Imported Upstream version 16.07-rc1
[deb_dpdk.git] / drivers / net / thunderx / nicvf_rxtx.c
1 /*
2  *   BSD LICENSE
3  *
4  *   Copyright (C) Cavium networks Ltd. 2016.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Cavium networks nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <unistd.h>
34 #include <stdint.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37
38 #include <rte_atomic.h>
39 #include <rte_branch_prediction.h>
40 #include <rte_byteorder.h>
41 #include <rte_common.h>
42 #include <rte_cycles.h>
43 #include <rte_errno.h>
44 #include <rte_ethdev.h>
45 #include <rte_ether.h>
46 #include <rte_log.h>
47 #include <rte_mbuf.h>
48 #include <rte_prefetch.h>
49
50 #include "base/nicvf_plat.h"
51
52 #include "nicvf_ethdev.h"
53 #include "nicvf_rxtx.h"
54 #include "nicvf_logs.h"
55
56 static inline void __hot
57 fill_sq_desc_header(union sq_entry_t *entry, struct rte_mbuf *pkt)
58 {
59         /* Local variable sqe to avoid read from sq desc memory*/
60         union sq_entry_t sqe;
61         uint64_t ol_flags;
62
63         /* Fill SQ header descriptor */
64         sqe.buff[0] = 0;
65         sqe.hdr.subdesc_type = SQ_DESC_TYPE_HEADER;
66         /* Number of sub-descriptors following this one */
67         sqe.hdr.subdesc_cnt = pkt->nb_segs;
68         sqe.hdr.tot_len = pkt->pkt_len;
69
70         ol_flags = pkt->ol_flags & NICVF_TX_OFFLOAD_MASK;
71         if (unlikely(ol_flags)) {
72                 /* L4 cksum */
73                 if (ol_flags & PKT_TX_TCP_CKSUM)
74                         sqe.hdr.csum_l4 = SEND_L4_CSUM_TCP;
75                 else if (ol_flags & PKT_TX_UDP_CKSUM)
76                         sqe.hdr.csum_l4 = SEND_L4_CSUM_UDP;
77                 else
78                         sqe.hdr.csum_l4 = SEND_L4_CSUM_DISABLE;
79                 sqe.hdr.l4_offset = pkt->l3_len + pkt->l2_len;
80
81                 /* L3 cksum */
82                 if (ol_flags & PKT_TX_IP_CKSUM) {
83                         sqe.hdr.csum_l3 = 1;
84                         sqe.hdr.l3_offset = pkt->l2_len;
85                 }
86         }
87
88         entry->buff[0] = sqe.buff[0];
89 }
90
91 void __hot
92 nicvf_single_pool_free_xmited_buffers(struct nicvf_txq *sq)
93 {
94         int j = 0;
95         uint32_t curr_head;
96         uint32_t head = sq->head;
97         struct rte_mbuf **txbuffs = sq->txbuffs;
98         void *obj_p[NICVF_MAX_TX_FREE_THRESH] __rte_cache_aligned;
99
100         curr_head = nicvf_addr_read(sq->sq_head) >> 4;
101         while (head != curr_head) {
102                 if (txbuffs[head])
103                         obj_p[j++] = txbuffs[head];
104
105                 head = (head + 1) & sq->qlen_mask;
106         }
107
108         rte_mempool_put_bulk(sq->pool, obj_p, j);
109         sq->head = curr_head;
110         sq->xmit_bufs -= j;
111         NICVF_TX_ASSERT(sq->xmit_bufs >= 0);
112 }
113
114 void __hot
115 nicvf_multi_pool_free_xmited_buffers(struct nicvf_txq *sq)
116 {
117         uint32_t n = 0;
118         uint32_t curr_head;
119         uint32_t head = sq->head;
120         struct rte_mbuf **txbuffs = sq->txbuffs;
121
122         curr_head = nicvf_addr_read(sq->sq_head) >> 4;
123         while (head != curr_head) {
124                 if (txbuffs[head]) {
125                         rte_pktmbuf_free_seg(txbuffs[head]);
126                         n++;
127                 }
128
129                 head = (head + 1) & sq->qlen_mask;
130         }
131
132         sq->head = curr_head;
