New upstream version 18.02
[deb_dpdk.git] / examples / flow_classify / flow_classify.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <inttypes.h>
7 #include <getopt.h>
8
9 #include <rte_eal.h>
10 #include <rte_ethdev.h>
11 #include <rte_cycles.h>
12 #include <rte_lcore.h>
13 #include <rte_mbuf.h>
14 #include <rte_flow.h>
15 #include <rte_flow_classify.h>
16 #include <rte_table_acl.h>
17
18 #define RX_RING_SIZE 1024
19 #define TX_RING_SIZE 1024
20
21 #define NUM_MBUFS 8191
22 #define MBUF_CACHE_SIZE 250
23 #define BURST_SIZE 32
24
25 #define MAX_NUM_CLASSIFY 30
26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91
27 #define FLOW_CLASSIFY_MAX_PRIORITY 8
28 #define FLOW_CLASSIFIER_NAME_SIZE 64
29
30 #define COMMENT_LEAD_CHAR       ('#')
31 #define OPTION_RULE_IPV4        "rule_ipv4"
32 #define RTE_LOGTYPE_FLOW_CLASSIFY       RTE_LOGTYPE_USER3
33 #define flow_classify_log(format, ...) \
34                 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
35
36 #define uint32_t_to_char(ip, a, b, c, d) do {\
37                 *a = (unsigned char)(ip >> 24 & 0xff);\
38                 *b = (unsigned char)(ip >> 16 & 0xff);\
39                 *c = (unsigned char)(ip >> 8 & 0xff);\
40                 *d = (unsigned char)(ip & 0xff);\
41         } while (0)
42
43 enum {
44         CB_FLD_SRC_ADDR,
45         CB_FLD_DST_ADDR,
46         CB_FLD_SRC_PORT,
47         CB_FLD_SRC_PORT_DLM,
48         CB_FLD_SRC_PORT_MASK,
49         CB_FLD_DST_PORT,
50         CB_FLD_DST_PORT_DLM,
51         CB_FLD_DST_PORT_MASK,
52         CB_FLD_PROTO,
53         CB_FLD_PRIORITY,
54         CB_FLD_NUM,
55 };
56
57 static struct{
58         const char *rule_ipv4_name;
59 } parm_config;
60 const char cb_port_delim[] = ":";
61
62 static const struct rte_eth_conf port_conf_default = {
63         .rxmode = {
64                 .max_rx_pkt_len = ETHER_MAX_LEN,
65                 .ignore_offload_bitfield = 1,
66         },
67 };
68
69 struct flow_classifier {
70         struct rte_flow_classifier *cls;
71 };
72
73 struct flow_classifier_acl {
74         struct flow_classifier cls;
75 } __rte_cache_aligned;
76
77 /* ACL field definitions for IPv4 5 tuple rule */
78
79 enum {
80         PROTO_FIELD_IPV4,
81         SRC_FIELD_IPV4,
82         DST_FIELD_IPV4,
83         SRCP_FIELD_IPV4,
84         DSTP_FIELD_IPV4,
85         NUM_FIELDS_IPV4
86 };
87
88 enum {
89         PROTO_INPUT_IPV4,
90         SRC_INPUT_IPV4,
91         DST_INPUT_IPV4,
92         SRCP_DESTP_INPUT_IPV4
93 };
94
95 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
96         /* first input field - always one byte long. */
97         {
98                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
99                 .size = sizeof(uint8_t),
100                 .field_index = PROTO_FIELD_IPV4,
101                 .input_index = PROTO_INPUT_IPV4,
102                 .offset = sizeof(struct ether_hdr) +
103                         offsetof(struct ipv4_hdr, next_proto_id),
104         },
105         /* next input field (IPv4 source address) - 4 consecutive bytes. */
106         {
107                 /* rte_flow uses a bit mask for IPv4 addresses */
108                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
109                 .size = sizeof(uint32_t),
110                 .field_index = SRC_FIELD_IPV4,
111                 .input_index = SRC_INPUT_IPV4,
112                 .offset = sizeof(struct ether_hdr) +
113                         offsetof(struct ipv4_hdr, src_addr),
114         },
115         /* next input field (IPv4 destination address) - 4 consecutive bytes. */
116         {
117                 /* rte_flow uses a bit mask for IPv4 addresses */
118                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
119                 .size = sizeof(uint32_t),
120                 .field_index = DST_FIELD_IPV4,
121                 .input_index = DST_INPUT_IPV4,
122                 .offset = sizeof(struct ether_hdr) +
123                         offsetof(struct ipv4_hdr, dst_addr),
124         },
125         /*
126          * Next 2 fields (src & dst ports) form 4 consecutive bytes.
