Imported Upstream version 16.11
[deb_dpdk.git] / examples / ipsec-secgw / ipsec-secgw.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <netinet/in.h>
40 #include <netinet/ip.h>
41 #include <netinet/ip6.h>
42 #include <string.h>
43 #include <sys/queue.h>
44 #include <stdarg.h>
45 #include <errno.h>
46 #include <getopt.h>
47
48 #include <rte_common.h>
49 #include <rte_byteorder.h>
50 #include <rte_log.h>
51 #include <rte_eal.h>
52 #include <rte_launch.h>
53 #include <rte_atomic.h>
54 #include <rte_cycles.h>
55 #include <rte_prefetch.h>
56 #include <rte_lcore.h>
57 #include <rte_per_lcore.h>
58 #include <rte_branch_prediction.h>
59 #include <rte_interrupts.h>
60 #include <rte_pci.h>
61 #include <rte_random.h>
62 #include <rte_debug.h>
63 #include <rte_ether.h>
64 #include <rte_ethdev.h>
65 #include <rte_mempool.h>
66 #include <rte_mbuf.h>
67 #include <rte_acl.h>
68 #include <rte_lpm.h>
69 #include <rte_lpm6.h>
70 #include <rte_hash.h>
71 #include <rte_jhash.h>
72 #include <rte_cryptodev.h>
73
74 #include "ipsec.h"
75 #include "parser.h"
76
77 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
78
79 #define MAX_JUMBO_PKT_LEN  9600
80
81 #define MEMPOOL_CACHE_SIZE 256
82
83 #define NB_MBUF (32000)
84
85 #define CDEV_QUEUE_DESC 2048
86 #define CDEV_MAP_ENTRIES 1024
87 #define CDEV_MP_NB_OBJS 2048
88 #define CDEV_MP_CACHE_SZ 64
89 #define MAX_QUEUE_PAIRS 1
90
91 #define OPTION_CONFIG           "config"
92 #define OPTION_SINGLE_SA        "single-sa"
93
94 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
95
96 #define NB_SOCKETS 4
97
98 /* Configure how many packets ahead to prefetch, when reading packets */
99 #define PREFETCH_OFFSET 3
100
101 #define MAX_RX_QUEUE_PER_LCORE 16
102
103 #define MAX_LCORE_PARAMS 1024
104
105 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
106
107 /*
108  * Configurable number of RX/TX ring descriptors
109  */
110 #define IPSEC_SECGW_RX_DESC_DEFAULT 128
111 #define IPSEC_SECGW_TX_DESC_DEFAULT 512
112 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
113 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
114
115 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
116 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
117         (((uint64_t)((a) & 0xff) << 56) | \
118         ((uint64_t)((b) & 0xff) << 48) | \
119         ((uint64_t)((c) & 0xff) << 40) | \
120         ((uint64_t)((d) & 0xff) << 32) | \
121         ((uint64_t)((e) & 0xff) << 24) | \
122         ((uint64_t)((f) & 0xff) << 16) | \
123         ((uint64_t)((g) & 0xff) << 8)  | \
124         ((uint64_t)(h) & 0xff))
125 #else
126 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
127         (((uint64_t)((h) & 0xff) << 56) | \
128         ((uint64_t)((g) & 0xff) << 48) | \
129         ((uint64_t)((f) & 0xff) << 40) | \
130         ((uint64_t)((e) & 0xff) << 32) | \
131         ((uint64_t)((d) & 0xff) << 24) | \
132         ((uint64_t)((c) & 0xff) << 16) | \
133         ((uint64_t)((b) & 0xff) << 8) | \
134         ((uint64_t)(a) & 0xff))
135 #endif
136 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
137
138 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
139                 addr.addr_bytes[0], addr.addr_bytes[1], \
140                 addr.addr_bytes[2], addr.addr_bytes[3], \
141                 addr.addr_bytes[4], addr.addr_bytes[5], \
142                 0, 0)
143
144 /* port/source ethernet addr and destination ethernet addr */
145 struct ethaddr_info {
146         uint64_t src, dst;
147 };
148
149 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
150         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
151         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
152         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
153         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
154 };
155
156 /* mask of enabled ports */
157 static uint32_t enabled_port_mask;
158 static uint32_t unprotected_port_mask;
159 static int32_t promiscuous_on = 1;
160 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
161 static uint32_t nb_lcores;
162 static uint32_t single_sa;
163 static uint32_t single_sa_idx;
164
165 struct lcore_rx_queue {
166         uint8_t port_id;
167         uint8_t queue_id;
168 } __rte_cache_aligned;
169
170 struct lcore_params {
171         uint8_t port_id;
172         uint8_t queue_id;
173         uint8_t lcore_id;
174 } __rte_cache_aligned;
175
176 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
177
178 static struct lcore_params *lcore_params;
179 static uint16_t nb_lcore_params;
180
181 static struct rte_hash *cdev_map_in;
182 static struct rte_hash *cdev_map_out;
183
184 struct buffer {
185         uint16_t len;
186         struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
187 };
188
189 struct lcore_conf {
190         uint16_t nb_rx_queue;
191         struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
192         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
193         struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
194         struct ipsec_ctx inbound;
195         struct ipsec_ctx outbound;
196         struct rt_ctx *rt4_ctx;
197         struct rt_ctx *rt6_ctx;
198 } __rte_cache_aligned;
199
200 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
201
202 static struct rte_eth_conf port_conf = {
203         .rxmode = {
204                 .mq_mode        = ETH_MQ_RX_RSS,
205                 .max_rx_pkt_len = ETHER_MAX_LEN,
206                 .split_hdr_size = 0,
207                 .header_split   = 0, /**< Header Split disabled */
208                 .hw_ip_checksum = 1, /**< IP checksum offload enabled */
209                 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
210                 .jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
211                 .hw_strip_crc   = 0, /**< CRC stripped by hardware */
212         },
213         .rx_adv_conf = {
214                 .rss_conf = {
215                         .rss_key = NULL,
216                         .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
217                                 ETH_RSS_TCP | ETH_RSS_SCTP,
218                 },
219         },
220         .txmode = {
221                 .mq_mode = ETH_MQ_TX_NONE,
222         },
223 };
224
225 static struct socket_ctx socket_ctx[NB_SOCKETS];
226
227 struct traffic_type {
228         const uint8_t *data[MAX_PKT_BURST * 2];
229         struct rte_mbuf *pkts[MAX_PKT_BURST * 2];
230         uint32_t res[MAX_PKT_BURST * 2];
231         uint32_t num;
232 };
233
234 struct ipsec_traffic {
235         struct traffic_type ipsec;
236         struct traffic_type ip4;
237         struct traffic_type ip6;
238 };
239
240 static inline void
241 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
242 {
243         uint8_t *nlp;
244         struct ether_hdr *eth;
245
246         eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
247         if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
