_stats->ierrors = ierrors;
944         tap_stats->rx_nombuf = rx_nombuf;
945         tap_stats->opackets = tx_total;
946         tap_stats->oerrors = tx_err_total;
947         tap_stats->obytes = tx_bytes_total;
948         return 0;
949 }
950
951 static void
952 tap_stats_reset(struct rte_eth_dev *dev)
953 {
954         int i;
955         struct pmd_internals *pmd = dev->data->dev_private;
956
957         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
958                 pmd->rxq[i].stats.ipackets = 0;
959                 pmd->rxq[i].stats.ibytes = 0;
960                 pmd->rxq[i].stats.ierrors = 0;
961                 pmd->rxq[i].stats.rx_nombuf = 0;
962
963                 pmd->txq[i].stats.opackets = 0;
964                 pmd->txq[i].stats.errs = 0;
965                 pmd->txq[i].stats.obytes = 0;
966         }
967 }
968
969 static void
970 tap_dev_close(struct rte_eth_dev *dev)
971 {
972         int i;
973         struct pmd_internals *internals = dev->data->dev_private;
974
975         tap_link_set_down(dev);
976         tap_flow_flush(dev, NULL);
977         tap_flow_implicit_flush(internals, NULL);
978
979         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
980                 if (internals->rxq[i].fd != -1) {
981                         close(internals->rxq[i].fd);
982                         internals->rxq[i].fd = -1;
983                 }
984                 if (internals->txq[i].fd != -1) {
985                         close(internals->txq[i].fd);
986                         internals->txq[i].fd = -1;
987                 }
988         }
989
990         if (internals->remote_if_index) {
991                 /* Restore initial remote state */
992                 ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
993                                 &internals->remote_initial_flags);
994         }
995
996         if (internals->ka_fd != -1) {
997                 close(internals->ka_fd);
998                 internals->ka_fd = -1;
999         }
1000         /*
1001          * Since TUN device has no more opened file descriptors
1002          * it will be removed from kernel
1003          */
1004 }
1005
1006 static void
1007 tap_rx_queue_release(void *queue)
1008 {
1009         struct rx_queue *rxq = queue;
1010
1011         if (rxq && (rxq->fd > 0)) {
1012                 close(rxq->fd);
1013                 rxq->fd = -1;
1014                 rte_pktmbuf_free(rxq->pool);
1015                 rte_free(rxq->iovecs);
1016                 rxq->pool = NULL;
1017                 rxq->iovecs = NULL;
1018         }
1019 }
1020
1021 static void
1022 tap_tx_queue_release(void *queue)
1023 {
1024         struct tx_queue *txq = queue;
1025
1026         if (txq && (txq->fd > 0)) {
1027                 close(txq->fd);
1028                 txq->fd = -1;
1029         }
1030 }
1031
1032 static int
1033 tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
1034 {
1035         struct rte_eth_link *dev_link = &dev->data->dev_link;
1036         struct pmd_internals *pmd = dev->data->dev_private;
1037         struct ifreq ifr = { .ifr_flags = 0 };
1038
1039         if (pmd->remote_if_index) {
1040                 tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
1041                 if (!(ifr.ifr_flags & IFF_UP) ||
1042                     !(ifr.ifr_flags & IFF_RUNNING)) {
1043                         dev_link->link_status = ETH_LINK_DOWN;
1044                         return 0;
1045                 }
1046         }
1047         tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
1048         dev_link->link_status =
1049                 ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
1050                  ETH_LINK_UP :
1051                  ETH_LINK_DOWN);
1052         return 0;
1053 }
1054
1055 static void
1056 tap_promisc_enable(struct rte_eth_dev *dev)
1057 {
1058         struct pmd_internals *pmd = dev->data->dev_private;
1059         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1060
1061         dev->data->promiscuous = 1;
1062         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1063         if (pmd->remote_if_index && !pmd->flow_isolate)
1064                 tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
1065 }
1066
1067 static void
1068 tap_promisc_disable(struct rte_eth_dev *dev)
1069 {
1070         struct pmd_internals *pmd = dev->data->dev_private;
1071         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1072
1073         dev->data->promiscuous = 0;
1074         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1075         if (pmd->remote_if_index && !pmd->flow_isolate)
1076                 tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
1077 }
1078
1079 static void
1080 tap_allmulti_enable(struct rte_eth_dev *dev)
1081 {
1082         struct pmd_internals *pmd = dev->data->dev_private;
1083         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1084
1085         dev->data->all_multicast = 1;
1086         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1087         if (pmd->remote_if_index && !pmd->flow_isolate)
1088                 tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
1089 }
1090
1091 static void
1092 tap_allmulti_disable(struct rte_eth_dev *dev)
1093 {
1094         struct pmd_internals *pmd = dev->data->dev_private;
1095         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1096
1097         dev->data->all_multicast = 0;
1098         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1099         if (pmd->remote_if_index && !pmd->flow_isolate)
1100                 tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
1101 }
1102
1103 static int
1104 tap_mac_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
1105 {
1106         struct pmd_internals *pmd = dev->data->dev_private;
1107         enum ioctl_mode mode = LOCAL_ONLY;
1108         struct ifreq ifr;
1109         int ret;
1110
