New upstream version 17.11-rc3
[deb_dpdk.git] / examples / performance-thread / l3fwd-thread / main.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #define _GNU_SOURCE
35
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <stdint.h>
39 #include <inttypes.h>
40 #include <sys/types.h>
41 #include <string.h>
42 #include <sys/queue.h>
43 #include <stdarg.h>
44 #include <errno.h>
45 #include <getopt.h>
46
47 #include <rte_common.h>
48 #include <rte_vect.h>
49 #include <rte_byteorder.h>
50 #include <rte_log.h>
51 #include <rte_memory.h>
52 #include <rte_memcpy.h>
53 #include <rte_eal.h>
54 #include <rte_launch.h>
55 #include <rte_atomic.h>
56 #include <rte_cycles.h>
57 #include <rte_prefetch.h>
58 #include <rte_lcore.h>
59 #include <rte_per_lcore.h>
60 #include <rte_branch_prediction.h>
61 #include <rte_interrupts.h>
62 #include <rte_random.h>
63 #include <rte_debug.h>
64 #include <rte_ether.h>
65 #include <rte_ethdev.h>
66 #include <rte_ring.h>
67 #include <rte_mempool.h>
68 #include <rte_mbuf.h>
69 #include <rte_ip.h>
70 #include <rte_tcp.h>
71 #include <rte_udp.h>
72 #include <rte_string_fns.h>
73 #include <rte_pause.h>
74
75 #include <cmdline_parse.h>
76 #include <cmdline_parse_etheraddr.h>
77
78 #include <lthread_api.h>
79
80 #define APP_LOOKUP_EXACT_MATCH          0
81 #define APP_LOOKUP_LPM                  1
82 #define DO_RFC_1812_CHECKS
83
84 /* Enable cpu-load stats 0-off, 1-on */
85 #define APP_CPU_LOAD                 1
86
87 #ifndef APP_LOOKUP_METHOD
88 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
89 #endif
90
91 #ifndef __GLIBC__ /* sched_getcpu() is glibc specific */
92 #define sched_getcpu() rte_lcore_id()
93 #endif
94
95 static int
96 check_ptype(int portid)
97 {
98         int i, ret;
99         int ipv4 = 0, ipv6 = 0;
100
101         ret = rte_eth_dev_get_supported_ptypes(portid, RTE_PTYPE_L3_MASK, NULL,
102                         0);
103         if (ret <= 0)
104                 return 0;
105
106         uint32_t ptypes[ret];
107
108         ret = rte_eth_dev_get_supported_ptypes(portid, RTE_PTYPE_L3_MASK,
109                         ptypes, ret);
110         for (i = 0; i < ret; ++i) {
111                 if (ptypes[i] & RTE_PTYPE_L3_IPV4)
112                         ipv4 = 1;
113                 if (ptypes[i] & RTE_PTYPE_L3_IPV6)
114                         ipv6 = 1;
115         }
116
117         if (ipv4 && ipv6)
118                 return 1;
119
120         return 0;
121 }
122
123 static inline void
124 parse_ptype(struct rte_mbuf *m)
125 {
126         struct ether_hdr *eth_hdr;
127         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
128         uint16_t ether_type;
129
130         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
131         ether_type = eth_hdr->ether_type;
132         if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4))
133                 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
134         else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6))
135                 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
136
137         m->packet_type = packet_type;
138 }
139
140 static uint16_t
141 cb_parse_ptype(__rte_unused uint16_t port, __rte_unused uint16_t queue,
142                 struct rte_mbuf *pkts[], uint16_t nb_pkts,
143                 __rte_unused uint16_t max_pkts, __rte_unused void *user_param)
144 {
145         unsigned int i;
146
147         for (i = 0; i < nb_pkts; i++)
148                 parse_ptype(pkts[i]);
149
150         return nb_pkts;
151 }
152
153 /*
154  *  When set to zero, simple forwaring path is eanbled.
155  *  When set to one, optimized forwarding path is enabled.
156  *  Note that LPM optimisation path uses SSE4.1 instructions.
157  */
158 #define ENABLE_MULTI_BUFFER_OPTIMIZE    1
159
160 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
161 #include <rte_hash.h>
162 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
163 #include <rte_lpm.h>
164 #include <rte_lpm6.h>
165 #else
166 #error "APP_LOOKUP_METHOD set to incorrect value"
167 #endif
168
169 #define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
170
171 #define MAX_JUMBO_PKT_LEN  9600
172
173 #define IPV6_ADDR_LEN 16
174
175 #define MEMPOOL_CACHE_SIZE 256
176
177 /*
178  * This expression is used to calculate the number of mbufs needed depending on
179  * user input, taking into account memory for rx and tx hardware rings, cache
180  * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
181  * NB_MBUF never goes below a minimum value of 8192
182  */
183
184 #define NB_MBUF RTE_MAX(\
185                 (nb_ports*nb_rx_queue*nb_rxd +      \
186                 nb_ports*nb_lcores*MAX_PKT_BURST +  \
187                 nb_ports*n_tx_queue*nb_txd +        \
188                 nb_lcores*MEMPOOL_CACHE_SIZE),      \
189                 (unsigned)8192)
190
191 #define MAX_PKT_BURST     32
192 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
193
194 /*
195  * Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send.
196  */
197 #define MAX_TX_BURST  (MAX_PKT_BURST / 2)
198 #define BURST_SIZE    MAX_TX_BURST
199
200 #define NB_SOCKETS 8
201
202 /* Configure how many packets ahead to prefetch, when reading packets */
203 #define PREFETCH_OFFSET 3
204
205 /* Used to mark destination port as 'invalid'. */
206 #define BAD_PORT        ((uint16_t)-1)
207
208 #define FWDSTEP 4
209
210 /*
211  * Configurable number of RX/TX ring descriptors
212  */
213 #define RTE_TEST_RX_DESC_DEFAULT 128
214 #define RTE_TEST_TX_DESC_DEFAULT 128
215 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
216 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
217
218 /* ethernet addresses of ports */
219 static uint64_t dest_eth_addr[RTE_MAX_ETHPORTS];
220 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
221
222 static xmm_t val_eth[RTE_MAX_ETHPORTS];
223
224 /* replace first 12B of the ethernet header. */
225 #define MASK_ETH 0x3f
226
227 /* mask of enabled ports */
228 static uint32_t enabled_port_mask;
229 static int promiscuous_on; /**< Set in promiscuous mode off by default. */
230 static int numa_on = 1;    /**< NUMA is enabled by default. */
231 static int parse_ptype_on;
232
233 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
234 static int ipv6;           /**< ipv6 is false by default. */
235 #endif
236
237 #if (APP_CPU_LOAD == 1)
238
239 #define MAX_CPU RTE_MAX_LCORE
240 #define CPU_LOAD_TIMEOUT_US (5 * 1000 * 1000)  /**< Timeout for collecting 5s */
241
242 #define CPU_PROCESS     0
243 #define CPU_POLL        1
244 #define MAX_CPU_COUNTER 2
245
246 struct cpu_load {
247         uint16_t       n_cpu;
248         uint64_t       counter;
249         uint64_t       hits[MAX_CPU_COUNTER][MAX_CPU];
250 } __rte_cache_aligned;
251
252 static struct cpu_load cpu_load;
253 static int cpu_load_lcore_id = -1;
254
255 #define SET_CPU_BUSY(thread, counter) \
256                 thread->conf.busy[counter] = 1
257
258 #define SET_CPU_IDLE(thread, counter) \
259                 thread->conf.busy[counter] = 0
260
261 #define IS_CPU_BUSY(thread, counter) \
262                 (thread->conf.busy[counter] > 0)
263
264 #else
265
266 #define SET_CPU_BUSY(thread, counter)
267 #define SET_CPU_IDLE(thread, counter)
268 #define IS_CPU_BUSY(thread, counter) 0
269
270 #endif
271
272 struct mbuf_table {
273         uint16_t len;
274         struct rte_mbuf *m_table[MAX_PKT_BURST];
275 };
276
277 struct lcore_rx_queue {
278         uint16_t port_id;
279         uint8_t queue_id;
280 } __rte_cache_aligned;
281
282 #define MAX_RX_QUEUE_PER_LCORE 16
283 #define MAX_TX_QUEUE_PER_PORT  RTE_MAX_ETHPORTS
284 #define MAX_RX_QUEUE_PER_PORT  128
285
286 #define MAX_LCORE_PARAMS       1024
287 struct rx_thread_params {
288         uint16_t port_id;
289         uint8_t queue_id;
290         uint8_t lcore_id;
291         uint8_t thread_id;
292 } __rte_cache_aligned;
293
294 static struct rx_thread_params rx_thread_params_array[MAX_LCORE_PARAMS];
295 static struct rx_thread_params rx_thread_params_array_default[] = {
296         {0, 0, 2, 0},
297         {0, 1, 2, 1},
298         {0, 2, 2, 2},
299         {1, 0, 2, 3},
300         {1, 1, 2, 4},
301         {1, 2, 2, 5},
302         {2, 0, 2, 6},
303         {3, 0, 3, 7},
304         {3, 1, 3, 8},
305 };
306
307 static struct rx_thread_params *rx_thread_params =
308                 rx_thread_params_array_default;
309 static uint16_t nb_rx_thread_params = RTE_DIM(rx_thread_params_array_default);
310
311 struct tx_thread_params {
312         uint8_t lcore_id;
313         uint8_t thread_id;
314 } __rte_cache_aligned;
315
316 static struct tx_thread_params tx_thread_params_array[MAX_LCORE_PARAMS];
317 static struct tx_thread_params tx_thread_params_array_default[] = {
318         {4, 0},
319         {5, 1},
320         {6, 2},
321         {7, 3},
322         {8, 4},
323         {9, 5},
324         {10, 6},
325         {11, 7},
326         {12, 8},
327 };
328
329 static struct tx_thread_params *tx_thread_params =
330                 tx_thread_params_array_default;
331 static uint16_t nb_tx_thread_params = RTE_DIM(tx_thread_params_array_default);
332
333 static struct rte_eth_conf port_conf = {
334         .rxmode = {
335                 .mq_mode = ETH_MQ_RX_RSS,
336                 .max_rx_pkt_len = ETHER_MAX_LEN,
337                 .split_hdr_size = 0,
338                 .header_split   = 0, /**< Header Split disabled */
339                 .hw_ip_checksum = 1, /**< IP checksum offload enabled */
340                 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
341                 .jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
342                 .hw_strip_crc   = 1, /**< CRC stripped by hardware */
343         },
344         .rx_adv_conf = {
345                 .rss_conf = {
346                         .rss_key = NULL,
347                         .rss_hf = ETH_RSS_TCP,
348                 },
349         },
350         .txmode = {
351                 .mq_mode = ETH_MQ_TX_NONE,
352         },
353 };
354
355 static struct rte_mempool *pktmbuf_pool[NB_SOCKETS];
356
357 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
358
359 #include <rte_hash_crc.h>
360 #define DEFAULT_HASH_FUNC       rte_hash_crc
361
362 struct ipv4_5tuple {
363         uint32_t ip_dst;
364         uint32_t ip_src;
365         uint16_t port_dst;
366         uint16_t port_src;
367         uint8_t  proto;
368 } __attribute__((__packed__));
369
370 union ipv4_5tuple_host {
371         struct {
372                 uint8_t  pad0;
373                 uint8_t  proto;
374                 uint16_t pad1;
375                 uint32_t ip_src;
376                 uint32_t ip_dst;
377                 uint16_t port_src;
378                 uint16_t port_dst;
379         };
380         __m128i xmm;
381 };
382
383 #define XMM_NUM_IN_IPV6_5TUPLE 3
384
385 struct ipv6_5tuple {
386         uint8_t  ip_dst[IPV6_ADDR_LEN];
387         uint8_t  ip_src[IPV6_ADDR_LEN];
388         uint16_t port_dst;
389         uint16_t port_src;
390         uint8_t  proto;
391 } __attribute__((__packed__));
392
393 union ipv6_5tuple_host {
394         struct {
395                 uint16_t pad0;
396                 uint8_t  proto;
397                 uint8_t  pad1;
398                 uint8_t  ip_src[IPV6_ADDR_LEN];
399                 uint8_t  ip_dst[IPV6_ADDR_LEN];
400                 uint16_t port_src;
401                 uint16_t port_dst;
402                 uint64_t reserve;
403         };
404         __m128i xmm[XMM_NUM_IN_IPV6_5TUPLE];
405 };
406
407 struct ipv4_l3fwd_route {
408         struct ipv4_5tuple key;
409         uint8_t if_out;
410 };
411
412 struct ipv6_l3fwd_route {
413         struct ipv6_5tuple key;
414         uint8_t if_out;
415 };
416
417 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
418         {{IPv4(101, 0, 0, 0), IPv4(100, 10, 0, 1),  101, 11, IPPROTO_TCP}, 0},
419         {{IPv4(201, 0, 0, 0), IPv4(200, 20, 0, 1),  102, 12, IPPROTO_TCP}, 1},
420         {{IPv4(111, 0, 0, 0), IPv4(100, 30, 0, 1),  101, 11, IPPROTO_TCP}, 2},
421         {{IPv4(211, 0, 0, 0), IPv4(200, 40, 0, 1),  102, 12, IPPROTO_TCP}, 3},
422 };
423
424 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
425         {{
426         {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
427         {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38,
428                         0x05},
429         101, 11, IPPROTO_TCP}, 0},
430
431         {{
432         {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
433         {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38,
434                         0x05},
435         102, 12, IPPROTO_TCP}, 1},
436
437         {{
438         {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
439         {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38,
440                         0x05},
441         101, 11, IPPROTO_TCP}, 2},
442
443         {{
444         {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
445         {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38,
446                         0x05},
447         102, 12, IPPROTO_TCP}, 3},
448 };
449
450 typedef struct rte_hash lookup_struct_t;
451 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
452 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
453
454 #ifdef RTE_ARCH_X86_64
455 /* default to 4 million hash entries (approx) */
456 #define L3FWD_HASH_ENTRIES (1024*1024*4)
457 #else
458 /* 32-bit has less address-space for hugepage memory, limit to 1M entries */
459 #define L3FWD_HASH_ENTRIES (1024*1024*1)
460 #endif
461 #define HASH_ENTRY_NUMBER_DEFAULT 4
462
463 static uint32_t hash_entry_number = HASH_ENTRY_NUMBER_DEFAULT;
464
465 static inline uint32_t
466 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
467                 uint32_t init_val)
468 {
469         const union ipv4_5tuple_host *k;
470         uint32_t t;
471         const uint32_t *p;
472
473         k = data;
474         t = k->proto;
475         p = (const uint32_t *)&k->port_src;
476
477         init_val = rte_hash_crc_4byte(t, init_val);
478         init_val = rte_hash_crc_4byte(k->ip_src, init_val);
479         init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
480         init_val = rte_hash_crc_4byte(*p, init_val);
481         return init_val;
482 }
483
484 static inline uint32_t
485 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
486                 uint32_t init_val)
487 {
488         const union ipv6_5tuple_host *k;
489         uint32_t t;
490         const uint32_t *p;
491         const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3;
492         const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
493
494         k = data;
495         t = k->proto;