248                 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
249                 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p));
250                 if (*nlp == IPPROTO_ESP)
251                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
252                 else {
253                         t->ip4.data[t->ip4.num] = nlp;
254                         t->ip4.pkts[(t->ip4.num)++] = pkt;
255                 }
256         } else if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
257                 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
258                 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt));
259                 if (*nlp == IPPROTO_ESP)
260                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
261                 else {
262                         t->ip6.data[t->ip6.num] = nlp;
263                         t->ip6.pkts[(t->ip6.num)++] = pkt;
264                 }
265         } else {
266                 /* Unknown/Unsupported type, drop the packet */
267                 RTE_LOG(ERR, IPSEC, "Unsupported packet type\n");
268                 rte_pktmbuf_free(pkt);
269         }
270 }
271
272 static inline void
273 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
274                 uint16_t nb_pkts)
275 {
276         int32_t i;
277
278         t->ipsec.num = 0;
279         t->ip4.num = 0;
280         t->ip6.num = 0;
281
282         for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
283                 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
284                                         void *));
285                 prepare_one_packet(pkts[i], t);
286         }
287         /* Process left packets */
288         for (; i < nb_pkts; i++)
289                 prepare_one_packet(pkts[i], t);
290 }
291
292 static inline void
293 prepare_tx_pkt(struct rte_mbuf *pkt, uint8_t port)
294 {
295         struct ip *ip;
296         struct ether_hdr *ethhdr;
297
298         ip = rte_pktmbuf_mtod(pkt, struct ip *);
299
300         ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN);
301
302         if (ip->ip_v == IPVERSION) {
303                 pkt->ol_flags |= PKT_TX_IP_CKSUM | PKT_TX_IPV4;
304                 pkt->l3_len = sizeof(struct ip);
305                 pkt->l2_len = ETHER_HDR_LEN;
306
307                 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
308         } else {
309                 pkt->ol_flags |= PKT_TX_IPV6;
310                 pkt->l3_len = sizeof(struct ip6_hdr);
311                 pkt->l2_len = ETHER_HDR_LEN;
312
313                 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
314         }
315
316         memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
317                         sizeof(struct ether_addr));
318         memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
319                         sizeof(struct ether_addr));
320 }
321
322 static inline void
323 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint8_t port)
324 {
325         int32_t i;
326         const int32_t prefetch_offset = 2;
327
328         for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
329                 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
330                 prepare_tx_pkt(pkts[i], port);
331         }
332         /* Process left packets */
333         for (; i < nb_pkts; i++)
334                 prepare_tx_pkt(pkts[i], port);
335 }
336
337 /* Send burst of packets on an output interface */
338 static inline int32_t
339 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
340 {
341         struct rte_mbuf **m_table;
342         int32_t ret;
343         uint16_t queueid;
344
345         queueid = qconf->tx_queue_id[port];
346         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
347
348         prepare_tx_burst(m_table, n, port);
349
350         ret = rte_eth_tx_burst(port, queueid, m_table, n);
351         if (unlikely(ret < n)) {
352                 do {
353                         rte_pktmbuf_free(m_table[ret]);
354                 } while (++ret < n);
355         }
356
357         return 0;
358 }
359
360 /* Enqueue a single packet, and send burst if queue is filled */
361 static inline int32_t
362 send_single_packet(struct rte_mbuf *m, uint8_t port)
363 {
364         uint32_t lcore_id;
365         uint16_t len;
366         struct lcore_conf *qconf;
367
368         lcore_id = rte_lcore_id();
369
370         qconf = &lcore_conf[lcore_id];
371         len = qconf->tx_mbufs[port].len;
372         qconf->tx_mbufs[port].m_table[len] = m;
373         len++;
374
375         /* enough pkts to be sent */
376         if (unlikely(len == MAX_PKT_BURST)) {
377                 send_burst(qconf, MAX_PKT_BURST, port);
378                 len = 0;
379         }
380
381         qconf->tx_mbufs[port].len = len;
382         return 0;
383 }
384
385 static inline void
386 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
387                 uint16_t lim)
388 {
389         struct rte_mbuf *m;
390         uint32_t i, j, res, sa_idx;
391
392         if (ip->num == 0 || sp == NULL)
393                 return;
394
395         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
396                         ip->num, DEFAULT_MAX_CATEGORIES);
397
398         j = 0;
399         for (i = 0; i < ip->num; i++) {
400                 m = ip->pkts[i];
401                 res = ip->res[i];
402                 if (res & BYPASS) {
403                         ip->pkts[j++] = m;
404                         continue;
405                 }
406                 if (res & DISCARD || i < lim) {
407                         rte_pktmbuf_free(m);
408                         continue;
409                 }
410                 /* Only check SPI match for processed IPSec packets */
411                 sa_idx = ip->res[i] & PROTECT_MASK;
412                 if (sa_idx == 0 || !inbound_sa_check(sa, m, sa_idx)) {
413                         rte_pktmbuf_free(m);
414                         continue;
415                 }
416                 ip->pkts[j++] = m;
417         }
418         ip->num = j;
419 }
420
421 static inline void
422 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
423                 struct ipsec_traffic *traffic)
424 {
425         struct rte_mbuf *m;
426         uint16_t idx, nb_pkts_in, i, n_ip4, n_ip6;
427
428         nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
429                         traffic->ipsec.num, MAX_PKT_BURST);
430
431         n_ip4 = traffic->ip4.num;
432         n_ip6 = traffic->ip6.num;
433
434         /* SP/ACL Inbound check ipsec and ip4 */
435         for (i = 0; i < nb_pkts_in; i++) {
436                 m = traffic->ipsec.pkts[i];
437                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
438                 if (ip->ip_v == IPVERSION) {
439                         idx = traffic->ip4.num++;
