New upstream version 18.11-rc1
[deb_dpdk.git] / examples / ipsec-secgw / ipsec-secgw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <netinet/in.h>
11 #include <netinet/ip.h>
12 #include <netinet/ip6.h>
13 #include <string.h>
14 #include <sys/queue.h>
15 #include <stdarg.h>
16 #include <errno.h>
17 #include <getopt.h>
18
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_log.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_acl.h>
38 #include <rte_lpm.h>
39 #include <rte_lpm6.h>
40 #include <rte_hash.h>
41 #include <rte_jhash.h>
42 #include <rte_cryptodev.h>
43 #include <rte_security.h>
44
45 #include "ipsec.h"
46 #include "parser.h"
47
48 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
49
50 #define MAX_JUMBO_PKT_LEN  9600
51
52 #define MEMPOOL_CACHE_SIZE 256
53
54 #define NB_MBUF (32000)
55
56 #define CDEV_QUEUE_DESC 2048
57 #define CDEV_MAP_ENTRIES 16384
58 #define CDEV_MP_NB_OBJS 2048
59 #define CDEV_MP_CACHE_SZ 64
60 #define MAX_QUEUE_PAIRS 1
61
62 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
63
64 #define NB_SOCKETS 4
65
66 /* Configure how many packets ahead to prefetch, when reading packets */
67 #define PREFETCH_OFFSET 3
68
69 #define MAX_RX_QUEUE_PER_LCORE 16
70
71 #define MAX_LCORE_PARAMS 1024
72
73 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
74
75 /*
76  * Configurable number of RX/TX ring descriptors
77  */
78 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
79 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
80 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
81 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
82
83 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
84 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
85         (((uint64_t)((a) & 0xff) << 56) | \
86         ((uint64_t)((b) & 0xff) << 48) | \
87         ((uint64_t)((c) & 0xff) << 40) | \
88         ((uint64_t)((d) & 0xff) << 32) | \
89         ((uint64_t)((e) & 0xff) << 24) | \
90         ((uint64_t)((f) & 0xff) << 16) | \
91         ((uint64_t)((g) & 0xff) << 8)  | \
92         ((uint64_t)(h) & 0xff))
93 #else
94 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
95         (((uint64_t)((h) & 0xff) << 56) | \
96         ((uint64_t)((g) & 0xff) << 48) | \
97         ((uint64_t)((f) & 0xff) << 40) | \
98         ((uint64_t)((e) & 0xff) << 32) | \
99         ((uint64_t)((d) & 0xff) << 24) | \
100         ((uint64_t)((c) & 0xff) << 16) | \
101         ((uint64_t)((b) & 0xff) << 8) | \
102         ((uint64_t)(a) & 0xff))
103 #endif
104 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
105
106 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
107                 addr.addr_bytes[0], addr.addr_bytes[1], \
108                 addr.addr_bytes[2], addr.addr_bytes[3], \
109                 addr.addr_bytes[4], addr.addr_bytes[5], \
110                 0, 0)
111
112 /* port/source ethernet addr and destination ethernet addr */
113 struct ethaddr_info {
114         uint64_t src, dst;
115 };
116
117 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
118         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
119         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
120         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
121         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
122 };
123
124 #define CMD_LINE_OPT_CONFIG             "config"
125 #define CMD_LINE_OPT_SINGLE_SA          "single-sa"
126 #define CMD_LINE_OPT_CRYPTODEV_MASK     "cryptodev_mask"
127
128 enum {
129         /* long options mapped to a short option */
130
131         /* first long only option value must be >= 256, so that we won't
132          * conflict with short options
133          */
134         CMD_LINE_OPT_MIN_NUM = 256,
135         CMD_LINE_OPT_CONFIG_NUM,
136         CMD_LINE_OPT_SINGLE_SA_NUM,
137         CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
138 };
139
140 static const struct option lgopts[] = {
141         {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
142         {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
143         {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
144         {NULL, 0, 0, 0}
145 };
146
147 /* mask of enabled ports */
148 static uint32_t enabled_port_mask;
149 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
150 static uint32_t unprotected_port_mask;
151 static int32_t promiscuous_on = 1;
152 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
153 static uint32_t nb_lcores;
154 static uint32_t single_sa;
155 static uint32_t single_sa_idx;
156 static uint32_t frame_size;
157
158 struct lcore_rx_queue {
159         uint16_t port_id;
160         uint8_t queue_id;
161 } __rte_cache_aligned;
162
163 struct lcore_params {
164         uint16_t port_id;
165         uint8_t queue_id;
166         uint8_t lcore_id;
167 } __rte_cache_aligned;
168
169 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
170
171 static struct lcore_params *lcore_params;
172 static uint16_t nb_lcore_params;
173
174 static struct rte_hash *cdev_map_in;
175 static struct rte_hash *cdev_map_out;
176
177 struct buffer {
178         uint16_t len;
179         struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
180 };
181
182 struct lcore_conf {
183         uint16_t nb_rx_queue;
184         struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
185         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
186         struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
187         struct ipsec_ctx inbound;
188         struct ipsec_ctx outbound;
189         struct rt_ctx *rt4_ctx;
190         struct rt_ctx *rt6_ctx;
191 } __rte_cache_aligned;
192
193 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
194
195 static struct rte_eth_conf port_conf = {
196         .rxmode = {
197                 .mq_mode        = ETH_MQ_RX_RSS,
198                 .max_rx_pkt_len = ETHER_MAX_LEN,
199                 .split_hdr_size = 0,
200                 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
201         },
202         .rx_adv_conf = {
203                 .rss_conf = {
204                         .rss_key = NULL,
205                         .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
206                                 ETH_RSS_TCP | ETH_RSS_SCTP,
207                 },
208         },
209         .txmode = {
210                 .mq_mode = ETH_MQ_TX_NONE,
211                 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
212                              DEV_TX_OFFLOAD_MULTI_SEGS),
213         },
214 };
215
216 static struct socket_ctx socket_ctx[NB_SOCKETS];
217
218 struct traffic_type {
219         const uint8_t *data[MAX_PKT_BURST * 2];
220         struct rte_mbuf *pkts[MAX_PKT_BURST * 2];
221         uint32_t res[MAX_PKT_BURST * 2];
222         uint32_t num;
223 };
224
225 struct ipsec_traffic {
226         struct traffic_type ipsec;
227         struct traffic_type ip4;
228         struct traffic_type ip6;
229 };
230
231 static inline void
232 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
233 {
234         uint8_t *nlp;
235         struct ether_hdr *eth;
236
237         eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
238         if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
239                 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
240                 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p));
241                 if (*nlp == IPPROTO_ESP)
242                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
243                 else {
244                         t->ip4.data[t->ip4.num] = nlp;
245                         t->ip4.pkts[(t->ip4.num)++] = pkt;
246                 }
247         } else if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
248                 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
249                 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt));
250                 if (*nlp == IPPROTO_ESP)
251                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
252                 else {
253                         t->ip6.data[t->ip6.num] = nlp;
254                         t->ip6.pkts[(t->ip6.num)++] = pkt;
255                 }
256         } else {
257                 /* Unknown/Unsupported type, drop the packet */
258                 RTE_LOG(ERR, IPSEC, "Unsupported packet type\n");
259                 rte_pktmbuf_free(pkt);
260         }
261
262         /* Check if the packet has been processed inline. For inline protocol
263          * processed packets, the metadata in the mbuf can be used to identify
264          * the security processing done on the packet. The metadata will be
265          * used to retrieve the application registered userdata associated
266          * with the security session.
