New upstream version 18.05
[deb_dpdk.git] / examples / flow_classify / flow_classify.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <inttypes.h>
7 #include <getopt.h>
8
9 #include <rte_eal.h>
10 #include <rte_ethdev.h>
11 #include <rte_cycles.h>
12 #include <rte_lcore.h>
13 #include <rte_mbuf.h>
14 #include <rte_flow.h>
15 #include <rte_flow_classify.h>
16 #include <rte_table_acl.h>
17
18 #define RX_RING_SIZE 1024
19 #define TX_RING_SIZE 1024
20
21 #define NUM_MBUFS 8191
22 #define MBUF_CACHE_SIZE 250
23 #define BURST_SIZE 32
24
25 #define MAX_NUM_CLASSIFY 30
26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91
27 #define FLOW_CLASSIFY_MAX_PRIORITY 8
28 #define FLOW_CLASSIFIER_NAME_SIZE 64
29
30 #define COMMENT_LEAD_CHAR       ('#')
31 #define OPTION_RULE_IPV4        "rule_ipv4"
32 #define RTE_LOGTYPE_FLOW_CLASSIFY       RTE_LOGTYPE_USER3
33 #define flow_classify_log(format, ...) \
34                 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
35
36 #define uint32_t_to_char(ip, a, b, c, d) do {\
37                 *a = (unsigned char)(ip >> 24 & 0xff);\
38                 *b = (unsigned char)(ip >> 16 & 0xff);\
39                 *c = (unsigned char)(ip >> 8 & 0xff);\
40                 *d = (unsigned char)(ip & 0xff);\
41         } while (0)
42
43 enum {
44         CB_FLD_SRC_ADDR,
45         CB_FLD_DST_ADDR,
46         CB_FLD_SRC_PORT,
47         CB_FLD_SRC_PORT_DLM,
48         CB_FLD_SRC_PORT_MASK,
49         CB_FLD_DST_PORT,
50         CB_FLD_DST_PORT_DLM,
51         CB_FLD_DST_PORT_MASK,
52         CB_FLD_PROTO,
53         CB_FLD_PRIORITY,
54         CB_FLD_NUM,
55 };
56
57 static struct{
58         const char *rule_ipv4_name;
59 } parm_config;
60 const char cb_port_delim[] = ":";
61
62 static const struct rte_eth_conf port_conf_default = {
63         .rxmode = {
64                 .max_rx_pkt_len = ETHER_MAX_LEN,
65                 .ignore_offload_bitfield = 1,
66         },
67 };
68
69 struct flow_classifier {
70         struct rte_flow_classifier *cls;
71 };
72
73 struct flow_classifier_acl {
74         struct flow_classifier cls;
75 } __rte_cache_aligned;
76
77 /* ACL field definitions for IPv4 5 tuple rule */
78
79 enum {
80         PROTO_FIELD_IPV4,
81         SRC_FIELD_IPV4,
82         DST_FIELD_IPV4,
83         SRCP_FIELD_IPV4,
84         DSTP_FIELD_IPV4,
85         NUM_FIELDS_IPV4
86 };
87
88 enum {
89         PROTO_INPUT_IPV4,
90         SRC_INPUT_IPV4,
91         DST_INPUT_IPV4,
92         SRCP_DESTP_INPUT_IPV4
93 };
94
95 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
96         /* first input field - always one byte long. */
97         {
98                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
99                 .size = sizeof(uint8_t),
100                 .field_index = PROTO_FIELD_IPV4,
101                 .input_index = PROTO_INPUT_IPV4,
102                 .offset = sizeof(struct ether_hdr) +
103                         offsetof(struct ipv4_hdr, next_proto_id),
104         },
105         /* next input field (IPv4 source address) - 4 consecutive bytes. */
106         {
107                 /* rte_flow uses a bit mask for IPv4 addresses */
108                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
109                 .size = sizeof(uint32_t),
110                 .field_index = SRC_FIELD_IPV4,
111                 .input_index = SRC_INPUT_IPV4,
112                 .offset = sizeof(struct ether_hdr) +
113                         offsetof(struct ipv4_hdr, src_addr),
114         },
115         /* next input field (IPv4 destination address) - 4 consecutive bytes. */
116         {
117                 /* rte_flow uses a bit mask for IPv4 addresses */
118                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
119                 .size = sizeof(uint32_t),
120                 .field_index = DST_FIELD_IPV4,
121                 .input_index = DST_INPUT_IPV4,
122                 .offset = sizeof(struct ether_hdr) +
123                         offsetof(struct ipv4_hdr, dst_addr),
124         },
125         /*
126          * Next 2 fields (src & dst ports) form 4 consecutive bytes.
