New upstream version 18.08
[deb_dpdk.git] / examples / eventdev_pipeline / pipeline_worker_tx.c
1 /*
2  * SPDX-License-Identifier: BSD-3-Clause
3  * Copyright(c) 2010-2014 Intel Corporation
4  * Copyright 2017 Cavium, Inc.
5  */
6
7 #include "pipeline_common.h"
8
9 static __rte_always_inline void
10 worker_fwd_event(struct rte_event *ev, uint8_t sched)
11 {
12         ev->event_type = RTE_EVENT_TYPE_CPU;
13         ev->op = RTE_EVENT_OP_FORWARD;
14         ev->sched_type = sched;
15 }
16
17 static __rte_always_inline void
18 worker_event_enqueue(const uint8_t dev, const uint8_t port,
19                 struct rte_event *ev)
20 {
21         while (rte_event_enqueue_burst(dev, port, ev, 1) != 1)
22                 rte_pause();
23 }
24
25 static __rte_always_inline void
26 worker_event_enqueue_burst(const uint8_t dev, const uint8_t port,
27                 struct rte_event *ev, const uint16_t nb_rx)
28 {
29         uint16_t enq;
30
31         enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
32         while (enq < nb_rx) {
33                 enq += rte_event_enqueue_burst(dev, port,
34                                                 ev + enq, nb_rx - enq);
35         }
36 }
37
38 static __rte_always_inline void
39 worker_tx_pkt(struct rte_mbuf *mbuf)
40 {
41         exchange_mac(mbuf);
42         while (rte_eth_tx_burst(mbuf->port, 0, &mbuf, 1) != 1)
43                 rte_pause();
44 }
45
46 /* Single stage pipeline workers */
47
48 static int
49 worker_do_tx_single(void *arg)
50 {
51         struct worker_data *data = (struct worker_data *)arg;
52         const uint8_t dev = data->dev_id;
53         const uint8_t port = data->port_id;
54         size_t fwd = 0, received = 0, tx = 0;
55         struct rte_event ev;
56
57         while (!fdata->done) {
58
59                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
60                         rte_pause();
61                         continue;
62                 }
63
64                 received++;
65
66                 if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
67                         worker_tx_pkt(ev.mbuf);
68                         tx++;
69                         continue;
70                 }
71                 work();
72                 ev.queue_id++;
73                 worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
74                 worker_event_enqueue(dev, port, &ev);
75                 fwd++;
76         }
77
78         if (!cdata.quiet)
79                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
80                                 rte_lcore_id(), received, fwd, tx);
81         return 0;
82 }
83
84 static int
85 worker_do_tx_single_atq(void *arg)
86 {
87         struct worker_data *data = (struct worker_data *)arg;
88         const uint8_t dev = data->dev_id;
89         const uint8_t port = data->port_id;
90         size_t fwd = 0, received = 0, tx = 0;
91         struct rte_event ev;
92
93         while (!fdata->done) {
94
95                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
96                         rte_pause();
97                         continue;
98                 }
99
100                 received++;
101
102                 if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
103                         worker_tx_pkt(ev.mbuf);
104                         tx++;
105                         continue;
106                 }
107                 work();
108                 worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
109                 worker_event_enqueue(dev, port, &ev);
110                 fwd++;
111         }
112
113         if (!cdata.quiet)
114                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
115                                 rte_lcore_id(), received, fwd, tx);
116         return 0;
117 }
118
119 static int
120 worker_do_tx_single_burst(void *arg)
121 {
122         struct rte_event ev[BATCH_SIZE + 1];
123
124         struct worker_data *data = (struct worker_data *)arg;
125         const uint8_t dev = data->dev_id;
126         const uint8_t port = data->port_id;
127         size_t fwd = 0, received = 0, tx = 0;
128
129         while (!fdata->done) {
130                 uint16_t i;
131                 uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
132                                 BATCH_SIZE, 0);
133
134                 if (!nb_rx) {
135                         rte_pause();
136                         continue;
137                 }
138                 received += nb_rx;
139
140                 for (i = 0; i < nb_rx; i++) {
141                         rte_prefetch0(ev[i + 1].mbuf);
142                         if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
143
144                                 worker_tx_pkt(ev[i].mbuf);
145                                 ev[i].op = RTE_EVENT_OP_RELEASE;
146                                 tx++;
147
148                         } else {
149                                 ev[i].queue_id++;
150                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
151                         }
152                         work();
153                 }
154
155                 worker_event_enqueue_burst(dev, port, ev, nb_rx);
156                 fwd += nb_rx;
157         }
158
159         if (!cdata.quiet)
160                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
161                                 rte_lcore_id(), received, fwd, tx);
162         return 0;
163 }
164
165 static int
166 worker_do_tx_single_burst_atq(void *arg)
167 {
168         struct rte_event ev[BATCH_SIZE + 1];
169
170         struct worker_data *data = (struct worker_data *)arg;
171         const uint8_t dev = data->dev_id;
172         const uint8_t port = data->port_id;
173         size_t fwd = 0, received = 0, tx = 0;
174
175         while (!fdata->done) {
176                 uint16_t i;