267          */
268
269         if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD) {
270                 struct ipsec_sa *sa;
271                 struct ipsec_mbuf_metadata *priv;
272                 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
273                                                 rte_eth_dev_get_sec_ctx(
274                                                 pkt->port);
275
276                 /* Retrieve the userdata registered. Here, the userdata
277                  * registered is the SA pointer.
278                  */
279
280                 sa = (struct ipsec_sa *)
281                                 rte_security_get_userdata(ctx, pkt->udata64);
282
283                 if (sa == NULL) {
284                         /* userdata could not be retrieved */
285                         return;
286                 }
287
288                 /* Save SA as priv member in mbuf. This will be used in the
289                  * IPsec selector(SP-SA) check.
290                  */
291
292                 priv = get_priv(pkt);
293                 priv->sa = sa;
294         }
295 }
296
297 static inline void
298 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
299                 uint16_t nb_pkts)
300 {
301         int32_t i;
302
303         t->ipsec.num = 0;
304         t->ip4.num = 0;
305         t->ip6.num = 0;
306
307         for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
308                 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
309                                         void *));
310                 prepare_one_packet(pkts[i], t);
311         }
312         /* Process left packets */
313         for (; i < nb_pkts; i++)
314                 prepare_one_packet(pkts[i], t);
315 }
316
317 static inline void
318 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port)
319 {
320         struct ip *ip;
321         struct ether_hdr *ethhdr;
322
323         ip = rte_pktmbuf_mtod(pkt, struct ip *);
324
325         ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN);
326
327         if (ip->ip_v == IPVERSION) {
328                 pkt->ol_flags |= PKT_TX_IP_CKSUM | PKT_TX_IPV4;
329                 pkt->l3_len = sizeof(struct ip);
330                 pkt->l2_len = ETHER_HDR_LEN;
331
332                 ip->ip_sum = 0;
333                 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
334         } else {
335                 pkt->ol_flags |= PKT_TX_IPV6;
336                 pkt->l3_len = sizeof(struct ip6_hdr);
337                 pkt->l2_len = ETHER_HDR_LEN;
338
339                 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
340         }
341
342         memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
343                         sizeof(struct ether_addr));
344         memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
345                         sizeof(struct ether_addr));
346 }
347
348 static inline void
349 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port)
350 {
351         int32_t i;
352         const int32_t prefetch_offset = 2;
353
354         for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
355                 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
356                 prepare_tx_pkt(pkts[i], port);
357         }
358         /* Process left packets */
359         for (; i < nb_pkts; i++)
360                 prepare_tx_pkt(pkts[i], port);
361 }
362
363 /* Send burst of packets on an output interface */
364 static inline int32_t
365 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
366 {
367         struct rte_mbuf **m_table;
368         int32_t ret;
369         uint16_t queueid;
370
371         queueid = qconf->tx_queue_id[port];
372         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
373
374         prepare_tx_burst(m_table, n, port);
375
376         ret = rte_eth_tx_burst(port, queueid, m_table, n);
377         if (unlikely(ret < n)) {
378                 do {
379                         rte_pktmbuf_free(m_table[ret]);
380                 } while (++ret < n);
381         }
382
383         return 0;
384 }
385
386 /* Enqueue a single packet, and send burst if queue is filled */
387 static inline int32_t
388 send_single_packet(struct rte_mbuf *m, uint16_t port)
389 {
390         uint32_t lcore_id;
391         uint16_t len;
392         struct lcore_conf *qconf;
393
394         lcore_id = rte_lcore_id();
395
396         qconf = &lcore_conf[lcore_id];
397         len = qconf->tx_mbufs[port].len;
398         qconf->tx_mbufs[port].m_table[len] = m;
399         len++;
400
401         /* enough pkts to be sent */
402         if (unlikely(len == MAX_PKT_BURST)) {
403                 send_burst(qconf, MAX_PKT_BURST, port);
404                 len = 0;
405         }
406
407         qconf->tx_mbufs[port].len = len;
408         return 0;
409 }
410
411 static inline void
412 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
413                 uint16_t lim)
414 {
415         struct rte_mbuf *m;
416         uint32_t i, j, res, sa_idx;
417
418         if (ip->num == 0 || sp == NULL)
419                 return;
420
421         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
422                         ip->num, DEFAULT_MAX_CATEGORIES);
423
424         j = 0;
425         for (i = 0; i < ip->num; i++) {
426                 m = ip->pkts[i];
427                 res = ip->res[i];
428                 if (res & BYPASS) {
429                         ip->pkts[j++] = m;
430                         continue;
431                 }
432                 if (res & DISCARD) {
433                         rte_pktmbuf_free(m);
434                         continue;
435                 }
436
437                 /* Only check SPI match for processed IPSec packets */
438                 if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
439                         rte_pktmbuf_free(m);
440                         continue;
441                 }
442
443                 sa_idx = ip->res[i] & PROTECT_MASK;
444                 if (sa_idx >= IPSEC_SA_MAX_ENTRIES ||
445                                 !inbound_sa_check(sa, m, sa_idx)) {
446                         rte_pktmbuf_free(m);
447                         continue;
448                 }
449                 ip->pkts[j++] = m;
450         }
451         ip->num = j;
452 }
453
454 static inline void
455 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
456                 struct ipsec_traffic *traffic)
457 {
458         struct rte_mbuf *m;
459         uint16_t idx, nb_pkts_in, i, n_ip4, n_ip6;
460
461         nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
462                         traffic->ipsec.num, MAX_PKT_BURST);
463
464         n_ip4 = traffic->ip4.num;
465         n_ip6 = traffic->ip6.num;
466
467         /* SP/ACL Inbound check ipsec and ip4 */
468         for (i = 0; i < nb_pkts_in; i++) {
469                 m = traffic->ipsec.pkts[i];
470                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
471                 if (ip->ip_v == IPVERSION) {
472                         idx = traffic->ip4.num++;
473                         traffic->ip4.pkts[idx] = m;
474                         traffic->ip4.data[idx] = rte_pktmbuf_mtod_offset(m,
475                                         uint8_t *, offsetof(struct ip, ip_p));
476                 } else if (ip->ip_v == IP6_VERSION) {
477                         idx = traffic->ip6.num++;
478                         traffic->ip6.pkts[idx] = m;
479                         traffic->ip6.data[idx] = rte_pktmbuf_mtod_offset(m,
480                                         uint8_t *,
481                                         offsetof(struct ip6_hdr, ip6_nxt));
482                 } else
483                         rte_pktmbuf_free(m);
484         }
485
486         inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
487                         n_ip4);
488
489         inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
490                         n_ip6);
491 }
492
493 static inline void
494 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
495                 struct traffic_type *ipsec)
496 {
497         struct rte_mbuf *m;
498         uint32_t i, j, sa_idx;
499
500         if (ip->num == 0 || sp == NULL)
501                 return;
502
503         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
504                         ip->num, DEFAULT_MAX_CATEGORIES);
505
506         j = 0;
507         for (i = 0; i < ip->num; i++) {
508                 m = ip->pkts[i];
509                 sa_idx = ip->res[i] & PROTECT_MASK;
510                 if (ip->res[i] & DISCARD)
511                         rte_pktmbuf_free(m);
512                 else if (ip->res[i] & BYPASS)
513                         ip->pkts[j++] = m;