127          * They share the same input index.
128          */
129         {
130                 /* rte_flow uses a bit mask for protocol ports */
131                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
132                 .size = sizeof(uint16_t),
133                 .field_index = SRCP_FIELD_IPV4,
134                 .input_index = SRCP_DESTP_INPUT_IPV4,
135                 .offset = sizeof(struct ether_hdr) +
136                         sizeof(struct ipv4_hdr) +
137                         offsetof(struct tcp_hdr, src_port),
138         },
139         {
140                 /* rte_flow uses a bit mask for protocol ports */
141                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
142                 .size = sizeof(uint16_t),
143                 .field_index = DSTP_FIELD_IPV4,
144                 .input_index = SRCP_DESTP_INPUT_IPV4,
145                 .offset = sizeof(struct ether_hdr) +
146                         sizeof(struct ipv4_hdr) +
147                         offsetof(struct tcp_hdr, dst_port),
148         },
149 };
150
151 /* flow classify data */
152 static int num_classify_rules;
153 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
154 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
155 static struct rte_flow_classify_stats classify_stats = {
156                 .stats = (void **)&ntuple_stats
157 };
158
159 /* parameters for rte_flow_classify_validate and
160  * rte_flow_classify_table_entry_add functions
161  */
162
163 static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
164         0, 0, 0 };
165 static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
166         0, 0, 0 };
167
168 /* sample actions:
169  * "actions count / end"
170  */
171 struct rte_flow_query_count count = {
172         .reset = 1,
173         .hits_set = 1,
174         .bytes_set = 1,
175         .hits = 0,
176         .bytes = 0,
177 };
178 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,
179         &count};
180 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
181 static struct rte_flow_action actions[2];
182
183 /* sample attributes */
184 static struct rte_flow_attr attr;
185
186 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
187
188 /*
189  * Initializes a given port using global settings and with the RX buffers
190  * coming from the mbuf_pool passed as a parameter.
191  */
192 static inline int
193 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
194 {
195         struct rte_eth_conf port_conf = port_conf_default;
196         struct ether_addr addr;
197         const uint16_t rx_rings = 1, tx_rings = 1;
198         int retval;
199         uint16_t q;
200         struct rte_eth_dev_info dev_info;
201         struct rte_eth_txconf txconf;
202
203         if (!rte_eth_dev_is_valid_port(port))
204                 return -1;
205
206         rte_eth_dev_info_get(port, &dev_info);
207         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
208                 port_conf.txmode.offloads |=
209                         DEV_TX_OFFLOAD_MBUF_FAST_FREE;
210
211         /* Configure the Ethernet device. */
212         retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
213         if (retval != 0)
214                 return retval;
215
216         /* Allocate and set up 1 RX queue per Ethernet port. */
217         for (q = 0; q < rx_rings; q++) {
218                 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
219                                 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
220                 if (retval < 0)
221                         return retval;
222         }
223
224         txconf = dev_info.default_txconf;
225         txconf.txq_flags = ETH_TXQ_FLAGS_IGNORE;
226         txconf.offloads = port_conf.txmode.offloads;
227         /* Allocate and set up 1 TX queue per Ethernet port. */
228         for (q = 0; q < tx_rings; q++) {
229                 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
230                                 rte_eth_dev_socket_id(port), &txconf);
231                 if (retval < 0)
232                         return retval;
233         }
234
235         /* Start the Ethernet port. */
236         retval = rte_eth_dev_start(port);
237         if (retval < 0)
238                 return retval;
239
240         /* Display the port MAC address. */
241         rte_eth_macaddr_get(port, &addr);
242         printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
243                            " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
244                         port,
245                         addr.addr_bytes[0], addr.addr_bytes[1],
246                         addr.addr_bytes[2], addr.addr_bytes[3],
247                         addr.addr_bytes[4], addr.addr_bytes[5]);
248
249         /* Enable RX in promiscuous mode for the Ethernet device. */
250         rte_eth_promiscuous_enable(port);
251
252         return 0;
253 }
254
255 /*
256  * The lcore main. This is the main thread that does the work, reading from
257  * an input port classifying the packets and writing to an output port.