177                 uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
178                                 BATCH_SIZE, 0);
179
180                 if (!nb_rx) {
181                         rte_pause();
182                         continue;
183                 }
184
185                 received += nb_rx;
186
187                 for (i = 0; i < nb_rx; i++) {
188                         rte_prefetch0(ev[i + 1].mbuf);
189                         if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
190
191                                 worker_tx_pkt(ev[i].mbuf);
192                                 ev[i].op = RTE_EVENT_OP_RELEASE;
193                                 tx++;
194                         } else
195                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
196                         work();
197                 }
198
199                 worker_event_enqueue_burst(dev, port, ev, nb_rx);
200                 fwd += nb_rx;
201         }
202
203         if (!cdata.quiet)
204                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
205                                 rte_lcore_id(), received, fwd, tx);
206         return 0;
207 }
208
209 /* Multi stage Pipeline Workers */
210
211 static int
212 worker_do_tx(void *arg)
213 {
214         struct rte_event ev;
215
216         struct worker_data *data = (struct worker_data *)arg;
217         const uint8_t dev = data->dev_id;
218         const uint8_t port = data->port_id;
219         const uint8_t lst_qid = cdata.num_stages - 1;
220         size_t fwd = 0, received = 0, tx = 0;
221
222
223         while (!fdata->done) {
224
225                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
226                         rte_pause();
227                         continue;
228                 }
229
230                 received++;
231                 const uint8_t cq_id = ev.queue_id % cdata.num_stages;
232
233                 if (cq_id >= lst_qid) {
234                         if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
235                                 worker_tx_pkt(ev.mbuf);
236                                 tx++;
237                                 continue;
238                         }
239
240                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
241                         ev.queue_id = (cq_id == lst_qid) ?
242                                 cdata.next_qid[ev.queue_id] : ev.queue_id;
243                 } else {
244                         ev.queue_id = cdata.next_qid[ev.queue_id];
245                         worker_fwd_event(&ev, cdata.queue_type);
246                 }
247                 work();
248
249                 worker_event_enqueue(dev, port, &ev);
250                 fwd++;
251         }
252
253         if (!cdata.quiet)
254                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
255                                 rte_lcore_id(), received, fwd, tx);
256
257         return 0;
258 }
259
260 static int
261 worker_do_tx_atq(void *arg)
262 {
263         struct rte_event ev;
264
265         struct worker_data *data = (struct worker_data *)arg;
266         const uint8_t dev = data->dev_id;
267         const uint8_t port = data->port_id;
268         const uint8_t lst_qid = cdata.num_stages - 1;
269         size_t fwd = 0, received = 0, tx = 0;
270
271         while (!fdata->done) {
272
273                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
274                         rte_pause();
275                         continue;
276                 }
277
278                 received++;
279                 const uint8_t cq_id = ev.sub_event_type % cdata.num_stages;
280
281                 if (cq_id == lst_qid) {
282                         if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
283                                 worker_tx_pkt(ev.mbuf);
284                                 tx++;
285                                 continue;
286                         }
287
288                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
289                 } else {
290                         ev.sub_event_type++;
291                         worker_fwd_event(&ev, cdata.queue_type);
292                 }
293                 work();
294
295                 worker_event_enqueue(dev, port, &ev);
296                 fwd++;
297         }
298
299         if (!cdata.quiet)
300                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
301                                 rte_lcore_id(), received, fwd, tx);
302
303         return 0;
304 }
305
306 static int
307 worker_do_tx_burst(void *arg)
308 {
309         struct rte_event ev[BATCH_SIZE];
310
311         struct worker_data *data = (struct worker_data *)arg;
312         uint8_t dev = data->dev_id;
313         uint8_t port = data->port_id;
314         uint8_t lst_qid = cdata.num_stages - 1;
315         size_t fwd = 0, received = 0, tx = 0;
316
317         while (!fdata->done) {
318                 uint16_t i;
319                 const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
320                                 ev, BATCH_SIZE, 0);
321
322                 if (nb_rx == 0) {
323                         rte_pause();
324                         continue;
325                 }
326                 received += nb_rx;
327
328                 for (i = 0; i < nb_rx; i++) {
329                         const uint8_t cq_id = ev[i].queue_id % cdata.num_stages;
330
331                         if (cq_id >= lst_qid) {
332                                 if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
333                                         worker_tx_pkt(ev[i].mbuf);
334                                         tx++;
335                                         ev[i].op = RTE_EVENT_OP_RELEASE;
336                                         continue;
337                                 }
338                                 ev[i].queue_id = (cq_id == lst_qid) ?