440                         traffic->ip4.pkts[idx] = m;
441                         traffic->ip4.data[idx] = rte_pktmbuf_mtod_offset(m,
442                                         uint8_t *, offsetof(struct ip, ip_p));
443                 } else if (ip->ip_v == IP6_VERSION) {
444                         idx = traffic->ip6.num++;
445                         traffic->ip6.pkts[idx] = m;
446                         traffic->ip6.data[idx] = rte_pktmbuf_mtod_offset(m,
447                                         uint8_t *,
448                                         offsetof(struct ip6_hdr, ip6_nxt));
449                 } else
450                         rte_pktmbuf_free(m);
451         }
452
453         inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
454                         n_ip4);
455
456         inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
457                         n_ip6);
458 }
459
460 static inline void
461 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
462                 struct traffic_type *ipsec)
463 {
464         struct rte_mbuf *m;
465         uint32_t i, j, sa_idx;
466
467         if (ip->num == 0 || sp == NULL)
468                 return;
469
470         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
471                         ip->num, DEFAULT_MAX_CATEGORIES);
472
473         j = 0;
474         for (i = 0; i < ip->num; i++) {
475                 m = ip->pkts[i];
476                 sa_idx = ip->res[i] & PROTECT_MASK;
477                 if ((ip->res[i] == 0) || (ip->res[i] & DISCARD))
478                         rte_pktmbuf_free(m);
479                 else if (sa_idx != 0) {
480                         ipsec->res[ipsec->num] = sa_idx;
481                         ipsec->pkts[ipsec->num++] = m;
482                 } else /* BYPASS */
483                         ip->pkts[j++] = m;
484         }
485         ip->num = j;
486 }
487
488 static inline void
489 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
490                 struct ipsec_traffic *traffic)
491 {
492         struct rte_mbuf *m;
493         uint16_t idx, nb_pkts_out, i;
494
495         /* Drop any IPsec traffic from protected ports */
496         for (i = 0; i < traffic->ipsec.num; i++)
497                 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
498
499         traffic->ipsec.num = 0;
500
501         outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
502
503         outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
504
505         nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
506                         traffic->ipsec.res, traffic->ipsec.num,
507                         MAX_PKT_BURST);
508
509         for (i = 0; i < nb_pkts_out; i++) {
510                 m = traffic->ipsec.pkts[i];
511                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
512                 if (ip->ip_v == IPVERSION) {
513                         idx = traffic->ip4.num++;
514                         traffic->ip4.pkts[idx] = m;
515                 } else {
516                         idx = traffic->ip6.num++;
517                         traffic->ip6.pkts[idx] = m;
518                 }
519         }
520 }
521
522 static inline void
523 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
524                 struct ipsec_traffic *traffic)
525 {
526         struct rte_mbuf *m;
527         uint32_t nb_pkts_in, i, idx;
528
529         /* Drop any IPv4 traffic from unprotected ports */
530         for (i = 0; i < traffic->ip4.num; i++)
531                 rte_pktmbuf_free(traffic->ip4.pkts[i]);
532
533         traffic->ip4.num = 0;
534
535         /* Drop any IPv6 traffic from unprotected ports */
536         for (i = 0; i < traffic->ip6.num; i++)
537                 rte_pktmbuf_free(traffic->ip6.pkts[i]);
538
539         traffic->ip6.num = 0;
540
541         nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
542                         traffic->ipsec.num, MAX_PKT_BURST);
543
544         for (i = 0; i < nb_pkts_in; i++) {
545                 m = traffic->ipsec.pkts[i];
546                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
547                 if (ip->ip_v == IPVERSION) {
548                         idx = traffic->ip4.num++;
549                         traffic->ip4.pkts[idx] = m;
550                 } else {
551                         idx = traffic->ip6.num++;
552                         traffic->ip6.pkts[idx] = m;
553                 }
554         }
555 }
556
557 static inline void
558 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
559                 struct ipsec_traffic *traffic)
560 {
561         struct rte_mbuf *m;
562         uint32_t nb_pkts_out, i;
563         struct ip *ip;
564
565         /* Drop any IPsec traffic from protected ports */
566         for (i = 0; i < traffic->ipsec.num; i++)
567                 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
568
569         traffic->ipsec.num = 0;
570
571         for (i = 0; i < traffic->ip4.num; i++)
572                 traffic->ip4.res[i] = single_sa_idx;
573
574         for (i = 0; i < traffic->ip6.num; i++)
575                 traffic->ip6.res[i] = single_sa_idx;
576
577         nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ip4.pkts,
578                         traffic->ip4.res, traffic->ip4.num,
579                         MAX_PKT_BURST);
580
581         /* They all sue the same SA (ip4 or ip6 tunnel) */
582         m = traffic->ipsec.pkts[i];
583         ip = rte_pktmbuf_mtod(m, struct ip *);
584         if (ip->ip_v == IPVERSION)
585                 traffic->ip4.num = nb_pkts_out;
586         else
587                 traffic->ip6.num = nb_pkts_out;
588 }
589
590 static inline void
591 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
592 {
593         uint32_t hop[MAX_PKT_BURST * 2];
594         uint32_t dst_ip[MAX_PKT_BURST * 2];
595         uint16_t i, offset;
596
597         if (nb_pkts == 0)
598                 return;
599
600         for (i = 0; i < nb_pkts; i++) {
601                 offset = offsetof(struct ip, ip_dst);
602                 dst_ip[i] = *rte_pktmbuf_mtod_offset(pkts[i],
603                                 uint32_t *, offset);
604                 dst_ip[i] = rte_be_to_cpu_32(dst_ip[i]);
605         }
606
607         rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, nb_pkts);
608
609         for (i = 0; i < nb_pkts; i++) {
610                 if ((hop[i] & RTE_LPM_LOOKUP_SUCCESS) == 0) {
611                         rte_pktmbuf_free(pkts[i]);
612                         continue;
613                 }
614                 send_single_packet(pkts[i], hop[i] & 0xff);
615         }
616 }
617
618 static inline void
619 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
620 {
621         int16_t hop[MAX_PKT_BURST * 2];
622         uint8_t dst_ip[MAX_PKT_BURST * 2][16];
623         uint8_t *ip6_dst;
624         uint16_t i, offset;
625
626         if (nb_pkts == 0)