127          * They share the same input index.
128          */
129         {
130                 /* rte_flow uses a bit mask for protocol ports */
131                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
132                 .size = sizeof(uint16_t),
133                 .field_index = SRCP_FIELD_IPV4,
134                 .input_index = SRCP_DESTP_INPUT_IPV4,
135                 .offset = sizeof(struct ether_hdr) +
136                         sizeof(struct ipv4_hdr) +
137                         offsetof(struct tcp_hdr, src_port),
138         },
139         {
140                 /* rte_flow uses a bit mask for protocol ports */
141                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
142                 .size = sizeof(uint16_t),
143                 .field_index = DSTP_FIELD_IPV4,
144                 .input_index = SRCP_DESTP_INPUT_IPV4,
145                 .offset = sizeof(struct ether_hdr) +
146                         sizeof(struct ipv4_hdr) +
147                         offsetof(struct tcp_hdr, dst_port),
148         },
149 };
150
151 /* flow classify data */
152 static int num_classify_rules;
153 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
154 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
155 static struct rte_flow_classify_stats classify_stats = {
156                 .stats = (void **)&ntuple_stats
157 };
158
159 /* parameters for rte_flow_classify_validate and
160  * rte_flow_classify_table_entry_add functions
161  */
162
163 static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
164         0, 0, 0 };
165 static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
166         0, 0, 0 };
167
168 /* sample actions:
169  * "actions count / end"
170  */
171 struct rte_flow_query_count count = {
172         .reset = 1,
173         .hits_set = 1,
174         .bytes_set = 1,
175         .hits = 0,
176         .bytes = 0,
177 };
178 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,
179         &count};
180 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
181 static struct rte_flow_action actions[2];
182
183 /* sample attributes */
184 static struct rte_flow_attr attr;
185
186 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
187
188 /*
189  * Initializes a given port using global settings and with the RX buffers
190  * coming from the mbuf_pool passed as a parameter.
191  */
192 static inline int
193 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
194 {
195         struct rte_eth_conf port_conf = port_conf_default;
196         struct ether_addr addr;
197         const uint16_t rx_rings = 1, tx_rings = 1;
198         int retval;
199         uint16_t q;
200         struct rte_eth_dev_info dev_info;
201         struct rte_eth_txconf txconf;
202
203         if (port >= rte_eth_dev_count())
204                 return -1;
205
206         rte_eth_dev_info_get(port, &dev_info);
207         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
208                 port_conf.txmode.offloads |=
209                         DEV_TX_OFFLOAD_MBUF_FAST_FREE;
210
211         /* Configure the Ethernet device. */
212         retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
213         if (retval != 0)
214                 return retval;
215
216         /* Allocate and set up 1 RX queue per Ethernet port. */
217         for (q = 0; q < rx_rings; q++) {
218                 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
219                                 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
220                 if (retval < 0)
221                         return retval;
222         }
223
224         txconf = dev_info.default_txconf;
225         txconf.txq_flags = ETH_TXQ_FLAGS_IGNORE;
226         txconf.offloads = port_conf.txmode.offloads;
227         /* Allocate and set up 1 TX queue per Ethernet port. */
228         for (q = 0; q < tx_rings; q++) {
229                 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
230                                 rte_eth_dev_socket_id(port), &txconf);
231                 if (retval < 0)
232                         return retval;
233         }
234
235         /* Start the Ethernet port. */
236         retval = rte_eth_dev_start(port);
237         if (retval < 0)
238                 return retval;
239
240         /* Display the port MAC address. */
241         rte_eth_macaddr_get(port, &addr);
242         printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
243                            " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
244                         port,
245                         addr.addr_bytes[0], addr.addr_bytes[1],
246                         addr.addr_bytes[2], addr.addr_bytes[3],
247                         addr.addr_bytes[4], addr.addr_bytes[5]);
248
249         /* Enable RX in promiscuous mode for the Ethernet device. */
250         rte_eth_promiscuous_enable(port);
251
252         return 0;
253 }
254
255 /*
256  * The lcore main. This is the main thread that does the work, reading from
257  * an input port classifying the packets and writing to an output port.