496         p = (const uint32_t *)&k->port_src;
497
498         ip_src0 = (const uint32_t *) k->ip_src;
499         ip_src1 = (const uint32_t *)(k->ip_src + 4);
500         ip_src2 = (const uint32_t *)(k->ip_src + 8);
501         ip_src3 = (const uint32_t *)(k->ip_src + 12);
502         ip_dst0 = (const uint32_t *) k->ip_dst;
503         ip_dst1 = (const uint32_t *)(k->ip_dst + 4);
504         ip_dst2 = (const uint32_t *)(k->ip_dst + 8);
505         ip_dst3 = (const uint32_t *)(k->ip_dst + 12);
506         init_val = rte_hash_crc_4byte(t, init_val);
507         init_val = rte_hash_crc_4byte(*ip_src0, init_val);
508         init_val = rte_hash_crc_4byte(*ip_src1, init_val);
509         init_val = rte_hash_crc_4byte(*ip_src2, init_val);
510         init_val = rte_hash_crc_4byte(*ip_src3, init_val);
511         init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
512         init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
513         init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
514         init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
515         init_val = rte_hash_crc_4byte(*p, init_val);
516         return init_val;
517 }
518
519 #define IPV4_L3FWD_NUM_ROUTES RTE_DIM(ipv4_l3fwd_route_array)
520 #define IPV6_L3FWD_NUM_ROUTES RTE_DIM(ipv6_l3fwd_route_array)
521
522 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
523 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
524
525 #endif
526
527 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
528 struct ipv4_l3fwd_route {
529         uint32_t ip;
530         uint8_t  depth;
531         uint8_t  if_out;
532 };
533
534 struct ipv6_l3fwd_route {
535         uint8_t ip[16];
536         uint8_t depth;
537         uint8_t if_out;
538 };
539
540 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
541         {IPv4(1, 1, 1, 0), 24, 0},
542         {IPv4(2, 1, 1, 0), 24, 1},
543         {IPv4(3, 1, 1, 0), 24, 2},
544         {IPv4(4, 1, 1, 0), 24, 3},
545         {IPv4(5, 1, 1, 0), 24, 4},
546         {IPv4(6, 1, 1, 0), 24, 5},
547         {IPv4(7, 1, 1, 0), 24, 6},
548         {IPv4(8, 1, 1, 0), 24, 7},
549 };
550
551 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
552         {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
553         {{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
554         {{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
555         {{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
556         {{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
557         {{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
558         {{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
559         {{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},
560 };
561
562 #define IPV4_L3FWD_NUM_ROUTES RTE_DIM(ipv4_l3fwd_route_array)
563 #define IPV6_L3FWD_NUM_ROUTES RTE_DIM(ipv6_l3fwd_route_array)
564
565 #define IPV4_L3FWD_LPM_MAX_RULES         1024
566 #define IPV6_L3FWD_LPM_MAX_RULES         1024
567 #define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16)
568
569 typedef struct rte_lpm lookup_struct_t;
570 typedef struct rte_lpm6 lookup6_struct_t;
571 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
572 static lookup6_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
573 #endif
574
575 struct lcore_conf {
576         lookup_struct_t *ipv4_lookup_struct;
577 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
578         lookup6_struct_t *ipv6_lookup_struct;
579 #else
580         lookup_struct_t *ipv6_lookup_struct;
581 #endif
582         void *data;
583 } __rte_cache_aligned;
584
585 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
586 RTE_DEFINE_PER_LCORE(struct lcore_conf *, lcore_conf);
587
588 #define MAX_RX_QUEUE_PER_THREAD 16
589 #define MAX_TX_PORT_PER_THREAD  RTE_MAX_ETHPORTS
590 #define MAX_TX_QUEUE_PER_PORT   RTE_MAX_ETHPORTS
591 #define MAX_RX_QUEUE_PER_PORT   128
592
593 #define MAX_RX_THREAD 1024
594 #define MAX_TX_THREAD 1024
595 #define MAX_THREAD    (MAX_RX_THREAD + MAX_TX_THREAD)
596
597 /**
598  * Producers and consumers threads configuration
599  */
600 static int lthreads_on = 1; /**< Use lthreads for processing*/
601
602 rte_atomic16_t rx_counter;  /**< Number of spawned rx threads */
603 rte_atomic16_t tx_counter;  /**< Number of spawned tx threads */
604
605 struct thread_conf {
606         uint16_t lcore_id;      /**< Initial lcore for rx thread */
607         uint16_t cpu_id;        /**< Cpu id for cpu load stats counter */
608         uint16_t thread_id;     /**< Thread ID */
609
610 #if (APP_CPU_LOAD > 0)
611         int busy[MAX_CPU_COUNTER];
612 #endif
613 };
614
615 struct thread_rx_conf {
616         struct thread_conf conf;
617
618         uint16_t n_rx_queue;
619         struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
620
621         uint16_t n_ring;        /**< Number of output rings */
622         struct rte_ring *ring[RTE_MAX_LCORE];
623         struct lthread_cond *ready[RTE_MAX_LCORE];
624
625 #if (APP_CPU_LOAD > 0)
626         int busy[MAX_CPU_COUNTER];
627 #endif
628 } __rte_cache_aligned;
629
630 uint16_t n_rx_thread;
631 struct thread_rx_conf rx_thread[MAX_RX_THREAD];
632
633 struct thread_tx_conf {
634         struct thread_conf conf;
635
636         uint16_t tx_queue_id[RTE_MAX_LCORE];
637         struct mbuf_table tx_mbufs[RTE_MAX_LCORE];
638
639         struct rte_ring *ring;
640         struct lthread_cond **ready;
641
642 } __rte_cache_aligned;
643
644 uint16_t n_tx_thread;
645 struct thread_tx_conf tx_thread[MAX_TX_THREAD];
646
647 /* Send burst of packets on an output interface */
648 static inline int
649 send_burst(struct thread_tx_conf *qconf, uint16_t n, uint16_t port)
650 {
651         struct rte_mbuf **m_table;
652         int ret;
653         uint16_t queueid;
654
655         queueid = qconf->tx_queue_id[port];
656         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
657
658         ret = rte_eth_tx_burst(port, queueid, m_table, n);
659         if (unlikely(ret < n)) {
660                 do {
661                         rte_pktmbuf_free(m_table[ret]);
662                 } while (++ret < n);
663         }
664
665         return 0;
666 }
667
668 /* Enqueue a single packet, and send burst if queue is filled */
669 static inline int
670 send_single_packet(struct rte_mbuf *m, uint16_t port)
671 {
672         uint16_t len;
673         struct thread_tx_conf *qconf;
674
675         if (lthreads_on)
676                 qconf = (struct thread_tx_conf *)lthread_get_data();
677         else
678                 qconf = (struct thread_tx_conf *)RTE_PER_LCORE(lcore_conf)->data;
679
680         len = qconf->tx_mbufs[port].len;
681         qconf->tx_mbufs[port].m_table[len] = m;
682         len++;
683
684         /* enough pkts to be sent */
685         if (unlikely(len == MAX_PKT_BURST)) {
686                 send_burst(qconf, MAX_PKT_BURST, port);
687                 len = 0;
688         }
689
690         qconf->tx_mbufs[port].len = len;
691         return 0;
692 }
693
694 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
695         (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
696 static __rte_always_inline void
697 send_packetsx4(uint16_t port,
698         struct rte_mbuf *m[], uint32_t num)
699 {
700         uint32_t len, j, n;
701         struct thread_tx_conf *qconf;
702
703         if (lthreads_on)
704                 qconf = (struct thread_tx_conf *)lthread_get_data();
705         else
706                 qconf = (struct thread_tx_conf *)RTE_PER_LCORE(lcore_conf)->data;
707
708         len = qconf->tx_mbufs[port].len;
709
710         /*
711          * If TX buffer for that queue is empty, and we have enough packets,
712          * then send them straightway.
713          */
714         if (num >= MAX_TX_BURST && len == 0) {
715                 n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num);
716                 if (unlikely(n < num)) {
717                         do {
718                                 rte_pktmbuf_free(m[n]);
719                         } while (++n < num);
720                 }
721                 return;
722         }
723
724         /*
725          * Put packets into TX buffer for that queue.
726          */
727
728         n = len + num;
729         n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num;
730
731         j = 0;
732         switch (n % FWDSTEP) {
733         while (j < n) {
734         case 0:
735                 qconf->tx_mbufs[port].m_table[len + j] = m[j];
736                 j++;
737                 /* fall-through */
738         case 3:
739                 qconf->tx_mbufs[port].m_table[len + j] = m[j];
740                 j++;
741                 /* fall-through */
742         case 2:
743                 qconf->tx_mbufs[port].m_table[len + j] = m[j];
744                 j++;
745                 /* fall-through */
746         case 1:
747                 qconf->tx_mbufs[port].m_table[len + j] = m[j];
748                 j++;
749         }
750         }
751
752         len += n;
753
754         /* enough pkts to be sent */
755         if (unlikely(len == MAX_PKT_BURST)) {
756
757                 send_burst(qconf, MAX_PKT_BURST, port);
758
759                 /* copy rest of the packets into the TX buffer. */
760                 len = num - n;
761                 j = 0;
762                 switch (len % FWDSTEP) {
763                 while (j < len) {
764                 case 0:
765                         qconf->tx_mbufs[port].m_table[j] = m[n + j];
766                         j++;
767                         /* fall-through */
768                 case 3:
769                         qconf->tx_mbufs[port].m_table[j] = m[n + j];
770                         j++;
771                         /* fall-through */
772                 case 2:
773                         qconf->tx_mbufs[port].m_table[j] = m[n + j];
774                         j++;
775                         /* fall-through */
776                 case 1:
777                         qconf->tx_mbufs[port].m_table[j] = m[n + j];
778                         j++;
779                 }
780                 }
781         }
782
783         qconf->tx_mbufs[port].len = len;
784 }
785 #endif /* APP_LOOKUP_LPM */
786
787 #ifdef DO_RFC_1812_CHECKS
788 static inline int
789 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
790 {
791         /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
792         /*
793          * 1. The packet length reported by the Link Layer must be large
794          * enough to hold the minimum length legal IP datagram (20 bytes).
795          */
796         if (link_len < sizeof(struct ipv4_hdr))
797                 return -1;
798
799         /* 2. The IP checksum must be correct. */
800         /* this is checked in H/W */
801
802         /*
803          * 3. The IP version number must be 4. If the version number is not 4
804          * then the packet may be another version of IP, such as IPng or
805          * ST-II.
806          */
807         if (((pkt->version_ihl) >> 4) != 4)
808                 return -3;
809         /*
810          * 4. The IP header length field must be large enough to hold the
811          * minimum length legal IP datagram (20 bytes = 5 words).
812          */
813         if ((pkt->version_ihl & 0xf) < 5)
814                 return -4;
815
816         /*
817          * 5. The IP total length field must be large enough to hold the IP
818          * datagram header, whose length is specified in the IP header length
819          * field.
820          */
821         if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
822                 return -5;
823
824         return 0;
825 }
826 #endif
827
828 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
829
830 static __m128i mask0;
831 static __m128i mask1;
832 static __m128i mask2;
833 static inline uint16_t
834 get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid,
835                 lookup_struct_t *ipv4_l3fwd_lookup_struct)
836 {
837         int ret = 0;
838         union ipv4_5tuple_host key;
839
840         ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
841         __m128i data = _mm_loadu_si128((__m128i *)(ipv4_hdr));
842         /* Get 5 tuple: dst port, src port, dst IP address, src IP address and
843            protocol */
844         key.xmm = _mm_and_si128(data, mask0);
845         /* Find destination port */
846         ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
847         return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
848 }
849
850 static inline uint16_t
851 get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid,
852                 lookup_struct_t *ipv6_l3fwd_lookup_struct)
853 {
854         int ret = 0;
855         union ipv6_5tuple_host key;
856
857         ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
858         __m128i data0 = _mm_loadu_si128((__m128i *)(ipv6_hdr));
859         __m128i data1 = _mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr) +
860                         sizeof(__m128i)));
861         __m128i data2 = _mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr) +
862                         sizeof(__m128i) + sizeof(__m128i)));
863         /* Get part of 5 tuple: src IP address lower 96 bits and protocol */
864         key.xmm[0] = _mm_and_si128(data0, mask1);
865         /* Get part of 5 tuple: dst IP address lower 96 bits and src IP address
866            higher 32 bits */
867         key.xmm[1] = data1;
868         /* Get part of 5 tuple: dst port and src port and dst IP address higher
869            32 bits */
870         key.xmm[2] = _mm_and_si128(data2, mask2);
871
872         /* Find destination port */
873         ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
874         return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
875 }
876 #endif
877
878 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
879
880 static inline uint16_t
881 get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid,
882                 lookup_struct_t *ipv4_l3fwd_lookup_struct)
883 {
884         uint32_t next_hop;
885
886         return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
887                 rte_be_to_cpu_32(((struct ipv4_hdr *)ipv4_hdr)->dst_addr),
888                 &next_hop) == 0) ? next_hop : portid);
889 }
890
891 static inline uint16_t
892 get_ipv6_dst_port(void *ipv6_hdr,  uint16_t portid,
893                 lookup6_struct_t *ipv6_l3fwd_lookup_struct)
894 {
895         uint32_t next_hop;
896
897         return ((rte_lpm6_lookup(ipv6_l3fwd_lookup_struct,
898                         ((struct ipv6_hdr *)ipv6_hdr)->dst_addr, &next_hop) == 0) ?
