New upstream version 18.11-rc2
[deb_dpdk.git] / drivers / net / virtio / virtio_pci.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 #include <stdint.h>
5
6 #ifdef RTE_EXEC_ENV_LINUXAPP
7  #include <dirent.h>
8  #include <fcntl.h>
9 #endif
10
11 #include <rte_io.h>
12 #include <rte_bus.h>
13
14 #include "virtio_pci.h"
15 #include "virtio_logs.h"
16 #include "virtqueue.h"
17
18 /*
19  * Following macros are derived from linux/pci_regs.h, however,
20  * we can't simply include that header here, as there is no such
21  * file for non-Linux platform.
22  */
23 #define PCI_CAPABILITY_LIST     0x34
24 #define PCI_CAP_ID_VNDR         0x09
25 #define PCI_CAP_ID_MSIX         0x11
26
27 /*
28  * The remaining space is defined by each driver as the per-driver
29  * configuration space.
30  */
31 #define VIRTIO_PCI_CONFIG(hw) \
32                 (((hw)->use_msix == VIRTIO_MSIX_ENABLED) ? 24 : 20)
33
34 static inline int
35 check_vq_phys_addr_ok(struct virtqueue *vq)
36 {
37         /* Virtio PCI device VIRTIO_PCI_QUEUE_PF register is 32bit,
38          * and only accepts 32 bit page frame number.
39          * Check if the allocated physical memory exceeds 16TB.
40          */
41         if ((vq->vq_ring_mem + vq->vq_ring_size - 1) >>
42                         (VIRTIO_PCI_QUEUE_ADDR_SHIFT + 32)) {
43                 PMD_INIT_LOG(ERR, "vring address shouldn't be above 16TB!");
44                 return 0;
45         }
46
47         return 1;
48 }
49
50 /*
51  * Since we are in legacy mode:
52  * http://ozlabs.org/~rusty/virtio-spec/virtio-0.9.5.pdf
53  *
54  * "Note that this is possible because while the virtio header is PCI (i.e.
55  * little) endian, the device-specific region is encoded in the native endian of
56  * the guest (where such distinction is applicable)."
57  *
58  * For powerpc which supports both, qemu supposes that cpu is big endian and
59  * enforces this for the virtio-net stuff.
60  */
61 static void
62 legacy_read_dev_config(struct virtio_hw *hw, size_t offset,
63                        void *dst, int length)
64 {
65 #ifdef RTE_ARCH_PPC_64
66         int size;
67
68         while (length > 0) {
69                 if (length >= 4) {
70                         size = 4;
71                         rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
72                                 VIRTIO_PCI_CONFIG(hw) + offset);
73                         *(uint32_t *)dst = rte_be_to_cpu_32(*(uint32_t *)dst);
74                 } else if (length >= 2) {
75                         size = 2;
76                         rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
77                                 VIRTIO_PCI_CONFIG(hw) + offset);
78                         *(uint16_t *)dst = rte_be_to_cpu_16(*(uint16_t *)dst);
79                 } else {
80                         size = 1;
81                         rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
82                                 VIRTIO_PCI_CONFIG(hw) + offset);
83                 }
84
85                 dst = (char *)dst + size;
86                 offset += size;
87                 length -= size;
88         }
89 #else
90         rte_pci_ioport_read(VTPCI_IO(hw), dst, length,
91                 VIRTIO_PCI_CONFIG(hw) + offset);
92 #endif
93 }
94
95 static void
96 legacy_write_dev_config(struct virtio_hw *hw, size_t offset,
97                         const void *src, int length)
98 {
99 #ifdef RTE_ARCH_PPC_64
100         union {
101                 uint32_t u32;
102                 uint16_t u16;
103         } tmp;
104         int size;
105
106         while (length > 0) {
107                 if (length >= 4) {
108                         size = 4;
109                         tmp.u32 = rte_cpu_to_be_32(*(const uint32_t *)src);
110                         rte_pci_ioport_write(VTPCI_IO(hw), &tmp.u32, size,