258  */
259 static __attribute__((noreturn)) void
260 lcore_main(struct flow_classifier *cls_app)
261 {
262         const uint8_t nb_ports = rte_eth_dev_count();
263         uint8_t port;
264         int ret;
265         int i = 0;
266
267         ret = rte_flow_classify_table_entry_delete(cls_app->cls,
268                         rules[7]);
269         if (ret)
270                 printf("table_entry_delete failed [7] %d\n\n", ret);
271         else
272                 printf("table_entry_delete succeeded [7]\n\n");
273
274         /*
275          * Check that the port is on the same NUMA node as the polling thread
276          * for best performance.
277          */
278         for (port = 0; port < nb_ports; port++)
279                 if (rte_eth_dev_socket_id(port) > 0 &&
280                         rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
281                         printf("\n\n");
282                         printf("WARNING: port %u is on remote NUMA node\n",
283                                port);
284                         printf("to polling thread.\n");
285                         printf("Performance will not be optimal.\n");
286                 }
287         printf("\nCore %u forwarding packets. ", rte_lcore_id());
288         printf("[Ctrl+C to quit]\n");
289
290         /* Run until the application is quit or killed. */
291         for (;;) {
292                 /*
293                  * Receive packets on a port, classify them and forward them
294                  * on the paired port.
295                  * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
296                  */
297                 for (port = 0; port < nb_ports; port++) {
298                         /* Get burst of RX packets, from first port of pair. */
299                         struct rte_mbuf *bufs[BURST_SIZE];
300                         const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
301                                         bufs, BURST_SIZE);
302
303                         if (unlikely(nb_rx == 0))
304                                 continue;
305
306                         for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
307                                 if (rules[i]) {
308                                         ret = rte_flow_classifier_query(
309                                                 cls_app->cls,
310                                                 bufs, nb_rx, rules[i],
311                                                 &classify_stats);
312                                         if (ret)
313                                                 printf(
314                                                         "rule [%d] query failed ret [%d]\n\n",
315                                                         i, ret);
316                                         else {
317                                                 printf(
318                                                 "rule[%d] count=%"PRIu64"\n",
319                                                 i, ntuple_stats.counter1);
320
321                                                 printf("proto = %d\n",
322                                                 ntuple_stats.ipv4_5tuple.proto);
323                                         }
324                                 }
325                         }
326
327                         /* Send burst of TX packets, to second port of pair. */
328                         const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
329                                         bufs, nb_rx);
330
331                         /* Free any unsent packets. */
332                         if (unlikely(nb_tx < nb_rx)) {
333                                 uint16_t buf;
334
335                                 for (buf = nb_tx; buf < nb_rx; buf++)
336                                         rte_pktmbuf_free(bufs[buf]);
337                         }
338                 }
339         }
340 }
341
342 /*
343  * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
344  * Expected format:
345  * <src_ipv4_addr>'/'<masklen> <space> \
346  * <dst_ipv4_addr>'/'<masklen> <space> \
347  * <src_port> <space> ":" <src_port_mask> <space> \
348  * <dst_port> <space> ":" <dst_port_mask> <space> \
349  * <proto>'/'<proto_mask> <space> \
350  * <priority>
351  */
352
353 static int
354 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
355                 char dlm)
356 {
357         unsigned long val;
358         char *end;
359
360         errno = 0;
361         val = strtoul(*in, &end, base);
362         if (errno != 0 || end[0] != dlm || val > lim)
363                 return -EINVAL;
364         *fd = (uint32_t)val;
365         *in = end + 1;
366         return 0;
367 }
368
369 static int