899                         next_hop : portid);
900 }
901 #endif
902
903 static inline void l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid)
904                 __attribute__((unused));
905
906 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) && \
907         (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
908
909 #define MASK_ALL_PKTS   0xff
910 #define EXCLUDE_1ST_PKT 0xfe
911 #define EXCLUDE_2ND_PKT 0xfd
912 #define EXCLUDE_3RD_PKT 0xfb
913 #define EXCLUDE_4TH_PKT 0xf7
914 #define EXCLUDE_5TH_PKT 0xef
915 #define EXCLUDE_6TH_PKT 0xdf
916 #define EXCLUDE_7TH_PKT 0xbf
917 #define EXCLUDE_8TH_PKT 0x7f
918
919 static inline void
920 simple_ipv4_fwd_8pkts(struct rte_mbuf *m[8], uint16_t portid)
921 {
922         struct ether_hdr *eth_hdr[8];
923         struct ipv4_hdr *ipv4_hdr[8];
924         uint16_t dst_port[8];
925         int32_t ret[8];
926         union ipv4_5tuple_host key[8];
927         __m128i data[8];
928
929         eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
930         eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
931         eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
932         eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
933         eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct ether_hdr *);
934         eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct ether_hdr *);
935         eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct ether_hdr *);
936         eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct ether_hdr *);
937
938         /* Handle IPv4 headers.*/
939         ipv4_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv4_hdr *,
940                         sizeof(struct ether_hdr));
941         ipv4_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv4_hdr *,
942                         sizeof(struct ether_hdr));
943         ipv4_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv4_hdr *,
944                         sizeof(struct ether_hdr));
945         ipv4_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv4_hdr *,
946                         sizeof(struct ether_hdr));
947         ipv4_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct ipv4_hdr *,
948                         sizeof(struct ether_hdr));
949         ipv4_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct ipv4_hdr *,
950                         sizeof(struct ether_hdr));
951         ipv4_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct ipv4_hdr *,
952                         sizeof(struct ether_hdr));
953         ipv4_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct ipv4_hdr *,
954                         sizeof(struct ether_hdr));
955
956 #ifdef DO_RFC_1812_CHECKS
957         /* Check to make sure the packet is valid (RFC1812) */
958         uint8_t valid_mask = MASK_ALL_PKTS;
959
960         if (is_valid_ipv4_pkt(ipv4_hdr[0], m[0]->pkt_len) < 0) {
961                 rte_pktmbuf_free(m[0]);
962                 valid_mask &= EXCLUDE_1ST_PKT;
963         }
964         if (is_valid_ipv4_pkt(ipv4_hdr[1], m[1]->pkt_len) < 0) {
965                 rte_pktmbuf_free(m[1]);
966                 valid_mask &= EXCLUDE_2ND_PKT;
967         }
968         if (is_valid_ipv4_pkt(ipv4_hdr[2], m[2]->pkt_len) < 0) {
969                 rte_pktmbuf_free(m[2]);
970                 valid_mask &= EXCLUDE_3RD_PKT;
971         }
972         if (is_valid_ipv4_pkt(ipv4_hdr[3], m[3]->pkt_len) < 0) {
973                 rte_pktmbuf_free(m[3]);
974                 valid_mask &= EXCLUDE_4TH_PKT;
975         }
976         if (is_valid_ipv4_pkt(ipv4_hdr[4], m[4]->pkt_len) < 0) {
977                 rte_pktmbuf_free(m[4]);
978                 valid_mask &= EXCLUDE_5TH_PKT;
979         }
980         if (is_valid_ipv4_pkt(ipv4_hdr[5], m[5]->pkt_len) < 0) {
981                 rte_pktmbuf_free(m[5]);
982                 valid_mask &= EXCLUDE_6TH_PKT;
983         }
984         if (is_valid_ipv4_pkt(ipv4_hdr[6], m[6]->pkt_len) < 0) {
985                 rte_pktmbuf_free(m[6]);
986                 valid_mask &= EXCLUDE_7TH_PKT;
987         }
988         if (is_valid_ipv4_pkt(ipv4_hdr[7], m[7]->pkt_len) < 0) {
989                 rte_pktmbuf_free(m[7]);
990                 valid_mask &= EXCLUDE_8TH_PKT;
991         }
992         if (unlikely(valid_mask != MASK_ALL_PKTS)) {
993                 if (valid_mask == 0)
994                         return;
995
996                 uint8_t i = 0;
997
998                 for (i = 0; i < 8; i++)
999                         if ((0x1 << i) & valid_mask)
1000                                 l3fwd_simple_forward(m[i], portid);
1001         }
1002 #endif /* End of #ifdef DO_RFC_1812_CHECKS */
1003
1004         data[0] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[0], __m128i *,
1005                         sizeof(struct ether_hdr) +
1006                         offsetof(struct ipv4_hdr, time_to_live)));
1007         data[1] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[1], __m128i *,
1008                         sizeof(struct ether_hdr) +
1009                         offsetof(struct ipv4_hdr, time_to_live)));
1010         data[2] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[2], __m128i *,
1011                         sizeof(struct ether_hdr) +
1012                         offsetof(struct ipv4_hdr, time_to_live)));
1013         data[3] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[3], __m128i *,
1014                         sizeof(struct ether_hdr) +
1015                         offsetof(struct ipv4_hdr, time_to_live)));
1016         data[4] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[4], __m128i *,
1017                         sizeof(struct ether_hdr) +
1018                         offsetof(struct ipv4_hdr, time_to_live)));
1019         data[5] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[5], __m128i *,
1020                         sizeof(struct ether_hdr) +
1021                         offsetof(struct ipv4_hdr, time_to_live)));
1022         data[6] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[6], __m128i *,
1023                         sizeof(struct ether_hdr) +
1024                         offsetof(struct ipv4_hdr, time_to_live)));
1025         data[7] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[7], __m128i *,
1026                         sizeof(struct ether_hdr) +
1027                         offsetof(struct ipv4_hdr, time_to_live)));
1028
1029         key[0].xmm = _mm_and_si128(data[0], mask0);
1030         key[1].xmm = _mm_and_si128(data[1], mask0);
1031         key[2].xmm = _mm_and_si128(data[2], mask0);
1032         key[3].xmm = _mm_and_si128(data[3], mask0);
1033         key[4].xmm = _mm_and_si128(data[4], mask0);
1034         key[5].xmm = _mm_and_si128(data[5], mask0);
1035         key[6].xmm = _mm_and_si128(data[6], mask0);
1036         key[7].xmm = _mm_and_si128(data[7], mask0);
1037
1038         const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3],
1039                         &key[4], &key[5], &key[6], &key[7]};
1040
1041         rte_hash_lookup_bulk(RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct,
1042                         &key_array[0], 8, ret);
1043         dst_port[0] = ((ret[0] < 0) ? portid : ipv4_l3fwd_out_if[ret[0]]);
1044         dst_port[1] = ((ret[1] < 0) ? portid : ipv4_l3fwd_out_if[ret[1]]);
1045         dst_port[2] = ((ret[2] < 0) ? portid : ipv4_l3fwd_out_if[ret[2]]);
1046         dst_port[3] = ((ret[3] < 0) ? portid : ipv4_l3fwd_out_if[ret[3]]);
1047         dst_port[4] = ((ret[4] < 0) ? portid : ipv4_l3fwd_out_if[ret[4]]);
1048         dst_port[5] = ((ret[5] < 0) ? portid : ipv4_l3fwd_out_if[ret[5]]);
1049         dst_port[6] = ((ret[6] < 0) ? portid : ipv4_l3fwd_out_if[ret[6]]);
1050         dst_port[7] = ((ret[7] < 0) ? portid : ipv4_l3fwd_out_if[ret[7]]);
1051
1052         if (dst_port[0] >= RTE_MAX_ETHPORTS ||
1053                         (enabled_port_mask & 1 << dst_port[0]) == 0)
1054                 dst_port[0] = portid;
1055         if (dst_port[1] >= RTE_MAX_ETHPORTS ||
1056                         (enabled_port_mask & 1 << dst_port[1]) == 0)
1057                 dst_port[1] = portid;
1058         if (dst_port[2] >= RTE_MAX_ETHPORTS ||
1059                         (enabled_port_mask & 1 << dst_port[2]) == 0)
1060                 dst_port[2] = portid;
1061         if (dst_port[3] >= RTE_MAX_ETHPORTS ||
1062                         (enabled_port_mask & 1 << dst_port[3]) == 0)
1063                 dst_port[3] = portid;
1064         if (dst_port[4] >= RTE_MAX_ETHPORTS ||
1065                         (enabled_port_mask & 1 << dst_port[4]) == 0)
1066                 dst_port[4] = portid;
1067         if (dst_port[5] >= RTE_MAX_ETHPORTS ||
1068                         (enabled_port_mask & 1 << dst_port[5]) == 0)
1069                 dst_port[5] = portid;
1070         if (dst_port[6] >= RTE_MAX_ETHPORTS ||
1071                         (enabled_port_mask & 1 << dst_port[6]) == 0)
1072                 dst_port[6] = portid;
1073         if (dst_port[7] >= RTE_MAX_ETHPORTS ||
1074                         (enabled_port_mask & 1 << dst_port[7]) == 0)
1075                 dst_port[7] = portid;
1076
1077 #ifdef DO_RFC_1812_CHECKS
1078         /* Update time to live and header checksum */
1079         --(ipv4_hdr[0]->time_to_live);
1080         --(ipv4_hdr[1]->time_to_live);
1081         --(ipv4_hdr[2]->time_to_live);
1082         --(ipv4_hdr[3]->time_to_live);
1083         ++(ipv4_hdr[0]->hdr_checksum);
1084         ++(ipv4_hdr[1]->hdr_checksum);
1085         ++(ipv4_hdr[2]->hdr_checksum);
1086         ++(ipv4_hdr[3]->hdr_checksum);
1087         --(ipv4_hdr[4]->time_to_live);
1088         --(ipv4_hdr[5]->time_to_live);
1089         --(ipv4_hdr[6]->time_to_live);
1090         --(ipv4_hdr[7]->time_to_live);
1091         ++(ipv4_hdr[4]->hdr_checksum);
1092         ++(ipv4_hdr[5]->hdr_checksum);
1093         ++(ipv4_hdr[6]->hdr_checksum);
1094         ++(ipv4_hdr[7]->hdr_checksum);
1095 #endif
1096
1097         /* dst addr */
1098         *(uint64_t *)&eth_hdr[0]->d_addr = dest_eth_addr[dst_port[0]];
1099         *(uint64_t *)&eth_hdr[1]->d_addr = dest_eth_addr[dst_port[1]];
1100         *(uint64_t *)&eth_hdr[2]->d_addr = dest_eth_addr[dst_port[2]];
1101         *(uint64_t *)&eth_hdr[3]->d_addr = dest_eth_addr[dst_port[3]];
1102         *(uint64_t *)&eth_hdr[4]->d_addr = dest_eth_addr[dst_port[4]];
1103         *(uint64_t *)&eth_hdr[5]->d_addr = dest_eth_addr[dst_port[5]];
1104         *(uint64_t *)&eth_hdr[6]->d_addr = dest_eth_addr[dst_port[6]];
1105         *(uint64_t *)&eth_hdr[7]->d_addr = dest_eth_addr[dst_port[7]];
1106
1107         /* src addr */
1108         ether_addr_copy(&ports_eth_addr[dst_port[0]], &eth_hdr[0]->s_addr);
1109         ether_addr_copy(&ports_eth_addr[dst_port[1]], &eth_hdr[1]->s_addr);
1110         ether_addr_copy(&ports_eth_addr[dst_port[2]], &eth_hdr[2]->s_addr);
1111         ether_addr_copy(&ports_eth_addr[dst_port[3]], &eth_hdr[3]->s_addr);
1112         ether_addr_copy(&ports_eth_addr[dst_port[4]], &eth_hdr[4]->s_addr);
1113         ether_addr_copy(&ports_eth_addr[dst_port[5]], &eth_hdr[5]->s_addr);
1114         ether_addr_copy(&ports_eth_addr[dst_port[6]], &eth_hdr[6]->s_addr);
1115         ether_addr_copy(&ports_eth_addr[dst_port[7]], &eth_hdr[7]->s_addr);
1116
1117         send_single_packet(m[0], (uint8_t)dst_port[0]);
1118         send_single_packet(m[1], (uint8_t)dst_port[1]);
1119         send_single_packet(m[2], (uint8_t)dst_port[2]);
1120         send_single_packet(m[3], (uint8_t)dst_port[3]);
1121         send_single_packet(m[4], (uint8_t)dst_port[4]);
1122         send_single_packet(m[5], (uint8_t)dst_port[5]);
1123         send_single_packet(m[6], (uint8_t)dst_port[6]);
1124         send_single_packet(m[7], (uint8_t)dst_port[7]);
1125
1126 }
1127
1128 static inline void get_ipv6_5tuple(struct rte_mbuf *m0, __m128i mask0,
1129                 __m128i mask1, union ipv6_5tuple_host *key)
1130 {
1131         __m128i tmpdata0 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0,
1132                         __m128i *, sizeof(struct ether_hdr) +
1133                         offsetof(struct ipv6_hdr, payload_len)));
1134         __m128i tmpdata1 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0,
1135                         __m128i *, sizeof(struct ether_hdr) +
1136                         offsetof(struct ipv6_hdr, payload_len) + sizeof(__m128i)));
1137         __m128i tmpdata2 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0,
1138                         __m128i *, sizeof(struct ether_hdr) +
1139                         offsetof(struct ipv6_hdr, payload_len) + sizeof(__m128i) +
1140                         sizeof(__m128i)));
1141         key->xmm[0] = _mm_and_si128(tmpdata0, mask0);
1142         key->xmm[1] = tmpdata1;
1143         key->xmm[2] = _mm_and_si128(tmpdata2, mask1);
1144 }
1145
1146 static inline void
1147 simple_ipv6_fwd_8pkts(struct rte_mbuf *m[8], uint16_t portid)
1148 {
1149         int32_t ret[8];
1150         uint16_t dst_port[8];
1151         struct ether_hdr *eth_hdr[8];
1152         union ipv6_5tuple_host key[8];
1153
1154         __attribute__((unused)) struct ipv6_hdr *ipv6_hdr[8];
1155
1156         eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
1157         eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
1158         eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
1159         eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
1160         eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct ether_hdr *);
1161         eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct ether_hdr *);
1162         eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct ether_hdr *);
1163         eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct ether_hdr *);
1164
1165         /* Handle IPv6 headers.*/
1166         ipv6_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv6_hdr *,
