New upstream version 16.11.8
[deb_dpdk.git] / drivers / net / thunderx / nicvf_rxtx.c
1 /*
2  *   BSD LICENSE
3  *
4  *   Copyright (C) Cavium networks Ltd. 2016.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Cavium networks nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <unistd.h>
34 #include <stdint.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37
38 #include <rte_atomic.h>
39 #include <rte_branch_prediction.h>
40 #include <rte_byteorder.h>
41 #include <rte_common.h>
42 #include <rte_cycles.h>
43 #include <rte_errno.h>
44 #include <rte_ethdev.h>
45 #include <rte_ether.h>
46 #include <rte_log.h>
47 #include <rte_mbuf.h>
48 #include <rte_prefetch.h>
49
50 #include "base/nicvf_plat.h"
51
52 #include "nicvf_ethdev.h"
53 #include "nicvf_rxtx.h"
54 #include "nicvf_logs.h"
55
56 static inline void __hot
57 fill_sq_desc_header(union sq_entry_t *entry, struct rte_mbuf *pkt)
58 {
59         /* Local variable sqe to avoid read from sq desc memory*/
60         union sq_entry_t sqe;
61         uint64_t ol_flags;
62
63         /* Fill SQ header descriptor */
64         sqe.buff[0] = 0;
65         sqe.hdr.subdesc_type = SQ_DESC_TYPE_HEADER;
66         /* Number of sub-descriptors following this one */
67         sqe.hdr.subdesc_cnt = pkt->nb_segs;
68         sqe.hdr.tot_len = pkt->pkt_len;
69
70         ol_flags = pkt->ol_flags & NICVF_TX_OFFLOAD_MASK;
71         if (unlikely(ol_flags)) {
72                 /* L4 cksum */
73                 uint64_t l4_flags = ol_flags & PKT_TX_L4_MASK;
74                 if (l4_flags == PKT_TX_TCP_CKSUM)
75                         sqe.hdr.csum_l4 = SEND_L4_CSUM_TCP;
76                 else if (l4_flags == PKT_TX_UDP_CKSUM)
77                         sqe.hdr.csum_l4 = SEND_L4_CSUM_UDP;
78                 else
79                         sqe.hdr.csum_l4 = SEND_L4_CSUM_DISABLE;
80
81                 sqe.hdr.l3_offset = pkt->l2_len;
82                 sqe.hdr.l4_offset = pkt->l3_len + pkt->l2_len;
83
84                 /* L3 cksum */
85                 if (ol_flags & PKT_TX_IP_CKSUM)
86                         sqe.hdr.csum_l3 = 1;
87         }
88
89         entry->buff[0] = sqe.buff[0];
90 }
91
92 void __hot
93 nicvf_single_pool_free_xmited_buffers(struct nicvf_txq *sq)
94 {
95         int j = 0;
96         uint32_t curr_head;
97         uint32_t head = sq->head;
98         struct rte_mbuf **txbuffs = sq->txbuffs;
99         void *obj_p[NICVF_MAX_TX_FREE_THRESH] __rte_cache_aligned;
100
101         curr_head = nicvf_addr_read(sq->sq_head) >> 4;
102         while (head != curr_head) {
103                 if (txbuffs[head])
104                         obj_p[j++] = txbuffs[head];
105
106                 head = (head + 1) & sq->qlen_mask;
107         }
108
109         rte_mempool_put_bulk(sq->pool, obj_p, j);
110         sq->head = curr_head;
111         sq->xmit_bufs -= j;
112         NICVF_TX_ASSERT(sq->xmit_bufs >= 0);
113 }
114
115 void __hot
116 nicvf_multi_pool_free_xmited_buffers(struct nicvf_txq *sq)
117 {
118         uint32_t n = 0;
119         uint32_t curr_head;
120         uint32_t head = sq->head;
121         struct rte_mbuf **txbuffs = sq->txbuffs;
122
123         curr_head = nicvf_addr_read(sq->sq_head) >> 4;
124         while (head != curr_head) {
125                 if (txbuffs[head]) {
126                         rte_pktmbuf_free_seg(txbuffs[head]);
127                         n++;
128                 }
129
130                 head = (head + 1) & sq->qlen_mask;
131         }
132