627                 return;
628
629         for (i = 0; i < nb_pkts; i++) {
630                 offset = offsetof(struct ip6_hdr, ip6_dst);
631                 ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *, offset);
632                 memcpy(&dst_ip[i][0], ip6_dst, 16);
633         }
634
635         rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip,
636                         hop, nb_pkts);
637
638         for (i = 0; i < nb_pkts; i++) {
639                 if (hop[i] == -1) {
640                         rte_pktmbuf_free(pkts[i]);
641                         continue;
642                 }
643                 send_single_packet(pkts[i], hop[i] & 0xff);
644         }
645 }
646
647 static inline void
648 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
649                 uint8_t nb_pkts, uint8_t portid)
650 {
651         struct ipsec_traffic traffic;
652
653         prepare_traffic(pkts, &traffic, nb_pkts);
654
655         if (unlikely(single_sa)) {
656                 if (UNPROTECTED_PORT(portid))
657                         process_pkts_inbound_nosp(&qconf->inbound, &traffic);
658                 else
659                         process_pkts_outbound_nosp(&qconf->outbound, &traffic);
660         } else {
661                 if (UNPROTECTED_PORT(portid))
662                         process_pkts_inbound(&qconf->inbound, &traffic);
663                 else
664                         process_pkts_outbound(&qconf->outbound, &traffic);
665         }
666
667         route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
668         route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
669 }
670
671 static inline void
672 drain_buffers(struct lcore_conf *qconf)
673 {
674         struct buffer *buf;
675         uint32_t portid;
676
677         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
678                 buf = &qconf->tx_mbufs[portid];
679                 if (buf->len == 0)
680                         continue;
681                 send_burst(qconf, buf->len, portid);
682                 buf->len = 0;
683         }
684 }
685
686 /* main processing loop */
687 static int32_t
688 main_loop(__attribute__((unused)) void *dummy)
689 {
690         struct rte_mbuf *pkts[MAX_PKT_BURST];
691         uint32_t lcore_id;
692         uint64_t prev_tsc, diff_tsc, cur_tsc;
693         int32_t i, nb_rx;
694         uint8_t portid, queueid;
695         struct lcore_conf *qconf;
696         int32_t socket_id;
697         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
698                         / US_PER_S * BURST_TX_DRAIN_US;
699         struct lcore_rx_queue *rxql;
700
701         prev_tsc = 0;
702         lcore_id = rte_lcore_id();
703         qconf = &lcore_conf[lcore_id];
704         rxql = qconf->rx_queue_list;
705         socket_id = rte_lcore_to_socket_id(lcore_id);
706
707         qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
708         qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
709         qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
710         qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
711         qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
712         qconf->inbound.cdev_map = cdev_map_in;
713         qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
714         qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
715         qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
716         qconf->outbound.cdev_map = cdev_map_out;
717
718         if (qconf->nb_rx_queue == 0) {
719                 RTE_LOG(INFO, IPSEC, "lcore %u has nothing to do\n", lcore_id);
720                 return 0;
721         }
722
723         RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
724
725         for (i = 0; i < qconf->nb_rx_queue; i++) {
726                 portid = rxql[i].port_id;
727                 queueid = rxql[i].queue_id;
728                 RTE_LOG(INFO, IPSEC,
729                         " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n",
730                         lcore_id, portid, queueid);
731         }
732
733         while (1) {
734                 cur_tsc = rte_rdtsc();
735
736                 /* TX queue buffer drain */
737                 diff_tsc = cur_tsc - prev_tsc;
738
739                 if (unlikely(diff_tsc > drain_tsc)) {
740                         drain_buffers(qconf);
741                         prev_tsc = cur_tsc;
742                 }
743
744                 /* Read packet from RX queues */
745                 for (i = 0; i < qconf->nb_rx_queue; ++i) {
746                         portid = rxql[i].port_id;
747                         queueid = rxql[i].queue_id;
748                         nb_rx = rte_eth_rx_burst(portid, queueid,
749                                         pkts, MAX_PKT_BURST);
750
751                         if (nb_rx > 0)
752                                 process_pkts(qconf, pkts, nb_rx, portid);
753                 }
754         }
755 }
756
757 static int32_t
758 check_params(void)
759 {
760         uint8_t lcore, portid, nb_ports;
761         uint16_t i;
762         int32_t socket_id;
763
764         if (lcore_params == NULL) {
765                 printf("Error: No port/queue/core mappings\n");
766                 return -1;
767         }
768
769         nb_ports = rte_eth_dev_count();
770
771         for (i = 0; i < nb_lcore_params; ++i) {
772                 lcore = lcore_params[i].lcore_id;
773                 if (!rte_lcore_is_enabled(lcore)) {
774                         printf("error: lcore %hhu is not enabled in "
775                                 "lcore mask\n", lcore);
776                         return -1;
777                 }
778                 socket_id = rte_lcore_to_socket_id(lcore);
779                 if (socket_id != 0 && numa_on == 0) {
780                         printf("warning: lcore %hhu is on socket %d "
781                                 "with numa off\n",
782                                 lcore, socket_id);
783                 }
784                 portid = lcore_params[i].port_id;
785                 if ((enabled_port_mask & (1 << portid)) == 0) {
786                         printf("port %u is not enabled in port mask\n", portid);
787                         return -1;
788                 }
789                 if (portid >= nb_ports) {
790                         printf("port %u is not present on the board\n", portid);
791                         return -1;
792                 }
793         }
794         return 0;
795 }
796
797 static uint8_t
798 get_port_nb_rx_queues(const uint8_t port)
799 {
800         int32_t queue = -1;
801         uint16_t i;
802
803         for (i = 0; i < nb_lcore_params; ++i) {
804                 if (lcore_params[i].port_id == port &&
805                                 lcore_params[i].queue_id > queue)
806                         queue = lcore_params[i].queue_id;
807         }