1167                         sizeof(struct ether_hdr));
1168         ipv6_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv6_hdr *,
1169                         sizeof(struct ether_hdr));
1170         ipv6_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv6_hdr *,
1171                         sizeof(struct ether_hdr));
1172         ipv6_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv6_hdr *,
1173                         sizeof(struct ether_hdr));
1174         ipv6_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct ipv6_hdr *,
1175                         sizeof(struct ether_hdr));
1176         ipv6_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct ipv6_hdr *,
1177                         sizeof(struct ether_hdr));
1178         ipv6_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct ipv6_hdr *,
1179                         sizeof(struct ether_hdr));
1180         ipv6_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct ipv6_hdr *,
1181                         sizeof(struct ether_hdr));
1182
1183         get_ipv6_5tuple(m[0], mask1, mask2, &key[0]);
1184         get_ipv6_5tuple(m[1], mask1, mask2, &key[1]);
1185         get_ipv6_5tuple(m[2], mask1, mask2, &key[2]);
1186         get_ipv6_5tuple(m[3], mask1, mask2, &key[3]);
1187         get_ipv6_5tuple(m[4], mask1, mask2, &key[4]);
1188         get_ipv6_5tuple(m[5], mask1, mask2, &key[5]);
1189         get_ipv6_5tuple(m[6], mask1, mask2, &key[6]);
1190         get_ipv6_5tuple(m[7], mask1, mask2, &key[7]);
1191
1192         const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3],
1193                         &key[4], &key[5], &key[6], &key[7]};
1194
1195         rte_hash_lookup_bulk(RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct,
1196                         &key_array[0], 4, ret);
1197         dst_port[0] = ((ret[0] < 0) ? portid : ipv6_l3fwd_out_if[ret[0]]);
1198         dst_port[1] = ((ret[1] < 0) ? portid : ipv6_l3fwd_out_if[ret[1]]);
1199         dst_port[2] = ((ret[2] < 0) ? portid : ipv6_l3fwd_out_if[ret[2]]);
1200         dst_port[3] = ((ret[3] < 0) ? portid : ipv6_l3fwd_out_if[ret[3]]);
1201         dst_port[4] = ((ret[4] < 0) ? portid : ipv6_l3fwd_out_if[ret[4]]);
1202         dst_port[5] = ((ret[5] < 0) ? portid : ipv6_l3fwd_out_if[ret[5]]);
1203         dst_port[6] = ((ret[6] < 0) ? portid : ipv6_l3fwd_out_if[ret[6]]);
1204         dst_port[7] = ((ret[7] < 0) ? portid : ipv6_l3fwd_out_if[ret[7]]);
1205
1206         if (dst_port[0] >= RTE_MAX_ETHPORTS ||
1207                         (enabled_port_mask & 1 << dst_port[0]) == 0)
1208                 dst_port[0] = portid;
1209         if (dst_port[1] >= RTE_MAX_ETHPORTS ||
1210                         (enabled_port_mask & 1 << dst_port[1]) == 0)
1211                 dst_port[1] = portid;
1212         if (dst_port[2] >= RTE_MAX_ETHPORTS ||
1213                         (enabled_port_mask & 1 << dst_port[2]) == 0)
1214                 dst_port[2] = portid;
1215         if (dst_port[3] >= RTE_MAX_ETHPORTS ||
1216                         (enabled_port_mask & 1 << dst_port[3]) == 0)
1217                 dst_port[3] = portid;
1218         if (dst_port[4] >= RTE_MAX_ETHPORTS ||
1219                         (enabled_port_mask & 1 << dst_port[4]) == 0)
1220                 dst_port[4] = portid;
1221         if (dst_port[5] >= RTE_MAX_ETHPORTS ||
1222                         (enabled_port_mask & 1 << dst_port[5]) == 0)
1223                 dst_port[5] = portid;
1224         if (dst_port[6] >= RTE_MAX_ETHPORTS ||
1225                         (enabled_port_mask & 1 << dst_port[6]) == 0)
1226                 dst_port[6] = portid;
1227         if (dst_port[7] >= RTE_MAX_ETHPORTS ||
1228                         (enabled_port_mask & 1 << dst_port[7]) == 0)
1229                 dst_port[7] = portid;
1230
1231         /* dst addr */
1232         *(uint64_t *)&eth_hdr[0]->d_addr = dest_eth_addr[dst_port[0]];
1233         *(uint64_t *)&eth_hdr[1]->d_addr = dest_eth_addr[dst_port[1]];
1234         *(uint64_t *)&eth_hdr[2]->d_addr = dest_eth_addr[dst_port[2]];
1235         *(uint64_t *)&eth_hdr[3]->d_addr = dest_eth_addr[dst_port[3]];
1236         *(uint64_t *)&eth_hdr[4]->d_addr = dest_eth_addr[dst_port[4]];
1237         *(uint64_t *)&eth_hdr[5]->d_addr = dest_eth_addr[dst_port[5]];
1238         *(uint64_t *)&eth_hdr[6]->d_addr = dest_eth_addr[dst_port[6]];
1239         *(uint64_t *)&eth_hdr[7]->d_addr = dest_eth_addr[dst_port[7]];
1240
1241         /* src addr */
1242         ether_addr_copy(&ports_eth_addr[dst_port[0]], &eth_hdr[0]->s_addr);
1243         ether_addr_copy(&ports_eth_addr[dst_port[1]], &eth_hdr[1]->s_addr);
1244         ether_addr_copy(&ports_eth_addr[dst_port[2]], &eth_hdr[2]->s_addr);
1245         ether_addr_copy(&ports_eth_addr[dst_port[3]], &eth_hdr[3]->s_addr);
1246         ether_addr_copy(&ports_eth_addr[dst_port[4]], &eth_hdr[4]->s_addr);
1247         ether_addr_copy(&ports_eth_addr[dst_port[5]], &eth_hdr[5]->s_addr);
1248         ether_addr_copy(&ports_eth_addr[dst_port[6]], &eth_hdr[6]->s_addr);
1249         ether_addr_copy(&ports_eth_addr[dst_port[7]], &eth_hdr[7]->s_addr);
1250
1251         send_single_packet(m[0], dst_port[0]);
1252         send_single_packet(m[1], dst_port[1]);
1253         send_single_packet(m[2], dst_port[2]);
1254         send_single_packet(m[3], dst_port[3]);
1255         send_single_packet(m[4], dst_port[4]);
1256         send_single_packet(m[5], dst_port[5]);
1257         send_single_packet(m[6], dst_port[6]);
1258         send_single_packet(m[7], dst_port[7]);
1259
1260 }
1261 #endif /* APP_LOOKUP_METHOD */
1262
1263 static __rte_always_inline void
1264 l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid)
1265 {
1266         struct ether_hdr *eth_hdr;
1267         struct ipv4_hdr *ipv4_hdr;
1268         uint16_t dst_port;
1269
1270         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
1271
1272         if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1273                 /* Handle IPv4 headers.*/
1274                 ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
1275                                 sizeof(struct ether_hdr));
1276
1277 #ifdef DO_RFC_1812_CHECKS
1278                 /* Check to make sure the packet is valid (RFC1812) */
1279                 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
1280                         rte_pktmbuf_free(m);
1281                         return;
1282                 }
1283 #endif
1284
1285                  dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
1286                         RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct);
1287                 if (dst_port >= RTE_MAX_ETHPORTS ||
1288                                 (enabled_port_mask & 1 << dst_port) == 0)
1289                         dst_port = portid;
1290
1291 #ifdef DO_RFC_1812_CHECKS
1292                 /* Update time to live and header checksum */
1293                 --(ipv4_hdr->time_to_live);
1294                 ++(ipv4_hdr->hdr_checksum);
1295 #endif
1296                 /* dst addr */
1297                 *(uint64_t *)&eth_hdr->d_addr = dest_eth_addr[dst_port];
1298
1299                 /* src addr */
1300                 ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
1301
1302                 send_single_packet(m, dst_port);
1303         } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1304                 /* Handle IPv6 headers.*/
1305                 struct ipv6_hdr *ipv6_hdr;
1306
1307                 ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *,
1308                                 sizeof(struct ether_hdr));
1309
1310                 dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
1311                                 RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct);
1312
1313                 if (dst_port >= RTE_MAX_ETHPORTS ||
1314                                 (enabled_port_mask & 1 << dst_port) == 0)
1315                         dst_port = portid;
1316
1317                 /* dst addr */
1318                 *(uint64_t *)&eth_hdr->d_addr = dest_eth_addr[dst_port];
1319
1320                 /* src addr */
1321                 ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
1322
1323                 send_single_packet(m, dst_port);
1324         } else
1325                 /* Free the mbuf that contains non-IPV4/IPV6 packet */
1326                 rte_pktmbuf_free(m);
1327 }
1328
1329 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1330         (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1331 #ifdef DO_RFC_1812_CHECKS
1332
1333 #define IPV4_MIN_VER_IHL        0x45
1334 #define IPV4_MAX_VER_IHL        0x4f
1335 #define IPV4_MAX_VER_IHL_DIFF   (IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL)
1336
1337 /* Minimum value of IPV4 total length (20B) in network byte order. */
1338 #define IPV4_MIN_LEN_BE (sizeof(struct ipv4_hdr) << 8)
1339
1340 /*
1341  * From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2:
1342  * - The IP version number must be 4.
1343  * - The IP header length field must be large enough to hold the
1344  *    minimum length legal IP datagram (20 bytes = 5 words).
1345  * - The IP total length field must be large enough to hold the IP
1346  *   datagram header, whose length is specified in the IP header length
1347  *   field.
1348  * If we encounter invalid IPV4 packet, then set destination port for it
1349  * to BAD_PORT value.
1350  */
1351 static __rte_always_inline void
1352 rfc1812_process(struct ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t ptype)
1353 {
1354         uint8_t ihl;
1355
1356         if (RTE_ETH_IS_IPV4_HDR(ptype)) {
1357                 ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL;
1358
1359                 ipv4_hdr->time_to_live--;
1360                 ipv4_hdr->hdr_checksum++;
1361
1362                 if (ihl > IPV4_MAX_VER_IHL_DIFF ||
1363                                 ((uint8_t)ipv4_hdr->total_length == 0 &&
1364                                 ipv4_hdr->total_length < IPV4_MIN_LEN_BE)) {
1365                         dp[0] = BAD_PORT;
1366                 }
1367         }
1368 }
1369
1370 #else
1371 #define rfc1812_process(mb, dp, ptype)  do { } while (0)
1372 #endif /* DO_RFC_1812_CHECKS */
1373 #endif /* APP_LOOKUP_LPM && ENABLE_MULTI_BUFFER_OPTIMIZE */
1374
1375
1376 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1377         (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1378
1379 static __rte_always_inline uint16_t
1380 get_dst_port(struct rte_mbuf *pkt, uint32_t dst_ipv4, uint16_t portid)
1381 {
1382         uint32_t next_hop;
1383         struct ipv6_hdr *ipv6_hdr;
1384         struct ether_hdr *eth_hdr;
1385
1386         if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) {
1387                 return (uint16_t) ((rte_lpm_lookup(
1388                                 RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct, dst_ipv4,
1389                                 &next_hop) == 0) ? next_hop : portid);
1390
1391         } else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
1392
1393                 eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
1394                 ipv6_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
1395
1396                 return (uint16_t) ((rte_lpm6_lookup(
1397                                 RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct,
1398                                 ipv6_hdr->dst_addr, &next_hop) == 0) ?
1399                                 next_hop : portid);
1400
1401         }
1402
1403         return portid;
1404 }
1405
1406 static inline void
1407 process_packet(struct rte_mbuf *pkt, uint16_t *dst_port, uint16_t portid)
1408 {
1409         struct ether_hdr *eth_hdr;
1410         struct ipv4_hdr *ipv4_hdr;
1411         uint32_t dst_ipv4;
1412         uint16_t dp;
1413         __m128i te, ve;
1414
1415         eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
1416         ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1417
1418         dst_ipv4 = ipv4_hdr->dst_addr;
1419         dst_ipv4 = rte_be_to_cpu_32(dst_ipv4);
1420         dp = get_dst_port(pkt, dst_ipv4, portid);
1421
1422         te = _mm_load_si128((__m128i *)eth_hdr);
1423         ve = val_eth[dp];
1424
1425         dst_port[0] = dp;
1426         rfc1812_process(ipv4_hdr, dst_port, pkt->packet_type);
1427
1428         te =  _mm_blend_epi16(te, ve, MASK_ETH);
1429         _mm_store_si128((__m128i *)eth_hdr, te);
1430 }
1431
1432 /*
1433  * Read packet_type and destination IPV4 addresses from 4 mbufs.
1434  */
1435 static inline void
1436 processx4_step1(struct rte_mbuf *pkt[FWDSTEP],
1437                 __m128i *dip,
1438                 uint32_t *ipv4_flag)
1439 {
1440         struct ipv4_hdr *ipv4_hdr;
1441         struct ether_hdr *eth_hdr;
1442         uint32_t x0, x1, x2, x3;
1443
1444         eth_hdr = rte_pktmbuf_mtod(pkt[0], struct ether_hdr *);
1445         ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1446         x0 = ipv4_hdr->dst_addr;
1447         ipv4_flag[0] = pkt[0]->packet_type & RTE_PTYPE_L3_IPV4;
1448
1449         eth_hdr = rte_pktmbuf_mtod(pkt[1], struct ether_hdr *);
1450         ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1451         x1 = ipv4_hdr->dst_addr;
1452         ipv4_flag[0] &= pkt[1]->packet_type;
1453
1454         eth_hdr = rte_pktmbuf_mtod(pkt[2], struct ether_hdr *);
1455         ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1456         x2 = ipv4_hdr->dst_addr;
1457         ipv4_flag[0] &= pkt[2]->packet_type;
1458
1459         eth_hdr = rte_pktmbuf_mtod(pkt[3], struct ether_hdr *);
1460         ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1461         x3 = ipv4_hdr->dst_addr;
1462         ipv4_flag[0] &= pkt[3]->packet_type;
1463
1464         dip[0] = _mm_set_epi32(x3, x2, x1, x0);
1465 }
1466
1467 /*
1468  * Lookup into LPM for destination port.
