New upstream version 16.11.5
[deb_dpdk.git] / examples / ipsec-secgw / ipsec-secgw.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <netinet/in.h>
40 #include <netinet/ip.h>
41 #include <netinet/ip6.h>
42 #include <string.h>
43 #include <sys/queue.h>
44 #include <stdarg.h>
45 #include <errno.h>
46 #include <getopt.h>
47
48 #include <rte_common.h>
49 #include <rte_byteorder.h>
50 #include <rte_log.h>
51 #include <rte_eal.h>
52 #include <rte_launch.h>
53 #include <rte_atomic.h>
54 #include <rte_cycles.h>
55 #include <rte_prefetch.h>
56 #include <rte_lcore.h>
57 #include <rte_per_lcore.h>
58 #include <rte_branch_prediction.h>
59 #include <rte_interrupts.h>
60 #include <rte_pci.h>
61 #include <rte_random.h>
62 #include <rte_debug.h>
63 #include <rte_ether.h>
64 #include <rte_ethdev.h>
65 #include <rte_mempool.h>
66 #include <rte_mbuf.h>
67 #include <rte_acl.h>
68 #include <rte_lpm.h>
69 #include <rte_lpm6.h>
70 #include <rte_hash.h>
71 #include <rte_jhash.h>
72 #include <rte_cryptodev.h>
73
74 #include "ipsec.h"
75 #include "parser.h"
76
77 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
78
79 #define MAX_JUMBO_PKT_LEN  9600
80
81 #define MEMPOOL_CACHE_SIZE 256
82
83 #define NB_MBUF (32000)
84
85 #define CDEV_QUEUE_DESC 2048
86 #define CDEV_MAP_ENTRIES 1024
87 #define CDEV_MP_NB_OBJS 2048
88 #define CDEV_MP_CACHE_SZ 64
89 #define MAX_QUEUE_PAIRS 1
90
91 #define OPTION_CONFIG           "config"
92 #define OPTION_SINGLE_SA        "single-sa"
93
94 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
95
96 #define NB_SOCKETS 4
97
98 /* Configure how many packets ahead to prefetch, when reading packets */
99 #define PREFETCH_OFFSET 3
100
101 #define MAX_RX_QUEUE_PER_LCORE 16
102
103 #define MAX_LCORE_PARAMS 1024
104
105 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
106
107 /*
108  * Configurable number of RX/TX ring descriptors
109  */
110 #define IPSEC_SECGW_RX_DESC_DEFAULT 128
111 #define IPSEC_SECGW_TX_DESC_DEFAULT 512
112 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
113 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
114
115 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
116 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
117         (((uint64_t)((a) & 0xff) << 56) | \
118         ((uint64_t)((b) & 0xff) << 48) | \
119         ((uint64_t)((c) & 0xff) << 40) | \
120         ((uint64_t)((d) & 0xff) << 32) | \
121         ((uint64_t)((e) & 0xff) << 24) | \
122         ((uint64_t)((f) & 0xff) << 16) | \
123         ((uint64_t)((g) & 0xff) << 8)  | \
124         ((uint64_t)(h) & 0xff))
125 #else
126 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
127         (((uint64_t)((h) & 0xff) << 56) | \
128         ((uint64_t)((g) & 0xff) << 48) | \
129         ((uint64_t)((f) & 0xff) << 40) | \
130         ((uint64_t)((e) & 0xff) << 32) | \
131         ((uint64_t)((d) & 0xff) << 24) | \
132         ((uint64_t)((c) & 0xff) << 16) | \
133         ((uint64_t)((b) & 0xff) << 8) | \
134         ((uint64_t)(a) & 0xff))
135 #endif
136 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
137
138 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
139                 addr.addr_bytes[0], addr.addr_bytes[1], \
140                 addr.addr_bytes[2], addr.addr_bytes[3], \
141                 addr.addr_bytes[4], addr.addr_bytes[5], \
142                 0, 0)
143
144 /* port/source ethernet addr and destination ethernet addr */
145 struct ethaddr_info {
146         uint64_t src, dst;
147 };
148
149 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
150         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
151         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
152         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
153         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
154 };
155
156 /* mask of enabled ports */
157 static uint32_t enabled_port_mask;
158 static uint32_t unprotected_port_mask;
159 static int32_t promiscuous_on = 1;
160 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
161 static uint32_t nb_lcores;
162 static uint32_t single_sa;
163 static uint32_t single_sa_idx;
164
165 struct lcore_rx_queue {
166         uint8_t port_id;
167         uint8_t queue_id;
168 } __rte_cache_aligned;
169
170 struct lcore_params {
171         uint8_t port_id;
172         uint8_t queue_id;
173         uint8_t lcore_id;
174 } __rte_cache_aligned;
175
176 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
177
178 static struct lcore_params *lcore_params;
179 static uint16_t nb_lcore_params;
180
181 static struct rte_hash *cdev_map_in;
182 static struct rte_hash *cdev_map_out;
183
184 struct buffer {
185         uint16_t len;
186         struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
187 };
188
189 struct lcore_conf {
190         uint16_t nb_rx_queue;
191         struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
192         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
193         struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
194         struct ipsec_ctx inbound;
195         struct ipsec_ctx outbound;
196         struct rt_ctx *rt4_ctx;
197         struct rt_ctx *rt6_ctx;
198 } __rte_cache_aligned;
199
200 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
201
202 static struct rte_eth_conf port_conf = {
203         .rxmode = {
204                 .mq_mode        = ETH_MQ_RX_RSS,
205                 .max_rx_pkt_len = ETHER_MAX_LEN,
206                 .split_hdr_size = 0,
207                 .header_split   = 0, /**< Header Split disabled */
208                 .hw_ip_checksum = 1, /**< IP checksum offload enabled */
209                 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
210                 .jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
211                 .hw_strip_crc   = 1, /**< CRC stripped by hardware */
212         },
213         .rx_adv_conf = {
214                 .rss_conf = {
215                         .rss_key = NULL,
216                         .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
217                                 ETH_RSS_TCP | ETH_RSS_SCTP,
218                 },
219         },
220         .txmode = {
221                 .mq_mode = ETH_MQ_TX_NONE,
222         },
223 };
224
225 static struct socket_ctx socket_ctx[NB_SOCKETS];
226
227 struct traffic_type {
228         const uint8_t *data[MAX_PKT_BURST * 2];
229         struct rte_mbuf *pkts[MAX_PKT_BURST * 2];
230         uint32_t res[MAX_PKT_BURST * 2];
231         uint32_t num;
232 };
233
234 struct ipsec_traffic {
235         struct traffic_type ipsec;
236         struct traffic_type ip4;
237         struct traffic_type ip6;
238 };
239
240 static inline void
241 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
242 {
243         uint8_t *nlp;
244         struct ether_hdr *eth;
245
246         eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
247         if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