514                 else if (sa_idx < IPSEC_SA_MAX_ENTRIES) {
515                         ipsec->res[ipsec->num] = sa_idx;
516                         ipsec->pkts[ipsec->num++] = m;
517                 } else /* invalid SA idx */
518                         rte_pktmbuf_free(m);
519         }
520         ip->num = j;
521 }
522
523 static inline void
524 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
525                 struct ipsec_traffic *traffic)
526 {
527         struct rte_mbuf *m;
528         uint16_t idx, nb_pkts_out, i;
529
530         /* Drop any IPsec traffic from protected ports */
531         for (i = 0; i < traffic->ipsec.num; i++)
532                 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
533
534         traffic->ipsec.num = 0;
535
536         outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
537
538         outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
539
540         nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
541                         traffic->ipsec.res, traffic->ipsec.num,
542                         MAX_PKT_BURST);
543
544         for (i = 0; i < nb_pkts_out; i++) {
545                 m = traffic->ipsec.pkts[i];
546                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
547                 if (ip->ip_v == IPVERSION) {
548                         idx = traffic->ip4.num++;
549                         traffic->ip4.pkts[idx] = m;
550                 } else {
551                         idx = traffic->ip6.num++;
552                         traffic->ip6.pkts[idx] = m;
553                 }
554         }
555 }
556
557 static inline void
558 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
559                 struct ipsec_traffic *traffic)
560 {
561         struct rte_mbuf *m;
562         uint32_t nb_pkts_in, i, idx;
563
564         /* Drop any IPv4 traffic from unprotected ports */
565         for (i = 0; i < traffic->ip4.num; i++)
566                 rte_pktmbuf_free(traffic->ip4.pkts[i]);
567
568         traffic->ip4.num = 0;
569
570         /* Drop any IPv6 traffic from unprotected ports */
571         for (i = 0; i < traffic->ip6.num; i++)
572                 rte_pktmbuf_free(traffic->ip6.pkts[i]);
573
574         traffic->ip6.num = 0;
575
576         nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
577                         traffic->ipsec.num, MAX_PKT_BURST);
578
579         for (i = 0; i < nb_pkts_in; i++) {
580                 m = traffic->ipsec.pkts[i];
581                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
582                 if (ip->ip_v == IPVERSION) {
583                         idx = traffic->ip4.num++;
584                         traffic->ip4.pkts[idx] = m;
585                 } else {
586                         idx = traffic->ip6.num++;
587                         traffic->ip6.pkts[idx] = m;
588                 }
589         }
590 }
591
592 static inline void
593 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
594                 struct ipsec_traffic *traffic)
595 {
596         struct rte_mbuf *m;
597         uint32_t nb_pkts_out, i;
598         struct ip *ip;
599
600         /* Drop any IPsec traffic from protected ports */
601         for (i = 0; i < traffic->ipsec.num; i++)
602                 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
603
604         traffic->ipsec.num = 0;
605
606         for (i = 0; i < traffic->ip4.num; i++)
607                 traffic->ip4.res[i] = single_sa_idx;
608
609         for (i = 0; i < traffic->ip6.num; i++)
610                 traffic->ip6.res[i] = single_sa_idx;
611
612         nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ip4.pkts,
613                         traffic->ip4.res, traffic->ip4.num,
614                         MAX_PKT_BURST);
615
616         /* They all sue the same SA (ip4 or ip6 tunnel) */
617         m = traffic->ipsec.pkts[i];
618         ip = rte_pktmbuf_mtod(m, struct ip *);
619         if (ip->ip_v == IPVERSION)
620                 traffic->ip4.num = nb_pkts_out;
621         else
622                 traffic->ip6.num = nb_pkts_out;
623 }
624
625 static inline int32_t
626 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
627 {
628         struct ipsec_mbuf_metadata *priv;
629         struct ipsec_sa *sa;
630
631         priv = get_priv(pkt);
632
633         sa = priv->sa;
634         if (unlikely(sa == NULL)) {
635                 RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
636                 goto fail;
637         }
638
639         if (is_ipv6)
640                 return sa->portid;
641
642         /* else */
643         return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
644
645 fail:
646         if (is_ipv6)
647                 return -1;
648
649         /* else */
650         return 0;
651 }
652
653 static inline void
654 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
655 {
656         uint32_t hop[MAX_PKT_BURST * 2];
657         uint32_t dst_ip[MAX_PKT_BURST * 2];
658         int32_t pkt_hop = 0;
659         uint16_t i, offset;
660         uint16_t lpm_pkts = 0;
661
662         if (nb_pkts == 0)
663                 return;
664
665         /* Need to do an LPM lookup for non-inline packets. Inline packets will
666          * have port ID in the SA
667          */
668
669         for (i = 0; i < nb_pkts; i++) {
670                 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
671                         /* Security offload not enabled. So an LPM lookup is
672                          * required to get the hop
673                          */
674                         offset = offsetof(struct ip, ip_dst);
675                         dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
676                                         uint32_t *, offset);
677                         dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
678                         lpm_pkts++;
679                 }
680         }
681
682         rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
683
684         lpm_pkts = 0;
685
686         for (i = 0; i < nb_pkts; i++) {
687                 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
688                         /* Read hop from the SA */
689                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
690                 } else {
691                         /* Need to use hop returned by lookup */
692                         pkt_hop = hop[lpm_pkts++];
693                 }
694
695                 if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
696                         rte_pktmbuf_free(pkts[i]);
697                         continue;
698                 }
699                 send_single_packet(pkts[i], pkt_hop & 0xff);
700         }
701 }
702
703 static inline void
704 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
705 {
706         int32_t hop[MAX_PKT_BURST * 2];
707         uint8_t dst_ip[MAX_PKT_BURST * 2][16];
708         uint8_t *ip6_dst;
709         int32_t pkt_hop = 0;
710         uint16_t i, offset;
711         uint16_t lpm_pkts = 0;
712
713         if (nb_pkts == 0)
714                 return;
715
716         /* Need to do an LPM lookup for non-inline packets. Inline packets will
717          * have port ID in the SA
718          */
719
720         for (i = 0; i < nb_pkts; i++) {
721                 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
722                         /* Security offload not enabled. So an LPM lookup is
723                          * required to get the hop
724                          */
725                         offset = offsetof(struct ip6_hdr, ip6_dst);
726                         ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
727                                         offset);
728                         memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
729                         lpm_pkts++;
730                 }
731         }
732
733         rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
734                         lpm_pkts);
735
736         lpm_pkts = 0;
737
738         for (i = 0; i < nb_pkts; i++) {
739                 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
740                         /* Read hop from the SA */
741                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
742                 } else {
743                         /* Need to use hop returned by lookup */
744                         pkt_hop = hop[lpm_pkts++];
745                 }
746
747                 if (pkt_hop == -1) {
748                         rte_pktmbuf_free(pkts[i]);
749                         continue;
750                 }
751                 send_single_packet(pkts[i], pkt_hop & 0xff);
752         }
753 }