258  */
259 static __attribute__((noreturn)) void
260 lcore_main(struct flow_classifier *cls_app)
261 {
262         uint16_t port;
263         int ret;
264         int i = 0;
265
266         ret = rte_flow_classify_table_entry_delete(cls_app->cls,
267                         rules[7]);
268         if (ret)
269                 printf("table_entry_delete failed [7] %d\n\n", ret);
270         else
271                 printf("table_entry_delete succeeded [7]\n\n");
272
273         /*
274          * Check that the port is on the same NUMA node as the polling thread
275          * for best performance.
276          */
277         RTE_ETH_FOREACH_DEV(port)
278                 if (rte_eth_dev_socket_id(port) > 0 &&
279                         rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
280                         printf("\n\n");
281                         printf("WARNING: port %u is on remote NUMA node\n",
282                                port);
283                         printf("to polling thread.\n");
284                         printf("Performance will not be optimal.\n");
285                 }
286         printf("\nCore %u forwarding packets. ", rte_lcore_id());
287         printf("[Ctrl+C to quit]\n");
288
289         /* Run until the application is quit or killed. */
290         for (;;) {
291                 /*
292                  * Receive packets on a port, classify them and forward them
293                  * on the paired port.
294                  * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
295                  */
296                 RTE_ETH_FOREACH_DEV(port) {
297                         /* Get burst of RX packets, from first port of pair. */
298                         struct rte_mbuf *bufs[BURST_SIZE];
299                         const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
300                                         bufs, BURST_SIZE);
301
302                         if (unlikely(nb_rx == 0))
303                                 continue;
304
305                         for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
306                                 if (rules[i]) {
307                                         ret = rte_flow_classifier_query(
308                                                 cls_app->cls,
309                                                 bufs, nb_rx, rules[i],
310                                                 &classify_stats);
311                                         if (ret)
312                                                 printf(
313                                                         "rule [%d] query failed ret [%d]\n\n",
314                                                         i, ret);
315                                         else {
316                                                 printf(
317                                                 "rule[%d] count=%"PRIu64"\n",
318                                                 i, ntuple_stats.counter1);
319
320                                                 printf("proto = %d\n",
321                                                 ntuple_stats.ipv4_5tuple.proto);
322                                         }
323                                 }
324                         }
325
326                         /* Send burst of TX packets, to second port of pair. */
327                         const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
328                                         bufs, nb_rx);
329
330                         /* Free any unsent packets. */
331                         if (unlikely(nb_tx < nb_rx)) {
332                                 uint16_t buf;
333
334                                 for (buf = nb_tx; buf < nb_rx; buf++)
335                                         rte_pktmbuf_free(bufs[buf]);
336                         }
337                 }
338         }
339 }
340
341 /*
342  * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
343  * Expected format:
344  * <src_ipv4_addr>'/'<masklen> <space> \
345  * <dst_ipv4_addr>'/'<masklen> <space> \
346  * <src_port> <space> ":" <src_port_mask> <space> \
347  * <dst_port> <space> ":" <dst_port_mask> <space> \
348  * <proto>'/'<proto_mask> <space> \
349  * <priority>
350  */
351
352 static int
353 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
354                 char dlm)
355 {
356         unsigned long val;
357         char *end;
358
359         errno = 0;
360         val = strtoul(*in, &end, base);
361         if (errno != 0 || end[0] != dlm || val > lim)
362                 return -EINVAL;
363         *fd = (uint32_t)val;
364         *in = end + 1;
365         return 0;
366 }
367
368 static int
369 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
370 {
371         uint32_t a, b, c, d, m;
372
373         if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
374                 return -EINVAL;
375         if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
376                 return -EINVAL;
377         if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
378                 return -EINVAL;
379         if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
380                 return -EINVAL;
381         if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
382                 return -EINVAL;
383
384         addr[0] = IPv4(a, b, c, d);
385         mask_len[0] = m;
386         return 0;
387 }
388
389 static int
390 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
391 {
392         int i, ret;
393         char *s, *sp, *in[CB_FLD_NUM];
394         static const char *dlm = " \t\n";
395         int dim = CB_FLD_NUM;
396         uint32_t temp;
397
398         s = str;
399         for (i = 0; i != dim; i++, s = NULL) {
400                 in[i] = strtok_r(s, dlm, &sp);