248                 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
249                 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p));
250                 if (*nlp == IPPROTO_ESP)
251                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
252                 else {
253                         t->ip4.data[t->ip4.num] = nlp;
254                         t->ip4.pkts[(t->ip4.num)++] = pkt;
255                 }
256         } else if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
257                 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
258                 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt));
259                 if (*nlp == IPPROTO_ESP)
260                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
261                 else {
262                         t->ip6.data[t->ip6.num] = nlp;
263                         t->ip6.pkts[(t->ip6.num)++] = pkt;
264                 }
265         } else {
266                 /* Unknown/Unsupported type, drop the packet */
267                 RTE_LOG(ERR, IPSEC, "Unsupported packet type\n");
268                 rte_pktmbuf_free(pkt);
269         }
270 }
271
272 static inline void
273 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
274                 uint16_t nb_pkts)
275 {
276         int32_t i;
277
278         t->ipsec.num = 0;
279         t->ip4.num = 0;
280         t->ip6.num = 0;
281
282         for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
283                 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
284                                         void *));
285                 prepare_one_packet(pkts[i], t);
286         }
287         /* Process left packets */
288         for (; i < nb_pkts; i++)
289                 prepare_one_packet(pkts[i], t);
290 }
291
292 static inline void
293 prepare_tx_pkt(struct rte_mbuf *pkt, uint8_t port)
294 {
295         struct ip *ip;
296         struct ether_hdr *ethhdr;
297
298         ip = rte_pktmbuf_mtod(pkt, struct ip *);
299
300         ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN);
301
302         if (ip->ip_v == IPVERSION) {
303                 pkt->ol_flags |= PKT_TX_IP_CKSUM | PKT_TX_IPV4;
304                 pkt->l3_len = sizeof(struct ip);
305                 pkt->l2_len = ETHER_HDR_LEN;
306
307                 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
308         } else {
309                 pkt->ol_flags |= PKT_TX_IPV6;
310                 pkt->l3_len = sizeof(struct ip6_hdr);
311                 pkt->l2_len = ETHER_HDR_LEN;
312
313                 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
314         }
315
316         memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
317                         sizeof(struct ether_addr));
318         memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
319                         sizeof(struct ether_addr));
320 }
321
322 static inline void
323 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint8_t port)
324 {
325         int32_t i;
326         const int32_t prefetch_offset = 2;
327
328         for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
329                 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
330                 prepare_tx_pkt(pkts[i], port);
331         }
332         /* Process left packets */
333         for (; i < nb_pkts; i++)
334                 prepare_tx_pkt(pkts[i], port);
335 }
336
337 /* Send burst of packets on an output interface */
338 static inline int32_t
339 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
340 {
341         struct rte_mbuf **m_table;
342         int32_t ret;
343         uint16_t queueid;
344
345         queueid = qconf->tx_queue_id[port];
346         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
347
348         prepare_tx_burst(m_table, n, port);
349
350         ret = rte_eth_tx_burst(port, queueid, m_table, n);
351         if (unlikely(ret < n)) {
352                 do {
353                         rte_pktmbuf_free(m_table[ret]);
354                 } while (++ret < n);
355         }
356
357         return 0;
358 }
359
360 /* Enqueue a single packet, and send burst if queue is filled */
361 static inline int32_t
362 send_single_packet(struct rte_mbuf *m, uint8_t port)
363 {
364         uint32_t lcore_id;
365         uint16_t len;
366         struct lcore_conf *qconf;
367
368         lcore_id = rte_lcore_id();
369
370         qconf = &lcore_conf[lcore_id];
371         len = qconf->tx_mbufs[port].len;
372         qconf->tx_mbufs[port].m_table[len] = m;
373         len++;
374
375         /* enough pkts to be sent */
376         if (unlikely(len == MAX_PKT_BURST)) {
377                 send_burst(qconf, MAX_PKT_BURST, port);
378                 len = 0;
379         }
380
381         qconf->tx_mbufs[port].len = len;
382         return 0;
383 }
384
385 static inline void
386 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
387                 uint16_t lim)
388 {
389         struct rte_mbuf *m;
390         uint32_t i, j, res, sa_idx;
391
392         if (ip->num == 0 || sp == NULL)
393                 return;
394
395         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
396                         ip->num, DEFAULT_MAX_CATEGORIES);
397
398         j = 0;
399         for (i = 0; i < ip->num; i++) {
400                 m = ip->pkts[i];
401                 res = ip->res[i];
402                 if (res & BYPASS) {
403                         ip->pkts[j++] = m;
404                         continue;
405                 }
406                 if (res & DISCARD || i < lim) {
407                         rte_pktmbuf_free(m);
408                         continue;
409                 }
410                 /* Only check SPI match for processed IPSec packets */
411                 sa_idx = ip->res[i] & PROTECT_MASK;
412                 if (sa_idx >= IPSEC_SA_MAX_ENTRIES ||
413                                 !inbound_sa_check(sa, m, sa_idx)) {
414                         rte_pktmbuf_free(m);
415                         continue;
416                 }
417                 ip->pkts[j++] = m;
418         }
419         ip->num = j;
420 }
421
422 static inline void
423 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
424                 struct ipsec_traffic *traffic)
425 {
426         struct rte_mbuf *m;
427         uint16_t idx, nb_pkts_in, i, n_ip4, n_ip6;
428
429         nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
430                         traffic->ipsec.num, MAX_PKT_BURST);
431
432         n_ip4 = traffic->ip4.num;
433         n_ip6 = traffic->ip6.num;
434
435         /* SP/ACL Inbound check ipsec and ip4 */
436         for (i = 0; i < nb_pkts_in; i++) {
437                 m = traffic->ipsec.pkts[i];
438                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
439                 if (ip->ip_v == IPVERSION) {