133         sq->head = curr_head;
134         sq->xmit_bufs -= n;
135         NICVF_TX_ASSERT(sq->xmit_bufs >= 0);
136 }
137
138 static inline uint32_t __hot
139 nicvf_free_tx_desc(struct nicvf_txq *sq)
140 {
141         return ((sq->head - sq->tail - 1) & sq->qlen_mask);
142 }
143
144 /* Send Header + Packet */
145 #define TX_DESC_PER_PKT 2
146
147 static inline uint32_t __hot
148 nicvf_free_xmitted_buffers(struct nicvf_txq *sq, struct rte_mbuf **tx_pkts,
149                             uint16_t nb_pkts)
150 {
151         uint32_t free_desc = nicvf_free_tx_desc(sq);
152
153         if (free_desc < nb_pkts * TX_DESC_PER_PKT ||
154                         sq->xmit_bufs > sq->tx_free_thresh) {
155                 if (unlikely(sq->pool == NULL))
156                         sq->pool = tx_pkts[0]->pool;
157
158                 sq->pool_free(sq);
159                 /* Freed now, let see the number of free descs again */
160                 free_desc = nicvf_free_tx_desc(sq);
161         }
162         return free_desc;
163 }
164
165 uint16_t __hot
166 nicvf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
167 {
168         int i;
169         uint32_t free_desc;
170         uint32_t tail;
171         struct nicvf_txq *sq = tx_queue;
172         union sq_entry_t *desc_ptr = sq->desc;
173         struct rte_mbuf **txbuffs = sq->txbuffs;
174         struct rte_mbuf *pkt;
175         uint32_t qlen_mask = sq->qlen_mask;
176
177         tail = sq->tail;
178         free_desc = nicvf_free_xmitted_buffers(sq, tx_pkts, nb_pkts);
179
180         for (i = 0; i < nb_pkts && (int)free_desc >= TX_DESC_PER_PKT; i++) {
181                 pkt = tx_pkts[i];
182
183                 txbuffs[tail] = NULL;
184                 fill_sq_desc_header(desc_ptr + tail, pkt);
185                 tail = (tail + 1) & qlen_mask;
186
187                 txbuffs[tail] = pkt;
188                 fill_sq_desc_gather(desc_ptr + tail, pkt);
189                 tail = (tail + 1) & qlen_mask;
190                 free_desc -= TX_DESC_PER_PKT;
191         }
192
193         if (likely(i)) {
194                 sq->tail = tail;
195                 sq->xmit_bufs += i;
196                 rte_wmb();
197
198                 /* Inform HW to xmit the packets */
199                 nicvf_addr_write(sq->sq_door, i * TX_DESC_PER_PKT);
200         }
201         return i;
202 }
203
204 uint16_t __hot
205 nicvf_xmit_pkts_multiseg(void *tx_queue, struct rte_mbuf **tx_pkts,
206                          uint16_t nb_pkts)
207 {
208         int i, k;
209         uint32_t used_desc, next_used_desc, used_bufs, free_desc, tail;
210         struct nicvf_txq *sq = tx_queue;
211         union sq_entry_t *desc_ptr = sq->desc;
212         struct rte_mbuf **txbuffs = sq->txbuffs;
213         struct rte_mbuf *pkt, *seg;
214         uint32_t qlen_mask = sq->qlen_mask;
215         uint16_t nb_segs;
216
217         tail = sq->tail;
218         used_desc = 0;
219         used_bufs = 0;
220
221         free_desc = nicvf_free_xmitted_buffers(sq, tx_pkts, nb_pkts);
222
223         for (i = 0; i < nb_pkts; i++) {
224                 pkt = tx_pkts[i];
225
226                 nb_segs = pkt->nb_segs;
227
228                 next_used_desc = used_desc + nb_segs + 1;
229                 if (next_used_desc > free_desc)
230                         break;
231                 used_desc = next_used_desc;
232                 used_bufs += nb_segs;
233
234                 txbuffs[tail] = NULL;