111                                 VIRTIO_PCI_CONFIG(hw) + offset);
112                 } else if (length >= 2) {
113                         size = 2;
114                         tmp.u16 = rte_cpu_to_be_16(*(const uint16_t *)src);
115                         rte_pci_ioport_write(VTPCI_IO(hw), &tmp.u16, size,
116                                 VIRTIO_PCI_CONFIG(hw) + offset);
117                 } else {
118                         size = 1;
119                         rte_pci_ioport_write(VTPCI_IO(hw), src, size,
120                                 VIRTIO_PCI_CONFIG(hw) + offset);
121                 }
122
123                 src = (const char *)src + size;
124                 offset += size;
125                 length -= size;
126         }
127 #else
128         rte_pci_ioport_write(VTPCI_IO(hw), src, length,
129                 VIRTIO_PCI_CONFIG(hw) + offset);
130 #endif
131 }
132
133 static uint64_t
134 legacy_get_features(struct virtio_hw *hw)
135 {
136         uint32_t dst;
137
138         rte_pci_ioport_read(VTPCI_IO(hw), &dst, 4, VIRTIO_PCI_HOST_FEATURES);
139         return dst;
140 }
141
142 static void
143 legacy_set_features(struct virtio_hw *hw, uint64_t features)
144 {
145         if ((features >> 32) != 0) {
146                 PMD_DRV_LOG(ERR,
147                         "only 32 bit features are allowed for legacy virtio!");
148                 return;
149         }
150         rte_pci_ioport_write(VTPCI_IO(hw), &features, 4,
151                 VIRTIO_PCI_GUEST_FEATURES);
152 }
153
154 static uint8_t
155 legacy_get_status(struct virtio_hw *hw)
156 {
157         uint8_t dst;
158
159         rte_pci_ioport_read(VTPCI_IO(hw), &dst, 1, VIRTIO_PCI_STATUS);
160         return dst;
161 }
162
163 static void
164 legacy_set_status(struct virtio_hw *hw, uint8_t status)
165 {
166         rte_pci_ioport_write(VTPCI_IO(hw), &status, 1, VIRTIO_PCI_STATUS);
167 }
168
169 static uint8_t
170 legacy_get_isr(struct virtio_hw *hw)
171 {
172         uint8_t dst;
173
174         rte_pci_ioport_read(VTPCI_IO(hw), &dst, 1, VIRTIO_PCI_ISR);
175         return dst;
176 }
177
178 /* Enable one vector (0) for Link State Intrerrupt */
179 static uint16_t
180 legacy_set_config_irq(struct virtio_hw *hw, uint16_t vec)
181 {
182         uint16_t dst;
183
184         rte_pci_ioport_write(VTPCI_IO(hw), &vec, 2, VIRTIO_MSI_CONFIG_VECTOR);
185         rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_MSI_CONFIG_VECTOR);
186         return dst;
187 }
188
189 static uint16_t
190 legacy_set_queue_irq(struct virtio_hw *hw, struct virtqueue *vq, uint16_t vec)
191 {
192         uint16_t dst;
193
194         rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
195                 VIRTIO_PCI_QUEUE_SEL);
196         rte_pci_ioport_write(VTPCI_IO(hw), &vec, 2, VIRTIO_MSI_QUEUE_VECTOR);
197         rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_MSI_QUEUE_VECTOR);
198         return dst;
199 }
200
201 static uint16_t
202 legacy_get_queue_num(struct virtio_hw *hw, uint16_t queue_id)
203 {
204         uint16_t dst;
205
206         rte_pci_ioport_write(VTPCI_IO(hw), &queue_id, 2, VIRTIO_PCI_QUEUE_SEL);
207         rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_PCI_QUEUE_NUM);
208         return dst;
209 }
210
211 static int
212 legacy_setup_queue(struct virtio_hw *hw, struct virtqueue *vq)
213 {
214         uint32_t src;
215
216         if (!check_vq_phys_addr_ok(vq))
217                 return -1;
218
219         rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
220                 VIRTIO_PCI_QUEUE_SEL);
221         src = vq->vq_ring_mem >> VIRTIO_PCI_QUEUE_ADDR_SHIFT;
222         rte_pci_ioport_write(VTPCI_IO(hw), &src, 4, VIRTIO_PCI_QUEUE_PFN);
223
224         return 0;
225 }
226
227 static void
228 legacy_del_queue(struct virtio_hw *hw, struct virtqueue *vq)
229 {
230         uint32_t src = 0;
231