440                         idx = traffic->ip4.num++;
441                         traffic->ip4.pkts[idx] = m;
442                         traffic->ip4.data[idx] = rte_pktmbuf_mtod_offset(m,
443                                         uint8_t *, offsetof(struct ip, ip_p));
444                 } else if (ip->ip_v == IP6_VERSION) {
445                         idx = traffic->ip6.num++;
446                         traffic->ip6.pkts[idx] = m;
447                         traffic->ip6.data[idx] = rte_pktmbuf_mtod_offset(m,
448                                         uint8_t *,
449                                         offsetof(struct ip6_hdr, ip6_nxt));
450                 } else
451                         rte_pktmbuf_free(m);
452         }
453
454         inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
455                         n_ip4);
456
457         inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
458                         n_ip6);
459 }
460
461 static inline void
462 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
463                 struct traffic_type *ipsec)
464 {
465         struct rte_mbuf *m;
466         uint32_t i, j, sa_idx;
467
468         if (ip->num == 0 || sp == NULL)
469                 return;
470
471         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
472                         ip->num, DEFAULT_MAX_CATEGORIES);
473
474         j = 0;
475         for (i = 0; i < ip->num; i++) {
476                 m = ip->pkts[i];
477                 sa_idx = ip->res[i] & PROTECT_MASK;
478                 if (ip->res[i] & DISCARD)
479                         rte_pktmbuf_free(m);
480                 else if (sa_idx < IPSEC_SA_MAX_ENTRIES) {
481                         ipsec->res[ipsec->num] = sa_idx;
482                         ipsec->pkts[ipsec->num++] = m;
483                 } else /* BYPASS */
484                         ip->pkts[j++] = m;
485         }
486         ip->num = j;
487 }
488
489 static inline void
490 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
491                 struct ipsec_traffic *traffic)
492 {
493         struct rte_mbuf *m;
494         uint16_t idx, nb_pkts_out, i;
495
496         /* Drop any IPsec traffic from protected ports */
497         for (i = 0; i < traffic->ipsec.num; i++)
498                 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
499
500         traffic->ipsec.num = 0;
501
502         outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
503
504         outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
505
506         nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
507                         traffic->ipsec.res, traffic->ipsec.num,
508                         MAX_PKT_BURST);
509
510         for (i = 0; i < nb_pkts_out; i++) {
511                 m = traffic->ipsec.pkts[i];
512                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
513                 if (ip->ip_v == IPVERSION) {
514                         idx = traffic->ip4.num++;
515                         traffic->ip4.pkts[idx] = m;
516                 } else {
517                         idx = traffic->ip6.num++;
518                         traffic->ip6.pkts[idx] = m;
519                 }
520         }
521 }
522
523 static inline void
524 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
525                 struct ipsec_traffic *traffic)
526 {
527         struct rte_mbuf *m;
528         uint32_t nb_pkts_in, i, idx;
529
530         /* Drop any IPv4 traffic from unprotected ports */
531         for (i = 0; i < traffic->ip4.num; i++)
532                 rte_pktmbuf_free(traffic->ip4.pkts[i]);
533
534         traffic->ip4.num = 0;
535
536         /* Drop any IPv6 traffic from unprotected ports */
537         for (i = 0; i < traffic->ip6.num; i++)
538                 rte_pktmbuf_free(traffic->ip6.pkts[i]);
539
540         traffic->ip6.num = 0;
541
542         nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
543                         traffic->ipsec.num, MAX_PKT_BURST);
544
545         for (i = 0; i < nb_pkts_in; i++) {
546                 m = traffic->ipsec.pkts[i];
547                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
548                 if (ip->ip_v == IPVERSION) {
549                         idx = traffic->ip4.num++;
550                         traffic->ip4.pkts[idx] = m;
551                 } else {
552                         idx = traffic->ip6.num++;
553                         traffic->ip6.pkts[idx] = m;
554                 }
555         }
556 }
557
558 static inline void
559 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
560                 struct ipsec_traffic *traffic)
561 {
562         struct rte_mbuf *m;
563         uint32_t nb_pkts_out, i;
564         struct ip *ip;
565
566         /* Drop any IPsec traffic from protected ports */
567         for (i = 0; i < traffic->ipsec.num; i++)
568                 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
569
570         traffic->ipsec.num = 0;
571
572         for (i = 0; i < traffic->ip4.num; i++)
573                 traffic->ip4.res[i] = single_sa_idx;
574
575         for (i = 0; i < traffic->ip6.num; i++)
576                 traffic->ip6.res[i] = single_sa_idx;
577
578         nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ip4.pkts,
579                         traffic->ip4.res, traffic->ip4.num,
580                         MAX_PKT_BURST);
581
582         /* They all sue the same SA (ip4 or ip6 tunnel) */
583         m = traffic->ipsec.pkts[i];
584         ip = rte_pktmbuf_mtod(m, struct ip *);
585         if (ip->ip_v == IPVERSION)
586                 traffic->ip4.num = nb_pkts_out;
587         else
588                 traffic->ip6.num = nb_pkts_out;
589 }
590
591 static inline void
592 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
593 {
594         uint32_t hop[MAX_PKT_BURST * 2];
595         uint32_t dst_ip[MAX_PKT_BURST * 2];
596         uint16_t i, offset;
597
598         if (nb_pkts == 0)
599                 return;
600
601         for (i = 0; i < nb_pkts; i++) {
602                 offset = offsetof(struct ip, ip_dst);
603                 dst_ip[i] = *rte_pktmbuf_mtod_offset(pkts[i],
604                                 uint32_t *, offset);
605                 dst_ip[i] = rte_be_to_cpu_32(dst_ip[i]);
606         }
607
608         rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, nb_pkts);
609
610         for (i = 0; i < nb_pkts; i++) {
611                 if ((hop[i] & RTE_LPM_LOOKUP_SUCCESS) == 0) {
612                         rte_pktmbuf_free(pkts[i]);
613                         continue;
614                 }
615                 send_single_packet(pkts[i], hop[i] & 0xff);
616         }
617 }
618
619 static inline void
620 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
621 {
622         int16_t hop[MAX_PKT_BURST * 2];
623         uint8_t dst_ip[MAX_PKT_BURST * 2][16];
624         uint8_t *ip6_dst;
625         uint16_t i, offset;