133         sq->xmit_bufs -= n;
134         NICVF_TX_ASSERT(sq->xmit_bufs >= 0);
135 }
136
137 static inline uint32_t __hot
138 nicvf_free_tx_desc(struct nicvf_txq *sq)
139 {
140         return ((sq->head - sq->tail - 1) & sq->qlen_mask);
141 }
142
143 /* Send Header + Packet */
144 #define TX_DESC_PER_PKT 2
145
146 static inline uint32_t __hot
147 nicvf_free_xmitted_buffers(struct nicvf_txq *sq, struct rte_mbuf **tx_pkts,
148                             uint16_t nb_pkts)
149 {
150         uint32_t free_desc = nicvf_free_tx_desc(sq);
151
152         if (free_desc < nb_pkts * TX_DESC_PER_PKT ||
153                         sq->xmit_bufs > sq->tx_free_thresh) {
154                 if (unlikely(sq->pool == NULL))
155                         sq->pool = tx_pkts[0]->pool;
156
157                 sq->pool_free(sq);
158                 /* Freed now, let see the number of free descs again */
159                 free_desc = nicvf_free_tx_desc(sq);
160         }
161         return free_desc;
162 }
163
164 uint16_t __hot
165 nicvf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
166 {
167         int i;
168         uint32_t free_desc;
169         uint32_t tail;
170         struct nicvf_txq *sq = tx_queue;
171         union sq_entry_t *desc_ptr = sq->desc;
172         struct rte_mbuf **txbuffs = sq->txbuffs;
173         struct rte_mbuf *pkt;
174         uint32_t qlen_mask = sq->qlen_mask;
175
176         tail = sq->tail;
177         free_desc = nicvf_free_xmitted_buffers(sq, tx_pkts, nb_pkts);
178
179         for (i = 0; i < nb_pkts && (int)free_desc >= TX_DESC_PER_PKT; i++) {
180                 pkt = tx_pkts[i];
181
182                 txbuffs[tail] = NULL;
183                 fill_sq_desc_header(desc_ptr + tail, pkt);
184                 tail = (tail + 1) & qlen_mask;
185
186                 txbuffs[tail] = pkt;
187                 fill_sq_desc_gather(desc_ptr + tail, pkt);
188                 tail = (tail + 1) & qlen_mask;
189                 free_desc -= TX_DESC_PER_PKT;
190         }
191
192         sq->tail = tail;
193         sq->xmit_bufs += i;
194         rte_wmb();
195
196         /* Inform HW to xmit the packets */
197         nicvf_addr_write(sq->sq_door, i * TX_DESC_PER_PKT);
198         return i;
199 }
200
201 uint16_t __hot
202 nicvf_xmit_pkts_multiseg(void *tx_queue, struct rte_mbuf **tx_pkts,
203                          uint16_t nb_pkts)
204 {
205         int i, k;
206         uint32_t used_desc, next_used_desc, used_bufs, free_desc, tail;
207         struct nicvf_txq *sq = tx_queue;
208         union sq_entry_t *desc_ptr = sq->desc;
209         struct rte_mbuf **txbuffs = sq->txbuffs;
210         struct rte_mbuf *pkt, *seg;
211         uint32_t qlen_mask = sq->qlen_mask;
212         uint16_t nb_segs;
213
214         tail = sq->tail;
215         used_desc = 0;
216         used_bufs = 0;
217
218         free_desc = nicvf_free_xmitted_buffers(sq, tx_pkts, nb_pkts);
219
220         for (i = 0; i < nb_pkts; i++) {
221                 pkt = tx_pkts[i];
222
223                 nb_segs = pkt->nb_segs;
224
225                 next_used_desc = used_desc + nb_segs + 1;
226                 if (next_used_desc > free_desc)
227                         break;
228                 used_desc = next_used_desc;
229                 used_bufs += nb_segs;
230
231                 txbuffs[tail] = NULL;
232                 fill_sq_desc_header(desc_ptr + tail, pkt);
233                 tail = (tail + 1) & qlen_mask;
234