401                 if (in[i] == NULL)
402                         return -EINVAL;
403         }
404
405         ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
406                         &ntuple_filter->src_ip,
407                         &ntuple_filter->src_ip_mask);
408         if (ret != 0) {
409                 flow_classify_log("failed to read source address/mask: %s\n",
410                         in[CB_FLD_SRC_ADDR]);
411                 return ret;
412         }
413
414         ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
415                         &ntuple_filter->dst_ip,
416                         &ntuple_filter->dst_ip_mask);
417         if (ret != 0) {
418                 flow_classify_log("failed to read source address/mask: %s\n",
419                         in[CB_FLD_DST_ADDR]);
420                 return ret;
421         }
422
423         if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
424                 return -EINVAL;
425         ntuple_filter->src_port = (uint16_t)temp;
426
427         if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
428                         sizeof(cb_port_delim)) != 0)
429                 return -EINVAL;
430
431         if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
432                 return -EINVAL;
433         ntuple_filter->src_port_mask = (uint16_t)temp;
434
435         if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
436                 return -EINVAL;
437         ntuple_filter->dst_port = (uint16_t)temp;
438
439         if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
440                         sizeof(cb_port_delim)) != 0)
441                 return -EINVAL;
442
443         if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
444                 return -EINVAL;
445         ntuple_filter->dst_port_mask = (uint16_t)temp;
446
447         if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
448                 return -EINVAL;
449         ntuple_filter->proto = (uint8_t)temp;
450
451         if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
452                 return -EINVAL;
453         ntuple_filter->proto_mask = (uint8_t)temp;
454
455         if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
456                 return -EINVAL;
457         ntuple_filter->priority = (uint16_t)temp;
458         if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
459                 ret = -EINVAL;
460
461         return ret;
462 }
463
464 /* Bypass comment and empty lines */
465 static inline int
466 is_bypass_line(char *buff)
467 {
468         int i = 0;
469
470         /* comment line */
471         if (buff[0] == COMMENT_LEAD_CHAR)
472                 return 1;
473         /* empty line */
474         while (buff[i] != '\0') {
475                 if (!isspace(buff[i]))
476                         return 0;
477                 i++;
478         }
479         return 1;
480 }
481
482 static uint32_t
483 convert_depth_to_bitmask(uint32_t depth_val)
484 {
485         uint32_t bitmask = 0;
486         int i, j;
487
488         for (i = depth_val, j = 0; i > 0; i--, j++)
489                 bitmask |= (1 << (31 - j));
490         return bitmask;
491 }
492
493 static int
494 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
495                 struct flow_classifier *cls_app)
496 {
497         int ret = -1;
498         int key_found;
499         struct rte_flow_error error;
500         struct rte_flow_item_ipv4 ipv4_spec;
501         struct rte_flow_item_ipv4 ipv4_mask;
502         struct rte_flow_item ipv4_udp_item;
503         struct rte_flow_item ipv4_tcp_item;
504         struct rte_flow_item ipv4_sctp_item;
505         struct rte_flow_item_udp udp_spec;
506         struct rte_flow_item_udp udp_mask;
507         struct rte_flow_item udp_item;
508         struct rte_flow_item_tcp tcp_spec;
509         struct rte_flow_item_tcp tcp_mask;
510         struct rte_flow_item tcp_item;
511         struct rte_flow_item_sctp sctp_spec;
512         struct rte_flow_item_sctp sctp_mask;
513         struct rte_flow_item sctp_item;
514         struct rte_flow_item pattern_ipv4_5tuple[4];
515         struct rte_flow_classify_rule *rule;
516         uint8_t ipv4_proto;
517
518         if (num_classify_rules >= MAX_NUM_CLASSIFY) {
519                 printf(
520                         "\nINFO:  classify rule capacity %d reached\n",
521                         num_classify_rules);
522                 return ret;
523         }
524
525         /* set up parameters for validate and add */
526         memset(&ipv4_spec, 0, sizeof(ipv4_spec));
527         ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
528         ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
529         ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
530         ipv4_proto = ipv4_spec.hdr.next_proto_id;
531
532         memset(&ipv4_mask, 0, sizeof(ipv4_mask));
533         ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
534         ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
535         ipv4_mask.hdr.src_addr =
536                 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
537         ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
538         ipv4_mask.hdr.dst_addr =
539                 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);
540
541         switch (ipv4_proto) {
542         case IPPROTO_UDP:
543                 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
544                 ipv4_udp_item.spec = &ipv4_spec;
545                 ipv4_udp_item.mask = &ipv4_mask;
546                 ipv4_udp_item.last = NULL;
547
548                 udp_spec.hdr.src_port = ntuple_filter->src_port;
549                 udp_spec.hdr.dst_port = ntuple_filter->dst_port;