1111         if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
1112                 TAP_LOG(ERR, "%s: can't MAC address for TUN",
1113                         dev->device->name);
1114                 return -ENOTSUP;
1115         }
1116
1117         if (is_zero_ether_addr(mac_addr)) {
1118                 TAP_LOG(ERR, "%s: can't set an empty MAC address",
1119                         dev->device->name);
1120                 return -EINVAL;
1121         }
1122         /* Check the actual current MAC address on the tap netdevice */
1123         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
1124         if (ret < 0)
1125                 return ret;
1126         if (is_same_ether_addr((struct ether_addr *)&ifr.ifr_hwaddr.sa_data,
1127                                mac_addr))
1128                 return 0;
1129         /* Check the current MAC address on the remote */
1130         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
1131         if (ret < 0)
1132                 return ret;
1133         if (!is_same_ether_addr((struct ether_addr *)&ifr.ifr_hwaddr.sa_data,
1134                                mac_addr))
1135                 mode = LOCAL_AND_REMOTE;
1136         ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1137         rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, ETHER_ADDR_LEN);
1138         ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
1139         if (ret < 0)
1140                 return ret;
1141         rte_memcpy(&pmd->eth_addr, mac_addr, ETHER_ADDR_LEN);
1142         if (pmd->remote_if_index && !pmd->flow_isolate) {
1143                 /* Replace MAC redirection rule after a MAC change */
1144                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
1145                 if (ret < 0) {
1146                         TAP_LOG(ERR,
1147                                 "%s: Couldn't delete MAC redirection rule",
1148                                 dev->device->name);
1149                         return ret;
1150                 }
1151                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
1152                 if (ret < 0) {
1153                         TAP_LOG(ERR,
1154                                 "%s: Couldn't add MAC redirection rule",
1155                                 dev->device->name);
1156                         return ret;
1157                 }
1158         }
1159
1160         return 0;
1161 }
1162
1163 static int
1164 tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
1165 {
1166         uint32_t gso_types;
1167         char pool_name[64];
1168
1169         /*
1170          * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE bytes
1171          * size per mbuf use this pool for both direct and indirect mbufs
1172          */
1173
1174         struct rte_mempool *mp;      /* Mempool for GSO packets */
1175
1176         /* initialize GSO context */
1177         gso_types = DEV_TX_OFFLOAD_TCP_TSO;
1178         snprintf(pool_name, sizeof(pool_name), "mp_%s", dev->device->name);
1179         mp = rte_mempool_lookup((const char *)pool_name);
1180         if (!mp) {
1181                 mp = rte_pktmbuf_pool_create(pool_name, TAP_GSO_MBUFS_NUM,
1182                         TAP_GSO_MBUF_CACHE_SIZE, 0,
1183                         RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
1184                         SOCKET_ID_ANY);
1185                 if (!mp) {
1186                         struct pmd_internals *pmd = dev->data->dev_private;
1187                         RTE_LOG(DEBUG, PMD, "%s: failed to create mbuf pool for device %s\n",
1188                                 pmd->name, dev->device->name);
1189                         return -1;
1190                 }
1191         }
1192
1193         gso_ctx->direct_pool = mp;
1194         gso_ctx->indirect_pool = mp;
1195         gso_ctx->gso_types = gso_types;
1196         gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
1197         gso_ctx->flag = 0;
1198
1199         return 0;
1200 }
1201
1202 static int
1203 tap_setup_queue(struct rte_eth_dev *dev,
1204                 struct pmd_internals *internals,
1205                 uint16_t qid,
1206                 int is_rx)
1207 {
1208         int ret;
1209         int *fd;
1210         int *other_fd;
1211         const char *dir;
1212         struct pmd_internals *pmd = dev->data->dev_private;
1213         struct rx_queue *rx = &internals->rxq[qid];
1214         struct tx_queue *tx = &internals->txq[qid];
1215         struct rte_gso_ctx *gso_ctx;
1216
1217         if (is_rx) {
1218                 fd = &rx->fd;
1219                 other_fd = &tx->fd;
1220                 dir = "rx";
1221                 gso_ctx = NULL;
1222         } else {
1223                 fd = &tx->fd;
1224                 other_fd = &rx->fd;
1225                 dir = "tx";
1226                 gso_ctx = &tx->gso_ctx;
1227         }
1228         if (*fd != -1) {
1229                 /* fd for this queue already exists */
1230                 TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
1231                         pmd->name, *fd, dir, qid);
1232                 gso_ctx = NULL;
1233         } else if (*other_fd != -1) {
1234                 /* Only other_fd exists. dup it */
1235                 *fd = dup(*other_fd);
1236                 if (*fd < 0) {
1237                         *fd = -1;
1238                         TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
1239                         return -1;
1240                 }
1241                 TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
1242                         pmd->name, *other_fd, dir, qid, *fd);
1243         } else {
1244                 /* Both RX and TX fds do not exist (equal -1). Create fd */
1245                 *fd = tun_alloc(pmd, 0);
1246                 if (*fd < 0) {
1247                         *fd = -1; /* restore original value */