370 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
371 {
372         uint32_t a, b, c, d, m;
373
374         if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
375                 return -EINVAL;
376         if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
377                 return -EINVAL;
378         if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
379                 return -EINVAL;
380         if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
381                 return -EINVAL;
382         if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
383                 return -EINVAL;
384
385         addr[0] = IPv4(a, b, c, d);
386         mask_len[0] = m;
387         return 0;
388 }
389
390 static int
391 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
392 {
393         int i, ret;
394         char *s, *sp, *in[CB_FLD_NUM];
395         static const char *dlm = " \t\n";
396         int dim = CB_FLD_NUM;
397         uint32_t temp;
398
399         s = str;
400         for (i = 0; i != dim; i++, s = NULL) {
401                 in[i] = strtok_r(s, dlm, &sp);
402                 if (in[i] == NULL)
403                         return -EINVAL;
404         }
405
406         ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
407                         &ntuple_filter->src_ip,
408                         &ntuple_filter->src_ip_mask);
409         if (ret != 0) {
410                 flow_classify_log("failed to read source address/mask: %s\n",
411                         in[CB_FLD_SRC_ADDR]);
412                 return ret;
413         }
414
415         ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
416                         &ntuple_filter->dst_ip,
417                         &ntuple_filter->dst_ip_mask);
418         if (ret != 0) {
419                 flow_classify_log("failed to read source address/mask: %s\n",
420                         in[CB_FLD_DST_ADDR]);
421                 return ret;
422         }
423
424         if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
425                 return -EINVAL;
426         ntuple_filter->src_port = (uint16_t)temp;
427
428         if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
429                         sizeof(cb_port_delim)) != 0)
430                 return -EINVAL;
431
432         if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
433                 return -EINVAL;
434         ntuple_filter->src_port_mask = (uint16_t)temp;
435
436         if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
437                 return -EINVAL;
438         ntuple_filter->dst_port = (uint16_t)temp;
439
440         if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
441                         sizeof(cb_port_delim)) != 0)
442                 return -EINVAL;
443
444         if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
445                 return -EINVAL;
446         ntuple_filter->dst_port_mask = (uint16_t)temp;
447
448         if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
449                 return -EINVAL;
450         ntuple_filter->proto = (uint8_t)temp;
451
452         if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
453                 return -EINVAL;
454         ntuple_filter->proto_mask = (uint8_t)temp;
455
456         if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
457                 return -EINVAL;
458         ntuple_filter->priority = (uint16_t)temp;
459         if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
460                 ret = -EINVAL;
461
462         return ret;
463 }
464
465 /* Bypass comment and empty lines */
466 static inline int
467 is_bypass_line(char *buff)
468 {
469         int i = 0;
470
471         /* comment line */
472         if (buff[0] == COMMENT_LEAD_CHAR)
473                 return 1;
474         /* empty line */
475         while (buff[i] != '\0') {
476                 if (!isspace(buff[i]))
477                         return 0;
478                 i++;
479         }
480         return 1;
481 }
482
483 static uint32_t
484 convert_depth_to_bitmask(uint32_t depth_val)
485 {
486         uint32_t bitmask = 0;
487         int i, j;
488
489         for (i = depth_val, j = 0; i > 0; i--, j++)
490                 bitmask |= (1 << (31 - j));
491         return bitmask;
492 }
493
494 static int
495 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
496                 struct flow_classifier *cls_app)
497 {
498         int ret = -1;
499         int key_found;
500         struct rte_flow_error error;
501         struct rte_flow_item_ipv4 ipv4_spec;
502         struct rte_flow_item_ipv4 ipv4_mask;
503         struct rte_flow_item ipv4_udp_item;
504         struct rte_flow_item ipv4_tcp_item;
505         struct rte_flow_item ipv4_sctp_item;
506         struct rte_flow_item_udp udp_spec;