808         return (uint8_t)(++queue);
809 }
810
811 static int32_t
812 init_lcore_rx_queues(void)
813 {
814         uint16_t i, nb_rx_queue;
815         uint8_t lcore;
816
817         for (i = 0; i < nb_lcore_params; ++i) {
818                 lcore = lcore_params[i].lcore_id;
819                 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
820                 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
821                         printf("error: too many queues (%u) for lcore: %u\n",
822                                         nb_rx_queue + 1, lcore);
823                         return -1;
824                 }
825                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
826                         lcore_params[i].port_id;
827                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
828                         lcore_params[i].queue_id;
829                 lcore_conf[lcore].nb_rx_queue++;
830         }
831         return 0;
832 }
833
834 /* display usage */
835 static void
836 print_usage(const char *prgname)
837 {
838         printf("%s [EAL options] -- -p PORTMASK -P -u PORTMASK"
839                 "  --"OPTION_CONFIG" (port,queue,lcore)[,(port,queue,lcore]"
840                 " --single-sa SAIDX -f CONFIG_FILE\n"
841                 "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
842                 "  -P : enable promiscuous mode\n"
843                 "  -u PORTMASK: hexadecimal bitmask of unprotected ports\n"
844                 "  --"OPTION_CONFIG": (port,queue,lcore): "
845                 "rx queues configuration\n"
846                 "  --single-sa SAIDX: use single SA index for outbound, "
847                 "bypassing the SP\n"
848                 "  -f CONFIG_FILE: Configuration file path\n",
849                 prgname);
850 }
851
852 static int32_t
853 parse_portmask(const char *portmask)
854 {
855         char *end = NULL;
856         unsigned long pm;
857
858         /* parse hexadecimal string */
859         pm = strtoul(portmask, &end, 16);
860         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
861                 return -1;
862
863         if ((pm == 0) && errno)
864                 return -1;
865
866         return pm;
867 }
868
869 static int32_t
870 parse_decimal(const char *str)
871 {
872         char *end = NULL;
873         unsigned long num;
874
875         num = strtoul(str, &end, 10);
876         if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
877                 return -1;
878
879         return num;
880 }
881
882 static int32_t
883 parse_config(const char *q_arg)
884 {
885         char s[256];
886         const char *p, *p0 = q_arg;
887         char *end;
888         enum fieldnames {
889                 FLD_PORT = 0,
890                 FLD_QUEUE,
891                 FLD_LCORE,
892                 _NUM_FLD
893         };
894         unsigned long int_fld[_NUM_FLD];
895         char *str_fld[_NUM_FLD];
896         int32_t i;
897         uint32_t size;
898
899         nb_lcore_params = 0;
900
901         while ((p = strchr(p0, '(')) != NULL) {
902                 ++p;
903                 p0 = strchr(p, ')');
904                 if (p0 == NULL)
905                         return -1;
906
907                 size = p0 - p;
908                 if (size >= sizeof(s))
909                         return -1;
910
911                 snprintf(s, sizeof(s), "%.*s", size, p);
912                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
913                                 _NUM_FLD)
914                         return -1;
915                 for (i = 0; i < _NUM_FLD; i++) {
916                         errno = 0;
917                         int_fld[i] = strtoul(str_fld[i], &end, 0);
918                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
919                                 return -1;
920                 }
921                 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
922                         printf("exceeded max number of lcore params: %hu\n",
923                                 nb_lcore_params);
924                         return -1;
925                 }
926                 lcore_params_array[nb_lcore_params].port_id =
927                         (uint8_t)int_fld[FLD_PORT];
928                 lcore_params_array[nb_lcore_params].queue_id =
929                         (uint8_t)int_fld[FLD_QUEUE];
930                 lcore_params_array[nb_lcore_params].lcore_id =
931                         (uint8_t)int_fld[FLD_LCORE];
932                 ++nb_lcore_params;
933         }
934         lcore_params = lcore_params_array;
935         return 0;
936 }
937
938 #define __STRNCMP(name, opt) (!strncmp(name, opt, sizeof(opt)))
939 static int32_t
940 parse_args_long_options(struct option *lgopts, int32_t option_index)
941 {
942         int32_t ret = -1;
943         const char *optname = lgopts[option_index].name;
944
945         if (__STRNCMP(optname, OPTION_CONFIG)) {
946                 ret = parse_config(optarg);
947                 if (ret)
948                         printf("invalid config\n");
949         }
950
951         if (__STRNCMP(optname, OPTION_SINGLE_SA)) {
952                 ret = parse_decimal(optarg);
953                 if (ret != -1) {
954                         single_sa = 1;
955                         single_sa_idx = ret;
956                         printf("Configured with single SA index %u\n",
957                                         single_sa_idx);
958                         ret = 0;
959                 }
960         }
961
962         return ret;
963 }
964 #undef __STRNCMP
965
966 static int32_t
967 parse_args(int32_t argc, char **argv)
968 {
969         int32_t opt, ret;
970         char **argvopt;
971         int32_t option_index;
972         char *prgname = argv[0];
973         static struct option lgopts[] = {
974                 {OPTION_CONFIG, 1, 0, 0},
975                 {OPTION_SINGLE_SA, 1, 0, 0},
976                 {NULL, 0, 0, 0}
977         };
978         int32_t f_present = 0;
979
980         argvopt = argv;
981
982         while ((opt = getopt_long(argc, argvopt, "p:Pu:f:",
983                                 lgopts, &option_index)) != EOF) {
984
985                 switch (opt) {
986                 case 'p':
987                         enabled_port_mask = parse_portmask(optarg);
988                         if (enabled_port_mask == 0) {
989                                 printf("invalid portmask\n");
990                                 print_usage(prgname);
991                                 return -1;
992                         }
993                         break;
994                 case 'P':
995                         printf("Promiscuous mode selected\n");
996                         promiscuous_on = 1;
997                         break;
998                 case 'u':
999                         unprotected_port_mask = parse_portmask(optarg);