1248                         TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
1249                         return -1;
1250                 }
1251                 TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
1252                         pmd->name, dir, qid, *fd);
1253         }
1254
1255         tx->mtu = &dev->data->mtu;
1256         rx->rxmode = &dev->data->dev_conf.rxmode;
1257         if (gso_ctx) {
1258                 ret = tap_gso_ctx_setup(gso_ctx, dev);
1259                 if (ret)
1260                         return -1;
1261         }
1262
1263         tx->type = pmd->type;
1264
1265         return *fd;
1266 }
1267
1268 static int
1269 tap_rx_queue_setup(struct rte_eth_dev *dev,
1270                    uint16_t rx_queue_id,
1271                    uint16_t nb_rx_desc,
1272                    unsigned int socket_id,
1273                    const struct rte_eth_rxconf *rx_conf __rte_unused,
1274                    struct rte_mempool *mp)
1275 {
1276         struct pmd_internals *internals = dev->data->dev_private;
1277         struct rx_queue *rxq = &internals->rxq[rx_queue_id];
1278         struct rte_mbuf **tmp = &rxq->pool;
1279         long iov_max = sysconf(_SC_IOV_MAX);
1280         uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
1281         struct iovec (*iovecs)[nb_desc + 1];
1282         int data_off = RTE_PKTMBUF_HEADROOM;
1283         int ret = 0;
1284         int fd;
1285         int i;
1286
1287         if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
1288                 TAP_LOG(WARNING,
1289                         "nb_rx_queues %d too small or mempool NULL",
1290                         dev->data->nb_rx_queues);
1291                 return -1;
1292         }
1293
1294         rxq->mp = mp;
1295         rxq->trigger_seen = 1; /* force initial burst */
1296         rxq->in_port = dev->data->port_id;
1297         rxq->nb_rx_desc = nb_desc;
1298         iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
1299                                     socket_id);
1300         if (!iovecs) {
1301                 TAP_LOG(WARNING,
1302                         "%s: Couldn't allocate %d RX descriptors",
1303                         dev->device->name, nb_desc);
1304                 return -ENOMEM;
1305         }
1306         rxq->iovecs = iovecs;
1307
1308         dev->data->rx_queues[rx_queue_id] = rxq;
1309         fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
1310         if (fd == -1) {
1311                 ret = fd;
1312                 goto error;
1313         }
1314
1315         (*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
1316         (*rxq->iovecs)[0].iov_base = &rxq->pi;
1317
1318         for (i = 1; i <= nb_desc; i++) {
1319                 *tmp = rte_pktmbuf_alloc(rxq->mp);
1320                 if (!*tmp) {
1321                         TAP_LOG(WARNING,
1322                                 "%s: couldn't allocate memory for queue %d",
1323                                 dev->device->name, rx_queue_id);
1324                         ret = -ENOMEM;
1325                         goto error;
1326                 }
1327                 (*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
1328                 (*rxq->iovecs)[i].iov_base =
1329                         (char *)(*tmp)->buf_addr + data_off;
1330                 data_off = 0;
1331                 tmp = &(*tmp)->next;
1332         }
1333
1334         TAP_LOG(DEBUG, "  RX TUNTAP device name %s, qid %d on fd %d",
1335                 internals->name, rx_queue_id, internals->rxq[rx_queue_id].fd);
1336
1337         return 0;
1338
1339 error:
1340         rte_pktmbuf_free(rxq->pool);
1341         rxq->pool = NULL;
1342         rte_free(rxq->iovecs);
1343         rxq->iovecs = NULL;
1344         return ret;
1345 }
1346
1347 static int
1348 tap_tx_queue_setup(struct rte_eth_dev *dev,
1349                    uint16_t tx_queue_id,
1350                    uint16_t nb_tx_desc __rte_unused,
1351                    unsigned int socket_id __rte_unused,
1352                    const struct rte_eth_txconf *tx_conf)
1353 {
1354         struct pmd_internals *internals = dev->data->dev_private;
1355         struct tx_queue *txq;
1356         int ret;
1357         uint64_t offloads;
1358
1359         if (tx_queue_id >= dev->data->nb_tx_queues)
1360                 return -1;
1361         dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
1362         txq = dev->data->tx_queues[tx_queue_id];
1363
1364         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1365         txq->csum = !!(offloads &
1366                         (DEV_TX_OFFLOAD_IPV4_CKSUM |
1367                          DEV_TX_OFFLOAD_UDP_CKSUM |
1368                          DEV_TX_OFFLOAD_TCP_CKSUM));
1369
1370         ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
1371         if (ret == -1)
1372                 return -1;
1373         TAP_LOG(DEBUG,
1374                 "  TX TUNTAP device name %s, qid %d on fd %d csum %s",
1375                 internals->name, tx_queue_id, internals->txq[tx_queue_id].fd,
1376                 txq->csum ? "on" : "off");
1377
1378         return 0;
1379 }
1380
1381 static int
1382 tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1383 {
1384         struct pmd_internals *pmd = dev->data->dev_private;
1385         struct ifreq ifr = { .ifr_mtu = mtu };
1386         int err = 0;
1387
1388         err = tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
1389         if (!err)
1390                 dev->data->mtu = mtu;
1391
1392         return err;
1393 }
1394
1395 static int
1396 tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
1397                      struct ether_addr *mc_addr_set __rte_unused,
1398                      uint32_t nb_mc_addr __rte_unused)
1399 {
1400         /*
1401          * Nothing to do actually: the tap has no filtering whatsoever, every
1402          * packet is received.