626
627         if (nb_pkts == 0)
628                 return;
629
630         for (i = 0; i < nb_pkts; i++) {
631                 offset = offsetof(struct ip6_hdr, ip6_dst);
632                 ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *, offset);
633                 memcpy(&dst_ip[i][0], ip6_dst, 16);
634         }
635
636         rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip,
637                         hop, nb_pkts);
638
639         for (i = 0; i < nb_pkts; i++) {
640                 if (hop[i] == -1) {
641                         rte_pktmbuf_free(pkts[i]);
642                         continue;
643                 }
644                 send_single_packet(pkts[i], hop[i] & 0xff);
645         }
646 }
647
648 static inline void
649 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
650                 uint8_t nb_pkts, uint8_t portid)
651 {
652         struct ipsec_traffic traffic;
653
654         prepare_traffic(pkts, &traffic, nb_pkts);
655
656         if (unlikely(single_sa)) {
657                 if (UNPROTECTED_PORT(portid))
658                         process_pkts_inbound_nosp(&qconf->inbound, &traffic);
659                 else
660                         process_pkts_outbound_nosp(&qconf->outbound, &traffic);
661         } else {
662                 if (UNPROTECTED_PORT(portid))
663                         process_pkts_inbound(&qconf->inbound, &traffic);
664                 else
665                         process_pkts_outbound(&qconf->outbound, &traffic);
666         }
667
668         route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
669         route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
670 }
671
672 static inline void
673 drain_buffers(struct lcore_conf *qconf)
674 {
675         struct buffer *buf;
676         uint32_t portid;
677
678         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
679                 buf = &qconf->tx_mbufs[portid];
680                 if (buf->len == 0)
681                         continue;
682                 send_burst(qconf, buf->len, portid);
683                 buf->len = 0;
684         }
685 }
686
687 /* main processing loop */
688 static int32_t
689 main_loop(__attribute__((unused)) void *dummy)
690 {
691         struct rte_mbuf *pkts[MAX_PKT_BURST];
692         uint32_t lcore_id;
693         uint64_t prev_tsc, diff_tsc, cur_tsc;
694         int32_t i, nb_rx;
695         uint8_t portid, queueid;
696         struct lcore_conf *qconf;
697         int32_t socket_id;
698         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
699                         / US_PER_S * BURST_TX_DRAIN_US;
700         struct lcore_rx_queue *rxql;
701
702         prev_tsc = 0;
703         lcore_id = rte_lcore_id();
704         qconf = &lcore_conf[lcore_id];
705         rxql = qconf->rx_queue_list;
706         socket_id = rte_lcore_to_socket_id(lcore_id);
707
708         qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
709         qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
710         qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
711         qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
712         qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
713         qconf->inbound.cdev_map = cdev_map_in;
714         qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
715         qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
716         qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
717         qconf->outbound.cdev_map = cdev_map_out;
718
719         if (qconf->nb_rx_queue == 0) {
720                 RTE_LOG(INFO, IPSEC, "lcore %u has nothing to do\n", lcore_id);
721                 return 0;
722         }
723
724         RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
725
726         for (i = 0; i < qconf->nb_rx_queue; i++) {
727                 portid = rxql[i].port_id;
728                 queueid = rxql[i].queue_id;
729                 RTE_LOG(INFO, IPSEC,
730                         " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n",
731                         lcore_id, portid, queueid);
732         }
733
734         while (1) {
735                 cur_tsc = rte_rdtsc();
736
737                 /* TX queue buffer drain */
738                 diff_tsc = cur_tsc - prev_tsc;
739
740                 if (unlikely(diff_tsc > drain_tsc)) {
741                         drain_buffers(qconf);
742                         prev_tsc = cur_tsc;
743                 }
744
745                 /* Read packet from RX queues */
746                 for (i = 0; i < qconf->nb_rx_queue; ++i) {
747                         portid = rxql[i].port_id;
748                         queueid = rxql[i].queue_id;
749                         nb_rx = rte_eth_rx_burst(portid, queueid,
750                                         pkts, MAX_PKT_BURST);
751
752                         if (nb_rx > 0)
753                                 process_pkts(qconf, pkts, nb_rx, portid);
754                 }
755         }
756 }
757
758 static int32_t
759 check_params(void)
760 {
761         uint8_t lcore, portid, nb_ports;
762         uint16_t i;
763         int32_t socket_id;
764
765         if (lcore_params == NULL) {
766                 printf("Error: No port/queue/core mappings\n");
767                 return -1;
768         }
769
770         nb_ports = rte_eth_dev_count();
771
772         for (i = 0; i < nb_lcore_params; ++i) {
773                 lcore = lcore_params[i].lcore_id;
774                 if (!rte_lcore_is_enabled(lcore)) {
775                         printf("error: lcore %hhu is not enabled in "
776                                 "lcore mask\n", lcore);
777                         return -1;
778                 }
779                 socket_id = rte_lcore_to_socket_id(lcore);
780                 if (socket_id != 0 && numa_on == 0) {
781                         printf("warning: lcore %hhu is on socket %d "
782                                 "with numa off\n",
783                                 lcore, socket_id);
784                 }
785                 portid = lcore_params[i].port_id;
786                 if ((enabled_port_mask & (1 << portid)) == 0) {
787                         printf("port %u is not enabled in port mask\n", portid);
788                         return -1;
789                 }
790                 if (portid >= nb_ports) {
791                         printf("port %u is not present on the board\n", portid);
792                         return -1;
793                 }
794         }
795         return 0;
796 }
797
798 static uint8_t
799 get_port_nb_rx_queues(const uint8_t port)
800 {
801         int32_t queue = -1;
802         uint16_t i;
803
804         for (i = 0; i < nb_lcore_params; ++i) {
805                 if (lcore_params[i].port_id == port &&
806                                 lcore_params[i].queue_id > queue)
807                         queue = lcore_params[i].queue_id;