507         struct rte_flow_item_udp udp_mask;
508         struct rte_flow_item udp_item;
509         struct rte_flow_item_tcp tcp_spec;
510         struct rte_flow_item_tcp tcp_mask;
511         struct rte_flow_item tcp_item;
512         struct rte_flow_item_sctp sctp_spec;
513         struct rte_flow_item_sctp sctp_mask;
514         struct rte_flow_item sctp_item;
515         struct rte_flow_item pattern_ipv4_5tuple[4];
516         struct rte_flow_classify_rule *rule;
517         uint8_t ipv4_proto;
518
519         if (num_classify_rules >= MAX_NUM_CLASSIFY) {
520                 printf(
521                         "\nINFO:  classify rule capacity %d reached\n",
522                         num_classify_rules);
523                 return ret;
524         }
525
526         /* set up parameters for validate and add */
527         memset(&ipv4_spec, 0, sizeof(ipv4_spec));
528         ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
529         ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
530         ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
531         ipv4_proto = ipv4_spec.hdr.next_proto_id;
532
533         memset(&ipv4_mask, 0, sizeof(ipv4_mask));
534         ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
535         ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
536         ipv4_mask.hdr.src_addr =
537                 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
538         ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
539         ipv4_mask.hdr.dst_addr =
540                 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);
541
542         switch (ipv4_proto) {
543         case IPPROTO_UDP:
544                 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
545                 ipv4_udp_item.spec = &ipv4_spec;
546                 ipv4_udp_item.mask = &ipv4_mask;
547                 ipv4_udp_item.last = NULL;
548
549                 udp_spec.hdr.src_port = ntuple_filter->src_port;
550                 udp_spec.hdr.dst_port = ntuple_filter->dst_port;
551                 udp_spec.hdr.dgram_len = 0;
552                 udp_spec.hdr.dgram_cksum = 0;
553
554                 udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
555                 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
556                 udp_mask.hdr.dgram_len = 0;
557                 udp_mask.hdr.dgram_cksum = 0;
558
559                 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
560                 udp_item.spec = &udp_spec;
561                 udp_item.mask = &udp_mask;
562                 udp_item.last = NULL;
563
564                 attr.priority = ntuple_filter->priority;
565                 pattern_ipv4_5tuple[1] = ipv4_udp_item;
566                 pattern_ipv4_5tuple[2] = udp_item;
567                 break;
568         case IPPROTO_TCP:
569                 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
570                 ipv4_tcp_item.spec = &ipv4_spec;
571                 ipv4_tcp_item.mask = &ipv4_mask;
572                 ipv4_tcp_item.last = NULL;
573
574                 memset(&tcp_spec, 0, sizeof(tcp_spec));
575                 tcp_spec.hdr.src_port = ntuple_filter->src_port;
576                 tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
577
578                 memset(&tcp_mask, 0, sizeof(tcp_mask));
579                 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
580                 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
581
582                 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
583                 tcp_item.spec = &tcp_spec;
584                 tcp_item.mask = &tcp_mask;
585                 tcp_item.last = NULL;
586
587                 attr.priority = ntuple_filter->priority;
588                 pattern_ipv4_5tuple[1] = ipv4_tcp_item;
589                 pattern_ipv4_5tuple[2] = tcp_item;
590                 break;
591         case IPPROTO_SCTP:
592                 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
593                 ipv4_sctp_item.spec = &ipv4_spec;
594                 ipv4_sctp_item.mask = &ipv4_mask;
595                 ipv4_sctp_item.last = NULL;
596
597                 sctp_spec.hdr.src_port = ntuple_filter->src_port;
598                 sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
599                 sctp_spec.hdr.cksum = 0;
600                 sctp_spec.hdr.tag = 0;
601
602                 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
603                 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
604                 sctp_mask.hdr.cksum = 0;
605                 sctp_mask.hdr.tag = 0;
606
607                 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
608                 sctp_item.spec = &sctp_spec;