235                 txbuffs[tail] = pkt;
236                 fill_sq_desc_gather(desc_ptr + tail, pkt);
237                 tail = (tail + 1) & qlen_mask;
238
239                 seg = pkt->next;
240                 for (k = 1; k < nb_segs; k++) {
241                         txbuffs[tail] = seg;
242                         fill_sq_desc_gather(desc_ptr + tail, seg);
243                         tail = (tail + 1) & qlen_mask;
244                         seg = seg->next;
245                 }
246         }
247
248         sq->tail = tail;
249         sq->xmit_bufs += used_bufs;
250         rte_wmb();
251
252         /* Inform HW to xmit the packets */
253         nicvf_addr_write(sq->sq_door, used_desc);
254         return nb_pkts;
255 }
256
257 static const uint32_t ptype_table[16][16] __rte_cache_aligned = {
258         [L3_NONE][L4_NONE] = RTE_PTYPE_UNKNOWN,
259         [L3_NONE][L4_IPSEC_ESP] = RTE_PTYPE_UNKNOWN,
260         [L3_NONE][L4_IPFRAG] = RTE_PTYPE_L4_FRAG,
261         [L3_NONE][L4_IPCOMP] = RTE_PTYPE_UNKNOWN,
262         [L3_NONE][L4_TCP] = RTE_PTYPE_L4_TCP,
263         [L3_NONE][L4_UDP_PASS1] = RTE_PTYPE_L4_UDP,
264         [L3_NONE][L4_GRE] = RTE_PTYPE_TUNNEL_GRE,
265         [L3_NONE][L4_UDP_PASS2] = RTE_PTYPE_L4_UDP,
266         [L3_NONE][L4_UDP_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
267         [L3_NONE][L4_UDP_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
268         [L3_NONE][L4_NVGRE] = RTE_PTYPE_TUNNEL_NVGRE,
269
270         [L3_IPV4][L4_NONE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_UNKNOWN,
271         [L3_IPV4][L4_IPSEC_ESP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L3_IPV4,
272         [L3_IPV4][L4_IPFRAG] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_FRAG,
273         [L3_IPV4][L4_IPCOMP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_UNKNOWN,
274         [L3_IPV4][L4_TCP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
275         [L3_IPV4][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
276         [L3_IPV4][L4_GRE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_GRE,
277         [L3_IPV4][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
278         [L3_IPV4][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_GENEVE,
279         [L3_IPV4][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_VXLAN,
280         [L3_IPV4][L4_NVGRE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_NVGRE,
281
282         [L3_IPV4_OPT][L4_NONE] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_UNKNOWN,
283         [L3_IPV4_OPT][L4_IPSEC_ESP] =  RTE_PTYPE_L3_IPV4_EXT |
284                                 RTE_PTYPE_L3_IPV4,
285         [L3_IPV4_OPT][L4_IPFRAG] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_FRAG,
286         [L3_IPV4_OPT][L4_IPCOMP] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_UNKNOWN,
287         [L3_IPV4_OPT][L4_TCP] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
288         [L3_IPV4_OPT][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
289         [L3_IPV4_OPT][L4_GRE] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_GRE,
290         [L3_IPV4_OPT][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
291         [L3_IPV4_OPT][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV4_EXT |
292                                 RTE_PTYPE_TUNNEL_GENEVE,
293         [L3_IPV4_OPT][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV4_EXT |
294                                 RTE_PTYPE_TUNNEL_VXLAN,