808         }
809         return (uint8_t)(++queue);
810 }
811
812 static int32_t
813 init_lcore_rx_queues(void)
814 {
815         uint16_t i, nb_rx_queue;
816         uint8_t lcore;
817
818         for (i = 0; i < nb_lcore_params; ++i) {
819                 lcore = lcore_params[i].lcore_id;
820                 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
821                 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
822                         printf("error: too many queues (%u) for lcore: %u\n",
823                                         nb_rx_queue + 1, lcore);
824                         return -1;
825                 }
826                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
827                         lcore_params[i].port_id;
828                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
829                         lcore_params[i].queue_id;
830                 lcore_conf[lcore].nb_rx_queue++;
831         }
832         return 0;
833 }
834
835 /* display usage */
836 static void
837 print_usage(const char *prgname)
838 {
839         printf("%s [EAL options] -- -p PORTMASK -P -u PORTMASK"
840                 "  --"OPTION_CONFIG" (port,queue,lcore)[,(port,queue,lcore]"
841                 " --single-sa SAIDX -f CONFIG_FILE\n"
842                 "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
843                 "  -P : enable promiscuous mode\n"
844                 "  -u PORTMASK: hexadecimal bitmask of unprotected ports\n"
845                 "  --"OPTION_CONFIG": (port,queue,lcore): "
846                 "rx queues configuration\n"
847                 "  --single-sa SAIDX: use single SA index for outbound, "
848                 "bypassing the SP\n"
849                 "  -f CONFIG_FILE: Configuration file path\n",
850                 prgname);
851 }
852
853 static int32_t
854 parse_portmask(const char *portmask)
855 {
856         char *end = NULL;
857         unsigned long pm;
858
859         /* parse hexadecimal string */
860         pm = strtoul(portmask, &end, 16);
861         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
862                 return -1;
863
864         if ((pm == 0) && errno)
865                 return -1;
866
867         return pm;
868 }
869
870 static int32_t
871 parse_decimal(const char *str)
872 {
873         char *end = NULL;
874         unsigned long num;
875
876         num = strtoul(str, &end, 10);
877         if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
878                 return -1;
879
880         return num;
881 }
882
883 static int32_t
884 parse_config(const char *q_arg)
885 {
886         char s[256];
887         const char *p, *p0 = q_arg;
888         char *end;
889         enum fieldnames {
890                 FLD_PORT = 0,
891                 FLD_QUEUE,
892                 FLD_LCORE,
893                 _NUM_FLD
894         };
895         unsigned long int_fld[_NUM_FLD];
896         char *str_fld[_NUM_FLD];
897         int32_t i;
898         uint32_t size;
899
900         nb_lcore_params = 0;
901
902         while ((p = strchr(p0, '(')) != NULL) {
903                 ++p;
904                 p0 = strchr(p, ')');
905                 if (p0 == NULL)
906                         return -1;
907
908                 size = p0 - p;
909                 if (size >= sizeof(s))
910                         return -1;
911
912                 snprintf(s, sizeof(s), "%.*s", size, p);
913                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
914                                 _NUM_FLD)
915                         return -1;
916                 for (i = 0; i < _NUM_FLD; i++) {
917                         errno = 0;
918                         int_fld[i] = strtoul(str_fld[i], &end, 0);
919                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
920                                 return -1;
921                 }
922                 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
923                         printf("exceeded max number of lcore params: %hu\n",
924                                 nb_lcore_params);
925                         return -1;
926                 }
927                 lcore_params_array[nb_lcore_params].port_id =
928                         (uint8_t)int_fld[FLD_PORT];
929                 lcore_params_array[nb_lcore_params].queue_id =
930                         (uint8_t)int_fld[FLD_QUEUE];
931                 lcore_params_array[nb_lcore_params].lcore_id =
932                         (uint8_t)int_fld[FLD_LCORE];
933                 ++nb_lcore_params;
934         }
935         lcore_params = lcore_params_array;
936         return 0;
937 }
938
939 #define __STRNCMP(name, opt) (!strncmp(name, opt, sizeof(opt)))
940 static int32_t
941 parse_args_long_options(struct option *lgopts, int32_t option_index)
942 {
943         int32_t ret = -1;
944         const char *optname = lgopts[option_index].name;
945
946         if (__STRNCMP(optname, OPTION_CONFIG)) {
947                 ret = parse_config(optarg);
948                 if (ret)
949                         printf("invalid config\n");
950         }
951
952         if (__STRNCMP(optname, OPTION_SINGLE_SA)) {
953                 ret = parse_decimal(optarg);
954                 if (ret != -1) {
955                         single_sa = 1;
956                         single_sa_idx = ret;
957                         printf("Configured with single SA index %u\n",
958                                         single_sa_idx);
959                         ret = 0;
960                 }
961         }
962
963         return ret;
964 }
965 #undef __STRNCMP
966
967 static int32_t
968 parse_args(int32_t argc, char **argv)
969 {
970         int32_t opt, ret;
971         char **argvopt;
972         int32_t option_index;
973         char *prgname = argv[0];
974         static struct option lgopts[] = {
975                 {OPTION_CONFIG, 1, 0, 0},
976                 {OPTION_SINGLE_SA, 1, 0, 0},
977                 {NULL, 0, 0, 0}
978         };
979         int32_t f_present = 0;
980
981         argvopt = argv;
982
983         while ((opt = getopt_long(argc, argvopt, "p:Pu:f:",
984                                 lgopts, &option_index)) != EOF) {
985
986                 switch (opt) {
987                 case 'p':
988                         enabled_port_mask = parse_portmask(optarg);
989                         if (enabled_port_mask == 0) {
990                                 printf("invalid portmask\n");
991                                 print_usage(prgname);
992                                 return -1;
993                         }
994                         break;
995                 case 'P':
996                         printf("Promiscuous mode selected\n");
997                         promiscuous_on = 1;
998                         break;
999                 case 'u':
1000                         unprotected_port_mask = parse_portmask(optarg);