1469  * If lookup fails, use incoming port (portid) as destination port.
1470  */
1471 static inline void
1472 processx4_step2(__m128i dip,
1473                 uint32_t ipv4_flag,
1474                 uint16_t portid,
1475                 struct rte_mbuf *pkt[FWDSTEP],
1476                 uint16_t dprt[FWDSTEP])
1477 {
1478         rte_xmm_t dst;
1479         const __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11,
1480                         4, 5, 6, 7, 0, 1, 2, 3);
1481
1482         /* Byte swap 4 IPV4 addresses. */
1483         dip = _mm_shuffle_epi8(dip, bswap_mask);
1484
1485         /* if all 4 packets are IPV4. */
1486         if (likely(ipv4_flag)) {
1487                 rte_lpm_lookupx4(RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct, dip,
1488                                 dst.u32, portid);
1489
1490                 /* get rid of unused upper 16 bit for each dport. */
1491                 dst.x = _mm_packs_epi32(dst.x, dst.x);
1492                 *(uint64_t *)dprt = dst.u64[0];
1493         } else {
1494                 dst.x = dip;
1495                 dprt[0] = get_dst_port(pkt[0], dst.u32[0], portid);
1496                 dprt[1] = get_dst_port(pkt[1], dst.u32[1], portid);
1497                 dprt[2] = get_dst_port(pkt[2], dst.u32[2], portid);
1498                 dprt[3] = get_dst_port(pkt[3], dst.u32[3], portid);
1499         }
1500 }
1501
1502 /*
1503  * Update source and destination MAC addresses in the ethernet header.
1504  * Perform RFC1812 checks and updates for IPV4 packets.
1505  */
1506 static inline void
1507 processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
1508 {
1509         __m128i te[FWDSTEP];
1510         __m128i ve[FWDSTEP];
1511         __m128i *p[FWDSTEP];
1512
1513         p[0] = rte_pktmbuf_mtod(pkt[0], __m128i *);
1514         p[1] = rte_pktmbuf_mtod(pkt[1], __m128i *);
1515         p[2] = rte_pktmbuf_mtod(pkt[2], __m128i *);
1516         p[3] = rte_pktmbuf_mtod(pkt[3], __m128i *);
1517
1518         ve[0] = val_eth[dst_port[0]];
1519         te[0] = _mm_load_si128(p[0]);
1520
1521         ve[1] = val_eth[dst_port[1]];
1522         te[1] = _mm_load_si128(p[1]);
1523
1524         ve[2] = val_eth[dst_port[2]];
1525         te[2] = _mm_load_si128(p[2]);
1526
1527         ve[3] = val_eth[dst_port[3]];
1528         te[3] = _mm_load_si128(p[3]);
1529
1530         /* Update first 12 bytes, keep rest bytes intact. */
1531         te[0] =  _mm_blend_epi16(te[0], ve[0], MASK_ETH);
1532         te[1] =  _mm_blend_epi16(te[1], ve[1], MASK_ETH);
1533         te[2] =  _mm_blend_epi16(te[2], ve[2], MASK_ETH);
1534         te[3] =  _mm_blend_epi16(te[3], ve[3], MASK_ETH);
1535
1536         _mm_store_si128(p[0], te[0]);
1537         _mm_store_si128(p[1], te[1]);
1538         _mm_store_si128(p[2], te[2]);
1539         _mm_store_si128(p[3], te[3]);
1540
1541         rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1),
1542                         &dst_port[0], pkt[0]->packet_type);
1543         rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1),
1544                         &dst_port[1], pkt[1]->packet_type);
1545         rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1),
1546                         &dst_port[2], pkt[2]->packet_type);
1547         rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1),
1548                         &dst_port[3], pkt[3]->packet_type);
1549 }
1550
1551 /*
1552  * We group consecutive packets with the same destionation port into one burst.
1553  * To avoid extra latency this is done together with some other packet
1554  * processing, but after we made a final decision about packet's destination.
1555  * To do this we maintain:
1556  * pnum - array of number of consecutive packets with the same dest port for
1557  * each packet in the input burst.
1558  * lp - pointer to the last updated element in the pnum.
1559  * dlp - dest port value lp corresponds to.
1560  */
1561
1562 #define GRPSZ   (1 << FWDSTEP)
1563 #define GRPMSK  (GRPSZ - 1)
1564
1565 #define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx)  do { \
1566         if (likely((dlp) == (dcp)[(idx)])) {         \
1567                 (lp)[0]++;                           \
1568         } else {                                     \
1569                 (dlp) = (dcp)[idx];                  \
1570                 (lp) = (pn) + (idx);                 \
1571                 (lp)[0] = 1;                         \
1572         }                                            \
1573 } while (0)
1574
1575 /*
1576  * Group consecutive packets with the same destination port in bursts of 4.
1577  * Suppose we have array of destionation ports:
1578  * dst_port[] = {a, b, c, d,, e, ... }
1579  * dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>.
1580  * We doing 4 comparisons at once and the result is 4 bit mask.
1581  * This mask is used as an index into prebuild array of pnum values.
1582  */
1583 static inline uint16_t *
1584 port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2)
1585 {
1586         static const struct {
1587                 uint64_t pnum; /* prebuild 4 values for pnum[]. */
1588                 int32_t  idx;  /* index for new last updated elemnet. */
1589                 uint16_t lpv;  /* add value to the last updated element. */
1590         } gptbl[GRPSZ] = {
1591         {
1592                 /* 0: a != b, b != c, c != d, d != e */
1593                 .pnum = UINT64_C(0x0001000100010001),
1594                 .idx = 4,
1595                 .lpv = 0,
1596         },
1597         {
1598                 /* 1: a == b, b != c, c != d, d != e */
1599                 .pnum = UINT64_C(0x0001000100010002),
1600                 .idx = 4,
1601                 .lpv = 1,
1602         },
1603         {
1604                 /* 2: a != b, b == c, c != d, d != e */
1605                 .pnum = UINT64_C(0x0001000100020001),
1606                 .idx = 4,
1607                 .lpv = 0,
1608         },
1609         {
1610                 /* 3: a == b, b == c, c != d, d != e */
1611                 .pnum = UINT64_C(0x0001000100020003),
1612                 .idx = 4,
1613                 .lpv = 2,
1614         },
1615         {
1616                 /* 4: a != b, b != c, c == d, d != e */
1617                 .pnum = UINT64_C(0x0001000200010001),
1618                 .idx = 4,
1619                 .lpv = 0,
1620         },
1621         {
1622                 /* 5: a == b, b != c, c == d, d != e */
1623                 .pnum = UINT64_C(0x0001000200010002),
1624                 .idx = 4,
1625                 .lpv = 1,
1626         },
1627         {
1628                 /* 6: a != b, b == c, c == d, d != e */
1629                 .pnum = UINT64_C(0x0001000200030001),
1630                 .idx = 4,
1631                 .lpv = 0,
1632         },
1633         {
1634                 /* 7: a == b, b == c, c == d, d != e */
1635                 .pnum = UINT64_C(0x0001000200030004),
1636                 .idx = 4,
1637                 .lpv = 3,
1638         },
1639         {
1640                 /* 8: a != b, b != c, c != d, d == e */
1641                 .pnum = UINT64_C(0x0002000100010001),
1642                 .idx = 3,
1643                 .lpv = 0,
1644         },
1645         {
1646                 /* 9: a == b, b != c, c != d, d == e */
1647                 .pnum = UINT64_C(0x0002000100010002),
1648                 .idx = 3,
1649                 .lpv = 1,
1650         },
1651         {
1652                 /* 0xa: a != b, b == c, c != d, d == e */
1653                 .pnum = UINT64_C(0x0002000100020001),
1654                 .idx = 3,
1655                 .lpv = 0,
1656         },
1657         {
1658                 /* 0xb: a == b, b == c, c != d, d == e */
1659                 .pnum = UINT64_C(0x0002000100020003),
1660                 .idx = 3,
1661                 .lpv = 2,
1662         },
1663         {
1664                 /* 0xc: a != b, b != c, c == d, d == e */
1665                 .pnum = UINT64_C(0x0002000300010001),
1666                 .idx = 2,
1667                 .lpv = 0,
1668         },
1669         {
1670                 /* 0xd: a == b, b != c, c == d, d == e */
1671                 .pnum = UINT64_C(0x0002000300010002),
1672                 .idx = 2,
1673                 .lpv = 1,
1674         },
1675         {
1676                 /* 0xe: a != b, b == c, c == d, d == e */
1677                 .pnum = UINT64_C(0x0002000300040001),
1678                 .idx = 1,
1679                 .lpv = 0,
1680         },
1681         {
1682                 /* 0xf: a == b, b == c, c == d, d == e */
1683                 .pnum = UINT64_C(0x0002000300040005),
1684                 .idx = 0,
1685                 .lpv = 4,
1686         },
1687         };
1688
1689         union {
1690                 uint16_t u16[FWDSTEP + 1];
1691                 uint64_t u64;
1692         } *pnum = (void *)pn;
1693
1694         int32_t v;
1695
1696         dp1 = _mm_cmpeq_epi16(dp1, dp2);
1697         dp1 = _mm_unpacklo_epi16(dp1, dp1);
1698         v = _mm_movemask_ps((__m128)dp1);
1699
1700         /* update last port counter. */
1701         lp[0] += gptbl[v].lpv;
1702
1703         /* if dest port value has changed. */
1704         if (v != GRPMSK) {
1705                 pnum->u64 = gptbl[v].pnum;
1706                 pnum->u16[FWDSTEP] = 1;
1707                 lp = pnum->u16 + gptbl[v].idx;
1708         }
1709
1710         return lp;
1711 }
1712
1713 #endif /* APP_LOOKUP_METHOD */
1714
1715 static void
1716 process_burst(struct rte_mbuf *pkts_burst[MAX_PKT_BURST], int nb_rx,
1717                 uint16_t portid)
1718 {
1719
1720         int j;
1721
1722 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1723         (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1724         int32_t k;
1725         uint16_t dlp;
1726         uint16_t *lp;
1727         uint16_t dst_port[MAX_PKT_BURST];
1728         __m128i dip[MAX_PKT_BURST / FWDSTEP];
1729         uint32_t ipv4_flag[MAX_PKT_BURST / FWDSTEP];
1730         uint16_t pnum[MAX_PKT_BURST + 1];
1731 #endif
1732
1733
1734 #if (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
1735 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1736         {
1737                 /*
1738                  * Send nb_rx - nb_rx%8 packets
1739                  * in groups of 8.
1740                  */
1741                 int32_t n = RTE_ALIGN_FLOOR(nb_rx, 8);
1742
1743                 for (j = 0; j < n; j += 8) {
1744                         uint32_t pkt_type =
1745                                 pkts_burst[j]->packet_type &
1746                                 pkts_burst[j+1]->packet_type &
1747                                 pkts_burst[j+2]->packet_type &
1748                                 pkts_burst[j+3]->packet_type &
1749                                 pkts_burst[j+4]->packet_type &
1750                                 pkts_burst[j+5]->packet_type &
1751                                 pkts_burst[j+6]->packet_type &
1752                                 pkts_burst[j+7]->packet_type;
1753                         if (pkt_type & RTE_PTYPE_L3_IPV4) {
1754                                 simple_ipv4_fwd_8pkts(&pkts_burst[j], portid);
1755                         } else if (pkt_type &
1756                                 RTE_PTYPE_L3_IPV6) {
1757                                 simple_ipv6_fwd_8pkts(&pkts_burst[j], portid);
1758                         } else {
1759                                 l3fwd_simple_forward(pkts_burst[j], portid);
1760                                 l3fwd_simple_forward(pkts_burst[j+1], portid);
1761                                 l3fwd_simple_forward(pkts_burst[j+2], portid);
1762                                 l3fwd_simple_forward(pkts_burst[j+3], portid);
1763                                 l3fwd_simple_forward(pkts_burst[j+4], portid);
1764                                 l3fwd_simple_forward(pkts_burst[j+5], portid);
1765                                 l3fwd_simple_forward(pkts_burst[j+6], portid);
1766                                 l3fwd_simple_forward(pkts_burst[j+7], portid);
1767                         }
1768                 }
1769                 for (; j < nb_rx ; j++)
1770                         l3fwd_simple_forward(pkts_burst[j], portid);
1771         }
1772 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1773
1774         k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1775         for (j = 0; j != k; j += FWDSTEP)
1776                 processx4_step1(&pkts_burst[j], &dip[j / FWDSTEP],
1777                                 &ipv4_flag[j / FWDSTEP]);
1778
1779         k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1780         for (j = 0; j != k; j += FWDSTEP)
1781                 processx4_step2(dip[j / FWDSTEP], ipv4_flag[j / FWDSTEP],
1782                                 portid, &pkts_burst[j], &dst_port[j]);
1783
1784         /*
1785          * Finish packet processing and group consecutive
1786          * packets with the same destination port.
1787          */
1788         k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1789         if (k != 0) {
1790                 __m128i dp1, dp2;
1791
1792                 lp = pnum;
1793                 lp[0] = 1;
1794
1795                 processx4_step3(pkts_burst, dst_port);
1796
1797                 /* dp1: <d[0], d[1], d[2], d[3], ... > */
1798                 dp1 = _mm_loadu_si128((__m128i *)dst_port);
1799
1800                 for (j = FWDSTEP; j != k; j += FWDSTEP) {
1801                         processx4_step3(&pkts_burst[j], &dst_port[j]);
1802
1803                         /*
1804                          * dp2:
1805                          * <d[j-3], d[j-2], d[j-1], d[j], ... >
1806                          */
1807                         dp2 = _mm_loadu_si128(
1808                                         (__m128i *)&dst_port[j - FWDSTEP + 1]);
1809                         lp  = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
1810
1811                         /*
1812                          * dp1:
1813                          * <d[j], d[j+1], d[j+2], d[j+3], ... >
1814                          */
1815                         dp1 = _mm_srli_si128(dp2, (FWDSTEP - 1) *
1816                                         sizeof(dst_port[0]));
1817                 }
1818
1819                 /*
1820                  * dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... >
1821                  */
1822                 dp2 = _mm_shufflelo_epi16(dp1, 0xf9);
1823                 lp  = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
1824
1825                 /*
1826                  * remove values added by the last repeated
1827                  * dst port.