550                 udp_spec.hdr.dgram_len = 0;
551                 udp_spec.hdr.dgram_cksum = 0;
552
553                 udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
554                 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
555                 udp_mask.hdr.dgram_len = 0;
556                 udp_mask.hdr.dgram_cksum = 0;
557
558                 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
559                 udp_item.spec = &udp_spec;
560                 udp_item.mask = &udp_mask;
561                 udp_item.last = NULL;
562
563                 attr.priority = ntuple_filter->priority;
564                 pattern_ipv4_5tuple[1] = ipv4_udp_item;
565                 pattern_ipv4_5tuple[2] = udp_item;
566                 break;
567         case IPPROTO_TCP:
568                 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
569                 ipv4_tcp_item.spec = &ipv4_spec;
570                 ipv4_tcp_item.mask = &ipv4_mask;
571                 ipv4_tcp_item.last = NULL;
572
573                 memset(&tcp_spec, 0, sizeof(tcp_spec));
574                 tcp_spec.hdr.src_port = ntuple_filter->src_port;
575                 tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
576
577                 memset(&tcp_mask, 0, sizeof(tcp_mask));
578                 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
579                 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
580
581                 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
582                 tcp_item.spec = &tcp_spec;
583                 tcp_item.mask = &tcp_mask;
584                 tcp_item.last = NULL;
585
586                 attr.priority = ntuple_filter->priority;
587                 pattern_ipv4_5tuple[1] = ipv4_tcp_item;
588                 pattern_ipv4_5tuple[2] = tcp_item;
589                 break;
590         case IPPROTO_SCTP:
591                 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
592                 ipv4_sctp_item.spec = &ipv4_spec;
593                 ipv4_sctp_item.mask = &ipv4_mask;
594                 ipv4_sctp_item.last = NULL;
595
596                 sctp_spec.hdr.src_port = ntuple_filter->src_port;
597                 sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
598                 sctp_spec.hdr.cksum = 0;
599                 sctp_spec.hdr.tag = 0;
600
601                 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
602                 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
603                 sctp_mask.hdr.cksum = 0;
604                 sctp_mask.hdr.tag = 0;
605
606                 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
607                 sctp_item.spec = &sctp_spec;
608                 sctp_item.mask = &sctp_mask;
609                 sctp_item.last = NULL;
610
611                 attr.priority = ntuple_filter->priority;
612                 pattern_ipv4_5tuple[1] = ipv4_sctp_item;
613                 pattern_ipv4_5tuple[2] = sctp_item;
614                 break;
615         default:
616                 return ret;
617         }
618
619         attr.ingress = 1;
620         pattern_ipv4_5tuple[0] = eth_item;
621         pattern_ipv4_5tuple[3] = end_item;
622         actions[0] = count_action;
623         actions[1] = end_action;
624
625         /* Validate and add rule */
626         ret = rte_flow_classify_validate(cls_app->cls, &attr,
627                         pattern_ipv4_5tuple, actions, &error);
628         if (ret) {
629                 printf("table entry validate failed ipv4_proto = %u\n",
630                         ipv4_proto);
631                 return ret;
632         }
633
634         rule = rte_flow_classify_table_entry_add(
635                         cls_app->cls, &attr, pattern_ipv4_5tuple,
636                         actions, &key_found, &error);
637         if (rule == NULL) {
638                 printf("table entry add failed ipv4_proto = %u\n",
639                         ipv4_proto);
640                 ret = -1;
641                 return ret;
642         }
643
644         rules[num_classify_rules] = rule;
645         num_classify_rules++;
646         return 0;
647 }
648
649 static int
650 add_rules(const char *rule_path, struct flow_classifier *cls_app)
651 {
652         FILE *fh;
653         char buff[LINE_MAX];
654         unsigned int i = 0;
655         unsigned int total_num = 0;
656         struct rte_eth_ntuple_filter ntuple_filter;
657         int ret;
658
659         fh = fopen(rule_path, "rb");
660         if (fh == NULL)
661                 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
662                         rule_path);
663
664         ret = fseek(fh, 0, SEEK_SET);
665         if (ret)
666                 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
667                         ret);
668
669         i = 0;
670         while (fgets(buff, LINE_MAX, fh) != NULL) {
671                 i++;
672
673                 if (is_bypass_line(buff))
674                         continue;
675
676                 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
677                         printf("\nINFO: classify rule capacity %d reached\n",
678                                 total_num);
679                         break;
680                 }
681
682                 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
683                         rte_exit(EXIT_FAILURE,
684                                 "%s Line %u: parse rules error\n",
685                                 rule_path, i);
686
687                 if (add_classify_rule(&ntuple_filter, cls_app) != 0)
688                         rte_exit(EXIT_FAILURE, "add rule error\n");
689
690                 total_num++;
691         }
692
693         fclose(fh);