339                                         cdata.next_qid[ev[i].queue_id] :
340                                         ev[i].queue_id;
341
342                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
343                         } else {
344                                 ev[i].queue_id = cdata.next_qid[ev[i].queue_id];
345                                 worker_fwd_event(&ev[i], cdata.queue_type);
346                         }
347                         work();
348                 }
349                 worker_event_enqueue_burst(dev, port, ev, nb_rx);
350
351                 fwd += nb_rx;
352         }
353
354         if (!cdata.quiet)
355                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
356                                 rte_lcore_id(), received, fwd, tx);
357
358         return 0;
359 }
360
361 static int
362 worker_do_tx_burst_atq(void *arg)
363 {
364         struct rte_event ev[BATCH_SIZE];
365
366         struct worker_data *data = (struct worker_data *)arg;
367         uint8_t dev = data->dev_id;
368         uint8_t port = data->port_id;
369         uint8_t lst_qid = cdata.num_stages - 1;
370         size_t fwd = 0, received = 0, tx = 0;
371
372         while (!fdata->done) {
373                 uint16_t i;
374
375                 const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
376                                 ev, BATCH_SIZE, 0);
377
378                 if (nb_rx == 0) {
379                         rte_pause();
380                         continue;
381                 }
382                 received += nb_rx;
383
384                 for (i = 0; i < nb_rx; i++) {
385                         const uint8_t cq_id = ev[i].sub_event_type %
386                                 cdata.num_stages;
387
388                         if (cq_id == lst_qid) {
389                                 if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
390                                         worker_tx_pkt(ev[i].mbuf);
391                                         tx++;
392                                         ev[i].op = RTE_EVENT_OP_RELEASE;
393                                         continue;
394                                 }
395
396                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
397                         } else {
398                                 ev[i].sub_event_type++;
399                                 worker_fwd_event(&ev[i], cdata.queue_type);
400                         }
401                         work();
402                 }
403
404                 worker_event_enqueue_burst(dev, port, ev, nb_rx);
405                 fwd += nb_rx;
406         }
407
408         if (!cdata.quiet)
409                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
410                                 rte_lcore_id(), received, fwd, tx);
411
412         return 0;
413 }
414
415 static int
416 setup_eventdev_worker_tx(struct cons_data *cons_data,
417                 struct worker_data *worker_data)
418 {
419         RTE_SET_USED(cons_data);
420         uint8_t i;
421         const uint8_t atq = cdata.all_type_queues ? 1 : 0;
422         const uint8_t dev_id = 0;
423         const uint8_t nb_ports = cdata.num_workers;
424         uint8_t nb_slots = 0;
425         uint8_t nb_queues = rte_eth_dev_count_avail();
426
427         /*
428          * In case where all type queues are not enabled, use queues equal to
429          * number of stages * eth_dev_count and one extra queue per pipeline
430          * for Tx.