1828                  */
1829                 lp[0]--;
1830                 dlp = dst_port[j - 1];
1831         } else {
1832                 /* set dlp and lp to the never used values. */
1833                 dlp = BAD_PORT - 1;
1834                 lp = pnum + MAX_PKT_BURST;
1835         }
1836
1837         /* Process up to last 3 packets one by one. */
1838         switch (nb_rx % FWDSTEP) {
1839         case 3:
1840                 process_packet(pkts_burst[j], dst_port + j, portid);
1841                 GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1842                 j++;
1843                 /* fall-through */
1844         case 2:
1845                 process_packet(pkts_burst[j], dst_port + j, portid);
1846                 GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1847                 j++;
1848                 /* fall-through */
1849         case 1:
1850                 process_packet(pkts_burst[j], dst_port + j, portid);
1851                 GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1852                 j++;
1853         }
1854
1855         /*
1856          * Send packets out, through destination port.
1857          * Consecuteve pacekts with the same destination port
1858          * are already grouped together.
1859          * If destination port for the packet equals BAD_PORT,
1860          * then free the packet without sending it out.
1861          */
1862         for (j = 0; j < nb_rx; j += k) {
1863
1864                 int32_t m;
1865                 uint16_t pn;
1866
1867                 pn = dst_port[j];
1868                 k = pnum[j];
1869
1870                 if (likely(pn != BAD_PORT))
1871                         send_packetsx4(pn, pkts_burst + j, k);
1872                 else
1873                         for (m = j; m != j + k; m++)
1874                                 rte_pktmbuf_free(pkts_burst[m]);
1875
1876         }
1877
1878 #endif /* APP_LOOKUP_METHOD */
1879 #else /* ENABLE_MULTI_BUFFER_OPTIMIZE == 0 */
1880
1881         /* Prefetch first packets */
1882         for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++)
1883                 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[j], void *));
1884
1885         /* Prefetch and forward already prefetched packets */
1886         for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1887                 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1888                                 j + PREFETCH_OFFSET], void *));
1889                 l3fwd_simple_forward(pkts_burst[j], portid);
1890         }
1891
1892         /* Forward remaining prefetched packets */
1893         for (; j < nb_rx; j++)
1894                 l3fwd_simple_forward(pkts_burst[j], portid);
1895
1896 #endif /* ENABLE_MULTI_BUFFER_OPTIMIZE */
1897
1898 }
1899
1900 #if (APP_CPU_LOAD > 0)
1901
1902 /*
1903  * CPU-load stats collector
1904  */
1905 static int
1906 cpu_load_collector(__rte_unused void *arg) {
1907         unsigned i, j, k;
1908         uint64_t hits;
1909         uint64_t prev_tsc, diff_tsc, cur_tsc;
1910         uint64_t total[MAX_CPU] = { 0 };
1911         unsigned min_cpu = MAX_CPU;
1912         unsigned max_cpu = 0;
1913         unsigned cpu_id;
1914         int busy_total = 0;
1915         int busy_flag = 0;
1916
1917         unsigned int n_thread_per_cpu[MAX_CPU] = { 0 };
1918         struct thread_conf *thread_per_cpu[MAX_CPU][MAX_THREAD];
1919
1920         struct thread_conf *thread_conf;
1921
1922         const uint64_t interval_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
1923                 US_PER_S * CPU_LOAD_TIMEOUT_US;
1924
1925         prev_tsc = 0;
1926         /*
1927          * Wait for all threads
1928          */
1929
1930         printf("Waiting for %d rx threads and %d tx threads\n", n_rx_thread,
1931                         n_tx_thread);
1932
1933         while (rte_atomic16_read(&rx_counter) < n_rx_thread)
1934                 rte_pause();
1935
1936         while (rte_atomic16_read(&tx_counter) < n_tx_thread)
1937                 rte_pause();
1938
1939         for (i = 0; i < n_rx_thread; i++) {
1940
1941                 thread_conf = &rx_thread[i].conf;
1942                 cpu_id = thread_conf->cpu_id;
1943                 thread_per_cpu[cpu_id][n_thread_per_cpu[cpu_id]++] = thread_conf;
1944
1945                 if (cpu_id > max_cpu)
1946                         max_cpu = cpu_id;
1947                 if (cpu_id < min_cpu)
1948                         min_cpu = cpu_id;
1949         }
1950         for (i = 0; i < n_tx_thread; i++) {
1951
1952                 thread_conf = &tx_thread[i].conf;
1953                 cpu_id = thread_conf->cpu_id;
1954                 thread_per_cpu[cpu_id][n_thread_per_cpu[cpu_id]++] = thread_conf;
1955
1956                 if (thread_conf->cpu_id > max_cpu)
1957                         max_cpu = thread_conf->cpu_id;
1958                 if (thread_conf->cpu_id < min_cpu)
1959                         min_cpu = thread_conf->cpu_id;
1960         }
1961
1962         while (1) {
1963
1964                 cpu_load.counter++;
1965                 for (i = min_cpu; i <= max_cpu; i++) {
1966                         for (j = 0; j < MAX_CPU_COUNTER; j++) {
1967                                 for (k = 0; k < n_thread_per_cpu[i]; k++)
1968                                         if (thread_per_cpu[i][k]->busy[j]) {
1969                                                 busy_flag = 1;
1970                                                 break;
1971                                         }
1972                                 if (busy_flag) {
1973                                         cpu_load.hits[j][i]++;
1974                                         busy_total = 1;
1975                                         busy_flag = 0;
1976                                 }
1977                         }
1978
1979                         if (busy_total) {
1980                                 total[i]++;
1981                                 busy_total = 0;
1982                         }
1983                 }
1984
1985                 cur_tsc = rte_rdtsc();
1986
1987                 diff_tsc = cur_tsc - prev_tsc;
1988                 if (unlikely(diff_tsc > interval_tsc)) {
1989
1990                         printf("\033c");
1991
1992                         printf("Cpu usage for %d rx threads and %d tx threads:\n\n",
1993                                         n_rx_thread, n_tx_thread);
1994
1995                         printf("cpu#     proc%%  poll%%  overhead%%\n\n");
1996
1997                         for (i = min_cpu; i <= max_cpu; i++) {
1998                                 hits = 0;
1999                                 printf("CPU %d:", i);
2000                                 for (j = 0; j < MAX_CPU_COUNTER; j++) {
2001                                         printf("%7" PRIu64 "",
2002                                                         cpu_load.hits[j][i] * 100 / cpu_load.counter);
2003                                         hits += cpu_load.hits[j][i];
2004                                         cpu_load.hits[j][i] = 0;
2005                                 }
2006                                 printf("%7" PRIu64 "\n",
2007                                                 100 - total[i] * 100 / cpu_load.counter);
2008                                 total[i] = 0;
2009                         }
2010                         cpu_load.counter = 0;
2011
2012                         prev_tsc = cur_tsc;
2013                 }
2014
2015         }
2016 }
2017 #endif /* APP_CPU_LOAD */
2018
2019 /*
2020  * Null processing lthread loop
2021  *
2022  * This loop is used to start empty scheduler on lcore.
2023  */
2024 static void
2025 lthread_null(__rte_unused void *args)
2026 {
2027         int lcore_id = rte_lcore_id();
2028
2029         RTE_LOG(INFO, L3FWD, "Starting scheduler on lcore %d.\n", lcore_id);
2030         lthread_exit(NULL);
2031 }
2032
2033 /* main processing loop */
2034 static void
2035 lthread_tx_per_ring(void *dummy)
2036 {
2037         int nb_rx;
2038         uint16_t portid;
2039         struct rte_ring *ring;
2040         struct thread_tx_conf *tx_conf;
2041         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
2042         struct lthread_cond *ready;
2043
2044         tx_conf = (struct thread_tx_conf *)dummy;
2045         ring = tx_conf->ring;
2046         ready = *tx_conf->ready;
2047
2048         lthread_set_data((void *)tx_conf);
2049
2050         /*
2051          * Move this lthread to lcore
2052          */
2053         lthread_set_affinity(tx_conf->conf.lcore_id);
2054
2055         RTE_LOG(INFO, L3FWD, "entering main tx loop on lcore %u\n", rte_lcore_id());
2056
2057         nb_rx = 0;
2058         rte_atomic16_inc(&tx_counter);
2059         while (1) {
2060
2061                 /*
2062                  * Read packet from ring
2063                  */
2064                 SET_CPU_BUSY(tx_conf, CPU_POLL);
2065                 nb_rx = rte_ring_sc_dequeue_burst(ring, (void **)pkts_burst,
2066                                 MAX_PKT_BURST, NULL);
2067                 SET_CPU_IDLE(tx_conf, CPU_POLL);
2068
2069                 if (nb_rx > 0) {
2070                         SET_CPU_BUSY(tx_conf, CPU_PROCESS);
2071                         portid = pkts_burst[0]->port;
2072                         process_burst(pkts_burst, nb_rx, portid);
2073                         SET_CPU_IDLE(tx_conf, CPU_PROCESS);
2074                         lthread_yield();
2075                 } else
2076                         lthread_cond_wait(ready, 0);
2077
2078         }
2079 }
2080
2081 /*
2082  * Main tx-lthreads spawner lthread.
2083  *
2084  * This lthread is used to spawn one new lthread per ring from producers.
2085  *
2086  */
2087 static void
2088 lthread_tx(void *args)
2089 {
2090         struct lthread *lt;
2091
2092         unsigned lcore_id;
2093         uint16_t portid;
2094         struct thread_tx_conf *tx_conf;
2095
2096         tx_conf = (struct thread_tx_conf *)args;
2097         lthread_set_data((void *)tx_conf);
2098
2099         /*
2100          * Move this lthread to the selected lcore
2101          */
2102         lthread_set_affinity(tx_conf->conf.lcore_id);
2103
2104         /*
2105          * Spawn tx readers (one per input ring)
2106          */
2107         lthread_create(&lt, tx_conf->conf.lcore_id, lthread_tx_per_ring,
2108                         (void *)tx_conf);
2109
2110         lcore_id = rte_lcore_id();
2111
2112         RTE_LOG(INFO, L3FWD, "Entering Tx main loop on lcore %u\n", lcore_id);
2113
2114         tx_conf->conf.cpu_id = sched_getcpu();
2115         while (1) {
2116
2117                 lthread_sleep(BURST_TX_DRAIN_US * 1000);
2118
2119                 /*
2120                  * TX burst queue drain
2121                  */
2122                 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
2123                         if (tx_conf->tx_mbufs[portid].len == 0)
2124                                 continue;
2125                         SET_CPU_BUSY(tx_conf, CPU_PROCESS);
2126                         send_burst(tx_conf, tx_conf->tx_mbufs[portid].len, portid);
2127                         SET_CPU_IDLE(tx_conf, CPU_PROCESS);
2128                         tx_conf->tx_mbufs[portid].len = 0;
2129                 }
2130
2131         }
2132 }
2133
2134 static void
2135 lthread_rx(void *dummy)
2136 {
2137         int ret;
2138         uint16_t nb_rx;
2139         int i;
2140         uint16_t portid;
2141         uint8_t queueid;
2142         int worker_id;
2143         int len[RTE_MAX_LCORE] = { 0 };
2144         int old_len, new_len;
2145         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
2146         struct thread_rx_conf *rx_conf;
2147
2148         rx_conf = (struct thread_rx_conf *)dummy;
2149         lthread_set_data((void *)rx_conf);
2150
2151         /*
2152          * Move this lthread to lcore
2153          */
2154         lthread_set_affinity(rx_conf->conf.lcore_id);
2155
2156         if (rx_conf->n_rx_queue == 0) {
2157                 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", rte_lcore_id());
2158                 return;
2159         }
2160
2161         RTE_LOG(INFO, L3FWD, "Entering main Rx loop on lcore %u\n", rte_lcore_id());
2162
2163         for (i = 0; i < rx_conf->n_rx_queue; i++) {
2164
2165                 portid = rx_conf->rx_queue_list[i].port_id;
2166                 queueid = rx_conf->rx_queue_list[i].queue_id;
2167                 RTE_LOG(INFO, L3FWD,
2168                         " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
2169                                 rte_lcore_id(), portid, queueid);
2170         }
2171
2172         /*
2173          * Init all condition variables (one per rx thread)
2174          */
2175         for (i = 0; i < rx_conf->n_rx_queue; i++)
2176                 lthread_cond_init(NULL, &rx_conf->ready[i], NULL);
2177
2178         worker_id = 0;
2179
2180         rx_conf->conf.cpu_id = sched_getcpu();
2181         rte_atomic16_inc(&rx_counter);
2182         while (1) {
2183
2184                 /*
2185                  * Read packet from RX queues
2186                  */
2187                 for (i = 0; i < rx_conf->n_rx_queue; ++i) {
2188                         portid = rx_conf->rx_queue_list[i].port_id;
2189                         queueid = rx_conf->rx_queue_list[i].queue_id;
2190
2191                         SET_CPU_BUSY(rx_conf, CPU_POLL);
2192                         nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
2193                                 MAX_PKT_BURST);
2194                         SET_CPU_IDLE(rx_conf, CPU_POLL);
2195
2196                         if (nb_rx != 0) {
2197                                 worker_id = (worker_id + 1) % rx_conf->n_ring;
2198                                 old_len = len[worker_id];
2199
2200                                 SET_CPU_BUSY(rx_conf, CPU_PROCESS);
2201                                 ret = rte_ring_sp_enqueue_burst(
2202                                                 rx_conf->ring[worker_id],
2203                                                 (void **) pkts_burst,
2204                                                 nb_rx, NULL);
2205
2206                                 new_len = old_len + ret;
2207
2208                                 if (new_len >= BURST_SIZE) {
2209                                         lthread_cond_signal(rx_conf->ready[worker_id]);
2210                                         new_len = 0;
2211                                 }
2212
2213                                 len[worker_id] = new_len;
2214
2215                                 if (unlikely(ret < nb_rx)) {
2216                                         uint32_t k;
2217
2218                                         for (k = ret; k < nb_rx; k++) {
2219                                                 struct rte_mbuf *m = pkts_burst[k];
2220
2221                                                 rte_pktmbuf_free(m);
2222                                         }
2223                                 }
2224                                 SET_CPU_IDLE(rx_conf, CPU_PROCESS);
2225                         }
2226
2227                         lthread_yield();
2228                 }
2229         }
2230 }
2231
2232 /*
2233  * Start scheduler with initial lthread on lcore
2234  *
2235  * This lthread loop spawns all rx and tx lthreads on master lcore
2236  */
2237
2238 static void
2239 lthread_spawner(__rte_unused void *arg) {
2240         struct lthread *lt[MAX_THREAD];
2241         int i;
2242         int n_thread = 0;
2243
2244         printf("Entering lthread_spawner\n");
2245
2246         /*
2247          * Create producers (rx threads) on default lcore
2248          */
2249         for (i = 0; i < n_rx_thread; i++) {
2250                 rx_thread[i].conf.thread_id = i;
2251                 lthread_create(&lt[n_thread], -1, lthread_rx,
2252                                 (void *)&rx_thread[i]);
2253                 n_thread++;
2254         }
2255
2256         /*
2257          * Wait for all producers. Until some producers can be started on the same
2258          * scheduler as this lthread, yielding is required to let them to run and
2259          * prevent deadlock here.