235                 fill_sq_desc_header(desc_ptr + tail, pkt);
236                 tail = (tail + 1) & qlen_mask;
237
238                 txbuffs[tail] = pkt;
239                 fill_sq_desc_gather(desc_ptr + tail, pkt);
240                 tail = (tail + 1) & qlen_mask;
241
242                 seg = pkt->next;
243                 for (k = 1; k < nb_segs; k++) {
244                         txbuffs[tail] = seg;
245                         fill_sq_desc_gather(desc_ptr + tail, seg);
246                         tail = (tail + 1) & qlen_mask;
247                         seg = seg->next;
248                 }
249         }
250
251         if (likely(used_desc)) {
252                 sq->tail = tail;
253                 sq->xmit_bufs += used_bufs;
254                 rte_wmb();
255
256                 /* Inform HW to xmit the packets */
257                 nicvf_addr_write(sq->sq_door, used_desc);
258         }
259         return i;
260 }
261
262 static const uint32_t ptype_table[16][16] __rte_cache_aligned = {
263         [L3_NONE][L4_NONE] = RTE_PTYPE_UNKNOWN,
264         [L3_NONE][L4_IPSEC_ESP] = RTE_PTYPE_UNKNOWN,
265         [L3_NONE][L4_IPFRAG] = RTE_PTYPE_L4_FRAG,
266         [L3_NONE][L4_IPCOMP] = RTE_PTYPE_UNKNOWN,
267         [L3_NONE][L4_TCP] = RTE_PTYPE_L4_TCP,
268         [L3_NONE][L4_UDP_PASS1] = RTE_PTYPE_L4_UDP,
269         [L3_NONE][L4_GRE] = RTE_PTYPE_TUNNEL_GRE,
270         [L3_NONE][L4_UDP_PASS2] = RTE_PTYPE_L4_UDP,
271         [L3_NONE][L4_UDP_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
272         [L3_NONE][L4_UDP_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
273         [L3_NONE][L4_NVGRE] = RTE_PTYPE_TUNNEL_NVGRE,
274
275         [L3_IPV4][L4_NONE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_UNKNOWN,
276         [L3_IPV4][L4_IPSEC_ESP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L3_IPV4,
277         [L3_IPV4][L4_IPFRAG] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_FRAG,
278         [L3_IPV4][L4_IPCOMP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_UNKNOWN,
279         [L3_IPV4][L4_TCP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
280         [L3_IPV4][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
281         [L3_IPV4][L4_GRE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_GRE,
282         [L3_IPV4][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
283         [L3_IPV4][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_GENEVE,
284         [L3_IPV4][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_VXLAN,
285         [L3_IPV4][L4_NVGRE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_NVGRE,
286
287         [L3_IPV4_OPT][L4_NONE] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_UNKNOWN,
288         [L3_IPV4_OPT][L4_IPSEC_ESP] =  RTE_PTYPE_L3_IPV4_EXT |
289                                 RTE_PTYPE_L3_IPV4,
290         [L3_IPV4_OPT][L4_IPFRAG] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_FRAG,
291         [L3_IPV4_OPT][L4_IPCOMP] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_UNKNOWN,
292         [L3_IPV4_OPT][L4_TCP] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
293         [L3_IPV4_OPT][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
294         [L3_IPV4_OPT][L4_GRE] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_GRE,
295         [L3_IPV4_OPT][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
296         [L3_IPV4_OPT][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV4_EXT |
297                                 RTE_PTYPE_TUNNEL_GENEVE,