1403          */
1404         return 0;
1405 }
1406
1407 static int
1408 tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
1409 {
1410         struct rte_eth_dev *dev = arg;
1411         struct pmd_internals *pmd = dev->data->dev_private;
1412         struct ifinfomsg *info = NLMSG_DATA(nh);
1413
1414         if (nh->nlmsg_type != RTM_NEWLINK ||
1415             (info->ifi_index != pmd->if_index &&
1416              info->ifi_index != pmd->remote_if_index))
1417                 return 0;
1418         return tap_link_update(dev, 0);
1419 }
1420
1421 static void
1422 tap_dev_intr_handler(void *cb_arg)
1423 {
1424         struct rte_eth_dev *dev = cb_arg;
1425         struct pmd_internals *pmd = dev->data->dev_private;
1426
1427         tap_nl_recv(pmd->intr_handle.fd, tap_nl_msg_handler, dev);
1428 }
1429
1430 static int
1431 tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
1432 {
1433         struct pmd_internals *pmd = dev->data->dev_private;
1434
1435         /* In any case, disable interrupt if the conf is no longer there. */
1436         if (!dev->data->dev_conf.intr_conf.lsc) {
1437                 if (pmd->intr_handle.fd != -1) {
1438                         tap_nl_final(pmd->intr_handle.fd);
1439                         rte_intr_callback_unregister(&pmd->intr_handle,
1440                                 tap_dev_intr_handler, dev);
1441                 }
1442                 return 0;
1443         }
1444         if (set) {
1445                 pmd->intr_handle.fd = tap_nl_init(RTMGRP_LINK);
1446                 if (unlikely(pmd->intr_handle.fd == -1))
1447                         return -EBADF;
1448                 return rte_intr_callback_register(
1449                         &pmd->intr_handle, tap_dev_intr_handler, dev);
1450         }
1451         tap_nl_final(pmd->intr_handle.fd);
1452         return rte_intr_callback_unregister(&pmd->intr_handle,
1453                                             tap_dev_intr_handler, dev);
1454 }
1455
1456 static int
1457 tap_intr_handle_set(struct rte_eth_dev *dev, int set)
1458 {
1459         int err;
1460
1461         err = tap_lsc_intr_handle_set(dev, set);
1462         if (err)
1463                 return err;
1464         err = tap_rx_intr_vec_set(dev, set);
1465         if (err && set)
1466                 tap_lsc_intr_handle_set(dev, 0);
1467         return err;
1468 }
1469
1470 static const uint32_t*
1471 tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1472 {
1473         static const uint32_t ptypes[] = {
1474                 RTE_PTYPE_INNER_L2_ETHER,
1475                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1476                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
1477                 RTE_PTYPE_INNER_L3_IPV4,
1478                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1479                 RTE_PTYPE_INNER_L3_IPV6,
1480                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1481                 RTE_PTYPE_INNER_L4_FRAG,
1482                 RTE_PTYPE_INNER_L4_UDP,
1483                 RTE_PTYPE_INNER_L4_TCP,
1484                 RTE_PTYPE_INNER_L4_SCTP,
1485                 RTE_PTYPE_L2_ETHER,
1486                 RTE_PTYPE_L2_ETHER_VLAN,
1487                 RTE_PTYPE_L2_ETHER_QINQ,
1488                 RTE_PTYPE_L3_IPV4,
1489                 RTE_PTYPE_L3_IPV4_EXT,
1490                 RTE_PTYPE_L3_IPV6_EXT,
1491                 RTE_PTYPE_L3_IPV6,
1492                 RTE_PTYPE_L4_FRAG,
1493                 RTE_PTYPE_L4_UDP,
1494                 RTE_PTYPE_L4_TCP,
1495                 RTE_PTYPE_L4_SCTP,
1496         };
1497
1498         return ptypes;
1499 }
1500
1501 static int
1502 tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
1503                   struct rte_eth_fc_conf *fc_conf)
1504 {
1505         fc_conf->mode = RTE_FC_NONE;
1506         return 0;
1507 }
1508
1509 static int
1510 tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
1511                   struct rte_eth_fc_conf *fc_conf)
1512 {
1513         if (fc_conf->mode != RTE_FC_NONE)
1514                 return -ENOTSUP;
1515         return 0;
1516 }
1517
1518 /**
1519  * DPDK callback to update the RSS hash configuration.
1520  *
1521  * @param dev
1522  *   Pointer to Ethernet device structure.
1523  * @param[in] rss_conf
1524  *   RSS configuration data.
1525  *
1526  * @return
1527  *   0 on success, a negative errno value otherwise and rte_errno is set.