2260          */
2261         while (rte_atomic16_read(&rx_counter) < n_rx_thread)
2262                 lthread_sleep(100000);
2263
2264         /*
2265          * Create consumers (tx threads) on default lcore_id
2266          */
2267         for (i = 0; i < n_tx_thread; i++) {
2268                 tx_thread[i].conf.thread_id = i;
2269                 lthread_create(&lt[n_thread], -1, lthread_tx,
2270                                 (void *)&tx_thread[i]);
2271                 n_thread++;
2272         }
2273
2274         /*
2275          * Wait for all threads finished
2276          */
2277         for (i = 0; i < n_thread; i++)
2278                 lthread_join(lt[i], NULL);
2279
2280 }
2281
2282 /*
2283  * Start master scheduler with initial lthread spawning rx and tx lthreads
2284  * (main_lthread_master).
2285  */
2286 static int
2287 lthread_master_spawner(__rte_unused void *arg) {
2288         struct lthread *lt;
2289         int lcore_id = rte_lcore_id();
2290
2291         RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id];
2292         lthread_create(&lt, -1, lthread_spawner, NULL);
2293         lthread_run();
2294
2295         return 0;
2296 }
2297
2298 /*
2299  * Start scheduler on lcore.
2300  */
2301 static int
2302 sched_spawner(__rte_unused void *arg) {
2303         struct lthread *lt;
2304         int lcore_id = rte_lcore_id();
2305
2306 #if (APP_CPU_LOAD)
2307         if (lcore_id == cpu_load_lcore_id) {
2308                 cpu_load_collector(arg);
2309                 return 0;
2310         }
2311 #endif /* APP_CPU_LOAD */
2312
2313         RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id];
2314         lthread_create(&lt, -1, lthread_null, NULL);
2315         lthread_run();
2316
2317         return 0;
2318 }
2319
2320 /* main processing loop */
2321 static int
2322 pthread_tx(void *dummy)
2323 {
2324         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
2325         uint64_t prev_tsc, diff_tsc, cur_tsc;
2326         int nb_rx;
2327         uint16_t portid;
2328         struct thread_tx_conf *tx_conf;
2329
2330         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
2331                 US_PER_S * BURST_TX_DRAIN_US;
2332
2333         prev_tsc = 0;
2334
2335         tx_conf = (struct thread_tx_conf *)dummy;
2336
2337         RTE_LOG(INFO, L3FWD, "Entering main Tx loop on lcore %u\n", rte_lcore_id());
2338
2339         tx_conf->conf.cpu_id = sched_getcpu();
2340         rte_atomic16_inc(&tx_counter);
2341         while (1) {
2342
2343                 cur_tsc = rte_rdtsc();
2344
2345                 /*
2346                  * TX burst queue drain
2347                  */
2348                 diff_tsc = cur_tsc - prev_tsc;
2349                 if (unlikely(diff_tsc > drain_tsc)) {
2350
2351                         /*
2352                          * This could be optimized (use queueid instead of
2353                          * portid), but it is not called so often
2354                          */
2355                         SET_CPU_BUSY(tx_conf, CPU_PROCESS);
2356                         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
2357                                 if (tx_conf->tx_mbufs[portid].len == 0)
2358                                         continue;
2359                                 send_burst(tx_conf, tx_conf->tx_mbufs[portid].len, portid);
2360                                 tx_conf->tx_mbufs[portid].len = 0;
2361                         }
2362                         SET_CPU_IDLE(tx_conf, CPU_PROCESS);
2363
2364                         prev_tsc = cur_tsc;
2365                 }
2366
2367                 /*
2368                  * Read packet from ring
2369                  */
2370                 SET_CPU_BUSY(tx_conf, CPU_POLL);
2371                 nb_rx = rte_ring_sc_dequeue_burst(tx_conf->ring,
2372                                 (void **)pkts_burst, MAX_PKT_BURST, NULL);
2373                 SET_CPU_IDLE(tx_conf, CPU_POLL);
2374
2375                 if (unlikely(nb_rx == 0)) {
2376                         sched_yield();
2377                         continue;
2378                 }
2379
2380                 SET_CPU_BUSY(tx_conf, CPU_PROCESS);
2381                 portid = pkts_burst[0]->port;
2382                 process_burst(pkts_burst, nb_rx, portid);
2383                 SET_CPU_IDLE(tx_conf, CPU_PROCESS);
2384
2385         }
2386 }
2387
2388 static int
2389 pthread_rx(void *dummy)
2390 {
2391         int i;
2392         int worker_id;
2393         uint32_t n;
2394         uint32_t nb_rx;
2395         unsigned lcore_id;
2396         uint8_t queueid;
2397         uint16_t portid;
2398         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
2399
2400         struct thread_rx_conf *rx_conf;
2401
2402         lcore_id = rte_lcore_id();
2403         rx_conf = (struct thread_rx_conf *)dummy;
2404
2405         if (rx_conf->n_rx_queue == 0) {
2406                 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
2407                 return 0;
2408         }
2409
2410         RTE_LOG(INFO, L3FWD, "entering main rx loop on lcore %u\n", lcore_id);
2411
2412         for (i = 0; i < rx_conf->n_rx_queue; i++) {
2413
2414                 portid = rx_conf->rx_queue_list[i].port_id;
2415                 queueid = rx_conf->rx_queue_list[i].queue_id;
2416                 RTE_LOG(INFO, L3FWD,
2417                         " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
2418                                 lcore_id, portid, queueid);
2419         }
2420
2421         worker_id = 0;
2422         rx_conf->conf.cpu_id = sched_getcpu();
2423         rte_atomic16_inc(&rx_counter);
2424         while (1) {
2425
2426                 /*
2427                  * Read packet from RX queues
2428                  */
2429                 for (i = 0; i < rx_conf->n_rx_queue; ++i) {
2430                         portid = rx_conf->rx_queue_list[i].port_id;
2431                         queueid = rx_conf->rx_queue_list[i].queue_id;
2432
2433                         SET_CPU_BUSY(rx_conf, CPU_POLL);
2434                         nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
2435                                 MAX_PKT_BURST);
2436                         SET_CPU_IDLE(rx_conf, CPU_POLL);
2437
2438                         if (nb_rx == 0) {
2439                                 sched_yield();
2440                                 continue;
2441                         }
2442
2443                         SET_CPU_BUSY(rx_conf, CPU_PROCESS);
2444                         worker_id = (worker_id + 1) % rx_conf->n_ring;
2445                         n = rte_ring_sp_enqueue_burst(rx_conf->ring[worker_id],
2446                                         (void **)pkts_burst, nb_rx, NULL);
2447
2448                         if (unlikely(n != nb_rx)) {
2449                                 uint32_t k;
2450
2451                                 for (k = n; k < nb_rx; k++) {
2452                                         struct rte_mbuf *m = pkts_burst[k];
2453
2454                                         rte_pktmbuf_free(m);
2455                                 }
2456                         }
2457
2458                         SET_CPU_IDLE(rx_conf, CPU_PROCESS);
2459
2460                 }
2461         }
2462 }
2463
2464 /*
2465  * P-Thread spawner.
2466  */
2467 static int
2468 pthread_run(__rte_unused void *arg) {
2469         int lcore_id = rte_lcore_id();
2470         int i;
2471
2472         for (i = 0; i < n_rx_thread; i++)
2473                 if (rx_thread[i].conf.lcore_id == lcore_id) {
2474                         printf("Start rx thread on %d...\n", lcore_id);
2475                         RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id];
2476                         RTE_PER_LCORE(lcore_conf)->data = (void *)&rx_thread[i];
2477                         pthread_rx((void *)&rx_thread[i]);
2478                         return 0;
2479                 }
2480
2481         for (i = 0; i < n_tx_thread; i++)
2482                 if (tx_thread[i].conf.lcore_id == lcore_id) {
2483                         printf("Start tx thread on %d...\n", lcore_id);
2484                         RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id];
2485                         RTE_PER_LCORE(lcore_conf)->data = (void *)&tx_thread[i];
2486                         pthread_tx((void *)&tx_thread[i]);
2487                         return 0;
2488                 }
2489
2490 #if (APP_CPU_LOAD)
2491         if (lcore_id == cpu_load_lcore_id)
2492                 cpu_load_collector(arg);
2493 #endif /* APP_CPU_LOAD */
2494
2495         return 0;
2496 }
2497
2498 static int
2499 check_lcore_params(void)
2500 {
2501         uint8_t queue, lcore;
2502         uint16_t i;
2503         int socketid;
2504
2505         for (i = 0; i < nb_rx_thread_params; ++i) {
2506                 queue = rx_thread_params[i].queue_id;
2507                 if (queue >= MAX_RX_QUEUE_PER_PORT) {
2508                         printf("invalid queue number: %hhu\n", queue);
2509                         return -1;
2510                 }
2511                 lcore = rx_thread_params[i].lcore_id;
2512                 if (!rte_lcore_is_enabled(lcore)) {
2513                         printf("error: lcore %hhu is not enabled in lcore mask\n", lcore);
2514                         return -1;
2515                 }
2516                 socketid = rte_lcore_to_socket_id(lcore);
2517                 if ((socketid != 0) && (numa_on == 0))
2518                         printf("warning: lcore %hhu is on socket %d with numa off\n",
2519                                 lcore, socketid);
2520         }
2521         return 0;
2522 }
2523
2524 static int
2525 check_port_config(const unsigned nb_ports)
2526 {
2527         unsigned portid;
2528         uint16_t i;
2529
2530         for (i = 0; i < nb_rx_thread_params; ++i) {
2531                 portid = rx_thread_params[i].port_id;
2532                 if ((enabled_port_mask & (1 << portid)) == 0) {
2533                         printf("port %u is not enabled in port mask\n", portid);
2534                         return -1;
2535                 }
2536                 if (portid >= nb_ports) {
2537                         printf("port %u is not present on the board\n", portid);
2538                         return -1;
2539                 }
2540         }
2541         return 0;
2542 }
2543
2544 static uint8_t
2545 get_port_n_rx_queues(const uint16_t port)
2546 {
2547         int queue = -1;
2548         uint16_t i;
2549
2550         for (i = 0; i < nb_rx_thread_params; ++i)
2551                 if (rx_thread_params[i].port_id == port &&
2552                                 rx_thread_params[i].queue_id > queue)
2553                         queue = rx_thread_params[i].queue_id;
2554
2555         return (uint8_t)(++queue);
2556 }
2557
2558 static int
2559 init_rx_rings(void)
2560 {
2561         unsigned socket_io;
2562         struct thread_rx_conf *rx_conf;
2563         struct thread_tx_conf *tx_conf;
2564         unsigned rx_thread_id, tx_thread_id;
2565         char name[256];
2566         struct rte_ring *ring = NULL;
2567
2568         for (tx_thread_id = 0; tx_thread_id < n_tx_thread; tx_thread_id++) {
2569
2570                 tx_conf = &tx_thread[tx_thread_id];
2571
2572                 printf("Connecting tx-thread %d with rx-thread %d\n", tx_thread_id,
2573                                 tx_conf->conf.thread_id);
2574
2575                 rx_thread_id = tx_conf->conf.thread_id;
2576                 if (rx_thread_id > n_tx_thread) {
2577                         printf("connection from tx-thread %u to rx-thread %u fails "
2578                                         "(rx-thread not defined)\n", tx_thread_id, rx_thread_id);
2579                         return -1;
2580                 }
2581
2582                 rx_conf = &rx_thread[rx_thread_id];
2583                 socket_io = rte_lcore_to_socket_id(rx_conf->conf.lcore_id);
2584
2585                 snprintf(name, sizeof(name), "app_ring_s%u_rx%u_tx%u",
2586                                 socket_io, rx_thread_id, tx_thread_id);
2587
2588                 ring = rte_ring_create(name, 1024 * 4, socket_io,
2589                                 RING_F_SP_ENQ | RING_F_SC_DEQ);
2590
2591                 if (ring == NULL) {
2592                         rte_panic("Cannot create ring to connect rx-thread %u "
2593                                         "with tx-thread %u\n", rx_thread_id, tx_thread_id);
2594                 }
2595
2596                 rx_conf->ring[rx_conf->n_ring] = ring;
2597
2598                 tx_conf->ring = ring;
2599                 tx_conf->ready = &rx_conf->ready[rx_conf->n_ring];
2600
2601                 rx_conf->n_ring++;
2602         }
2603         return 0;
2604 }
2605
2606 static int
2607 init_rx_queues(void)
2608 {
2609         uint16_t i, nb_rx_queue;
2610         uint8_t thread;
2611
2612         n_rx_thread = 0;
2613
2614         for (i = 0; i < nb_rx_thread_params; ++i) {
2615                 thread = rx_thread_params[i].thread_id;
2616                 nb_rx_queue = rx_thread[thread].n_rx_queue;
2617
2618                 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
2619                         printf("error: too many queues (%u) for thread: %u\n",
2620                                 (unsigned)nb_rx_queue + 1, (unsigned)thread);
2621                         return -1;
2622                 }
2623
2624                 rx_thread[thread].conf.thread_id = thread;
2625                 rx_thread[thread].conf.lcore_id = rx_thread_params[i].lcore_id;
2626                 rx_thread[thread].rx_queue_list[nb_rx_queue].port_id =
2627                         rx_thread_params[i].port_id;
2628                 rx_thread[thread].rx_queue_list[nb_rx_queue].queue_id =
2629                         rx_thread_params[i].queue_id;
2630                 rx_thread[thread].n_rx_queue++;
2631
2632                 if (thread >= n_rx_thread)
2633                         n_rx_thread = thread + 1;
2634
2635         }