298         [L3_IPV4_OPT][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV4_EXT |
299                                 RTE_PTYPE_TUNNEL_VXLAN,
300         [L3_IPV4_OPT][L4_NVGRE] = RTE_PTYPE_L3_IPV4_EXT |
301                                 RTE_PTYPE_TUNNEL_NVGRE,
302
303         [L3_IPV6][L4_NONE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_UNKNOWN,
304         [L3_IPV6][L4_IPSEC_ESP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L3_IPV4,
305         [L3_IPV6][L4_IPFRAG] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_FRAG,
306         [L3_IPV6][L4_IPCOMP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_UNKNOWN,
307         [L3_IPV6][L4_TCP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
308         [L3_IPV6][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
309         [L3_IPV6][L4_GRE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_GRE,
310         [L3_IPV6][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
311         [L3_IPV6][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_GENEVE,
312         [L3_IPV6][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_VXLAN,
313         [L3_IPV6][L4_NVGRE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_NVGRE,
314
315         [L3_IPV6_OPT][L4_NONE] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_UNKNOWN,
316         [L3_IPV6_OPT][L4_IPSEC_ESP] =  RTE_PTYPE_L3_IPV6_EXT |
317                                         RTE_PTYPE_L3_IPV4,
318         [L3_IPV6_OPT][L4_IPFRAG] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_FRAG,
319         [L3_IPV6_OPT][L4_IPCOMP] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_UNKNOWN,
320         [L3_IPV6_OPT][L4_TCP] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
321         [L3_IPV6_OPT][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
322         [L3_IPV6_OPT][L4_GRE] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_TUNNEL_GRE,
323         [L3_IPV6_OPT][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
324         [L3_IPV6_OPT][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV6_EXT |
325                                         RTE_PTYPE_TUNNEL_GENEVE,
326         [L3_IPV6_OPT][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV6_EXT |
327                                         RTE_PTYPE_TUNNEL_VXLAN,
328         [L3_IPV6_OPT][L4_NVGRE] = RTE_PTYPE_L3_IPV6_EXT |
329                                         RTE_PTYPE_TUNNEL_NVGRE,
330
331         [L3_ET_STOP][L4_NONE] = RTE_PTYPE_UNKNOWN,
332         [L3_ET_STOP][L4_IPSEC_ESP] = RTE_PTYPE_UNKNOWN,
333         [L3_ET_STOP][L4_IPFRAG] = RTE_PTYPE_L4_FRAG,
334         [L3_ET_STOP][L4_IPCOMP] = RTE_PTYPE_UNKNOWN,
335         [L3_ET_STOP][L4_TCP] = RTE_PTYPE_L4_TCP,
336         [L3_ET_STOP][L4_UDP_PASS1] = RTE_PTYPE_L4_UDP,
337         [L3_ET_STOP][L4_GRE] = RTE_PTYPE_TUNNEL_GRE,
338         [L3_ET_STOP][L4_UDP_PASS2] = RTE_PTYPE_L4_UDP,
339         [L3_ET_STOP][L4_UDP_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
340         [L3_ET_STOP][L4_UDP_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
341         [L3_ET_STOP][L4_NVGRE] = RTE_PTYPE_TUNNEL_NVGRE,
342
343         [L3_OTHER][L4_NONE] = RTE_PTYPE_UNKNOWN,
344         [L3_OTHER][L4_IPSEC_ESP] = RTE_PTYPE_UNKNOWN,
345         [L3_OTHER][L4_IPFRAG] = RTE_PTYPE_L4_FRAG,
346         [L3_OTHER][L4_IPCOMP] = RTE_PTYPE_UNKNOWN,
347         [L3_OTHER][L4_TCP] = RTE_PTYPE_L4_TCP,
348         [L3_OTHER][L4_UDP_PASS1] = RTE_PTYPE_L4_UDP,