1528  */
1529 static int
1530 tap_rss_hash_update(struct rte_eth_dev *dev,
1531                 struct rte_eth_rss_conf *rss_conf)
1532 {
1533         if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
1534                 rte_errno = EINVAL;
1535                 return -rte_errno;
1536         }
1537         if (rss_conf->rss_key && rss_conf->rss_key_len) {
1538                 /*
1539                  * Currently TAP RSS key is hard coded
1540                  * and cannot be updated
1541                  */
1542                 TAP_LOG(ERR,
1543                         "port %u RSS key cannot be updated",
1544                         dev->data->port_id);
1545                 rte_errno = EINVAL;
1546                 return -rte_errno;
1547         }
1548         return 0;
1549 }
1550
1551 static int
1552 tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1553 {
1554         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1555
1556         return 0;
1557 }
1558
1559 static int
1560 tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1561 {
1562         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1563
1564         return 0;
1565 }
1566
1567 static int
1568 tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1569 {
1570         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1571
1572         return 0;
1573 }
1574
1575 static int
1576 tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1577 {
1578         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1579
1580         return 0;
1581 }
1582 static const struct eth_dev_ops ops = {
1583         .dev_start              = tap_dev_start,
1584         .dev_stop               = tap_dev_stop,
1585         .dev_close              = tap_dev_close,
1586         .dev_configure          = tap_dev_configure,
1587         .dev_infos_get          = tap_dev_info,
1588         .rx_queue_setup         = tap_rx_queue_setup,
1589         .tx_queue_setup         = tap_tx_queue_setup,
1590         .rx_queue_start         = tap_rx_queue_start,
1591         .tx_queue_start         = tap_tx_queue_start,
1592         .rx_queue_stop          = tap_rx_queue_stop,
1593         .tx_queue_stop          = tap_tx_queue_stop,
1594         .rx_queue_release       = tap_rx_queue_release,
1595         .tx_queue_release       = tap_tx_queue_release,
1596         .flow_ctrl_get          = tap_flow_ctrl_get,
1597         .flow_ctrl_set          = tap_flow_ctrl_set,
1598         .link_update            = tap_link_update,
1599         .dev_set_link_up        = tap_link_set_up,
1600         .dev_set_link_down      = tap_link_set_down,
1601         .promiscuous_enable     = tap_promisc_enable,
1602         .promiscuous_disable    = tap_promisc_disable,
1603         .allmulticast_enable    = tap_allmulti_enable,
1604         .allmulticast_disable   = tap_allmulti_disable,
1605         .mac_addr_set           = tap_mac_set,
1606         .mtu_set                = tap_mtu_set,
1607         .set_mc_addr_list       = tap_set_mc_addr_list,
1608         .stats_get              = tap_stats_get,
1609         .stats_reset            = tap_stats_reset,
1610         .dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
1611         .rss_hash_update        = tap_rss_hash_update,
1612         .filter_ctrl            = tap_dev_filter_ctrl,
1613 };
1614
1615 static int
1616 eth_dev_tap_create(struct rte_vdev_device *vdev, char *tap_name,
1617                    char *remote_iface, struct ether_addr *mac_addr,
1618                    enum rte_tuntap_type type)
1619 {
1620         int numa_node = rte_socket_id();
1621         struct rte_eth_dev *dev;
1622         struct pmd_internals *pmd;
1623         struct rte_eth_dev_data *data;
1624         struct ifreq ifr;
1625         int i;
1626
1627         TAP_LOG(DEBUG, "%s device on numa %u",
1628                         tuntap_name, rte_socket_id());
1629
1630         dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
1631         if (!dev) {
1632                 TAP_LOG(ERR, "%s Unable to allocate device struct",
1633                                 tuntap_name);
1634                 goto error_exit_nodev;
1635         }
1636
1637         pmd = dev->data->dev_private;
1638         pmd->dev = dev;
1639         snprintf(pmd->name, sizeof(pmd->name), "%s", tap_name);
1640         pmd->type = type;
1641
1642         pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
1643         if (pmd->ioctl_sock == -1) {
1644                 TAP_LOG(ERR,
1645                         "%s Unable to get a socket for management: %s",
1646                         tuntap_name, strerror(errno));
1647                 goto error_exit;
1648         }
1649
1650         /* Setup some default values */
1651         data = dev->data;
1652         data->dev_private = pmd;
1653         data->dev_flags = RTE_ETH_DEV_INTR_LSC;
1654         data->numa_node = numa_node;
1655
1656         data->dev_link = pmd_link;
1657         data->mac_addrs = &pmd->eth_addr;
1658         /* Set the number of RX and TX queues */
1659         data->nb_rx_queues = 0;
1660         data->nb_tx_queues = 0;
1661
1662         dev->dev_ops = &ops;
1663         dev->rx_pkt_burst = pmd_rx_burst;
1664         dev->tx_pkt_burst = pmd_tx_burst;
1665
1666         pmd->intr_handle.type = RTE_INTR_HANDLE_EXT;
1667         pmd->intr_handle.fd = -1;
1668         dev->intr_handle = &pmd->intr_handle;
1669
1670         /* Presetup the fds to -1 as being not valid */
1671         pmd->ka_fd = -1;
1672         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1673                 pmd->rxq[i].fd = -1;
1674                 pmd->txq[i].fd = -1;
1675         }
1676
1677         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1678                 if (is_zero_ether_addr(mac_addr))
1679                         eth_random_addr((uint8_t *)&pmd->eth_addr);
1680                 else
1681                         rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
1682         }
1683
1684         /*
1685          * Allocate a TUN device keep-alive file descriptor that will only be
1686          * closed when the TUN device itself is closed or removed.