1001                         if (unprotected_port_mask == 0) {
1002                                 printf("invalid unprotected portmask\n");
1003                                 print_usage(prgname);
1004                                 return -1;
1005                         }
1006                         break;
1007                 case 'f':
1008                         if (f_present == 1) {
1009                                 printf("\"-f\" option present more than "
1010                                         "once!\n");
1011                                 print_usage(prgname);
1012                                 return -1;
1013                         }
1014                         if (parse_cfg_file(optarg) < 0) {
1015                                 printf("parsing file \"%s\" failed\n",
1016                                         optarg);
1017                                 print_usage(prgname);
1018                                 return -1;
1019                         }
1020                         f_present = 1;
1021                         break;
1022                 case 0:
1023                         if (parse_args_long_options(lgopts, option_index)) {
1024                                 print_usage(prgname);
1025                                 return -1;
1026                         }
1027                         break;
1028                 default:
1029                         print_usage(prgname);
1030                         return -1;
1031                 }
1032         }
1033
1034         if (f_present == 0) {
1035                 printf("Mandatory option \"-f\" not present\n");
1036                 return -1;
1037         }
1038
1039         if (optind >= 0)
1040                 argv[optind-1] = prgname;
1041
1042         ret = optind-1;
1043         optind = 0; /* reset getopt lib */
1044         return ret;
1045 }
1046
1047 static void
1048 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1049 {
1050         char buf[ETHER_ADDR_FMT_SIZE];
1051         ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1052         printf("%s%s", name, buf);
1053 }
1054
1055 /* Check the link status of all ports in up to 9s, and print them finally */
1056 static void
1057 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1058 {
1059 #define CHECK_INTERVAL 100 /* 100ms */
1060 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1061         uint8_t portid, count, all_ports_up, print_flag = 0;
1062         struct rte_eth_link link;
1063
1064         printf("\nChecking link status");
1065         fflush(stdout);
1066         for (count = 0; count <= MAX_CHECK_TIME; count++) {
1067                 all_ports_up = 1;
1068                 for (portid = 0; portid < port_num; portid++) {
1069                         if ((port_mask & (1 << portid)) == 0)
1070                                 continue;
1071                         memset(&link, 0, sizeof(link));
1072                         rte_eth_link_get_nowait(portid, &link);
1073                         /* print link status if flag set */
1074                         if (print_flag == 1) {
1075                                 if (link.link_status)
1076                                         printf("Port %d Link Up - speed %u "
1077                                                 "Mbps - %s\n", (uint8_t)portid,
1078                                                 (uint32_t)link.link_speed,
1079                                 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1080                                         ("full-duplex") : ("half-duplex\n"));
1081                                 else
1082                                         printf("Port %d Link Down\n",
1083                                                 (uint8_t)portid);
1084                                 continue;
1085                         }
1086                         /* clear all_ports_up flag if any link down */
1087                         if (link.link_status == ETH_LINK_DOWN) {
1088                                 all_ports_up = 0;
1089                                 break;
1090                         }
1091                 }
1092                 /* after finally printing all link status, get out */
1093                 if (print_flag == 1)
1094                         break;
1095
1096                 if (all_ports_up == 0) {
1097                         printf(".");
1098                         fflush(stdout);
1099                         rte_delay_ms(CHECK_INTERVAL);
1100                 }
1101
1102                 /* set the print_flag if all ports up or timeout */
1103                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1104                         print_flag = 1;
1105                         printf("done\n");
1106                 }
1107         }
1108 }
1109
1110 static int32_t
1111 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1112                 uint16_t qp, struct lcore_params *params,
1113                 struct ipsec_ctx *ipsec_ctx,
1114                 const struct rte_cryptodev_capabilities *cipher,
1115                 const struct rte_cryptodev_capabilities *auth)
1116 {
1117         int32_t ret = 0;
1118         unsigned long i;
1119         struct cdev_key key = { 0 };
1120
1121         key.lcore_id = params->lcore_id;
1122         if (cipher)
1123                 key.cipher_algo = cipher->sym.cipher.algo;
1124         if (auth)
1125                 key.auth_algo = auth->sym.auth.algo;
1126
1127         ret = rte_hash_lookup(map, &key);
1128         if (ret != -ENOENT)
1129                 return 0;
1130
1131         for (i = 0; i < ipsec_ctx->nb_qps; i++)
1132                 if (ipsec_ctx->tbl[i].id == cdev_id)
1133                         break;
1134
1135         if (i == ipsec_ctx->nb_qps) {
1136                 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1137                         printf("Maximum number of crypto devices assigned to "
1138                                 "a core, increase MAX_QP_PER_LCORE value\n");
1139                         return 0;
1140                 }
1141                 ipsec_ctx->tbl[i].id = cdev_id;
1142                 ipsec_ctx->tbl[i].qp = qp;
1143                 ipsec_ctx->nb_qps++;
1144                 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1145                                 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1146                                 cdev_id, qp, i);
1147         }
1148
1149         ret = rte_hash_add_key_data(map, &key, (void *)i);
1150         if (ret < 0) {
1151                 printf("Faled to insert cdev mapping for (lcore %u, "
1152                                 "cdev %u, qp %u), errno %d\n",
1153                                 key.lcore_id, ipsec_ctx->tbl[i].id,
1154                                 ipsec_ctx->tbl[i].qp, ret);
1155                 return 0;
1156         }
1157
1158         return 1;