349         [L3_OTHER][L4_GRE] = RTE_PTYPE_TUNNEL_GRE,
350         [L3_OTHER][L4_UDP_PASS2] = RTE_PTYPE_L4_UDP,
351         [L3_OTHER][L4_UDP_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
352         [L3_OTHER][L4_UDP_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
353         [L3_OTHER][L4_NVGRE] = RTE_PTYPE_TUNNEL_NVGRE,
354 };
355
356 static inline uint32_t __hot
357 nicvf_rx_classify_pkt(cqe_rx_word0_t cqe_rx_w0)
358 {
359         return ptype_table[cqe_rx_w0.l3_type][cqe_rx_w0.l4_type];
360 }
361
362 static inline int __hot
363 nicvf_fill_rbdr(struct nicvf_rxq *rxq, int to_fill)
364 {
365         int i;
366         uint32_t ltail, next_tail;
367         struct nicvf_rbdr *rbdr = rxq->shared_rbdr;
368         uint64_t mbuf_phys_off = rxq->mbuf_phys_off;
369         struct rbdr_entry_t *desc = rbdr->desc;
370         uint32_t qlen_mask = rbdr->qlen_mask;
371         uintptr_t door = rbdr->rbdr_door;
372         void *obj_p[NICVF_MAX_RX_FREE_THRESH] __rte_cache_aligned;
373
374         if (unlikely(rte_mempool_get_bulk(rxq->pool, obj_p, to_fill) < 0)) {
375                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
376                         to_fill;
377                 return 0;
378         }
379
380         NICVF_RX_ASSERT((unsigned int)to_fill <= (qlen_mask -
381                 (nicvf_addr_read(rbdr->rbdr_status) & NICVF_RBDR_COUNT_MASK)));
382
383         next_tail = __atomic_fetch_add(&rbdr->next_tail, to_fill,
384                                         __ATOMIC_ACQUIRE);
385         ltail = next_tail;
386         for (i = 0; i < to_fill; i++) {
387                 struct rbdr_entry_t *entry = desc + (ltail & qlen_mask);
388
389                 entry->full_addr = nicvf_mbuff_virt2phy((uintptr_t)obj_p[i],
390                                                         mbuf_phys_off);
391                 ltail++;
392         }
393
394         while (__atomic_load_n(&rbdr->tail, __ATOMIC_RELAXED) != next_tail)
395                 rte_pause();
396
397         __atomic_store_n(&rbdr->tail, ltail, __ATOMIC_RELEASE);
398         nicvf_addr_write(door, to_fill);
399         return to_fill;
400 }
401
402 static inline int32_t __hot
403 nicvf_rx_pkts_to_process(struct nicvf_rxq *rxq, uint16_t nb_pkts,
404                          int32_t available_space)
405 {
406         if (unlikely(available_space < nb_pkts))
407                 rxq->available_space = nicvf_addr_read(rxq->cq_status)
408                                                 & NICVF_CQ_CQE_COUNT_MASK;
409
410         return RTE_MIN(nb_pkts, available_space);
411 }
412
413 static inline void __hot
414 nicvf_rx_offload(cqe_rx_word0_t cqe_rx_w0, cqe_rx_word2_t cqe_rx_w2,
415                  struct rte_mbuf *pkt)
416 {
417         if (likely(cqe_rx_w0.rss_alg)) {
418                 pkt->hash.rss = cqe_rx_w2.rss_tag;
419                 pkt->ol_flags |= PKT_RX_RSS_HASH;
420         }
421 }
422
423 uint16_t __hot
424 nicvf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
425 {
426         uint32_t i, to_process;
427         struct cqe_rx_t *cqe_rx;
428         struct rte_mbuf *pkt;
429         cqe_rx_word0_t cqe_rx_w0;
430         cqe_rx_word1_t cqe_rx_w1;
431         cqe_rx_word2_t cqe_rx_w2;
432         cqe_rx_word3_t cqe_rx_w3;
433         struct nicvf_rxq *rxq = rx_queue;
434         union cq_entry_t *desc = rxq->desc;
435         const uint64_t cqe_mask = rxq->qlen_mask;
436         uint64_t rb0_ptr, mbuf_phys_off = rxq->mbuf_phys_off;