609                 sctp_item.mask = &sctp_mask;
610                 sctp_item.last = NULL;
611
612                 attr.priority = ntuple_filter->priority;
613                 pattern_ipv4_5tuple[1] = ipv4_sctp_item;
614                 pattern_ipv4_5tuple[2] = sctp_item;
615                 break;
616         default:
617                 return ret;
618         }
619
620         attr.ingress = 1;
621         pattern_ipv4_5tuple[0] = eth_item;
622         pattern_ipv4_5tuple[3] = end_item;
623         actions[0] = count_action;
624         actions[1] = end_action;
625
626         /* Validate and add rule */
627         ret = rte_flow_classify_validate(cls_app->cls, &attr,
628                         pattern_ipv4_5tuple, actions, &error);
629         if (ret) {
630                 printf("table entry validate failed ipv4_proto = %u\n",
631                         ipv4_proto);
632                 return ret;
633         }
634
635         rule = rte_flow_classify_table_entry_add(
636                         cls_app->cls, &attr, pattern_ipv4_5tuple,
637                         actions, &key_found, &error);
638         if (rule == NULL) {
639                 printf("table entry add failed ipv4_proto = %u\n",
640                         ipv4_proto);
641                 ret = -1;
642                 return ret;
643         }
644
645         rules[num_classify_rules] = rule;
646         num_classify_rules++;
647         return 0;
648 }
649
650 static int
651 add_rules(const char *rule_path, struct flow_classifier *cls_app)
652 {
653         FILE *fh;
654         char buff[LINE_MAX];
655         unsigned int i = 0;
656         unsigned int total_num = 0;
657         struct rte_eth_ntuple_filter ntuple_filter;
658         int ret;
659
660         fh = fopen(rule_path, "rb");
661         if (fh == NULL)
662                 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
663                         rule_path);
664
665         ret = fseek(fh, 0, SEEK_SET);
666         if (ret)
667                 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
668                         ret);
669
670         i = 0;
671         while (fgets(buff, LINE_MAX, fh) != NULL) {
672                 i++;
673
674                 if (is_bypass_line(buff))
675                         continue;
676
677                 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
678                         printf("\nINFO: classify rule capacity %d reached\n",
679                                 total_num);
680                         break;
681                 }
682
683                 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
684                         rte_exit(EXIT_FAILURE,
685                                 "%s Line %u: parse rules error\n",
686                                 rule_path, i);
687
688                 if (add_classify_rule(&ntuple_filter, cls_app) != 0)
689                         rte_exit(EXIT_FAILURE, "add rule error\n");
690
691                 total_num++;
692         }
693
694         fclose(fh);
695         return 0;
696 }
697
698 /* display usage */
699 static void
700 print_usage(const char *prgname)
701 {
702         printf("%s usage:\n", prgname);
703         printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
704         printf("specify the ipv4 rules file.\n");
705         printf("Each rule occupies one line in the file.\n");
706 }
707
708 /* Parse the argument given in the command line of the application */
709 static int
710 parse_args(int argc, char **argv)
711 {
712         int opt, ret;
713         char **argvopt;
714         int option_index;
715         char *prgname = argv[0];
716         static struct option lgopts[] = {
717                 {OPTION_RULE_IPV4, 1, 0, 0},
718                 {NULL, 0, 0, 0}
719         };
720
721         argvopt = argv;
722
723         while ((opt = getopt_long(argc, argvopt, "",
724                                 lgopts, &option_index)) != EOF) {
725
726                 switch (opt) {
727                 /* long options */
728                 case 0:
729                         if (!strncmp(lgopts[option_index].name,
730                                         OPTION_RULE_IPV4,
731                                         sizeof(OPTION_RULE_IPV4)))
732                                 parm_config.rule_ipv4_name = optarg;
733                         break;
734                 default:
735                         print_usage(prgname);
736                         return -1;
737                 }
738         }
739
740         if (optind >= 0)
741                 argv[optind-1] = prgname;
742
743         ret = optind-1;
744         optind = 1; /* reset getopt lib */
745         return ret;
746 }
747
748 /*
749  * The main function, which does initialization and calls the lcore_main
750  * function.