1687          * This keep-alive file descriptor will guarantee that the TUN device
1688          * exists even when all of its queues are closed
1689          */
1690         pmd->ka_fd = tun_alloc(pmd, 1);
1691         if (pmd->ka_fd == -1) {
1692                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
1693                 goto error_exit;
1694         }
1695
1696         ifr.ifr_mtu = dev->data->mtu;
1697         if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
1698                 goto error_exit;
1699
1700         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1701                 memset(&ifr, 0, sizeof(struct ifreq));
1702                 ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1703                 rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
1704                                 ETHER_ADDR_LEN);
1705                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
1706                         goto error_exit;
1707         }
1708
1709         /*
1710          * Set up everything related to rte_flow:
1711          * - netlink socket
1712          * - tap / remote if_index
1713          * - mandatory QDISCs
1714          * - rte_flow actual/implicit lists
1715          * - implicit rules
1716          */
1717         pmd->nlsk_fd = tap_nl_init(0);
1718         if (pmd->nlsk_fd == -1) {
1719                 TAP_LOG(WARNING, "%s: failed to create netlink socket.",
1720                         pmd->name);
1721                 goto disable_rte_flow;
1722         }
1723         pmd->if_index = if_nametoindex(pmd->name);
1724         if (!pmd->if_index) {
1725                 TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
1726                 goto disable_rte_flow;
1727         }
1728         if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
1729                 TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
1730                         pmd->name);
1731                 goto disable_rte_flow;
1732         }
1733         if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
1734                 TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1735                         pmd->name);
1736                 goto disable_rte_flow;
1737         }
1738         LIST_INIT(&pmd->flows);
1739
1740         if (strlen(remote_iface)) {
1741                 pmd->remote_if_index = if_nametoindex(remote_iface);
1742                 if (!pmd->remote_if_index) {
1743                         TAP_LOG(ERR, "%s: failed to get %s if_index.",
1744                                 pmd->name, remote_iface);
1745                         goto error_remote;
1746                 }
1747                 snprintf(pmd->remote_iface, RTE_ETH_NAME_MAX_LEN,
1748                          "%s", remote_iface);
1749
1750                 /* Save state of remote device */
1751                 tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
1752
1753                 /* Replicate remote MAC address */
1754                 if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
1755                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
1756                                 pmd->name, pmd->remote_iface);
1757                         goto error_remote;
1758                 }
1759                 rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
1760                            ETHER_ADDR_LEN);
1761                 /* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
1762                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
1763                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
1764                                 pmd->name, remote_iface);
1765                         goto error_remote;
1766                 }
1767
1768                 /*
1769                  * Flush usually returns negative value because it tries to
1770                  * delete every QDISC (and on a running device, one QDISC at
1771                  * least is needed). Ignore negative return value.
1772                  */
1773                 qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
1774                 if (qdisc_create_ingress(pmd->nlsk_fd,
1775                                          pmd->remote_if_index) < 0) {
1776                         TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1777                                 pmd->remote_iface);
1778                         goto error_remote;
1779                 }
1780                 LIST_INIT(&pmd->implicit_flows);
1781                 if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
1782                     tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
1783                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
1784                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
1785                         TAP_LOG(ERR,
1786                                 "%s: failed to create implicit rules.",
1787                                 pmd->name);
1788                         goto error_remote;
1789                 }
1790         }
1791
1792         rte_eth_dev_probing_finish(dev);
1793         return 0;
1794
1795 disable_rte_flow:
1796         TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
1797                 strerror(errno), errno);
1798         if (strlen(remote_iface)) {
1799                 TAP_LOG(ERR, "Remote feature requires flow support.");
1800                 goto error_exit;
1801         }
1802         return 0;
1803
1804 error_remote:
1805         TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
1806                 strerror(errno), errno);
1807         tap_flow_implicit_flush(pmd, NULL);
1808
1809 error_exit:
1810         if (pmd->ioctl_sock > 0)
1811                 close(pmd->ioctl_sock);