232         rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
233                 VIRTIO_PCI_QUEUE_SEL);
234         rte_pci_ioport_write(VTPCI_IO(hw), &src, 4, VIRTIO_PCI_QUEUE_PFN);
235 }
236
237 static void
238 legacy_notify_queue(struct virtio_hw *hw, struct virtqueue *vq)
239 {
240         rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
241                 VIRTIO_PCI_QUEUE_NOTIFY);
242 }
243
244 const struct virtio_pci_ops legacy_ops = {
245         .read_dev_cfg   = legacy_read_dev_config,
246         .write_dev_cfg  = legacy_write_dev_config,
247         .get_status     = legacy_get_status,
248         .set_status     = legacy_set_status,
249         .get_features   = legacy_get_features,
250         .set_features   = legacy_set_features,
251         .get_isr        = legacy_get_isr,
252         .set_config_irq = legacy_set_config_irq,
253         .set_queue_irq  = legacy_set_queue_irq,
254         .get_queue_num  = legacy_get_queue_num,
255         .setup_queue    = legacy_setup_queue,
256         .del_queue      = legacy_del_queue,
257         .notify_queue   = legacy_notify_queue,
258 };
259
260 static inline void
261 io_write64_twopart(uint64_t val, uint32_t *lo, uint32_t *hi)
262 {
263         rte_write32(val & ((1ULL << 32) - 1), lo);
264         rte_write32(val >> 32,               hi);
265 }
266
267 static void
268 modern_read_dev_config(struct virtio_hw *hw, size_t offset,
269                        void *dst, int length)
270 {
271         int i;
272         uint8_t *p;
273         uint8_t old_gen, new_gen;
274
275         do {
276                 old_gen = rte_read8(&hw->common_cfg->config_generation);
277
278                 p = dst;
279                 for (i = 0;  i < length; i++)
280                         *p++ = rte_read8((uint8_t *)hw->dev_cfg + offset + i);
281
282                 new_gen = rte_read8(&hw->common_cfg->config_generation);
283         } while (old_gen != new_gen);
284 }
285
286 static void
287 modern_write_dev_config(struct virtio_hw *hw, size_t offset,
288                         const void *src, int length)
289 {
290         int i;
291         const uint8_t *p = src;
292
293         for (i = 0;  i < length; i++)
294                 rte_write8((*p++), (((uint8_t *)hw->dev_cfg) + offset + i));
295 }
296
297 static uint64_t
298 modern_get_features(struct virtio_hw *hw)
299 {
300         uint32_t features_lo, features_hi;
301
302         rte_write32(0, &hw->common_cfg->device_feature_select);
303         features_lo = rte_read32(&hw->common_cfg->device_feature);
304
305         rte_write32(1, &hw->common_cfg->device_feature_select);
306         features_hi = rte_read32(&hw->common_cfg->device_feature);
307
308         return ((uint64_t)features_hi << 32) | features_lo;
309 }
310
311 static void
312 modern_set_features(struct virtio_hw *hw, uint64_t features)
313 {
314         rte_write32(0, &hw->common_cfg->guest_feature_select);
315         rte_write32(features & ((1ULL << 32) - 1),
316                     &hw->common_cfg->guest_feature);
317
318         rte_write32(1, &hw->common_cfg->guest_feature_select);
319         rte_write32(features >> 32,
320                     &hw->common_cfg->guest_feature);
321 }
322
323 static uint8_t
324 modern_get_status(struct virtio_hw *hw)
325 {
326         return rte_read8(&hw->common_cfg->device_status);
327 }
328
329 static void
330 modern_set_status(struct virtio_hw *hw, uint8_t status)
331 {
332         rte_write8(status, &hw->common_cfg->device_status);
333 }
334
335 static uint8_t
336 modern_get_isr(struct virtio_hw *hw)
337 {
338         return rte_read8(hw->isr);
339 }
340
341 static uint16_t
342 modern_set_config_irq(struct virtio_hw *hw, uint16_t vec)
343 {
344         rte_write16(vec, &hw->common_cfg->msix_config);
345         return rte_read16(&hw->common_cfg->msix_config);
346 }
347
348 static uint16_t