295         [L3_IPV4_OPT][L4_NVGRE] = RTE_PTYPE_L3_IPV4_EXT |
296                                 RTE_PTYPE_TUNNEL_NVGRE,
297
298         [L3_IPV6][L4_NONE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_UNKNOWN,
299         [L3_IPV6][L4_IPSEC_ESP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L3_IPV4,
300         [L3_IPV6][L4_IPFRAG] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_FRAG,
301         [L3_IPV6][L4_IPCOMP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_UNKNOWN,
302         [L3_IPV6][L4_TCP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
303         [L3_IPV6][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
304         [L3_IPV6][L4_GRE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_GRE,
305         [L3_IPV6][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
306         [L3_IPV6][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_GENEVE,
307         [L3_IPV6][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_VXLAN,
308         [L3_IPV6][L4_NVGRE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_NVGRE,
309
310         [L3_IPV6_OPT][L4_NONE] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_UNKNOWN,
311         [L3_IPV6_OPT][L4_IPSEC_ESP] =  RTE_PTYPE_L3_IPV6_EXT |
312                                         RTE_PTYPE_L3_IPV4,
313         [L3_IPV6_OPT][L4_IPFRAG] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_FRAG,
314         [L3_IPV6_OPT][L4_IPCOMP] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_UNKNOWN,
315         [L3_IPV6_OPT][L4_TCP] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
316         [L3_IPV6_OPT][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
317         [L3_IPV6_OPT][L4_GRE] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_TUNNEL_GRE,
318         [L3_IPV6_OPT][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
319         [L3_IPV6_OPT][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV6_EXT |
320                                         RTE_PTYPE_TUNNEL_GENEVE,
321         [L3_IPV6_OPT][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV6_EXT |
322                                         RTE_PTYPE_TUNNEL_VXLAN,
323         [L3_IPV6_OPT][L4_NVGRE] = RTE_PTYPE_L3_IPV6_EXT |
324                                         RTE_PTYPE_TUNNEL_NVGRE,
325
326         [L3_ET_STOP][L4_NONE] = RTE_PTYPE_UNKNOWN,
327         [L3_ET_STOP][L4_IPSEC_ESP] = RTE_PTYPE_UNKNOWN,
328         [L3_ET_STOP][L4_IPFRAG] = RTE_PTYPE_L4_FRAG,
329         [L3_ET_STOP][L4_IPCOMP] = RTE_PTYPE_UNKNOWN,
330         [L3_ET_STOP][L4_TCP] = RTE_PTYPE_L4_TCP,
331         [L3_ET_STOP][L4_UDP_PASS1] = RTE_PTYPE_L4_UDP,
332         [L3_ET_STOP][L4_GRE] = RTE_PTYPE_TUNNEL_GRE,
333         [L3_ET_STOP][L4_UDP_PASS2] = RTE_PTYPE_L4_UDP,
334         [L3_ET_STOP][L4_UDP_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
335         [L3_ET_STOP][L4_UDP_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
336         [L3_ET_STOP][L4_NVGRE] = RTE_PTYPE_TUNNEL_NVGRE,
337
338         [L3_OTHER][L4_NONE] = RTE_PTYPE_UNKNOWN,
339         [L3_OTHER][L4_IPSEC_ESP] = RTE_PTYPE_UNKNOWN,
340         [L3_OTHER][L4_IPFRAG] = RTE_PTYPE_L4_FRAG,
341         [L3_OTHER][L4_IPCOMP] = RTE_PTYPE_UNKNOWN,
342         [L3_OTHER][L4_TCP] = RTE_PTYPE_L4_TCP,
343         [L3_OTHER][L4_UDP_PASS1] = RTE_PTYPE_L4_UDP,
344         [L3_OTHER][L4_GRE] = RTE_PTYPE_TUNNEL_GRE,
345         [L3_OTHER][L4_UDP_PASS2] = RTE_PTYPE_L4_UDP,