1000                         if (unprotected_port_mask == 0) {
1001                                 printf("invalid unprotected portmask\n");
1002                                 print_usage(prgname);
1003                                 return -1;
1004                         }
1005                         break;
1006                 case 'f':
1007                         if (f_present == 1) {
1008                                 printf("\"-f\" option present more than "
1009                                         "once!\n");
1010                                 print_usage(prgname);
1011                                 return -1;
1012                         }
1013                         if (parse_cfg_file(optarg) < 0) {
1014                                 printf("parsing file \"%s\" failed\n",
1015                                         optarg);
1016                                 print_usage(prgname);
1017                                 return -1;
1018                         }
1019                         f_present = 1;
1020                         break;
1021                 case 0:
1022                         if (parse_args_long_options(lgopts, option_index)) {
1023                                 print_usage(prgname);
1024                                 return -1;
1025                         }
1026                         break;
1027                 default:
1028                         print_usage(prgname);
1029                         return -1;
1030                 }
1031         }
1032
1033         if (f_present == 0) {
1034                 printf("Mandatory option \"-f\" not present\n");
1035                 return -1;
1036         }
1037
1038         if (optind >= 0)
1039                 argv[optind-1] = prgname;
1040
1041         ret = optind-1;
1042         optind = 0; /* reset getopt lib */
1043         return ret;
1044 }
1045
1046 static void
1047 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1048 {
1049         char buf[ETHER_ADDR_FMT_SIZE];
1050         ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1051         printf("%s%s", name, buf);
1052 }
1053
1054 /* Check the link status of all ports in up to 9s, and print them finally */
1055 static void
1056 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1057 {
1058 #define CHECK_INTERVAL 100 /* 100ms */
1059 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1060         uint8_t portid, count, all_ports_up, print_flag = 0;
1061         struct rte_eth_link link;
1062
1063         printf("\nChecking link status");
1064         fflush(stdout);
1065         for (count = 0; count <= MAX_CHECK_TIME; count++) {
1066                 all_ports_up = 1;
1067                 for (portid = 0; portid < port_num; portid++) {
1068                         if ((port_mask & (1 << portid)) == 0)
1069                                 continue;
1070                         memset(&link, 0, sizeof(link));
1071                         rte_eth_link_get_nowait(portid, &link);
1072                         /* print link status if flag set */
1073                         if (print_flag == 1) {
1074                                 if (link.link_status)
1075                                         printf("Port %d Link Up - speed %u "
1076                                                 "Mbps - %s\n", (uint8_t)portid,
1077                                                 (uint32_t)link.link_speed,
1078                                 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1079                                         ("full-duplex") : ("half-duplex\n"));
1080                                 else
1081                                         printf("Port %d Link Down\n",
1082                                                 (uint8_t)portid);
1083                                 continue;
1084                         }
1085                         /* clear all_ports_up flag if any link down */
1086                         if (link.link_status == ETH_LINK_DOWN) {
1087                                 all_ports_up = 0;
1088                                 break;
1089                         }
1090                 }
1091                 /* after finally printing all link status, get out */
1092                 if (print_flag == 1)
1093                         break;
1094
1095                 if (all_ports_up == 0) {
1096                         printf(".");
1097                         fflush(stdout);
1098                         rte_delay_ms(CHECK_INTERVAL);
1099                 }
1100
1101                 /* set the print_flag if all ports up or timeout */
1102                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1103                         print_flag = 1;
1104                         printf("done\n");
1105                 }
1106         }
1107 }
1108
1109 static int32_t
1110 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1111                 uint16_t qp, struct lcore_params *params,
1112                 struct ipsec_ctx *ipsec_ctx,
1113                 const struct rte_cryptodev_capabilities *cipher,
1114                 const struct rte_cryptodev_capabilities *auth)
1115 {
1116         int32_t ret = 0;
1117         unsigned long i;
1118         struct cdev_key key = { 0 };
1119
1120         key.lcore_id = params->lcore_id;
1121         if (cipher)
1122                 key.cipher_algo = cipher->sym.cipher.algo;
1123         if (auth)
1124                 key.auth_algo = auth->sym.auth.algo;
1125
1126         ret = rte_hash_lookup(map, &key);
1127         if (ret != -ENOENT)
1128                 return 0;
1129
1130         for (i = 0; i < ipsec_ctx->nb_qps; i++)
1131                 if (ipsec_ctx->tbl[i].id == cdev_id)
1132                         break;
1133
1134         if (i == ipsec_ctx->nb_qps) {
1135                 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1136                         printf("Maximum number of crypto devices assigned to "
1137                                 "a core, increase MAX_QP_PER_LCORE value\n");
1138                         return 0;
1139                 }
1140                 ipsec_ctx->tbl[i].id = cdev_id;
1141                 ipsec_ctx->tbl[i].qp = qp;
1142                 ipsec_ctx->nb_qps++;
1143                 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1144                                 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1145                                 cdev_id, qp, i);
1146         }
1147
1148         ret = rte_hash_add_key_data(map, &key, (void *)i);
1149         if (ret < 0) {
1150                 printf("Faled to insert cdev mapping for (lcore %u, "
1151                                 "cdev %u, qp %u), errno %d\n",
1152                                 key.lcore_id, ipsec_ctx->tbl[i].id,
1153                                 ipsec_ctx->tbl[i].qp, ret);
1154                 return 0;
1155         }
1156
1157         return 1;
1158 }