1812         rte_eth_dev_release_port(dev);
1813
1814 error_exit_nodev:
1815         TAP_LOG(ERR, "%s Unable to initialize %s",
1816                 tuntap_name, rte_vdev_device_name(vdev));
1817
1818         return -EINVAL;
1819 }
1820
1821 static int
1822 set_interface_name(const char *key __rte_unused,
1823                    const char *value,
1824                    void *extra_args)
1825 {
1826         char *name = (char *)extra_args;
1827
1828         if (value)
1829                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN - 1);
1830         else
1831                 snprintf(name, RTE_ETH_NAME_MAX_LEN - 1, "%s%d",
1832                          DEFAULT_TAP_NAME, (tap_unit - 1));
1833
1834         return 0;
1835 }
1836
1837 static int
1838 set_remote_iface(const char *key __rte_unused,
1839                  const char *value,
1840                  void *extra_args)
1841 {
1842         char *name = (char *)extra_args;
1843
1844         if (value)
1845                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
1846
1847         return 0;
1848 }
1849
1850 static int parse_user_mac(struct ether_addr *user_mac,
1851                 const char *value)
1852 {
1853         unsigned int index = 0;
1854         char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
1855
1856         if (user_mac == NULL || value == NULL)
1857                 return 0;
1858
1859         strlcpy(mac_temp, value, sizeof(mac_temp));
1860         mac_byte = strtok(mac_temp, ":");
1861
1862         while ((mac_byte != NULL) &&
1863                         (strlen(mac_byte) <= 2) &&
1864                         (strlen(mac_byte) == strspn(mac_byte,
1865                                         ETH_TAP_CMP_MAC_FMT))) {
1866                 user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
1867                 mac_byte = strtok(NULL, ":");
1868         }
1869
1870         return index;
1871 }
1872
1873 static int
1874 set_mac_type(const char *key __rte_unused,
1875              const char *value,
1876              void *extra_args)
1877 {
1878         struct ether_addr *user_mac = extra_args;
1879
1880         if (!value)
1881                 return 0;
1882
1883         if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
1884                 static int iface_idx;
1885
1886                 /* fixed mac = 00:64:74:61:70:<iface_idx> */
1887                 memcpy((char *)user_mac->addr_bytes, "\0dtap", ETHER_ADDR_LEN);
1888                 user_mac->addr_bytes[ETHER_ADDR_LEN - 1] = iface_idx++ + '0';
1889                 goto success;
1890         }
1891
1892         if (parse_user_mac(user_mac, value) != 6)
1893                 goto error;
1894 success:
1895         TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
1896         return 0;
1897
1898 error:
1899         TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
1900                 value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
1901         return -1;
1902 }
1903
1904 /*
1905  * Open a TUN interface device. TUN PMD
1906  * 1) sets tap_type as false
1907  * 2) intakes iface as argument.
1908  * 3) as interface is virtual set speed to 10G
1909  */
1910 static int
1911 rte_pmd_tun_probe(struct rte_vdev_device *dev)
1912 {
1913         const char *name, *params;
1914         int ret;
1915         struct rte_kvargs *kvlist = NULL;
1916         char tun_name[RTE_ETH_NAME_MAX_LEN];
1917         char remote_iface[RTE_ETH_NAME_MAX_LEN];
1918         struct rte_eth_dev *eth_dev;
1919
1920         strcpy(tuntap_name, "TUN");
1921
1922         name = rte_vdev_device_name(dev);
1923         params = rte_vdev_device_args(dev);
1924         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
1925
1926         if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
1927             strlen(params) == 0) {
1928                 eth_dev = rte_eth_dev_attach_secondary(name);
1929                 if (!eth_dev) {
1930                         TAP_LOG(ERR, "Failed to probe %s", name);
1931                         return -1;
1932                 }
1933                 eth_dev->dev_ops = &ops;
1934                 eth_dev->device = &dev->device;
1935                 rte_eth_dev_probing_finish(eth_dev);
1936                 return 0;
1937         }
1938
1939         snprintf(tun_name, sizeof(tun_name), "%s%u",
1940                  DEFAULT_TUN_NAME, tun_unit++);
1941
1942         if (params && (params[0] != '\0')) {
1943                 TAP_LOG(DEBUG, "parameters (%s)", params);
1944
1945                 kvlist = rte_kvargs_parse(params, valid_arguments);
1946                 if (kvlist) {
1947                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
1948                                 ret = rte_kvargs_process(kvlist,
1949                                         ETH_TAP_IFACE_ARG,
1950                                         &set_interface_name,
1951                                         tun_name);
1952
1953                                 if (ret == -1)
1954                                         goto leave;
1955                         }
1956                 }
1957         }
1958         pmd_link.link_speed = ETH_SPEED_NUM_10G;
1959
1960         TAP_LOG(NOTICE, "Initializing pmd_tun for %s as %s",
1961                 name, tun_name);
1962
1963         ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
1964                 ETH_TUNTAP_TYPE_TUN);
1965
1966 leave:
1967         if (ret == -1) {
1968                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
1969                         name, tun_name);
1970                 tun_unit--; /* Restore the unit number */
1971         }
1972         rte_kvargs_free(kvlist);
1973
1974         return ret;
1975 }
1976
1977 /* Open a TAP interface device.