694         return 0;
695 }
696
697 /* display usage */
698 static void
699 print_usage(const char *prgname)
700 {
701         printf("%s usage:\n", prgname);
702         printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
703         printf("specify the ipv4 rules file.\n");
704         printf("Each rule occupies one line in the file.\n");
705 }
706
707 /* Parse the argument given in the command line of the application */
708 static int
709 parse_args(int argc, char **argv)
710 {
711         int opt, ret;
712         char **argvopt;
713         int option_index;
714         char *prgname = argv[0];
715         static struct option lgopts[] = {
716                 {OPTION_RULE_IPV4, 1, 0, 0},
717                 {NULL, 0, 0, 0}
718         };
719
720         argvopt = argv;
721
722         while ((opt = getopt_long(argc, argvopt, "",
723                                 lgopts, &option_index)) != EOF) {
724
725                 switch (opt) {
726                 /* long options */
727                 case 0:
728                         if (!strncmp(lgopts[option_index].name,
729                                         OPTION_RULE_IPV4,
730                                         sizeof(OPTION_RULE_IPV4)))
731                                 parm_config.rule_ipv4_name = optarg;
732                         break;
733                 default:
734                         print_usage(prgname);
735                         return -1;
736                 }
737         }
738
739         if (optind >= 0)
740                 argv[optind-1] = prgname;
741
742         ret = optind-1;
743         optind = 1; /* reset getopt lib */
744         return ret;
745 }
746
747 /*
748  * The main function, which does initialization and calls the lcore_main
749  * function.
750  */
751 int
752 main(int argc, char *argv[])
753 {
754         struct rte_mempool *mbuf_pool;
755         uint16_t nb_ports;
756         uint16_t portid;
757         int ret;
758         int socket_id;
759         struct rte_table_acl_params table_acl_params;
760         struct rte_flow_classify_table_params cls_table_params;
761         struct flow_classifier *cls_app;
762         struct rte_flow_classifier_params cls_params;
763         uint32_t size;
764
765         /* Initialize the Environment Abstraction Layer (EAL). */
766         ret = rte_eal_init(argc, argv);
767         if (ret < 0)
768                 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
769
770         argc -= ret;
771         argv += ret;
772
773         /* parse application arguments (after the EAL ones) */
774         ret = parse_args(argc, argv);
775         if (ret < 0)
776                 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");
777
778         /* Check that there is an even number of ports to send/receive on. */
779         nb_ports = rte_eth_dev_count_avail();
780         if (nb_ports < 2 || (nb_ports & 1))
781                 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");
782
783         /* Creates a new mempool in memory to hold the mbufs. */
784         mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
785                 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
786
787         if (mbuf_pool == NULL)
788                 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
789
790         /* Initialize all ports. */
791         RTE_ETH_FOREACH_DEV(portid)
792                 if (port_init(portid, mbuf_pool) != 0)
793                         rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
794                                         portid);
795
796         if (rte_lcore_count() > 1)
797                 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
798
799         socket_id = rte_eth_dev_socket_id(0);
800
801         /* Memory allocation */
802         size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
803         cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
804         if (cls_app == NULL)
805                 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");
806
807         cls_params.name = "flow_classifier";
808         cls_params.socket_id = socket_id;
809
810         cls_app->cls = rte_flow_classifier_create(&cls_params);
811         if (cls_app->cls == NULL) {
812                 rte_free(cls_app);
813                 rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
814         }
815
816         /* initialise ACL table params */
817         table_acl_params.name = "table_acl_ipv4_5tuple";
818         table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
819         table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
820         memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
821
822         /* initialise table create params */
823         cls_table_params.ops = &rte_table_acl_ops;
824         cls_table_params.arg_create = &table_acl_params;
825         cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;
826
827         ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
828         if (ret) {
829                 rte_flow_classifier_free(cls_app->cls);
830                 rte_free(cls_app);
831                 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
832         }
833
834         /* read file of IPv4 5 tuple rules and initialize parameters
835          * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
836          * API's.
837          */
838         if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
839                 rte_flow_classifier_free(cls_app->cls);
840                 rte_free(cls_app);
841                 rte_exit(EXIT_FAILURE, "Failed to add rules\n");
842         }
843
844         /* Call lcore_main on the master core only. */
845         lcore_main(cls_app);
846
847         return 0;
848 }