1159 }
1160
1161 static int32_t
1162 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1163                 uint16_t qp, struct lcore_params *params)
1164 {
1165         int32_t ret = 0;
1166         const struct rte_cryptodev_capabilities *i, *j;
1167         struct rte_hash *map;
1168         struct lcore_conf *qconf;
1169         struct ipsec_ctx *ipsec_ctx;
1170         const char *str;
1171
1172         qconf = &lcore_conf[params->lcore_id];
1173
1174         if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1175                 map = cdev_map_out;
1176                 ipsec_ctx = &qconf->outbound;
1177                 str = "Outbound";
1178         } else {
1179                 map = cdev_map_in;
1180                 ipsec_ctx = &qconf->inbound;
1181                 str = "Inbound";
1182         }
1183
1184         /* Required cryptodevs with operation chainning */
1185         if (!(dev_info->feature_flags &
1186                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1187                 return ret;
1188
1189         for (i = dev_info->capabilities;
1190                         i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1191                 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1192                         continue;
1193
1194                 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1195                         continue;
1196
1197                 for (j = dev_info->capabilities;
1198                                 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1199                         if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1200                                 continue;
1201
1202                         if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1203                                 continue;
1204
1205                         ret |= add_mapping(map, str, cdev_id, qp, params,
1206                                         ipsec_ctx, i, j);
1207                 }
1208         }
1209
1210         return ret;
1211 }
1212
1213 static int32_t
1214 cryptodevs_init(void)
1215 {
1216         struct rte_cryptodev_config dev_conf;
1217         struct rte_cryptodev_qp_conf qp_conf;
1218         uint16_t idx, max_nb_qps, qp, i;
1219         int16_t cdev_id;
1220         struct rte_hash_parameters params = { 0 };
1221
1222         params.entries = CDEV_MAP_ENTRIES;
1223         params.key_len = sizeof(struct cdev_key);
1224         params.hash_func = rte_jhash;
1225         params.hash_func_init_val = 0;
1226         params.socket_id = rte_socket_id();
1227
1228         params.name = "cdev_map_in";
1229         cdev_map_in = rte_hash_create(&params);
1230         if (cdev_map_in == NULL)
1231                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1232                                 rte_errno);
1233
1234         params.name = "cdev_map_out";
1235         cdev_map_out = rte_hash_create(&params);
1236         if (cdev_map_out == NULL)
1237                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1238                                 rte_errno);
1239
1240         printf("lcore/cryptodev/qp mappings:\n");
1241
1242         idx = 0;
1243         /* Start from last cdev id to give HW priority */
1244         for (cdev_id = rte_cryptodev_count() - 1; cdev_id >= 0; cdev_id--) {
1245                 struct rte_cryptodev_info cdev_info;
1246
1247                 rte_cryptodev_info_get(cdev_id, &cdev_info);
1248
1249                 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
1250                         max_nb_qps = cdev_info.max_nb_queue_pairs;
1251                 else
1252                         max_nb_qps = nb_lcore_params;
1253
1254                 qp = 0;
1255                 i = 0;
1256                 while (qp < max_nb_qps && i < nb_lcore_params) {
1257                         if (add_cdev_mapping(&cdev_info, cdev_id, qp,
1258                                                 &lcore_params[idx]))
1259                                 qp++;
1260                         idx++;
1261                         idx = idx % nb_lcore_params;
1262                         i++;
1263                 }
1264
1265                 if (qp == 0)
1266                         continue;
1267
1268                 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
1269                 dev_conf.nb_queue_pairs = qp;
1270                 dev_conf.session_mp.nb_objs = CDEV_MP_NB_OBJS;
1271                 dev_conf.session_mp.cache_size = CDEV_MP_CACHE_SZ;
1272
1273                 if (rte_cryptodev_configure(cdev_id, &dev_conf))
1274                         rte_panic("Failed to initialize crypodev %u\n",
1275                                         cdev_id);
1276
1277                 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
1278                 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
1279                         if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
1280                                                 &qp_conf, dev_conf.socket_id))
1281                                 rte_panic("Failed to setup queue %u for "
1282                                                 "cdev_id %u\n", 0, cdev_id);
1283
1284                 if (rte_cryptodev_start(cdev_id))
1285                         rte_panic("Failed to start cryptodev %u\n",
1286                                         cdev_id);
1287         }
1288
1289         printf("\n");
1290
1291         return 0;
1292 }
1293
1294 static void
1295 port_init(uint8_t portid)
1296 {
1297         struct rte_eth_dev_info dev_info;
1298         struct rte_eth_txconf *txconf;
1299         uint16_t nb_tx_queue, nb_rx_queue;
1300         uint16_t tx_queueid, rx_queueid, queue, lcore_id;
1301         int32_t ret, socket_id;
1302         struct lcore_conf *qconf;
1303         struct ether_addr ethaddr;
1304
1305         rte_eth_dev_info_get(portid, &dev_info);
1306
1307         printf("Configuring device port %u:\n", portid);
1308
1309         rte_eth_macaddr_get(portid, &ethaddr);
1310         ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ethaddr);
1311         print_ethaddr("Address: ", &ethaddr);
1312         printf("\n");
1313
1314         nb_rx_queue = get_port_nb_rx_queues(portid);
1315         nb_tx_queue = nb_lcores;
1316
1317         if (nb_rx_queue > dev_info.max_rx_queues)
1318                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1319                                 "(max rx queue is %u)\n",
1320                                 nb_rx_queue, dev_info.max_rx_queues);
1321
1322         if (nb_tx_queue > dev_info.max_tx_queues)
1323                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1324                                 "(max tx queue is %u)\n",
1325                                 nb_tx_queue, dev_info.max_tx_queues);
1326
1327         printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