437         uint32_t cqe_head = rxq->head & cqe_mask;
438         int32_t available_space = rxq->available_space;
439         uint8_t port_id = rxq->port_id;
440         const uint8_t rbptr_offset = rxq->rbptr_offset;
441
442         to_process = nicvf_rx_pkts_to_process(rxq, nb_pkts, available_space);
443
444         for (i = 0; i < to_process; i++) {
445                 rte_prefetch_non_temporal(&desc[cqe_head + 2]);
446                 cqe_rx = (struct cqe_rx_t *)&desc[cqe_head];
447                 NICVF_RX_ASSERT(((struct cq_entry_type_t *)cqe_rx)->cqe_type
448                                                  == CQE_TYPE_RX);
449
450                 NICVF_LOAD_PAIR(cqe_rx_w0.u64, cqe_rx_w1.u64, cqe_rx);
451                 NICVF_LOAD_PAIR(cqe_rx_w2.u64, cqe_rx_w3.u64, &cqe_rx->word2);
452                 rb0_ptr = *((uint64_t *)cqe_rx + rbptr_offset);
453                 pkt = (struct rte_mbuf *)nicvf_mbuff_phy2virt
454                                 (rb0_ptr - cqe_rx_w1.align_pad, mbuf_phys_off);
455
456                 pkt->ol_flags = 0;
457                 pkt->port = port_id;
458                 pkt->data_len = cqe_rx_w3.rb0_sz;
459                 pkt->data_off = RTE_PKTMBUF_HEADROOM + cqe_rx_w1.align_pad;
460                 pkt->nb_segs = 1;
461                 pkt->pkt_len = cqe_rx_w3.rb0_sz;
462                 pkt->packet_type = nicvf_rx_classify_pkt(cqe_rx_w0);
463
464                 nicvf_rx_offload(cqe_rx_w0, cqe_rx_w2, pkt);
465                 rte_mbuf_refcnt_set(pkt, 1);
466                 rx_pkts[i] = pkt;
467                 cqe_head = (cqe_head + 1) & cqe_mask;
468                 nicvf_prefetch_store_keep(pkt);
469         }
470
471         if (likely(to_process)) {
472                 rxq->available_space -= to_process;
473                 rxq->head = cqe_head;
474                 nicvf_addr_write(rxq->cq_door, to_process);
475                 rxq->recv_buffers += to_process;
476         }
477         if (rxq->recv_buffers > rxq->rx_free_thresh) {
478                 rxq->recv_buffers -= nicvf_fill_rbdr(rxq, rxq->rx_free_thresh);
479                 NICVF_RX_ASSERT(rxq->recv_buffers >= 0);
480         }
481
482         return to_process;
483 }
484
485 static inline uint16_t __hot
486 nicvf_process_cq_mseg_entry(struct cqe_rx_t *cqe_rx,
487                         uint64_t mbuf_phys_off, uint8_t port_id,
488                         struct rte_mbuf **rx_pkt, uint8_t rbptr_offset)
489 {
490         struct rte_mbuf *pkt, *seg, *prev;
491         cqe_rx_word0_t cqe_rx_w0;
492         cqe_rx_word1_t cqe_rx_w1;
493         cqe_rx_word2_t cqe_rx_w2;
494         uint16_t *rb_sz, nb_segs, seg_idx;
495         uint64_t *rb_ptr;
496
497         NICVF_LOAD_PAIR(cqe_rx_w0.u64, cqe_rx_w1.u64, cqe_rx);
498         NICVF_RX_ASSERT(cqe_rx_w0.cqe_type == CQE_TYPE_RX);
499         cqe_rx_w2 = cqe_rx->word2;
500         rb_sz = &cqe_rx->word3.rb0_sz;
501         rb_ptr = (uint64_t *)cqe_rx + rbptr_offset;
502         nb_segs = cqe_rx_w0.rb_cnt;
503         pkt = (struct rte_mbuf *)nicvf_mbuff_phy2virt
504                         (rb_ptr[0] - cqe_rx_w1.align_pad, mbuf_phys_off);
505
506         pkt->ol_flags = 0;
507         pkt->port = port_id;
508         pkt->data_off = RTE_PKTMBUF_HEADROOM + cqe_rx_w1.align_pad;
509         pkt->nb_segs = nb_segs;
510         pkt->pkt_len = cqe_rx_w1.pkt_len;
511         pkt->data_len = rb_sz[nicvf_frag_num(0)];
512         rte_mbuf_refcnt_set(pkt, 1);
513         pkt->packet_type = nicvf_rx_classify_pkt(cqe_rx_w0);