346         [L3_OTHER][L4_UDP_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
347         [L3_OTHER][L4_UDP_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
348         [L3_OTHER][L4_NVGRE] = RTE_PTYPE_TUNNEL_NVGRE,
349 };
350
351 static inline uint32_t __hot
352 nicvf_rx_classify_pkt(cqe_rx_word0_t cqe_rx_w0)
353 {
354         return ptype_table[cqe_rx_w0.l3_type][cqe_rx_w0.l4_type];
355 }
356
357 static inline int __hot
358 nicvf_fill_rbdr(struct nicvf_rxq *rxq, int to_fill)
359 {
360         int i;
361         uint32_t ltail, next_tail;
362         struct nicvf_rbdr *rbdr = rxq->shared_rbdr;
363         uint64_t mbuf_phys_off = rxq->mbuf_phys_off;
364         struct rbdr_entry_t *desc = rbdr->desc;
365         uint32_t qlen_mask = rbdr->qlen_mask;
366         uintptr_t door = rbdr->rbdr_door;
367         void *obj_p[NICVF_MAX_RX_FREE_THRESH] __rte_cache_aligned;
368
369         if (unlikely(rte_mempool_get_bulk(rxq->pool, obj_p, to_fill) < 0)) {
370                 rxq->nic->eth_dev->data->rx_mbuf_alloc_failed += to_fill;
371                 return 0;
372         }
373
374         NICVF_RX_ASSERT((unsigned int)to_fill <= (qlen_mask -
375                 (nicvf_addr_read(rbdr->rbdr_status) & NICVF_RBDR_COUNT_MASK)));
376
377         next_tail = __atomic_fetch_add(&rbdr->next_tail, to_fill,
378                                         __ATOMIC_ACQUIRE);
379         ltail = next_tail;
380         for (i = 0; i < to_fill; i++) {
381                 struct rbdr_entry_t *entry = desc + (ltail & qlen_mask);
382
383                 entry->full_addr = nicvf_mbuff_virt2phy((uintptr_t)obj_p[i],
384                                                         mbuf_phys_off);
385                 ltail++;
386         }
387
388         while (__atomic_load_n(&rbdr->tail, __ATOMIC_RELAXED) != next_tail)
389                 rte_pause();
390
391         __atomic_store_n(&rbdr->tail, ltail, __ATOMIC_RELEASE);
392         nicvf_addr_write(door, to_fill);
393         return to_fill;
394 }
395
396 static inline int32_t __hot
397 nicvf_rx_pkts_to_process(struct nicvf_rxq *rxq, uint16_t nb_pkts,
398                          int32_t available_space)
399 {
400         if (unlikely(available_space < nb_pkts))
401                 rxq->available_space = nicvf_addr_read(rxq->cq_status)
402                                                 & NICVF_CQ_CQE_COUNT_MASK;
403
404         return RTE_MIN(nb_pkts, available_space);
405 }
406
407 static inline void __hot
408 nicvf_rx_offload(cqe_rx_word0_t cqe_rx_w0, cqe_rx_word2_t cqe_rx_w2,
409                  struct rte_mbuf *pkt)
410 {
411         if (likely(cqe_rx_w0.rss_alg)) {
412                 pkt->hash.rss = cqe_rx_w2.rss_tag;
413                 pkt->ol_flags |= PKT_RX_RSS_HASH;
414         }
415 }
416
417 uint16_t __hot
418 nicvf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
419 {
420         uint32_t i, to_process;
421         struct cqe_rx_t *cqe_rx;
422         struct rte_mbuf *pkt;
423         cqe_rx_word0_t cqe_rx_w0;
424         cqe_rx_word1_t cqe_rx_w1;
425         cqe_rx_word2_t cqe_rx_w2;
426         cqe_rx_word3_t cqe_rx_w3;
427         struct nicvf_rxq *rxq = rx_queue;
428         union cq_entry_t *desc = rxq->desc;
429         const uint64_t cqe_mask = rxq->qlen_mask;
430         uint64_t rb0_ptr, mbuf_phys_off = rxq->mbuf_phys_off;
431         uint32_t cqe_head = rxq->head & cqe_mask;
432         int32_t available_space = rxq->available_space;
433         uint8_t port_id = rxq->port_id;