349 modern_set_queue_irq(struct virtio_hw *hw, struct virtqueue *vq, uint16_t vec)
350 {
351         rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
352         rte_write16(vec, &hw->common_cfg->queue_msix_vector);
353         return rte_read16(&hw->common_cfg->queue_msix_vector);
354 }
355
356 static uint16_t
357 modern_get_queue_num(struct virtio_hw *hw, uint16_t queue_id)
358 {
359         rte_write16(queue_id, &hw->common_cfg->queue_select);
360         return rte_read16(&hw->common_cfg->queue_size);
361 }
362
363 static int
364 modern_setup_queue(struct virtio_hw *hw, struct virtqueue *vq)
365 {
366         uint64_t desc_addr, avail_addr, used_addr;
367         uint16_t notify_off;
368
369         if (!check_vq_phys_addr_ok(vq))
370                 return -1;
371
372         desc_addr = vq->vq_ring_mem;
373         avail_addr = desc_addr + vq->vq_nentries * sizeof(struct vring_desc);
374         used_addr = RTE_ALIGN_CEIL(avail_addr + offsetof(struct vring_avail,
375                                                          ring[vq->vq_nentries]),
376                                    VIRTIO_PCI_VRING_ALIGN);
377
378         rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
379
380         io_write64_twopart(desc_addr, &hw->common_cfg->queue_desc_lo,
381                                       &hw->common_cfg->queue_desc_hi);
382         io_write64_twopart(avail_addr, &hw->common_cfg->queue_avail_lo,
383                                        &hw->common_cfg->queue_avail_hi);
384         io_write64_twopart(used_addr, &hw->common_cfg->queue_used_lo,
385                                       &hw->common_cfg->queue_used_hi);
386
387         notify_off = rte_read16(&hw->common_cfg->queue_notify_off);
388         vq->notify_addr = (void *)((uint8_t *)hw->notify_base +
389                                 notify_off * hw->notify_off_multiplier);
390
391         rte_write16(1, &hw->common_cfg->queue_enable);
392
393         PMD_INIT_LOG(DEBUG, "queue %u addresses:", vq->vq_queue_index);
394         PMD_INIT_LOG(DEBUG, "\t desc_addr: %" PRIx64, desc_addr);
395         PMD_INIT_LOG(DEBUG, "\t aval_addr: %" PRIx64, avail_addr);
396         PMD_INIT_LOG(DEBUG, "\t used_addr: %" PRIx64, used_addr);
397         PMD_INIT_LOG(DEBUG, "\t notify addr: %p (notify offset: %u)",
398                 vq->notify_addr, notify_off);
399
400         return 0;
401 }
402
403 static void
404 modern_del_queue(struct virtio_hw *hw, struct virtqueue *vq)
405 {
406         rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
407
408         io_write64_twopart(0, &hw->common_cfg->queue_desc_lo,
409                                   &hw->common_cfg->queue_desc_hi);
410         io_write64_twopart(0, &hw->common_cfg->queue_avail_lo,
411                                   &hw->common_cfg->queue_avail_hi);
412         io_write64_twopart(0, &hw->common_cfg->queue_used_lo,
413                                   &hw->common_cfg->queue_used_hi);
414
415         rte_write16(0, &hw->common_cfg->queue_enable);
416 }
417
418 static void
419 modern_notify_queue(struct virtio_hw *hw __rte_unused, struct virtqueue *vq)
420 {
421         rte_write16(vq->vq_queue_index, vq->notify_addr);
422 }
423
424 const struct virtio_pci_ops modern_ops = {
425         .read_dev_cfg   = modern_read_dev_config,
426         .write_dev_cfg  = modern_write_dev_config,
427         .get_status     = modern_get_status,
428         .set_status     = modern_set_status,
429         .get_features   = modern_get_features,
430         .set_features   = modern_set_features,
431         .get_isr        = modern_get_isr,
432         .set_config_irq = modern_set_config_irq,
433         .set_queue_irq  = modern_set_queue_irq,
434         .get_queue_num  = modern_get_queue_num,
435         .setup_queue    = modern_setup_queue,
436         .del_queue      = modern_del_queue,