1328                         nb_rx_queue, nb_tx_queue);
1329
1330         ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
1331                         &port_conf);
1332         if (ret < 0)
1333                 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1334                                 "err=%d, port=%d\n", ret, portid);
1335
1336         /* init one TX queue per lcore */
1337         tx_queueid = 0;
1338         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1339                 if (rte_lcore_is_enabled(lcore_id) == 0)
1340                         continue;
1341
1342                 if (numa_on)
1343                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1344                 else
1345                         socket_id = 0;
1346
1347                 /* init TX queue */
1348                 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
1349
1350                 txconf = &dev_info.default_txconf;
1351                 txconf->txq_flags = 0;
1352
1353                 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
1354                                 socket_id, txconf);
1355                 if (ret < 0)
1356                         rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1357                                         "err=%d, port=%d\n", ret, portid);
1358
1359                 qconf = &lcore_conf[lcore_id];
1360                 qconf->tx_queue_id[portid] = tx_queueid;
1361                 tx_queueid++;
1362
1363                 /* init RX queues */
1364                 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
1365                         if (portid != qconf->rx_queue_list[queue].port_id)
1366                                 continue;
1367
1368                         rx_queueid = qconf->rx_queue_list[queue].queue_id;
1369
1370                         printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
1371                                         socket_id);
1372
1373                         ret = rte_eth_rx_queue_setup(portid, rx_queueid,
1374                                         nb_rxd, socket_id, NULL,
1375                                         socket_ctx[socket_id].mbuf_pool);
1376                         if (ret < 0)
1377                                 rte_exit(EXIT_FAILURE,
1378                                         "rte_eth_rx_queue_setup: err=%d, "
1379                                         "port=%d\n", ret, portid);
1380                 }
1381         }
1382         printf("\n");
1383 }
1384
1385 static void
1386 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
1387 {
1388         char s[64];
1389
1390         snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
1391         ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
1392                         MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
1393                         RTE_MBUF_DEFAULT_BUF_SIZE,
1394                         socket_id);
1395         if (ctx->mbuf_pool == NULL)
1396                 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
1397                                 socket_id);
1398         else
1399                 printf("Allocated mbuf pool on socket %d\n", socket_id);
1400 }
1401
1402 int32_t
1403 main(int32_t argc, char **argv)
1404 {
1405         int32_t ret;
1406         uint32_t lcore_id, nb_ports;
1407         uint8_t portid, socket_id;
1408
1409         /* init EAL */
1410         ret = rte_eal_init(argc, argv);
1411         if (ret < 0)
1412                 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1413         argc -= ret;
1414         argv += ret;
1415
1416         /* parse application arguments (after the EAL ones) */
1417         ret = parse_args(argc, argv);
1418         if (ret < 0)
1419                 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
1420
1421         if ((unprotected_port_mask & enabled_port_mask) !=
1422                         unprotected_port_mask)
1423                 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
1424                                 unprotected_port_mask);
1425
1426         nb_ports = rte_eth_dev_count();
1427
1428         if (check_params() < 0)
1429                 rte_exit(EXIT_FAILURE, "check_params failed\n");
1430
1431         ret = init_lcore_rx_queues();
1432         if (ret < 0)
1433                 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1434
1435         nb_lcores = rte_lcore_count();
1436
1437         /* Replicate each contex per socket */
1438         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1439                 if (rte_lcore_is_enabled(lcore_id) == 0)
1440                         continue;
1441
1442                 if (numa_on)
1443                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1444                 else
1445                         socket_id = 0;
1446
1447                 if (socket_ctx[socket_id].mbuf_pool)
1448                         continue;
1449
1450                 sa_init(&socket_ctx[socket_id], socket_id);
1451
1452                 sp4_init(&socket_ctx[socket_id], socket_id);
1453
1454                 sp6_init(&socket_ctx[socket_id], socket_id);
1455
1456                 rt_init(&socket_ctx[socket_id], socket_id);
1457
1458                 pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
1459         }
1460
1461         for (portid = 0; portid < nb_ports; portid++) {
1462                 if ((enabled_port_mask & (1 << portid)) == 0)
1463                         continue;
1464
1465                 port_init(portid);
1466         }
1467
1468         cryptodevs_init();
1469
1470         /* start ports */
1471         for (portid = 0; portid < nb_ports; portid++) {
1472                 if ((enabled_port_mask & (1 << portid)) == 0)
1473                         continue;
1474
1475                 /* Start device */
1476                 ret = rte_eth_dev_start(portid);
1477                 if (ret < 0)
1478                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
1479                                         "err=%d, port=%d\n", ret, portid);
1480                 /*
1481                  * If enabled, put device in promiscuous mode.
1482                  * This allows IO forwarding mode to forward packets
1483                  * to itself through 2 cross-connected  ports of the
1484                  * target machine.
1485                  */
1486                 if (promiscuous_on)
1487                         rte_eth_promiscuous_enable(portid);
1488         }
1489
1490         check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1491
1492         /* launch per-lcore init on every lcore */
1493         rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1494         RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1495                 if (rte_eal_wait_lcore(lcore_id) < 0)
1496                         return -1;
1497         }
1498
1499         return 0;
1500 }