754
755 static inline void
756 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
757                 uint8_t nb_pkts, uint16_t portid)
758 {
759         struct ipsec_traffic traffic;
760
761         prepare_traffic(pkts, &traffic, nb_pkts);
762
763         if (unlikely(single_sa)) {
764                 if (UNPROTECTED_PORT(portid))
765                         process_pkts_inbound_nosp(&qconf->inbound, &traffic);
766                 else
767                         process_pkts_outbound_nosp(&qconf->outbound, &traffic);
768         } else {
769                 if (UNPROTECTED_PORT(portid))
770                         process_pkts_inbound(&qconf->inbound, &traffic);
771                 else
772                         process_pkts_outbound(&qconf->outbound, &traffic);
773         }
774
775         route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
776         route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
777 }
778
779 static inline void
780 drain_buffers(struct lcore_conf *qconf)
781 {
782         struct buffer *buf;
783         uint32_t portid;
784
785         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
786                 buf = &qconf->tx_mbufs[portid];
787                 if (buf->len == 0)
788                         continue;
789                 send_burst(qconf, buf->len, portid);
790                 buf->len = 0;
791         }
792 }
793
794 /* main processing loop */
795 static int32_t
796 main_loop(__attribute__((unused)) void *dummy)
797 {
798         struct rte_mbuf *pkts[MAX_PKT_BURST];
799         uint32_t lcore_id;
800         uint64_t prev_tsc, diff_tsc, cur_tsc;
801         int32_t i, nb_rx;
802         uint16_t portid;
803         uint8_t queueid;
804         struct lcore_conf *qconf;
805         int32_t socket_id;
806         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
807                         / US_PER_S * BURST_TX_DRAIN_US;
808         struct lcore_rx_queue *rxql;
809
810         prev_tsc = 0;
811         lcore_id = rte_lcore_id();
812         qconf = &lcore_conf[lcore_id];
813         rxql = qconf->rx_queue_list;
814         socket_id = rte_lcore_to_socket_id(lcore_id);
815
816         qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
817         qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
818         qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
819         qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
820         qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
821         qconf->inbound.cdev_map = cdev_map_in;
822         qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
823         qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
824         qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
825         qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
826         qconf->outbound.cdev_map = cdev_map_out;
827         qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
828
829         if (qconf->nb_rx_queue == 0) {
830                 RTE_LOG(INFO, IPSEC, "lcore %u has nothing to do\n", lcore_id);
831                 return 0;
832         }
833
834         RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
835
836         for (i = 0; i < qconf->nb_rx_queue; i++) {
837                 portid = rxql[i].port_id;
838                 queueid = rxql[i].queue_id;
839                 RTE_LOG(INFO, IPSEC,
840                         " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
841                         lcore_id, portid, queueid);
842         }
843
844         while (1) {
845                 cur_tsc = rte_rdtsc();
846
847                 /* TX queue buffer drain */
848                 diff_tsc = cur_tsc - prev_tsc;
849
850                 if (unlikely(diff_tsc > drain_tsc)) {
851                         drain_buffers(qconf);
852                         prev_tsc = cur_tsc;
853                 }
854
855                 /* Read packet from RX queues */
856                 for (i = 0; i < qconf->nb_rx_queue; ++i) {
857                         portid = rxql[i].port_id;
858                         queueid = rxql[i].queue_id;
859                         nb_rx = rte_eth_rx_burst(portid, queueid,
860                                         pkts, MAX_PKT_BURST);
861
862                         if (nb_rx > 0)
863                                 process_pkts(qconf, pkts, nb_rx, portid);
864                 }
865         }
866 }
867
868 static int32_t
869 check_params(void)
870 {
871         uint8_t lcore;
872         uint16_t portid;
873         uint16_t i;
874         int32_t socket_id;
875
876         if (lcore_params == NULL) {
877                 printf("Error: No port/queue/core mappings\n");
878                 return -1;
879         }
880
881         for (i = 0; i < nb_lcore_params; ++i) {
882                 lcore = lcore_params[i].lcore_id;
883                 if (!rte_lcore_is_enabled(lcore)) {
884                         printf("error: lcore %hhu is not enabled in "
885                                 "lcore mask\n", lcore);
886                         return -1;
887                 }
888                 socket_id = rte_lcore_to_socket_id(lcore);
889                 if (socket_id != 0 && numa_on == 0) {
890                         printf("warning: lcore %hhu is on socket %d "
891                                 "with numa off\n",
892                                 lcore, socket_id);
893                 }
894                 portid = lcore_params[i].port_id;
895                 if ((enabled_port_mask & (1 << portid)) == 0) {
896                         printf("port %u is not enabled in port mask\n", portid);
897                         return -1;
898                 }
899                 if (!rte_eth_dev_is_valid_port(portid)) {
900                         printf("port %u is not present on the board\n", portid);
901                         return -1;
902                 }
903         }
904         return 0;
905 }
906
907 static uint8_t
908 get_port_nb_rx_queues(const uint16_t port)
909 {
910         int32_t queue = -1;
911         uint16_t i;
912
913         for (i = 0; i < nb_lcore_params; ++i) {
914                 if (lcore_params[i].port_id == port &&
915                                 lcore_params[i].queue_id > queue)
916                         queue = lcore_params[i].queue_id;
917         }
918         return (uint8_t)(++queue);
919 }
920
921 static int32_t
922 init_lcore_rx_queues(void)
923 {
924         uint16_t i, nb_rx_queue;
925         uint8_t lcore;
926
927         for (i = 0; i < nb_lcore_params; ++i) {
928                 lcore = lcore_params[i].lcore_id;
929                 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
930                 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
931                         printf("error: too many queues (%u) for lcore: %u\n",
932                                         nb_rx_queue + 1, lcore);
933                         return -1;
934                 }
935                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
936                         lcore_params[i].port_id;
937                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
938                         lcore_params[i].queue_id;
939                 lcore_conf[lcore].nb_rx_queue++;
940         }
941         return 0;
942 }
943
944 /* display usage */
945 static void
946 print_usage(const char *prgname)
947 {
948         fprintf(stderr, "%s [EAL options] --"
949                 " -p PORTMASK"
950                 " [-P]"
951                 " [-u PORTMASK]"
952                 " [-j FRAMESIZE]"
953                 " -f CONFIG_FILE"
954                 " --config (port,queue,lcore)[,(port,queue,lcore)]"
955                 " [--single-sa SAIDX]"
956                 " [--cryptodev_mask MASK]"
957                 "\n\n"
958                 "  -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
959                 "  -P : Enable promiscuous mode\n"
960                 "  -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
961                 "  -j FRAMESIZE: Enable jumbo frame with 'FRAMESIZE' as maximum\n"
962                 "                packet size\n"
963                 "  -f CONFIG_FILE: Configuration file\n"
964                 "  --config (port,queue,lcore): Rx queue configuration\n"
965                 "  --single-sa SAIDX: Use single SA index for outbound traffic,\n"
966                 "                     bypassing the SP\n"
967                 "  --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
968                 "                         devices to configure\n"
969                 "\n",
970                 prgname);
971 }
972
973 static int32_t
974 parse_portmask(const char *portmask)
975 {