434         const uint8_t rbptr_offset = rxq->rbptr_offset;
435
436         to_process = nicvf_rx_pkts_to_process(rxq, nb_pkts, available_space);
437
438         for (i = 0; i < to_process; i++) {
439                 rte_prefetch_non_temporal(&desc[cqe_head + 2]);
440                 cqe_rx = (struct cqe_rx_t *)&desc[cqe_head];
441                 NICVF_RX_ASSERT(((struct cq_entry_type_t *)cqe_rx)->cqe_type
442                                                  == CQE_TYPE_RX);
443
444                 NICVF_LOAD_PAIR(cqe_rx_w0.u64, cqe_rx_w1.u64, cqe_rx);
445                 NICVF_LOAD_PAIR(cqe_rx_w2.u64, cqe_rx_w3.u64, &cqe_rx->word2);
446                 rb0_ptr = *((uint64_t *)cqe_rx + rbptr_offset);
447                 pkt = (struct rte_mbuf *)nicvf_mbuff_phy2virt
448                                 (rb0_ptr - cqe_rx_w1.align_pad, mbuf_phys_off);
449
450                 pkt->ol_flags = 0;
451                 pkt->port = port_id;
452                 pkt->data_len = cqe_rx_w3.rb0_sz;
453                 pkt->data_off = RTE_PKTMBUF_HEADROOM + cqe_rx_w1.align_pad;
454                 pkt->nb_segs = 1;
455                 pkt->pkt_len = cqe_rx_w3.rb0_sz;
456                 pkt->packet_type = nicvf_rx_classify_pkt(cqe_rx_w0);
457
458                 nicvf_rx_offload(cqe_rx_w0, cqe_rx_w2, pkt);
459                 rte_mbuf_refcnt_set(pkt, 1);
460                 rx_pkts[i] = pkt;
461                 cqe_head = (cqe_head + 1) & cqe_mask;
462                 nicvf_prefetch_store_keep(pkt);
463         }
464
465         if (likely(to_process)) {
466                 rxq->available_space -= to_process;
467                 rxq->head = cqe_head;
468                 nicvf_addr_write(rxq->cq_door, to_process);
469                 rxq->recv_buffers += to_process;
470                 if (rxq->recv_buffers > rxq->rx_free_thresh) {
471                         rxq->recv_buffers -= nicvf_fill_rbdr(rxq,
472                                                 rxq->rx_free_thresh);
473                         NICVF_RX_ASSERT(rxq->recv_buffers >= 0);
474                 }
475         }
476
477         return to_process;
478 }
479
480 static inline uint16_t __hot
481 nicvf_process_cq_mseg_entry(struct cqe_rx_t *cqe_rx,
482                         uint64_t mbuf_phys_off, uint8_t port_id,
483                         struct rte_mbuf **rx_pkt, uint8_t rbptr_offset)
484 {
485         struct rte_mbuf *pkt, *seg, *prev;
486         cqe_rx_word0_t cqe_rx_w0;
487         cqe_rx_word1_t cqe_rx_w1;
488         cqe_rx_word2_t cqe_rx_w2;
489         uint16_t *rb_sz, nb_segs, seg_idx;
490         uint64_t *rb_ptr;
491
492         NICVF_LOAD_PAIR(cqe_rx_w0.u64, cqe_rx_w1.u64, cqe_rx);
493         NICVF_RX_ASSERT(cqe_rx_w0.cqe_type == CQE_TYPE_RX);
494         cqe_rx_w2 = cqe_rx->word2;
495         rb_sz = &cqe_rx->word3.rb0_sz;
496         rb_ptr = (uint64_t *)cqe_rx + rbptr_offset;
497         nb_segs = cqe_rx_w0.rb_cnt;
498         pkt = (struct rte_mbuf *)nicvf_mbuff_phy2virt
499                         (rb_ptr[0] - cqe_rx_w1.align_pad, mbuf_phys_off);
500
501         pkt->ol_flags = 0;
502         pkt->port = port_id;
503         pkt->data_off = RTE_PKTMBUF_HEADROOM + cqe_rx_w1.align_pad;
504         pkt->nb_segs = nb_segs;
505         pkt->pkt_len = cqe_rx_w1.pkt_len;
506         pkt->data_len = rb_sz[nicvf_frag_num(0)];
507         rte_mbuf_refcnt_set(pkt, 1);
508         pkt->packet_type = nicvf_rx_classify_pkt(cqe_rx_w0);
509         nicvf_rx_offload(cqe_rx_w0, cqe_rx_w2, pkt);