1159
1160 static int32_t
1161 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1162                 uint16_t qp, struct lcore_params *params)
1163 {
1164         int32_t ret = 0;
1165         const struct rte_cryptodev_capabilities *i, *j;
1166         struct rte_hash *map;
1167         struct lcore_conf *qconf;
1168         struct ipsec_ctx *ipsec_ctx;
1169         const char *str;
1170
1171         qconf = &lcore_conf[params->lcore_id];
1172
1173         if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1174                 map = cdev_map_out;
1175                 ipsec_ctx = &qconf->outbound;
1176                 str = "Outbound";
1177         } else {
1178                 map = cdev_map_in;
1179                 ipsec_ctx = &qconf->inbound;
1180                 str = "Inbound";
1181         }
1182
1183         /* Required cryptodevs with operation chainning */
1184         if (!(dev_info->feature_flags &
1185                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1186                 return ret;
1187
1188         for (i = dev_info->capabilities;
1189                         i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1190                 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1191                         continue;
1192
1193                 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1194                         continue;
1195
1196                 for (j = dev_info->capabilities;
1197                                 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1198                         if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1199                                 continue;
1200
1201                         if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1202                                 continue;
1203
1204                         ret |= add_mapping(map, str, cdev_id, qp, params,
1205                                         ipsec_ctx, i, j);
1206                 }
1207         }
1208
1209         return ret;
1210 }
1211
1212 static int32_t
1213 cryptodevs_init(void)
1214 {
1215         struct rte_cryptodev_config dev_conf;
1216         struct rte_cryptodev_qp_conf qp_conf;
1217         uint16_t idx, max_nb_qps, qp, i;
1218         int16_t cdev_id;
1219         struct rte_hash_parameters params = { 0 };
1220
1221         params.entries = CDEV_MAP_ENTRIES;
1222         params.key_len = sizeof(struct cdev_key);
1223         params.hash_func = rte_jhash;
1224         params.hash_func_init_val = 0;
1225         params.socket_id = rte_socket_id();
1226
1227         params.name = "cdev_map_in";
1228         cdev_map_in = rte_hash_create(&params);
1229         if (cdev_map_in == NULL)
1230                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1231                                 rte_errno);
1232
1233         params.name = "cdev_map_out";
1234         cdev_map_out = rte_hash_create(&params);
1235         if (cdev_map_out == NULL)
1236                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1237                                 rte_errno);
1238
1239         printf("lcore/cryptodev/qp mappings:\n");
1240
1241         idx = 0;
1242         /* Start from last cdev id to give HW priority */
1243         for (cdev_id = rte_cryptodev_count() - 1; cdev_id >= 0; cdev_id--) {
1244                 struct rte_cryptodev_info cdev_info;
1245
1246                 rte_cryptodev_info_get(cdev_id, &cdev_info);
1247
1248                 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
1249                         max_nb_qps = cdev_info.max_nb_queue_pairs;
1250                 else
1251                         max_nb_qps = nb_lcore_params;
1252
1253                 qp = 0;
1254                 i = 0;
1255                 while (qp < max_nb_qps && i < nb_lcore_params) {
1256                         if (add_cdev_mapping(&cdev_info, cdev_id, qp,
1257                                                 &lcore_params[idx]))
1258                                 qp++;
1259                         idx++;
1260                         idx = idx % nb_lcore_params;
1261                         i++;
1262                 }
1263
1264                 if (qp == 0)
1265                         continue;
1266
1267                 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
1268                 dev_conf.nb_queue_pairs = qp;
1269                 dev_conf.session_mp.nb_objs = CDEV_MP_NB_OBJS;
1270                 dev_conf.session_mp.cache_size = CDEV_MP_CACHE_SZ;
1271
1272                 if (rte_cryptodev_configure(cdev_id, &dev_conf))
1273                         rte_panic("Failed to initialize crypodev %u\n",
1274                                         cdev_id);
1275
1276                 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
1277                 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
1278                         if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
1279                                                 &qp_conf, dev_conf.socket_id))
1280                                 rte_panic("Failed to setup queue %u for "
1281                                                 "cdev_id %u\n", 0, cdev_id);
1282
1283                 if (rte_cryptodev_start(cdev_id))
1284                         rte_panic("Failed to start cryptodev %u\n",
1285                                         cdev_id);
1286         }
1287
1288         printf("\n");
1289
1290         return 0;
1291 }
1292
1293 static void
1294 port_init(uint8_t portid)
1295 {
1296         struct rte_eth_dev_info dev_info;
1297         struct rte_eth_txconf *txconf;
1298         uint16_t nb_tx_queue, nb_rx_queue;
1299         uint16_t tx_queueid, rx_queueid, queue, lcore_id;
1300         int32_t ret, socket_id;
1301         struct lcore_conf *qconf;
1302         struct ether_addr ethaddr;
1303
1304         rte_eth_dev_info_get(portid, &dev_info);
1305
1306         printf("Configuring device port %u:\n", portid);
1307
1308         rte_eth_macaddr_get(portid, &ethaddr);
1309         ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ethaddr);
1310         print_ethaddr("Address: ", &ethaddr);
1311         printf("\n");
1312
1313         nb_rx_queue = get_port_nb_rx_queues(portid);
1314         nb_tx_queue = nb_lcores;
1315
1316         if (nb_rx_queue > dev_info.max_rx_queues)
1317                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1318                                 "(max rx queue is %u)\n",
1319                                 nb_rx_queue, dev_info.max_rx_queues);
1320
1321         if (nb_tx_queue > dev_info.max_tx_queues)
1322                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1323                                 "(max tx queue is %u)\n",
1324                                 nb_tx_queue, dev_info.max_tx_queues);
1325
1326         printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