437         .notify_queue   = modern_notify_queue,
438 };
439
440
441 void
442 vtpci_read_dev_config(struct virtio_hw *hw, size_t offset,
443                       void *dst, int length)
444 {
445         VTPCI_OPS(hw)->read_dev_cfg(hw, offset, dst, length);
446 }
447
448 void
449 vtpci_write_dev_config(struct virtio_hw *hw, size_t offset,
450                        const void *src, int length)
451 {
452         VTPCI_OPS(hw)->write_dev_cfg(hw, offset, src, length);
453 }
454
455 uint64_t
456 vtpci_negotiate_features(struct virtio_hw *hw, uint64_t host_features)
457 {
458         uint64_t features;
459
460         /*
461          * Limit negotiated features to what the driver, virtqueue, and
462          * host all support.
463          */
464         features = host_features & hw->guest_features;
465         VTPCI_OPS(hw)->set_features(hw, features);
466
467         return features;
468 }
469
470 void
471 vtpci_reset(struct virtio_hw *hw)
472 {
473         VTPCI_OPS(hw)->set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
474         /* flush status write */
475         VTPCI_OPS(hw)->get_status(hw);
476 }
477
478 void
479 vtpci_reinit_complete(struct virtio_hw *hw)
480 {
481         vtpci_set_status(hw, VIRTIO_CONFIG_STATUS_DRIVER_OK);
482 }
483
484 void
485 vtpci_set_status(struct virtio_hw *hw, uint8_t status)
486 {
487         if (status != VIRTIO_CONFIG_STATUS_RESET)
488                 status |= VTPCI_OPS(hw)->get_status(hw);
489
490         VTPCI_OPS(hw)->set_status(hw, status);
491 }
492
493 uint8_t
494 vtpci_get_status(struct virtio_hw *hw)
495 {
496         return VTPCI_OPS(hw)->get_status(hw);
497 }
498
499 uint8_t
500 vtpci_isr(struct virtio_hw *hw)
501 {
502         return VTPCI_OPS(hw)->get_isr(hw);
503 }
504
505 static void *
506 get_cfg_addr(struct rte_pci_device *dev, struct virtio_pci_cap *cap)
507 {
508         uint8_t  bar    = cap->bar;
509         uint32_t length = cap->length;
510         uint32_t offset = cap->offset;
511         uint8_t *base;
512
513         if (bar >= PCI_MAX_RESOURCE) {
514                 PMD_INIT_LOG(ERR, "invalid bar: %u", bar);
515                 return NULL;
516         }
517
518         if (offset + length < offset) {
519                 PMD_INIT_LOG(ERR, "offset(%u) + length(%u) overflows",
520                         offset, length);
521                 return NULL;
522         }
523
524         if (offset + length > dev->mem_resource[bar].len) {
525                 PMD_INIT_LOG(ERR,
526                         "invalid cap: overflows bar space: %u > %" PRIu64,
527                         offset + length, dev->mem_resource[bar].len);
528                 return NULL;
529         }
530
531         base = dev->mem_resource[bar].addr;
532         if (base == NULL) {
533                 PMD_INIT_LOG(ERR, "bar %u base addr is NULL", bar);
534                 return NULL;
535         }
536
537         return base + offset;
538 }
539
540 #define PCI_MSIX_ENABLE 0x8000
541
542 static int
543 virtio_read_caps(struct rte_pci_device *dev, struct virtio_hw *hw)
544 {
545         uint8_t pos;
546         struct virtio_pci_cap cap;
547         int ret;
548
549         if (rte_pci_map_device(dev)) {
550                 PMD_INIT_LOG(DEBUG, "failed to map pci device!");
551                 return -1;
552         }
553
554         ret = rte_pci_read_config(dev, &pos, 1, PCI_CAPABILITY_LIST);
555         if (ret != 1) {
556                 PMD_INIT_LOG(DEBUG,
557                              "failed to read pci capability list, ret %d", ret);
558                 return -1;
559         }
560
561         while (pos) {
562                 ret = rte_pci_read_config(dev, &cap, 2, pos);
563                 if (ret != 2) {
564                         PMD_INIT_LOG(DEBUG,
565                                      "failed to read pci cap at pos: %x ret %d",