976         char *end = NULL;
977         unsigned long pm;
978
979         /* parse hexadecimal string */
980         pm = strtoul(portmask, &end, 16);
981         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
982                 return -1;
983
984         if ((pm == 0) && errno)
985                 return -1;
986
987         return pm;
988 }
989
990 static int32_t
991 parse_decimal(const char *str)
992 {
993         char *end = NULL;
994         unsigned long num;
995
996         num = strtoul(str, &end, 10);
997         if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
998                 return -1;
999
1000         return num;
1001 }
1002
1003 static int32_t
1004 parse_config(const char *q_arg)
1005 {
1006         char s[256];
1007         const char *p, *p0 = q_arg;
1008         char *end;
1009         enum fieldnames {
1010                 FLD_PORT = 0,
1011                 FLD_QUEUE,
1012                 FLD_LCORE,
1013                 _NUM_FLD
1014         };
1015         unsigned long int_fld[_NUM_FLD];
1016         char *str_fld[_NUM_FLD];
1017         int32_t i;
1018         uint32_t size;
1019
1020         nb_lcore_params = 0;
1021
1022         while ((p = strchr(p0, '(')) != NULL) {
1023                 ++p;
1024                 p0 = strchr(p, ')');
1025                 if (p0 == NULL)
1026                         return -1;
1027
1028                 size = p0 - p;
1029                 if (size >= sizeof(s))
1030                         return -1;
1031
1032                 snprintf(s, sizeof(s), "%.*s", size, p);
1033                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1034                                 _NUM_FLD)
1035                         return -1;
1036                 for (i = 0; i < _NUM_FLD; i++) {
1037                         errno = 0;
1038                         int_fld[i] = strtoul(str_fld[i], &end, 0);
1039                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1040                                 return -1;
1041                 }
1042                 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1043                         printf("exceeded max number of lcore params: %hu\n",
1044                                 nb_lcore_params);
1045                         return -1;
1046                 }
1047                 lcore_params_array[nb_lcore_params].port_id =
1048                         (uint8_t)int_fld[FLD_PORT];
1049                 lcore_params_array[nb_lcore_params].queue_id =
1050                         (uint8_t)int_fld[FLD_QUEUE];
1051                 lcore_params_array[nb_lcore_params].lcore_id =
1052                         (uint8_t)int_fld[FLD_LCORE];
1053                 ++nb_lcore_params;
1054         }
1055         lcore_params = lcore_params_array;
1056         return 0;
1057 }
1058
1059 static int32_t
1060 parse_args(int32_t argc, char **argv)
1061 {
1062         int32_t opt, ret;
1063         char **argvopt;
1064         int32_t option_index;
1065         char *prgname = argv[0];
1066         int32_t f_present = 0;
1067
1068         argvopt = argv;
1069
1070         while ((opt = getopt_long(argc, argvopt, "p:Pu:f:j:",
1071                                 lgopts, &option_index)) != EOF) {
1072
1073                 switch (opt) {
1074                 case 'p':
1075                         enabled_port_mask = parse_portmask(optarg);
1076                         if (enabled_port_mask == 0) {
1077                                 printf("invalid portmask\n");
1078                                 print_usage(prgname);
1079                                 return -1;
1080                         }
1081                         break;
1082                 case 'P':
1083                         printf("Promiscuous mode selected\n");
1084                         promiscuous_on = 1;
1085                         break;
1086                 case 'u':
1087                         unprotected_port_mask = parse_portmask(optarg);
1088                         if (unprotected_port_mask == 0) {
1089                                 printf("invalid unprotected portmask\n");
1090                                 print_usage(prgname);
1091                                 return -1;
1092                         }
1093                         break;
1094                 case 'f':
1095                         if (f_present == 1) {
1096                                 printf("\"-f\" option present more than "
1097                                         "once!\n");
1098                                 print_usage(prgname);
1099                                 return -1;
1100                         }
1101                         if (parse_cfg_file(optarg) < 0) {
1102                                 printf("parsing file \"%s\" failed\n",
1103                                         optarg);
1104                                 print_usage(prgname);
1105                                 return -1;
1106                         }
1107                         f_present = 1;
1108                         break;
1109                 case 'j':
1110                         {
1111                                 int32_t size = parse_decimal(optarg);
1112                                 if (size <= 1518) {
1113                                         printf("Invalid jumbo frame size\n");
1114                                         if (size < 0) {
1115                                                 print_usage(prgname);
1116                                                 return -1;
1117                                         }
1118                                         printf("Using default value 9000\n");
1119                                         frame_size = 9000;
1120                                 } else {
1121                                         frame_size = size;
1122                                 }
1123                         }
1124                         printf("Enabled jumbo frames size %u\n", frame_size);
1125                         break;
1126                 case CMD_LINE_OPT_CONFIG_NUM:
1127                         ret = parse_config(optarg);
1128                         if (ret) {
1129                                 printf("Invalid config\n");
1130                                 print_usage(prgname);
1131                                 return -1;
1132                         }
1133                         break;
1134                 case CMD_LINE_OPT_SINGLE_SA_NUM:
1135                         ret = parse_decimal(optarg);
1136                         if (ret == -1) {
1137                                 printf("Invalid argument[sa_idx]\n");
1138                                 print_usage(prgname);
1139                                 return -1;
1140                         }
1141
1142                         /* else */
1143                         single_sa = 1;
1144                         single_sa_idx = ret;
1145                         printf("Configured with single SA index %u\n",
1146                                         single_sa_idx);
1147                         break;
1148                 case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1149                         ret = parse_portmask(optarg);
1150                         if (ret == -1) {
1151                                 printf("Invalid argument[portmask]\n");
1152                                 print_usage(prgname);
1153                                 return -1;
1154                         }
1155
1156                         /* else */
1157                         enabled_cryptodev_mask = ret;
1158                         break;
1159                 default:
1160                         print_usage(prgname);
1161                         return -1;
1162                 }
1163         }
1164
1165         if (f_present == 0) {
1166                 printf("Mandatory option \"-f\" not present\n");
1167                 return -1;
1168         }
1169
1170         if (optind >= 0)
1171                 argv[optind-1] = prgname;
1172
1173         ret = optind-1;
1174         optind = 1; /* reset getopt lib */
1175         return ret;
1176 }
1177
1178 static void
1179 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1180 {
1181         char buf[ETHER_ADDR_FMT_SIZE];
1182         ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1183         printf("%s%s", name, buf);
1184 }
1185
1186 /* Check the link status of all ports in up to 9s, and print them finally */
1187 static void
1188 check_all_ports_link_status(uint32_t port_mask)
1189 {
1190 #define CHECK_INTERVAL 100 /* 100ms */
1191 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1192         uint16_t portid;
1193         uint8_t count, all_ports_up, print_flag = 0;
1194         struct rte_eth_link link;