514         nicvf_rx_offload(cqe_rx_w0, cqe_rx_w2, pkt);
515
516         *rx_pkt = pkt;
517         prev = pkt;
518         for (seg_idx = 1; seg_idx < nb_segs; seg_idx++) {
519                 seg = (struct rte_mbuf *)nicvf_mbuff_phy2virt
520                         (rb_ptr[seg_idx], mbuf_phys_off);
521
522                 prev->next = seg;
523                 seg->data_len = rb_sz[nicvf_frag_num(seg_idx)];
524                 seg->port = port_id;
525                 seg->data_off = RTE_PKTMBUF_HEADROOM;
526                 rte_mbuf_refcnt_set(seg, 1);
527
528                 prev = seg;
529         }
530         prev->next = NULL;
531         return nb_segs;
532 }
533
534 uint16_t __hot
535 nicvf_recv_pkts_multiseg(void *rx_queue, struct rte_mbuf **rx_pkts,
536                          uint16_t nb_pkts)
537 {
538         union cq_entry_t *cq_entry;
539         struct cqe_rx_t *cqe_rx;
540         struct nicvf_rxq *rxq = rx_queue;
541         union cq_entry_t *desc = rxq->desc;
542         const uint64_t cqe_mask = rxq->qlen_mask;
543         uint64_t mbuf_phys_off = rxq->mbuf_phys_off;
544         uint32_t i, to_process, cqe_head, buffers_consumed = 0;
545         int32_t available_space = rxq->available_space;
546         uint16_t nb_segs;
547         const uint8_t port_id = rxq->port_id;
548         const uint8_t rbptr_offset = rxq->rbptr_offset;
549
550         cqe_head = rxq->head & cqe_mask;
551         to_process = nicvf_rx_pkts_to_process(rxq, nb_pkts, available_space);
552
553         for (i = 0; i < to_process; i++) {
554                 rte_prefetch_non_temporal(&desc[cqe_head + 2]);
555                 cq_entry = &desc[cqe_head];
556                 cqe_rx = (struct cqe_rx_t *)cq_entry;
557                 nb_segs = nicvf_process_cq_mseg_entry(cqe_rx, mbuf_phys_off,
558                                 port_id, rx_pkts + i, rbptr_offset);
559                 buffers_consumed += nb_segs;
560                 cqe_head = (cqe_head + 1) & cqe_mask;
561                 nicvf_prefetch_store_keep(rx_pkts[i]);
562         }
563
564         if (likely(to_process)) {
565                 rxq->available_space -= to_process;
566                 rxq->head = cqe_head;
567                 nicvf_addr_write(rxq->cq_door, to_process);
568                 rxq->recv_buffers += buffers_consumed;
569         }
570         if (rxq->recv_buffers > rxq->rx_free_thresh) {
571                 rxq->recv_buffers -= nicvf_fill_rbdr(rxq, rxq->rx_free_thresh);
572                 NICVF_RX_ASSERT(rxq->recv_buffers >= 0);
573         }
574
575         return to_process;
576 }
577
578 uint32_t
579 nicvf_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t queue_idx)
580 {
581         struct nicvf_rxq *rxq;
582
583         rxq = dev->data->rx_queues[queue_idx];
584         return nicvf_addr_read(rxq->cq_status) & NICVF_CQ_CQE_COUNT_MASK;
585 }
586
587 uint32_t
588 nicvf_dev_rbdr_refill(struct rte_eth_dev *dev, uint16_t queue_idx)
589 {
590         struct nicvf_rxq *rxq;
591         uint32_t to_process;
592         uint32_t rx_free;
593
594         rxq = dev->data->rx_queues[queue_idx];
595         to_process = rxq->recv_buffers;
596         while (rxq->recv_buffers > 0) {
597                 rx_free = RTE_MIN(rxq->recv_buffers, NICVF_MAX_RX_FREE_THRESH);
598                 rxq->recv_buffers -= nicvf_fill_rbdr(rxq, rx_free);
599         }
600
601         assert(rxq->recv_buffers == 0);
602         return to_process;
603 }