751  */
752 int
753 main(int argc, char *argv[])
754 {
755         struct rte_mempool *mbuf_pool;
756         uint8_t nb_ports;
757         uint8_t portid;
758         int ret;
759         int socket_id;
760         struct rte_table_acl_params table_acl_params;
761         struct rte_flow_classify_table_params cls_table_params;
762         struct flow_classifier *cls_app;
763         struct rte_flow_classifier_params cls_params;
764         uint32_t size;
765
766         /* Initialize the Environment Abstraction Layer (EAL). */
767         ret = rte_eal_init(argc, argv);
768         if (ret < 0)
769                 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
770
771         argc -= ret;
772         argv += ret;
773
774         /* parse application arguments (after the EAL ones) */
775         ret = parse_args(argc, argv);
776         if (ret < 0)
777                 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");
778
779         /* Check that there is an even number of ports to send/receive on. */
780         nb_ports = rte_eth_dev_count();
781         if (nb_ports < 2 || (nb_ports & 1))
782                 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");
783
784         /* Creates a new mempool in memory to hold the mbufs. */
785         mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
786                 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
787
788         if (mbuf_pool == NULL)
789                 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
790
791         /* Initialize all ports. */
792         for (portid = 0; portid < nb_ports; portid++)
793                 if (port_init(portid, mbuf_pool) != 0)
794                         rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
795                                         portid);
796
797         if (rte_lcore_count() > 1)
798                 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
799
800         socket_id = rte_eth_dev_socket_id(0);
801
802         /* Memory allocation */
803         size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
804         cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
805         if (cls_app == NULL)
806                 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");
807
808         cls_params.name = "flow_classifier";
809         cls_params.socket_id = socket_id;
810
811         cls_app->cls = rte_flow_classifier_create(&cls_params);
812         if (cls_app->cls == NULL) {
813                 rte_free(cls_app);
814                 rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
815         }
816
817         /* initialise ACL table params */
818         table_acl_params.name = "table_acl_ipv4_5tuple";
819         table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
820         table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
821         memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
822
823         /* initialise table create params */
824         cls_table_params.ops = &rte_table_acl_ops;
825         cls_table_params.arg_create = &table_acl_params;
826         cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;
827
828         ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
829         if (ret) {
830                 rte_flow_classifier_free(cls_app->cls);
831                 rte_free(cls_app);
832                 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
833         }
834
835         /* read file of IPv4 5 tuple rules and initialize parameters
836          * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
837          * API's.
838          */
839         if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
840                 rte_flow_classifier_free(cls_app->cls);
841                 rte_free(cls_app);
842                 rte_exit(EXIT_FAILURE, "Failed to add rules\n");
843         }
844
845         /* Call lcore_main on the master core only. */
846         lcore_main(cls_app);
847
848         return 0;
849 }