431          */
432         if (!atq) {
433                 nb_queues *= cdata.num_stages;
434                 nb_queues += rte_eth_dev_count_avail();
435         }
436
437         struct rte_event_dev_config config = {
438                         .nb_event_queues = nb_queues,
439                         .nb_event_ports = nb_ports,
440                         .nb_events_limit  = 4096,
441                         .nb_event_queue_flows = 1024,
442                         .nb_event_port_dequeue_depth = 128,
443                         .nb_event_port_enqueue_depth = 128,
444         };
445         struct rte_event_port_conf wkr_p_conf = {
446                         .dequeue_depth = cdata.worker_cq_depth,
447                         .enqueue_depth = 64,
448                         .new_event_threshold = 4096,
449         };
450         struct rte_event_queue_conf wkr_q_conf = {
451                         .schedule_type = cdata.queue_type,
452                         .priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
453                         .nb_atomic_flows = 1024,
454                         .nb_atomic_order_sequences = 1024,
455         };
456
457         int ret, ndev = rte_event_dev_count();
458
459         if (ndev < 1) {
460                 printf("%d: No Eventdev Devices Found\n", __LINE__);
461                 return -1;
462         }
463
464
465         struct rte_event_dev_info dev_info;
466         ret = rte_event_dev_info_get(dev_id, &dev_info);
467         printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
468
469         if (dev_info.max_event_port_dequeue_depth <
470                         config.nb_event_port_dequeue_depth)
471                 config.nb_event_port_dequeue_depth =
472                                 dev_info.max_event_port_dequeue_depth;
473         if (dev_info.max_event_port_enqueue_depth <
474                         config.nb_event_port_enqueue_depth)
475                 config.nb_event_port_enqueue_depth =
476                                 dev_info.max_event_port_enqueue_depth;
477
478         ret = rte_event_dev_configure(dev_id, &config);
479         if (ret < 0) {
480                 printf("%d: Error configuring device\n", __LINE__);
481                 return -1;
482         }
483
484         printf("  Stages:\n");
485         for (i = 0; i < nb_queues; i++) {
486
487                 if (atq) {
488
489                         nb_slots = cdata.num_stages;
490                         wkr_q_conf.event_queue_cfg =
491                                 RTE_EVENT_QUEUE_CFG_ALL_TYPES;
492                 } else {
493                         uint8_t slot;
494
495                         nb_slots = cdata.num_stages + 1;
496                         slot = i % nb_slots;
497                         wkr_q_conf.schedule_type = slot == cdata.num_stages ?
498                                 RTE_SCHED_TYPE_ATOMIC : cdata.queue_type;
499                 }
500
501                 if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
502                         printf("%d: error creating qid %d\n", __LINE__, i);
503                         return -1;
504                 }
505                 cdata.qid[i] = i;
506                 cdata.next_qid[i] = i+1;
507                 if (cdata.enable_queue_priorities) {
508                         const uint32_t prio_delta =
509                                 (RTE_EVENT_DEV_PRIORITY_LOWEST) /
510                                 nb_slots;
511
512                         /* higher priority for queues closer to tx */
513                         wkr_q_conf.priority =
514                                 RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta *
515                                 (i % nb_slots);
516                 }
517
518                 const char *type_str = "Atomic";
519                 switch (wkr_q_conf.schedule_type) {
520                 case RTE_SCHED_TYPE_ORDERED:
521                         type_str = "Ordered";
522                         break;
523                 case RTE_SCHED_TYPE_PARALLEL:
524                         type_str = "Parallel";
525                         break;
526                 }
527                 printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
528                                 wkr_q_conf.priority);
529         }
530
531         printf("\n");
532         if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
533                 wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
534         if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
535                 wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
536
537         /* set up one port per worker, linking to all stage queues */
538         for (i = 0; i < cdata.num_workers; i++) {
539                 struct worker_data *w = &worker_data[i];
540                 w->dev_id = dev_id;
541                 if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
542                         printf("Error setting up port %d\n", i);
543                         return -1;
544                 }
545
546                 if (rte_event_port_link(dev_id, i, NULL, NULL, 0)
547                                 != nb_queues) {
548                         printf("%d: error creating link for port %d\n",
549                                         __LINE__, i);
550                         return -1;
551                 }
552                 w->port_id = i;
553         }
554         /*
555          * Reduce the load on ingress event queue by splitting the traffic
556          * across multiple event queues.
557          * for example, nb_stages =  2 and nb_ethdev = 2 then
558          *
559          *      nb_queues = (2 * 2) + 2 = 6 (non atq)
560          *      rx_stride = 3
561          *
562          * So, traffic is split across queue 0 and queue 3 since queue id for
563          * rx adapter is chosen <ethport_id> * <rx_stride> i.e in the above
564          * case eth port 0, 1 will inject packets into event queue 0, 3
565          * respectively.
566          *
567          * This forms two set of queue pipelines 0->1->2->tx and 3->4->5->tx.