1195
1196         printf("\nChecking link status");
1197         fflush(stdout);
1198         for (count = 0; count <= MAX_CHECK_TIME; count++) {
1199                 all_ports_up = 1;
1200                 RTE_ETH_FOREACH_DEV(portid) {
1201                         if ((port_mask & (1 << portid)) == 0)
1202                                 continue;
1203                         memset(&link, 0, sizeof(link));
1204                         rte_eth_link_get_nowait(portid, &link);
1205                         /* print link status if flag set */
1206                         if (print_flag == 1) {
1207                                 if (link.link_status)
1208                                         printf(
1209                                         "Port%d Link Up - speed %u Mbps -%s\n",
1210                                                 portid, link.link_speed,
1211                                 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1212                                         ("full-duplex") : ("half-duplex\n"));
1213                                 else
1214                                         printf("Port %d Link Down\n", portid);
1215                                 continue;
1216                         }
1217                         /* clear all_ports_up flag if any link down */
1218                         if (link.link_status == ETH_LINK_DOWN) {
1219                                 all_ports_up = 0;
1220                                 break;
1221                         }
1222                 }
1223                 /* after finally printing all link status, get out */
1224                 if (print_flag == 1)
1225                         break;
1226
1227                 if (all_ports_up == 0) {
1228                         printf(".");
1229                         fflush(stdout);
1230                         rte_delay_ms(CHECK_INTERVAL);
1231                 }
1232
1233                 /* set the print_flag if all ports up or timeout */
1234                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1235                         print_flag = 1;
1236                         printf("done\n");
1237                 }
1238         }
1239 }
1240
1241 static int32_t
1242 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1243                 uint16_t qp, struct lcore_params *params,
1244                 struct ipsec_ctx *ipsec_ctx,
1245                 const struct rte_cryptodev_capabilities *cipher,
1246                 const struct rte_cryptodev_capabilities *auth,
1247                 const struct rte_cryptodev_capabilities *aead)
1248 {
1249         int32_t ret = 0;
1250         unsigned long i;
1251         struct cdev_key key = { 0 };
1252
1253         key.lcore_id = params->lcore_id;
1254         if (cipher)
1255                 key.cipher_algo = cipher->sym.cipher.algo;
1256         if (auth)
1257                 key.auth_algo = auth->sym.auth.algo;
1258         if (aead)
1259                 key.aead_algo = aead->sym.aead.algo;
1260
1261         ret = rte_hash_lookup(map, &key);
1262         if (ret != -ENOENT)
1263                 return 0;
1264
1265         for (i = 0; i < ipsec_ctx->nb_qps; i++)
1266                 if (ipsec_ctx->tbl[i].id == cdev_id)
1267                         break;
1268
1269         if (i == ipsec_ctx->nb_qps) {
1270                 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1271                         printf("Maximum number of crypto devices assigned to "
1272                                 "a core, increase MAX_QP_PER_LCORE value\n");
1273                         return 0;
1274                 }
1275                 ipsec_ctx->tbl[i].id = cdev_id;
1276                 ipsec_ctx->tbl[i].qp = qp;
1277                 ipsec_ctx->nb_qps++;
1278                 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1279                                 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1280                                 cdev_id, qp, i);
1281         }
1282
1283         ret = rte_hash_add_key_data(map, &key, (void *)i);
1284         if (ret < 0) {
1285                 printf("Faled to insert cdev mapping for (lcore %u, "
1286                                 "cdev %u, qp %u), errno %d\n",
1287                                 key.lcore_id, ipsec_ctx->tbl[i].id,
1288                                 ipsec_ctx->tbl[i].qp, ret);
1289                 return 0;
1290         }
1291
1292         return 1;
1293 }
1294
1295 static int32_t
1296 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1297                 uint16_t qp, struct lcore_params *params)
1298 {
1299         int32_t ret = 0;
1300         const struct rte_cryptodev_capabilities *i, *j;
1301         struct rte_hash *map;
1302         struct lcore_conf *qconf;
1303         struct ipsec_ctx *ipsec_ctx;
1304         const char *str;
1305
1306         qconf = &lcore_conf[params->lcore_id];
1307
1308         if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1309                 map = cdev_map_out;
1310                 ipsec_ctx = &qconf->outbound;
1311                 str = "Outbound";
1312         } else {
1313                 map = cdev_map_in;
1314                 ipsec_ctx = &qconf->inbound;
1315                 str = "Inbound";
1316         }
1317
1318         /* Required cryptodevs with operation chainning */
1319         if (!(dev_info->feature_flags &
1320                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1321                 return ret;
1322
1323         for (i = dev_info->capabilities;
1324                         i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1325                 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1326                         continue;
1327
1328                 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1329                         ret |= add_mapping(map, str, cdev_id, qp, params,
1330                                         ipsec_ctx, NULL, NULL, i);
1331                         continue;
1332                 }
1333
1334                 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1335                         continue;
1336
1337                 for (j = dev_info->capabilities;
1338                                 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1339                         if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1340                                 continue;
1341
1342                         if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1343                                 continue;
1344
1345                         ret |= add_mapping(map, str, cdev_id, qp, params,
1346                                                 ipsec_ctx, i, j, NULL);
1347                 }
1348         }
1349
1350         return ret;
1351 }
1352
1353 /* Check if the device is enabled by cryptodev_mask */
1354 static int
1355 check_cryptodev_mask(uint8_t cdev_id)
1356 {
1357         if (enabled_cryptodev_mask & (1 << cdev_id))
1358                 return 0;
1359
1360         return -1;
1361 }
1362
1363 static int32_t
1364 cryptodevs_init(void)
1365 {
1366         struct rte_cryptodev_config dev_conf;
1367         struct rte_cryptodev_qp_conf qp_conf;
1368         uint16_t idx, max_nb_qps, qp, i;
1369         int16_t cdev_id, port_id;
1370         struct rte_hash_parameters params = { 0 };
1371
1372         params.entries = CDEV_MAP_ENTRIES;
1373         params.key_len = sizeof(struct cdev_key);
1374         params.hash_func = rte_jhash;
1375         params.hash_func_init_val = 0;
1376         params.socket_id = rte_socket_id();
1377
1378         params.name = "cdev_map_in";
1379         cdev_map_in = rte_hash_create(&params);
1380         if (cdev_map_in == NULL)
1381                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1382                                 rte_errno);
1383
1384         params.name = "cdev_map_out";
1385         cdev_map_out = rte_hash_create(&params);
1386         if (cdev_map_out == NULL)
1387                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1388                                 rte_errno);
1389
1390         printf("lcore/cryptodev/qp mappings:\n");
1391
1392         uint32_t max_sess_sz = 0, sess_sz;
1393         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1394                 void *sec_ctx;
1395
1396                 /* Get crypto priv session size */
1397                 sess_sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
1398                 if (sess_sz > max_sess_sz)
1399                         max_sess_sz = sess_sz;
1400
1401                 /*
1402                  * If crypto device is security capable, need to check the
1403                  * size of security session as well.