1327                         nb_rx_queue, nb_tx_queue);
1328
1329         ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
1330                         &port_conf);
1331         if (ret < 0)
1332                 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1333                                 "err=%d, port=%d\n", ret, portid);
1334
1335         /* init one TX queue per lcore */
1336         tx_queueid = 0;
1337         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1338                 if (rte_lcore_is_enabled(lcore_id) == 0)
1339                         continue;
1340
1341                 if (numa_on)
1342                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1343                 else
1344                         socket_id = 0;
1345
1346                 /* init TX queue */
1347                 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
1348
1349                 txconf = &dev_info.default_txconf;
1350                 txconf->txq_flags = 0;
1351
1352                 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
1353                                 socket_id, txconf);
1354                 if (ret < 0)
1355                         rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1356                                         "err=%d, port=%d\n", ret, portid);
1357
1358                 qconf = &lcore_conf[lcore_id];
1359                 qconf->tx_queue_id[portid] = tx_queueid;
1360                 tx_queueid++;
1361
1362                 /* init RX queues */
1363                 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
1364                         if (portid != qconf->rx_queue_list[queue].port_id)
1365                                 continue;
1366
1367                         rx_queueid = qconf->rx_queue_list[queue].queue_id;
1368
1369                         printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
1370                                         socket_id);
1371
1372                         ret = rte_eth_rx_queue_setup(portid, rx_queueid,
1373                                         nb_rxd, socket_id, NULL,
1374                                         socket_ctx[socket_id].mbuf_pool);
1375                         if (ret < 0)
1376                                 rte_exit(EXIT_FAILURE,
1377                                         "rte_eth_rx_queue_setup: err=%d, "
1378                                         "port=%d\n", ret, portid);
1379                 }
1380         }
1381         printf("\n");
1382 }
1383
1384 static void
1385 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
1386 {
1387         char s[64];
1388
1389         snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
1390         ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
1391                         MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
1392                         RTE_MBUF_DEFAULT_BUF_SIZE,
1393                         socket_id);
1394         if (ctx->mbuf_pool == NULL)
1395                 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
1396                                 socket_id);
1397         else
1398                 printf("Allocated mbuf pool on socket %d\n", socket_id);
1399 }
1400
1401 int32_t
1402 main(int32_t argc, char **argv)
1403 {
1404         int32_t ret;
1405         uint32_t lcore_id, nb_ports;
1406         uint8_t portid, socket_id;
1407
1408         /* init EAL */
1409         ret = rte_eal_init(argc, argv);
1410         if (ret < 0)
1411                 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1412         argc -= ret;
1413         argv += ret;
1414
1415         /* parse application arguments (after the EAL ones) */
1416         ret = parse_args(argc, argv);
1417         if (ret < 0)
1418                 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
1419
1420         if ((unprotected_port_mask & enabled_port_mask) !=
1421                         unprotected_port_mask)
1422                 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
1423                                 unprotected_port_mask);
1424
1425         nb_ports = rte_eth_dev_count();
1426
1427         if (check_params() < 0)
1428                 rte_exit(EXIT_FAILURE, "check_params failed\n");
1429
1430         ret = init_lcore_rx_queues();
1431         if (ret < 0)
1432                 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1433
1434         nb_lcores = rte_lcore_count();
1435
1436         /* Replicate each contex per socket */
1437         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1438                 if (rte_lcore_is_enabled(lcore_id) == 0)
1439                         continue;
1440
1441                 if (numa_on)
1442                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1443                 else
1444                         socket_id = 0;
1445
1446                 if (socket_ctx[socket_id].mbuf_pool)
1447                         continue;
1448
1449                 sa_init(&socket_ctx[socket_id], socket_id);
1450
1451                 sp4_init(&socket_ctx[socket_id], socket_id);
1452
1453                 sp6_init(&socket_ctx[socket_id], socket_id);
1454
1455                 rt_init(&socket_ctx[socket_id], socket_id);
1456
1457                 pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
1458         }
1459
1460         for (portid = 0; portid < nb_ports; portid++) {
1461                 if ((enabled_port_mask & (1 << portid)) == 0)
1462                         continue;
1463
1464                 port_init(portid);
1465         }
1466
1467         cryptodevs_init();
1468
1469         /* start ports */
1470         for (portid = 0; portid < nb_ports; portid++) {
1471                 if ((enabled_port_mask & (1 << portid)) == 0)
1472                         continue;
1473
1474                 /* Start device */
1475                 ret = rte_eth_dev_start(portid);
1476                 if (ret < 0)
1477                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
1478                                         "err=%d, port=%d\n", ret, portid);
1479                 /*
1480                  * If enabled, put device in promiscuous mode.
1481                  * This allows IO forwarding mode to forward packets
1482                  * to itself through 2 cross-connected  ports of the
1483                  * target machine.
1484                  */
1485                 if (promiscuous_on)
1486                         rte_eth_promiscuous_enable(portid);
1487         }
1488
1489         check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1490
1491         /* launch per-lcore init on every lcore */
1492         rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1493         RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1494                 if (rte_eal_wait_lcore(lcore_id) < 0)
1495                         return -1;
1496         }
1497
1498         return 0;
1499 }