566                                      pos, ret);
567                         break;
568                 }
569
570                 if (cap.cap_vndr == PCI_CAP_ID_MSIX) {
571                         /* Transitional devices would also have this capability,
572                          * that's why we also check if msix is enabled.
573                          * 1st byte is cap ID; 2nd byte is the position of next
574                          * cap; next two bytes are the flags.
575                          */
576                         uint16_t flags;
577
578                         ret = rte_pci_read_config(dev, &flags, sizeof(flags),
579                                         pos + 2);
580                         if (ret != sizeof(flags)) {
581                                 PMD_INIT_LOG(DEBUG,
582                                              "failed to read pci cap at pos:"
583                                              " %x ret %d", pos + 2, ret);
584                                 break;
585                         }
586
587                         if (flags & PCI_MSIX_ENABLE)
588                                 hw->use_msix = VIRTIO_MSIX_ENABLED;
589                         else
590                                 hw->use_msix = VIRTIO_MSIX_DISABLED;
591                 }
592
593                 if (cap.cap_vndr != PCI_CAP_ID_VNDR) {
594                         PMD_INIT_LOG(DEBUG,
595                                 "[%2x] skipping non VNDR cap id: %02x",
596                                 pos, cap.cap_vndr);
597                         goto next;
598                 }
599
600                 ret = rte_pci_read_config(dev, &cap, sizeof(cap), pos);
601                 if (ret != sizeof(cap)) {
602                         PMD_INIT_LOG(DEBUG,
603                                      "failed to read pci cap at pos: %x ret %d",
604                                      pos, ret);
605                         break;
606                 }
607
608                 PMD_INIT_LOG(DEBUG,
609                         "[%2x] cfg type: %u, bar: %u, offset: %04x, len: %u",
610                         pos, cap.cfg_type, cap.bar, cap.offset, cap.length);
611
612                 switch (cap.cfg_type) {
613                 case VIRTIO_PCI_CAP_COMMON_CFG:
614                         hw->common_cfg = get_cfg_addr(dev, &cap);
615                         break;
616                 case VIRTIO_PCI_CAP_NOTIFY_CFG:
617                         rte_pci_read_config(dev, &hw->notify_off_multiplier,
618                                         4, pos + sizeof(cap));
619                         hw->notify_base = get_cfg_addr(dev, &cap);
620                         break;
621                 case VIRTIO_PCI_CAP_DEVICE_CFG:
622                         hw->dev_cfg = get_cfg_addr(dev, &cap);
623                         break;
624                 case VIRTIO_PCI_CAP_ISR_CFG:
625                         hw->isr = get_cfg_addr(dev, &cap);
626                         break;
627                 }
628
629 next:
630                 pos = cap.cap_next;
631         }
632
633         if (hw->common_cfg == NULL || hw->notify_base == NULL ||
634             hw->dev_cfg == NULL    || hw->isr == NULL) {
635                 PMD_INIT_LOG(INFO, "no modern virtio pci device found.");
636                 return -1;
637         }
638
639         PMD_INIT_LOG(INFO, "found modern virtio pci device.");
640
641         PMD_INIT_LOG(DEBUG, "common cfg mapped at: %p", hw->common_cfg);
642         PMD_INIT_LOG(DEBUG, "device cfg mapped at: %p", hw->dev_cfg);
643         PMD_INIT_LOG(DEBUG, "isr cfg mapped at: %p", hw->isr);
644         PMD_INIT_LOG(DEBUG, "notify base: %p, notify off multiplier: %u",
645                 hw->notify_base, hw->notify_off_multiplier);
646
647         return 0;
648 }
649
650 /*
651  * Return -1:
652  *   if there is error mapping with VFIO/UIO.