1404                  */
1405
1406                 /* Get security context of the crypto device */
1407                 sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
1408                 if (sec_ctx == NULL)
1409                         continue;
1410
1411                 /* Get size of security session */
1412                 sess_sz = rte_security_session_get_size(sec_ctx);
1413                 if (sess_sz > max_sess_sz)
1414                         max_sess_sz = sess_sz;
1415         }
1416         RTE_ETH_FOREACH_DEV(port_id) {
1417                 void *sec_ctx;
1418
1419                 if ((enabled_port_mask & (1 << port_id)) == 0)
1420                         continue;
1421
1422                 sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
1423                 if (sec_ctx == NULL)
1424                         continue;
1425
1426                 sess_sz = rte_security_session_get_size(sec_ctx);
1427                 if (sess_sz > max_sess_sz)
1428                         max_sess_sz = sess_sz;
1429         }
1430
1431         idx = 0;
1432         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1433                 struct rte_cryptodev_info cdev_info;
1434
1435                 if (check_cryptodev_mask((uint8_t)cdev_id))
1436                         continue;
1437
1438                 rte_cryptodev_info_get(cdev_id, &cdev_info);
1439
1440                 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
1441                         max_nb_qps = cdev_info.max_nb_queue_pairs;
1442                 else
1443                         max_nb_qps = nb_lcore_params;
1444
1445                 qp = 0;
1446                 i = 0;
1447                 while (qp < max_nb_qps && i < nb_lcore_params) {
1448                         if (add_cdev_mapping(&cdev_info, cdev_id, qp,
1449                                                 &lcore_params[idx]))
1450                                 qp++;
1451                         idx++;
1452                         idx = idx % nb_lcore_params;
1453                         i++;
1454                 }
1455
1456                 if (qp == 0)
1457                         continue;
1458
1459                 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
1460                 dev_conf.nb_queue_pairs = qp;
1461
1462                 uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
1463                 if (dev_max_sess != 0 && dev_max_sess < (CDEV_MP_NB_OBJS / 2))
1464                         rte_exit(EXIT_FAILURE,
1465                                 "Device does not support at least %u "
1466                                 "sessions", CDEV_MP_NB_OBJS / 2);
1467
1468                 if (!socket_ctx[dev_conf.socket_id].session_pool) {
1469                         char mp_name[RTE_MEMPOOL_NAMESIZE];
1470                         struct rte_mempool *sess_mp;
1471
1472                         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1473                                         "sess_mp_%u", dev_conf.socket_id);
1474                         sess_mp = rte_mempool_create(mp_name,
1475                                         CDEV_MP_NB_OBJS,
1476                                         max_sess_sz,
1477                                         CDEV_MP_CACHE_SZ,
1478                                         0, NULL, NULL, NULL,
1479                                         NULL, dev_conf.socket_id,
1480                                         0);
1481                         if (sess_mp == NULL)
1482                                 rte_exit(EXIT_FAILURE,
1483                                         "Cannot create session pool on socket %d\n",
1484                                         dev_conf.socket_id);
1485                         else
1486                                 printf("Allocated session pool on socket %d\n",
1487                                         dev_conf.socket_id);
1488                         socket_ctx[dev_conf.socket_id].session_pool = sess_mp;
1489                 }
1490
1491                 if (rte_cryptodev_configure(cdev_id, &dev_conf))
1492                         rte_panic("Failed to initialize cryptodev %u\n",
1493                                         cdev_id);
1494
1495                 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
1496                 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
1497                         if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
1498                                         &qp_conf, dev_conf.socket_id,
1499                                         socket_ctx[dev_conf.socket_id].session_pool))
1500                                 rte_panic("Failed to setup queue %u for "
1501                                                 "cdev_id %u\n", 0, cdev_id);
1502
1503                 if (rte_cryptodev_start(cdev_id))
1504                         rte_panic("Failed to start cryptodev %u\n",
1505                                         cdev_id);
1506         }
1507
1508         /* create session pools for eth devices that implement security */
1509         RTE_ETH_FOREACH_DEV(port_id) {
1510                 if ((enabled_port_mask & (1 << port_id)) &&
1511                                 rte_eth_dev_get_sec_ctx(port_id)) {
1512                         int socket_id = rte_eth_dev_socket_id(port_id);
1513
1514                         if (!socket_ctx[socket_id].session_pool) {
1515                                 char mp_name[RTE_MEMPOOL_NAMESIZE];
1516                                 struct rte_mempool *sess_mp;
1517
1518                                 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1519                                                 "sess_mp_%u", socket_id);
1520                                 sess_mp = rte_mempool_create(mp_name,
1521                                                 CDEV_MP_NB_OBJS,
1522                                                 max_sess_sz,
1523                                                 CDEV_MP_CACHE_SZ,
1524                                                 0, NULL, NULL, NULL,
1525                                                 NULL, socket_id,
1526                                                 0);
1527                                 if (sess_mp == NULL)
1528                                         rte_exit(EXIT_FAILURE,
1529                                                 "Cannot create session pool "
1530                                                 "on socket %d\n", socket_id);
1531                                 else
1532                                         printf("Allocated session pool "
1533                                                 "on socket %d\n", socket_id);
1534                                 socket_ctx[socket_id].session_pool = sess_mp;
1535                         }
1536                 }
1537         }
1538
1539
1540         printf("\n");
1541
1542         return 0;
1543 }
1544
1545 static void
1546 port_init(uint16_t portid)
1547 {
1548         struct rte_eth_dev_info dev_info;
1549         struct rte_eth_txconf *txconf;
1550         uint16_t nb_tx_queue, nb_rx_queue;
1551         uint16_t tx_queueid, rx_queueid, queue, lcore_id;
1552         int32_t ret, socket_id;
1553         struct lcore_conf *qconf;
1554         struct ether_addr ethaddr;
1555         struct rte_eth_conf local_port_conf = port_conf;
1556
1557         rte_eth_dev_info_get(portid, &dev_info);
1558
1559         printf("Configuring device port %u:\n", portid);
1560
1561         rte_eth_macaddr_get(portid, &ethaddr);
1562         ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ethaddr);
1563         print_ethaddr("Address: ", &ethaddr);
1564         printf("\n");
1565
1566         nb_rx_queue = get_port_nb_rx_queues(portid);
1567         nb_tx_queue = nb_lcores;
1568
1569         if (nb_rx_queue > dev_info.max_rx_queues)
1570                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1571                                 "(max rx queue is %u)\n",
1572                                 nb_rx_queue, dev_info.max_rx_queues);
1573
1574         if (nb_tx_queue > dev_info.max_tx_queues)
1575                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1576                                 "(max tx queue is %u)\n",
1577                                 nb_tx_queue, dev_info.max_tx_queues);
1578
1579         printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
1580                         nb_rx_queue, nb_tx_queue);
1581
1582         if (frame_size) {
1583                 local_port_conf.rxmode.max_rx_pkt_len = frame_size;
1584                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1585         }
1586
1587         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY)
1588                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SECURITY;
1589         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SECURITY)
1590                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_SECURITY;
1591         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
1592                 local_port_conf.txmode.offloads |=
1593                         DEV_TX_OFFLOAD_MBUF_FAST_FREE;
1594
1595         local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
1596                 dev_info.flow_type_rss_offloads;
1597         if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
1598                         port_conf.rx_adv_conf.rss_conf.rss_hf) {
1599                 printf("Port %u modified RSS hash function based on hardware support,"
1600                         "requested:%#"PRIx64" configured:%#"PRIx64"\n",
1601                         portid,