568          */
569         cdata.rx_stride = atq ? 1 : nb_slots;
570         ret = rte_event_dev_service_id_get(dev_id,
571                                 &fdata->evdev_service_id);
572         if (ret != -ESRCH && ret != 0) {
573                 printf("Error getting the service ID\n");
574                 return -1;
575         }
576         rte_service_runstate_set(fdata->evdev_service_id, 1);
577         rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
578         if (rte_event_dev_start(dev_id) < 0) {
579                 printf("Error starting eventdev\n");
580                 return -1;
581         }
582
583         return dev_id;
584 }
585
586
587 struct rx_adptr_services {
588         uint16_t nb_rx_adptrs;
589         uint32_t *rx_adpt_arr;
590 };
591
592 static int32_t
593 service_rx_adapter(void *arg)
594 {
595         int i;
596         struct rx_adptr_services *adptr_services = arg;
597
598         for (i = 0; i < adptr_services->nb_rx_adptrs; i++)
599                 rte_service_run_iter_on_app_lcore(
600                                 adptr_services->rx_adpt_arr[i], 1);
601         return 0;
602 }
603
604 static void
605 init_rx_adapter(uint16_t nb_ports)
606 {
607         int i;
608         int ret;
609         uint8_t evdev_id = 0;
610         struct rx_adptr_services *adptr_services = NULL;
611         struct rte_event_dev_info dev_info;
612
613         ret = rte_event_dev_info_get(evdev_id, &dev_info);
614         adptr_services = rte_zmalloc(NULL, sizeof(struct rx_adptr_services), 0);
615
616         struct rte_event_port_conf rx_p_conf = {
617                 .dequeue_depth = 8,
618                 .enqueue_depth = 8,
619                 .new_event_threshold = 1200,
620         };
621
622         if (rx_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
623                 rx_p_conf.dequeue_depth = dev_info.max_event_port_dequeue_depth;
624         if (rx_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
625                 rx_p_conf.enqueue_depth = dev_info.max_event_port_enqueue_depth;
626
627
628         struct rte_event_eth_rx_adapter_queue_conf queue_conf;
629         memset(&queue_conf, 0, sizeof(queue_conf));
630         queue_conf.ev.sched_type = cdata.queue_type;
631
632         for (i = 0; i < nb_ports; i++) {
633                 uint32_t cap;
634                 uint32_t service_id;
635
636                 ret = rte_event_eth_rx_adapter_create(i, evdev_id, &rx_p_conf);
637                 if (ret)
638                         rte_exit(EXIT_FAILURE,
639                                         "failed to create rx adapter[%d]",
640                                         cdata.rx_adapter_id);
641
642                 ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap);
643                 if (ret)
644                         rte_exit(EXIT_FAILURE,
645                                         "failed to get event rx adapter "
646                                         "capabilities");
647
648                 queue_conf.ev.queue_id = cdata.rx_stride ?
649                         (i * cdata.rx_stride)
650                         : (uint8_t)cdata.qid[0];
651
652                 ret = rte_event_eth_rx_adapter_queue_add(i, i, -1, &queue_conf);
653                 if (ret)
654                         rte_exit(EXIT_FAILURE,
655                                         "Failed to add queues to Rx adapter");
656
657
658                 /* Producer needs to be scheduled. */
659                 if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
660                         ret = rte_event_eth_rx_adapter_service_id_get(i,
661                                         &service_id);
662                         if (ret != -ESRCH && ret != 0) {
663                                 rte_exit(EXIT_FAILURE,
664                                 "Error getting the service ID for rx adptr\n");
665                         }
666
667                         rte_service_runstate_set(service_id, 1);
668                         rte_service_set_runstate_mapped_check(service_id, 0);
669
670                         adptr_services->nb_rx_adptrs++;
671                         adptr_services->rx_adpt_arr = rte_realloc(
672                                         adptr_services->rx_adpt_arr,
673                                         adptr_services->nb_rx_adptrs *
674                                         sizeof(uint32_t), 0);
675                         adptr_services->rx_adpt_arr[
676                                 adptr_services->nb_rx_adptrs - 1] =
677                                 service_id;
678                 }
679
680                 ret = rte_event_eth_rx_adapter_start(i);
681                 if (ret)
682                         rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
683                                         cdata.rx_adapter_id);
684         }
685
686         if (adptr_services->nb_rx_adptrs) {
687                 struct rte_service_spec service;
688
689                 memset(&service, 0, sizeof(struct rte_service_spec));
690                 snprintf(service.name, sizeof(service.name), "rx_service");
691                 service.callback = service_rx_adapter;
692                 service.callback_userdata = (void *)adptr_services;
693
694                 int32_t ret = rte_service_component_register(&service,