653  *   if port map error when driver type is KDRV_NONE.
654  *   if whitelisted but driver type is KDRV_UNKNOWN.
655  * Return 1 if kernel driver is managing the device.
656  * Return 0 on success.
657  */
658 int
659 vtpci_init(struct rte_pci_device *dev, struct virtio_hw *hw)
660 {
661         /*
662          * Try if we can succeed reading virtio pci caps, which exists
663          * only on modern pci device. If failed, we fallback to legacy
664          * virtio handling.
665          */
666         if (virtio_read_caps(dev, hw) == 0) {
667                 PMD_INIT_LOG(INFO, "modern virtio pci detected.");
668                 virtio_hw_internal[hw->port_id].vtpci_ops = &modern_ops;
669                 hw->modern = 1;
670                 return 0;
671         }
672
673         PMD_INIT_LOG(INFO, "trying with legacy virtio pci.");
674         if (rte_pci_ioport_map(dev, 0, VTPCI_IO(hw)) < 0) {
675                 if (dev->kdrv == RTE_KDRV_UNKNOWN &&
676                     (!dev->device.devargs ||
677                      dev->device.devargs->bus !=
678                      rte_bus_find_by_name("pci"))) {
679                         PMD_INIT_LOG(INFO,
680                                 "skip kernel managed virtio device.");
681                         return 1;
682                 }
683                 return -1;
684         }
685
686         virtio_hw_internal[hw->port_id].vtpci_ops = &legacy_ops;
687         hw->modern   = 0;
688
689         return 0;
690 }
691
692 enum virtio_msix_status
693 vtpci_msix_detect(struct rte_pci_device *dev)
694 {
695         uint8_t pos;
696         int ret;
697
698         ret = rte_pci_read_config(dev, &pos, 1, PCI_CAPABILITY_LIST);
699         if (ret != 1) {
700                 PMD_INIT_LOG(DEBUG,
701                              "failed to read pci capability list, ret %d", ret);
702                 return VIRTIO_MSIX_NONE;
703         }
704
705         while (pos) {
706                 uint8_t cap[2];
707
708                 ret = rte_pci_read_config(dev, cap, sizeof(cap), pos);
709                 if (ret != sizeof(cap)) {
710                         PMD_INIT_LOG(DEBUG,
711                                      "failed to read pci cap at pos: %x ret %d",
712                                      pos, ret);
713                         break;
714                 }
715
716                 if (cap[0] == PCI_CAP_ID_MSIX) {
717                         uint16_t flags;
718
719                         ret = rte_pci_read_config(dev, &flags, sizeof(flags),
720                                         pos + sizeof(cap));
721                         if (ret != sizeof(flags)) {
722                                 PMD_INIT_LOG(DEBUG,
723                                              "failed to read pci cap at pos:"
724                                              " %x ret %d", pos + 2, ret);
725                                 break;
726                         }
727
728                         if (flags & PCI_MSIX_ENABLE)
729                                 return VIRTIO_MSIX_ENABLED;
730                         else
731                                 return VIRTIO_MSIX_DISABLED;
732                 }
733
734                 pos = cap[1];
735         }
736
737         return VIRTIO_MSIX_NONE;
738 }