1602                         port_conf.rx_adv_conf.rss_conf.rss_hf,
1603                         local_port_conf.rx_adv_conf.rss_conf.rss_hf);
1604         }
1605
1606         ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
1607                         &local_port_conf);
1608         if (ret < 0)
1609                 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1610                                 "err=%d, port=%d\n", ret, portid);
1611
1612         ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
1613         if (ret < 0)
1614                 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
1615                                 "err=%d, port=%d\n", ret, portid);
1616
1617         /* init one TX queue per lcore */
1618         tx_queueid = 0;
1619         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1620                 if (rte_lcore_is_enabled(lcore_id) == 0)
1621                         continue;
1622
1623                 if (numa_on)
1624                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1625                 else
1626                         socket_id = 0;
1627
1628                 /* init TX queue */
1629                 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
1630
1631                 txconf = &dev_info.default_txconf;
1632                 txconf->offloads = local_port_conf.txmode.offloads;
1633
1634                 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
1635                                 socket_id, txconf);
1636                 if (ret < 0)
1637                         rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1638                                         "err=%d, port=%d\n", ret, portid);
1639
1640                 qconf = &lcore_conf[lcore_id];
1641                 qconf->tx_queue_id[portid] = tx_queueid;
1642                 tx_queueid++;
1643
1644                 /* init RX queues */
1645                 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
1646                         struct rte_eth_rxconf rxq_conf;
1647
1648                         if (portid != qconf->rx_queue_list[queue].port_id)
1649                                 continue;
1650
1651                         rx_queueid = qconf->rx_queue_list[queue].queue_id;
1652
1653                         printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
1654                                         socket_id);
1655
1656                         rxq_conf = dev_info.default_rxconf;
1657                         rxq_conf.offloads = local_port_conf.rxmode.offloads;
1658                         ret = rte_eth_rx_queue_setup(portid, rx_queueid,
1659                                         nb_rxd, socket_id, &rxq_conf,
1660                                         socket_ctx[socket_id].mbuf_pool);
1661                         if (ret < 0)
1662                                 rte_exit(EXIT_FAILURE,
1663                                         "rte_eth_rx_queue_setup: err=%d, "
1664                                         "port=%d\n", ret, portid);
1665                 }
1666         }
1667         printf("\n");
1668 }
1669
1670 static void
1671 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
1672 {
1673         char s[64];
1674         uint32_t buff_size = frame_size ? (frame_size + RTE_PKTMBUF_HEADROOM) :
1675                         RTE_MBUF_DEFAULT_BUF_SIZE;
1676
1677
1678         snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
1679         ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
1680                         MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
1681                         buff_size,
1682                         socket_id);
1683         if (ctx->mbuf_pool == NULL)
1684                 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
1685                                 socket_id);
1686         else
1687                 printf("Allocated mbuf pool on socket %d\n", socket_id);
1688 }
1689
1690 static inline int
1691 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
1692 {
1693         struct ipsec_sa *sa;
1694
1695         /* For inline protocol processing, the metadata in the event will
1696          * uniquely identify the security session which raised the event.
1697          * Application would then need the userdata it had registered with the
1698          * security session to process the event.
1699          */
1700
1701         sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
1702
1703         if (sa == NULL) {
1704                 /* userdata could not be retrieved */
1705                 return -1;
1706         }
1707
1708         /* Sequence number over flow. SA need to be re-established */
1709         RTE_SET_USED(sa);
1710         return 0;
1711 }
1712
1713 static int
1714 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
1715                  void *param, void *ret_param)
1716 {
1717         uint64_t md;
1718         struct rte_eth_event_ipsec_desc *event_desc = NULL;
1719         struct rte_security_ctx *ctx = (struct rte_security_ctx *)
1720                                         rte_eth_dev_get_sec_ctx(port_id);
1721
1722         RTE_SET_USED(param);
1723
1724         if (type != RTE_ETH_EVENT_IPSEC)
1725                 return -1;
1726
1727         event_desc = ret_param;
1728         if (event_desc == NULL) {
1729                 printf("Event descriptor not set\n");
1730                 return -1;
1731         }
1732
1733         md = event_desc->metadata;
1734
1735         if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
1736                 return inline_ipsec_event_esn_overflow(ctx, md);
1737         else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
1738                 printf("Invalid IPsec event reported\n");
1739                 return -1;
1740         }
1741
1742         return -1;
1743 }
1744
1745 int32_t
1746 main(int32_t argc, char **argv)
1747 {
1748         int32_t ret;
1749         uint32_t lcore_id;
1750         uint8_t socket_id;
1751         uint16_t portid;
1752
1753         /* init EAL */
1754         ret = rte_eal_init(argc, argv);
1755         if (ret < 0)
1756                 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1757         argc -= ret;
1758         argv += ret;
1759
1760         /* parse application arguments (after the EAL ones) */
1761         ret = parse_args(argc, argv);
1762         if (ret < 0)
1763                 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
1764
1765         if ((unprotected_port_mask & enabled_port_mask) !=
1766                         unprotected_port_mask)
1767                 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
1768                                 unprotected_port_mask);
1769
1770         if (check_params() < 0)
1771                 rte_exit(EXIT_FAILURE, "check_params failed\n");
1772
1773         ret = init_lcore_rx_queues();
1774         if (ret < 0)
1775                 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1776
1777         nb_lcores = rte_lcore_count();
1778
1779         /* Replicate each context per socket */
1780         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1781                 if (rte_lcore_is_enabled(lcore_id) == 0)
1782                         continue;
1783
1784                 if (numa_on)
1785                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1786                 else
1787                         socket_id = 0;
1788
1789                 if (socket_ctx[socket_id].mbuf_pool)
1790                         continue;
1791
1792                 sa_init(&socket_ctx[socket_id], socket_id);
1793
1794                 sp4_init(&socket_ctx[socket_id], socket_id);
1795
1796                 sp6_init(&socket_ctx[socket_id], socket_id);
1797
1798                 rt_init(&socket_ctx[socket_id], socket_id);
1799
1800                 pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
1801         }
1802
1803         RTE_ETH_FOREACH_DEV(portid) {
1804                 if ((enabled_port_mask & (1 << portid)) == 0)
1805                         continue;
1806
1807                 port_init(portid);
1808         }
1809
1810         cryptodevs_init();
1811
1812         /* start ports */
1813         RTE_ETH_FOREACH_DEV(portid) {
1814                 if ((enabled_port_mask & (1 << portid)) == 0)
1815                         continue;
1816
1817                 /* Start device */
1818                 ret = rte_eth_dev_start(portid);
1819                 if (ret < 0)
1820                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
1821                                         "err=%d, port=%d\n", ret, portid);
1822                 /*
1823                  * If enabled, put device in promiscuous mode.
1824                  * This allows IO forwarding mode to forward packets
1825                  * to itself through 2 cross-connected  ports of the
1826                  * target machine.
1827                  */
1828                 if (promiscuous_on)
1829                         rte_eth_promiscuous_enable(portid);
1830
1831                 rte_eth_dev_callback_register(portid,
1832                         RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
1833         }
1834
1835         check_all_ports_link_status(enabled_port_mask);
1836
1837         /* launch per-lcore init on every lcore */
1838         rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1839         RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1840                 if (rte_eal_wait_lcore(lcore_id) < 0)
1841                         return -1;
1842         }
1843
1844         return 0;
1845 }