695                                 &fdata->rxadptr_service_id);
696                 if (ret)
697                         rte_exit(EXIT_FAILURE,
698                                 "Rx adapter[%d] service register failed",
699                                 cdata.rx_adapter_id);
700
701                 rte_service_runstate_set(fdata->rxadptr_service_id, 1);
702                 rte_service_component_runstate_set(fdata->rxadptr_service_id,
703                                 1);
704                 rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id,
705                                 0);
706         } else {
707                 memset(fdata->rx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
708                 rte_free(adptr_services);
709         }
710
711         if (!adptr_services->nb_rx_adptrs && fdata->cap.consumer == NULL &&
712                         (dev_info.event_dev_cap &
713                          RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))
714                 fdata->cap.scheduler = NULL;
715
716         if (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED)
717                 memset(fdata->sched_core, 0,
718                                 sizeof(unsigned int) * MAX_NUM_CORE);
719 }
720
721 static void
722 worker_tx_opt_check(void)
723 {
724         int i;
725         int ret;
726         uint32_t cap = 0;
727         uint8_t rx_needed = 0;
728         struct rte_event_dev_info eventdev_info;
729
730         memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
731         rte_event_dev_info_get(0, &eventdev_info);
732
733         if (cdata.all_type_queues && !(eventdev_info.event_dev_cap &
734                                 RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES))
735                 rte_exit(EXIT_FAILURE,
736                                 "Event dev doesn't support all type queues\n");
737
738         RTE_ETH_FOREACH_DEV(i) {
739                 ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap);
740                 if (ret)
741                         rte_exit(EXIT_FAILURE,
742                                         "failed to get event rx adapter "
743                                         "capabilities");
744                 rx_needed |=
745                         !(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT);
746         }
747
748         if (cdata.worker_lcore_mask == 0 ||
749                         (rx_needed && cdata.rx_lcore_mask == 0) ||
750                         (cdata.sched_lcore_mask == 0 &&
751                          !(eventdev_info.event_dev_cap &
752                                  RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))) {
753                 printf("Core part of pipeline was not assigned any cores. "
754                         "This will stall the pipeline, please check core masks "
755                         "(use -h for details on setting core masks):\n"
756                         "\trx: %"PRIu64"\n\ttx: %"PRIu64"\n\tsched: %"PRIu64
757                         "\n\tworkers: %"PRIu64"\n",
758                         cdata.rx_lcore_mask, cdata.tx_lcore_mask,
759                         cdata.sched_lcore_mask,
760                         cdata.worker_lcore_mask);
761                 rte_exit(-1, "Fix core masks\n");
762         }
763 }
764
765 static worker_loop
766 get_worker_loop_single_burst(uint8_t atq)
767 {
768         if (atq)
769                 return worker_do_tx_single_burst_atq;
770
771         return worker_do_tx_single_burst;
772 }
773
774 static worker_loop
775 get_worker_loop_single_non_burst(uint8_t atq)
776 {
777         if (atq)
778                 return worker_do_tx_single_atq;
779
780         return worker_do_tx_single;
781 }
782
783 static worker_loop
784 get_worker_loop_burst(uint8_t atq)
785 {
786         if (atq)
787                 return worker_do_tx_burst_atq;
788
789         return worker_do_tx_burst;
790 }
791
792 static worker_loop
793 get_worker_loop_non_burst(uint8_t atq)
794 {
795         if (atq)
796                 return worker_do_tx_atq;
797
798         return worker_do_tx;
799 }
800
801 static worker_loop
802 get_worker_single_stage(bool burst)
803 {
804         uint8_t atq = cdata.all_type_queues ? 1 : 0;
805
806         if (burst)
807                 return get_worker_loop_single_burst(atq);
808
809         return get_worker_loop_single_non_burst(atq);
810 }
811
812 static worker_loop
813 get_worker_multi_stage(bool burst)
814 {
815         uint8_t atq = cdata.all_type_queues ? 1 : 0;
816
817         if (burst)
818                 return get_worker_loop_burst(atq);
819
820         return get_worker_loop_non_burst(atq);
821 }
822
823 void
824 set_worker_tx_setup_data(struct setup_data *caps, bool burst)
825 {
826         if (cdata.num_stages == 1)
827                 caps->worker = get_worker_single_stage(burst);
828         else
829                 caps->worker = get_worker_multi_stage(burst);
830
831         memset(fdata->tx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
832
833         caps->check_opt = worker_tx_opt_check;
834         caps->consumer = NULL;
835         caps->scheduler = schedule_devices;
836         caps->evdev_setup = setup_eventdev_worker_tx;
837         caps->adptr_setup = init_rx_adapter;
838 }