1978  */
1979 static int
1980 rte_pmd_tap_probe(struct rte_vdev_device *dev)
1981 {
1982         const char *name, *params;
1983         int ret;
1984         struct rte_kvargs *kvlist = NULL;
1985         int speed;
1986         char tap_name[RTE_ETH_NAME_MAX_LEN];
1987         char remote_iface[RTE_ETH_NAME_MAX_LEN];
1988         struct ether_addr user_mac = { .addr_bytes = {0} };
1989         struct rte_eth_dev *eth_dev;
1990
1991         strcpy(tuntap_name, "TAP");
1992
1993         name = rte_vdev_device_name(dev);
1994         params = rte_vdev_device_args(dev);
1995
1996         if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
1997             strlen(params) == 0) {
1998                 eth_dev = rte_eth_dev_attach_secondary(name);
1999                 if (!eth_dev) {
2000                         TAP_LOG(ERR, "Failed to probe %s", name);
2001                         return -1;
2002                 }
2003                 /* TODO: request info from primary to set up Rx and Tx */
2004                 eth_dev->dev_ops = &ops;
2005                 eth_dev->device = &dev->device;
2006                 rte_eth_dev_probing_finish(eth_dev);
2007                 return 0;
2008         }
2009
2010         speed = ETH_SPEED_NUM_10G;
2011         snprintf(tap_name, sizeof(tap_name), "%s%u",
2012                  DEFAULT_TAP_NAME, tap_unit++);
2013         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2014
2015         if (params && (params[0] != '\0')) {
2016                 TAP_LOG(DEBUG, "parameters (%s)", params);
2017
2018                 kvlist = rte_kvargs_parse(params, valid_arguments);
2019                 if (kvlist) {
2020                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2021                                 ret = rte_kvargs_process(kvlist,
2022                                                          ETH_TAP_IFACE_ARG,
2023                                                          &set_interface_name,
2024                                                          tap_name);
2025                                 if (ret == -1)
2026                                         goto leave;
2027                         }
2028
2029                         if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
2030                                 ret = rte_kvargs_process(kvlist,
2031                                                          ETH_TAP_REMOTE_ARG,
2032                                                          &set_remote_iface,
2033                                                          remote_iface);
2034                                 if (ret == -1)
2035                                         goto leave;
2036                         }
2037
2038                         if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
2039                                 ret = rte_kvargs_process(kvlist,
2040                                                          ETH_TAP_MAC_ARG,
2041                                                          &set_mac_type,
2042                                                          &user_mac);
2043                                 if (ret == -1)
2044                                         goto leave;
2045                         }
2046                 }
2047         }
2048         pmd_link.link_speed = speed;
2049
2050         TAP_LOG(NOTICE, "Initializing pmd_tap for %s as %s",
2051                 name, tap_name);
2052
2053         ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
2054                 ETH_TUNTAP_TYPE_TAP);
2055
2056 leave:
2057         if (ret == -1) {
2058                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2059                         name, tap_name);
2060                 tap_unit--;             /* Restore the unit number */
2061         }
2062         rte_kvargs_free(kvlist);
2063
2064         return ret;
2065 }
2066
2067 /* detach a TUNTAP device.
2068  */
2069 static int
2070 rte_pmd_tap_remove(struct rte_vdev_device *dev)
2071 {
2072         struct rte_eth_dev *eth_dev = NULL;
2073         struct pmd_internals *internals;
2074         int i;
2075
2076         /* find the ethdev entry */
2077         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
2078         if (!eth_dev)
2079                 return 0;
2080
2081         internals = eth_dev->data->dev_private;
2082
2083         TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
2084                 (internals->type == ETH_TUNTAP_TYPE_TAP) ? "TAP" : "TUN",
2085                 rte_socket_id());
2086
2087         if (internals->nlsk_fd) {
2088                 tap_flow_flush(eth_dev, NULL);
2089                 tap_flow_implicit_flush(internals, NULL);
2090                 tap_nl_final(internals->nlsk_fd);
2091         }
2092         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
2093                 if (internals->rxq[i].fd != -1) {
2094                         close(internals->rxq[i].fd);
2095                         internals->rxq[i].fd = -1;
2096                 }
2097                 if (internals->txq[i].fd != -1) {
2098                         close(internals->txq[i].fd);
2099                         internals->txq[i].fd = -1;
2100                 }
2101         }
2102
2103         close(internals->ioctl_sock);
2104         rte_free(eth_dev->data->dev_private);
2105         rte_eth_dev_release_port(eth_dev);
2106
2107         if (internals->ka_fd != -1) {
2108                 close(internals->ka_fd);
2109                 internals->ka_fd = -1;
2110         }
2111         return 0;
2112 }
2113
2114 static struct rte_vdev_driver pmd_tun_drv = {
2115         .probe = rte_pmd_tun_probe,
2116         .remove = rte_pmd_tap_remove,
2117 };
2118
2119 static struct rte_vdev_driver pmd_tap_drv = {
2120         .probe = rte_pmd_tap_probe,
2121         .remove = rte_pmd_tap_remove,
2122 };
2123
2124 RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
2125 RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
2126 RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
2127 RTE_PMD_REGISTER_PARAM_STRING(net_tun,
2128                               ETH_TAP_IFACE_ARG "=<string> ");
2129 RTE_PMD_REGISTER_PARAM_STRING(net_tap,
2130                               ETH_TAP_IFACE_ARG "=<string> "
2131                               ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
2132                               ETH_TAP_REMOTE_ARG "=<string>");
2133 int tap_logtype;
2134
2135 RTE_INIT(tap_init_log)
2136 {
2137         tap_logtype = rte_log_register("pmd.net.tap");
2138         if (tap_logtype >= 0)
2139                 rte_log_set_level(tap_logtype, RTE_LOG_NOTICE);
2140 }