510
511         *rx_pkt = pkt;
512         prev = pkt;
513         for (seg_idx = 1; seg_idx < nb_segs; seg_idx++) {
514                 seg = (struct rte_mbuf *)nicvf_mbuff_phy2virt
515                         (rb_ptr[seg_idx], mbuf_phys_off);
516
517                 prev->next = seg;
518                 seg->data_len = rb_sz[nicvf_frag_num(seg_idx)];
519                 seg->port = port_id;
520                 seg->data_off = RTE_PKTMBUF_HEADROOM;
521                 rte_mbuf_refcnt_set(seg, 1);
522
523                 prev = seg;
524         }
525         prev->next = NULL;
526         return nb_segs;
527 }
528
529 uint16_t __hot
530 nicvf_recv_pkts_multiseg(void *rx_queue, struct rte_mbuf **rx_pkts,
531                          uint16_t nb_pkts)
532 {
533         union cq_entry_t *cq_entry;
534         struct cqe_rx_t *cqe_rx;
535         struct nicvf_rxq *rxq = rx_queue;
536         union cq_entry_t *desc = rxq->desc;
537         const uint64_t cqe_mask = rxq->qlen_mask;
538         uint64_t mbuf_phys_off = rxq->mbuf_phys_off;
539         uint32_t i, to_process, cqe_head, buffers_consumed = 0;
540         int32_t available_space = rxq->available_space;
541         uint16_t nb_segs;
542         const uint8_t port_id = rxq->port_id;
543         const uint8_t rbptr_offset = rxq->rbptr_offset;
544
545         cqe_head = rxq->head & cqe_mask;
546         to_process = nicvf_rx_pkts_to_process(rxq, nb_pkts, available_space);
547
548         for (i = 0; i < to_process; i++) {
549                 rte_prefetch_non_temporal(&desc[cqe_head + 2]);
550                 cq_entry = &desc[cqe_head];
551                 cqe_rx = (struct cqe_rx_t *)cq_entry;
552                 nb_segs = nicvf_process_cq_mseg_entry(cqe_rx, mbuf_phys_off,
553                                 port_id, rx_pkts + i, rbptr_offset);
554                 buffers_consumed += nb_segs;
555                 cqe_head = (cqe_head + 1) & cqe_mask;
556                 nicvf_prefetch_store_keep(rx_pkts[i]);
557         }
558
559         if (likely(to_process)) {
560                 rxq->available_space -= to_process;
561                 rxq->head = cqe_head;
562                 nicvf_addr_write(rxq->cq_door, to_process);
563                 rxq->recv_buffers += buffers_consumed;
564                 if (rxq->recv_buffers > rxq->rx_free_thresh) {
565                         rxq->recv_buffers -=
566                                 nicvf_fill_rbdr(rxq, rxq->rx_free_thresh);
567                         NICVF_RX_ASSERT(rxq->recv_buffers >= 0);
568                 }
569         }
570
571         return to_process;
572 }
573
574 uint32_t
575 nicvf_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t queue_idx)
576 {
577         struct nicvf_rxq *rxq;
578
579         rxq = dev->data->rx_queues[queue_idx];
580         return nicvf_addr_read(rxq->cq_status) & NICVF_CQ_CQE_COUNT_MASK;
581 }
582
583 uint32_t
584 nicvf_dev_rbdr_refill(struct rte_eth_dev *dev, uint16_t queue_idx)
585 {
586         struct nicvf_rxq *rxq;
587         uint32_t to_process;
588         uint32_t rx_free;
589
590         rxq = dev->data->rx_queues[queue_idx];
591         to_process = rxq->recv_buffers;
592         while (rxq->recv_buffers > 0) {
593                 rx_free = RTE_MIN(rxq->recv_buffers, NICVF_MAX_RX_FREE_THRESH);
594                 rxq->recv_buffers -= nicvf_fill_rbdr(rxq, rx_free);
595         }
596
597         assert(rxq->recv_buffers == 0);
598         return to_process;
599 }