2636         return 0;
2637 }
2638
2639 static int
2640 init_tx_threads(void)
2641 {
2642         int i;
2643
2644         n_tx_thread = 0;
2645         for (i = 0; i < nb_tx_thread_params; ++i) {
2646                 tx_thread[n_tx_thread].conf.thread_id = tx_thread_params[i].thread_id;
2647                 tx_thread[n_tx_thread].conf.lcore_id = tx_thread_params[i].lcore_id;
2648                 n_tx_thread++;
2649         }
2650         return 0;
2651 }
2652
2653 /* display usage */
2654 static void
2655 print_usage(const char *prgname)
2656 {
2657         printf("%s [EAL options] -- -p PORTMASK -P"
2658                 "  [--rx (port,queue,lcore,thread)[,(port,queue,lcore,thread]]"
2659                 "  [--tx (lcore,thread)[,(lcore,thread]]"
2660                 "  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
2661                 "  [--parse-ptype]\n\n"
2662                 "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
2663                 "  -P : enable promiscuous mode\n"
2664                 "  --rx (port,queue,lcore,thread): rx queues configuration\n"
2665                 "  --tx (lcore,thread): tx threads configuration\n"
2666                 "  --stat-lcore LCORE: use lcore for stat collector\n"
2667                 "  --eth-dest=X,MM:MM:MM:MM:MM:MM: optional, ethernet destination for port X\n"
2668                 "  --no-numa: optional, disable numa awareness\n"
2669                 "  --ipv6: optional, specify it if running ipv6 packets\n"
2670                 "  --enable-jumbo: enable jumbo frame"
2671                 " which max packet len is PKTLEN in decimal (64-9600)\n"
2672                 "  --hash-entry-num: specify the hash entry number in hexadecimal to be setup\n"
2673                 "  --no-lthreads: turn off lthread model\n"
2674                 "  --parse-ptype: set to use software to analyze packet type\n\n",
2675                 prgname);
2676 }
2677
2678 static int parse_max_pkt_len(const char *pktlen)
2679 {
2680         char *end = NULL;
2681         unsigned long len;
2682
2683         /* parse decimal string */
2684         len = strtoul(pktlen, &end, 10);
2685         if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
2686                 return -1;
2687
2688         if (len == 0)
2689                 return -1;
2690
2691         return len;
2692 }
2693
2694 static int
2695 parse_portmask(const char *portmask)
2696 {
2697         char *end = NULL;
2698         unsigned long pm;
2699
2700         /* parse hexadecimal string */
2701         pm = strtoul(portmask, &end, 16);
2702         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
2703                 return -1;
2704
2705         if (pm == 0)
2706                 return -1;
2707
2708         return pm;
2709 }
2710
2711 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2712 static int
2713 parse_hash_entry_number(const char *hash_entry_num)
2714 {
2715         char *end = NULL;
2716         unsigned long hash_en;
2717
2718         /* parse hexadecimal string */
2719         hash_en = strtoul(hash_entry_num, &end, 16);
2720         if ((hash_entry_num[0] == '\0') || (end == NULL) || (*end != '\0'))
2721                 return -1;
2722
2723         if (hash_en == 0)
2724                 return -1;
2725
2726         return hash_en;
2727 }
2728 #endif
2729
2730 static int
2731 parse_rx_config(const char *q_arg)
2732 {
2733         char s[256];
2734         const char *p, *p0 = q_arg;
2735         char *end;
2736         enum fieldnames {
2737                 FLD_PORT = 0,
2738                 FLD_QUEUE,
2739                 FLD_LCORE,
2740                 FLD_THREAD,
2741                 _NUM_FLD
2742         };
2743         unsigned long int_fld[_NUM_FLD];
2744         char *str_fld[_NUM_FLD];
2745         int i;
2746         unsigned size;
2747
2748         nb_rx_thread_params = 0;
2749
2750         while ((p = strchr(p0, '(')) != NULL) {
2751                 ++p;
2752                 p0 = strchr(p, ')');
2753                 if (p0 == NULL)
2754                         return -1;
2755
2756                 size = p0 - p;
2757                 if (size >= sizeof(s))
2758                         return -1;
2759
2760                 snprintf(s, sizeof(s), "%.*s", size, p);
2761                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
2762                         return -1;
2763                 for (i = 0; i < _NUM_FLD; i++) {
2764                         errno = 0;
2765                         int_fld[i] = strtoul(str_fld[i], &end, 0);
2766                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
2767                                 return -1;
2768                 }
2769                 if (nb_rx_thread_params >= MAX_LCORE_PARAMS) {
2770                         printf("exceeded max number of rx params: %hu\n",
2771                                         nb_rx_thread_params);
2772                         return -1;
2773                 }
2774                 rx_thread_params_array[nb_rx_thread_params].port_id =
2775                                 int_fld[FLD_PORT];
2776                 rx_thread_params_array[nb_rx_thread_params].queue_id =
2777                                 (uint8_t)int_fld[FLD_QUEUE];
2778                 rx_thread_params_array[nb_rx_thread_params].lcore_id =
2779                                 (uint8_t)int_fld[FLD_LCORE];
2780                 rx_thread_params_array[nb_rx_thread_params].thread_id =
2781                                 (uint8_t)int_fld[FLD_THREAD];
2782                 ++nb_rx_thread_params;
2783         }
2784         rx_thread_params = rx_thread_params_array;
2785         return 0;
2786 }
2787
2788 static int
2789 parse_tx_config(const char *q_arg)
2790 {
2791         char s[256];
2792         const char *p, *p0 = q_arg;
2793         char *end;
2794         enum fieldnames {
2795                 FLD_LCORE = 0,
2796                 FLD_THREAD,
2797                 _NUM_FLD
2798         };
2799         unsigned long int_fld[_NUM_FLD];
2800         char *str_fld[_NUM_FLD];
2801         int i;
2802         unsigned size;
2803
2804         nb_tx_thread_params = 0;
2805
2806         while ((p = strchr(p0, '(')) != NULL) {
2807                 ++p;
2808                 p0 = strchr(p, ')');
2809                 if (p0 == NULL)
2810                         return -1;
2811
2812                 size = p0 - p;
2813                 if (size >= sizeof(s))
2814                         return -1;
2815
2816                 snprintf(s, sizeof(s), "%.*s", size, p);
2817                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
2818                         return -1;
2819                 for (i = 0; i < _NUM_FLD; i++) {
2820                         errno = 0;
2821                         int_fld[i] = strtoul(str_fld[i], &end, 0);
2822                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
2823                                 return -1;
2824                 }
2825                 if (nb_tx_thread_params >= MAX_LCORE_PARAMS) {
2826                         printf("exceeded max number of tx params: %hu\n",
2827                                 nb_tx_thread_params);
2828                         return -1;
2829                 }
2830                 tx_thread_params_array[nb_tx_thread_params].lcore_id =
2831                                 (uint8_t)int_fld[FLD_LCORE];
2832                 tx_thread_params_array[nb_tx_thread_params].thread_id =
2833                                 (uint8_t)int_fld[FLD_THREAD];
2834                 ++nb_tx_thread_params;
2835         }
2836         tx_thread_params = tx_thread_params_array;
2837
2838         return 0;
2839 }
2840
2841 #if (APP_CPU_LOAD > 0)
2842 static int
2843 parse_stat_lcore(const char *stat_lcore)
2844 {
2845         char *end = NULL;
2846         unsigned long lcore_id;
2847
2848         lcore_id = strtoul(stat_lcore, &end, 10);
2849         if ((stat_lcore[0] == '\0') || (end == NULL) || (*end != '\0'))
2850                 return -1;
2851
2852         return lcore_id;
2853 }
2854 #endif
2855
2856 static void
2857 parse_eth_dest(const char *optarg)
2858 {
2859         uint16_t portid;
2860         char *port_end;
2861         uint8_t c, *dest, peer_addr[6];
2862
2863         errno = 0;
2864         portid = strtoul(optarg, &port_end, 10);
2865         if (errno != 0 || port_end == optarg || *port_end++ != ',')
2866                 rte_exit(EXIT_FAILURE,
2867                 "Invalid eth-dest: %s", optarg);
2868         if (portid >= RTE_MAX_ETHPORTS)
2869                 rte_exit(EXIT_FAILURE,
2870                 "eth-dest: port %d >= RTE_MAX_ETHPORTS(%d)\n",
2871                 portid, RTE_MAX_ETHPORTS);
2872
2873         if (cmdline_parse_etheraddr(NULL, port_end,
2874                 &peer_addr, sizeof(peer_addr)) < 0)
2875                 rte_exit(EXIT_FAILURE,
2876                 "Invalid ethernet address: %s\n",
2877                 port_end);
2878         dest = (uint8_t *)&dest_eth_addr[portid];
2879         for (c = 0; c < 6; c++)
2880                 dest[c] = peer_addr[c];
2881         *(uint64_t *)(val_eth + portid) = dest_eth_addr[portid];
2882 }
2883
2884 #define CMD_LINE_OPT_RX_CONFIG "rx"
2885 #define CMD_LINE_OPT_TX_CONFIG "tx"
2886 #define CMD_LINE_OPT_STAT_LCORE "stat-lcore"
2887 #define CMD_LINE_OPT_ETH_DEST "eth-dest"
2888 #define CMD_LINE_OPT_NO_NUMA "no-numa"
2889 #define CMD_LINE_OPT_IPV6 "ipv6"
2890 #define CMD_LINE_OPT_ENABLE_JUMBO "enable-jumbo"
2891 #define CMD_LINE_OPT_HASH_ENTRY_NUM "hash-entry-num"
2892 #define CMD_LINE_OPT_NO_LTHREADS "no-lthreads"
2893 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
2894
2895 /* Parse the argument given in the command line of the application */
2896 static int
2897 parse_args(int argc, char **argv)
2898 {
2899         int opt, ret;
2900         char **argvopt;
2901         int option_index;
2902         char *prgname = argv[0];
2903         static struct option lgopts[] = {
2904                 {CMD_LINE_OPT_RX_CONFIG, 1, 0, 0},
2905                 {CMD_LINE_OPT_TX_CONFIG, 1, 0, 0},
2906                 {CMD_LINE_OPT_STAT_LCORE, 1, 0, 0},
2907                 {CMD_LINE_OPT_ETH_DEST, 1, 0, 0},
2908                 {CMD_LINE_OPT_NO_NUMA, 0, 0, 0},
2909                 {CMD_LINE_OPT_IPV6, 0, 0, 0},
2910                 {CMD_LINE_OPT_ENABLE_JUMBO, 0, 0, 0},
2911                 {CMD_LINE_OPT_HASH_ENTRY_NUM, 1, 0, 0},
2912                 {CMD_LINE_OPT_NO_LTHREADS, 0, 0, 0},
2913                 {CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
2914                 {NULL, 0, 0, 0}
2915         };
2916
2917         argvopt = argv;
2918
2919         while ((opt = getopt_long(argc, argvopt, "p:P",
2920                                 lgopts, &option_index)) != EOF) {
2921
2922                 switch (opt) {
2923                 /* portmask */
2924                 case 'p':
2925                         enabled_port_mask = parse_portmask(optarg);
2926                         if (enabled_port_mask == 0) {
2927                                 printf("invalid portmask\n");
2928                                 print_usage(prgname);
2929                                 return -1;
2930                         }
2931                         break;
2932                 case 'P':
2933                         printf("Promiscuous mode selected\n");
2934                         promiscuous_on = 1;
2935                         break;
2936
2937                 /* long options */
2938                 case 0:
2939                         if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_RX_CONFIG,
2940                                 sizeof(CMD_LINE_OPT_RX_CONFIG))) {
2941                                 ret = parse_rx_config(optarg);
2942                                 if (ret) {
2943                                         printf("invalid rx-config\n");
2944                                         print_usage(prgname);
2945                                         return -1;
2946                                 }
2947                         }
2948
2949                         if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_TX_CONFIG,
2950                                 sizeof(CMD_LINE_OPT_TX_CONFIG))) {
2951                                 ret = parse_tx_config(optarg);
2952                                 if (ret) {
2953                                         printf("invalid tx-config\n");
2954                                         print_usage(prgname);
2955                                         return -1;
2956                                 }
2957                         }
2958
2959 #if (APP_CPU_LOAD > 0)
2960                         if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_STAT_LCORE,
2961                                         sizeof(CMD_LINE_OPT_STAT_LCORE))) {
2962                                 cpu_load_lcore_id = parse_stat_lcore(optarg);
2963                         }
2964 #endif
2965
2966                         if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ETH_DEST,
2967                                 sizeof(CMD_LINE_OPT_ETH_DEST)))
2968                                         parse_eth_dest(optarg);
2969
2970                         if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_NUMA,
2971                                 sizeof(CMD_LINE_OPT_NO_NUMA))) {
2972                                 printf("numa is disabled\n");
2973                                 numa_on = 0;
2974                         }
2975
2976 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2977                         if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_IPV6,
2978                                 sizeof(CMD_LINE_OPT_IPV6))) {
2979                                 printf("ipv6 is specified\n");
2980                                 ipv6 = 1;
2981                         }
2982 #endif
2983
2984                         if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_LTHREADS,
2985                                         sizeof(CMD_LINE_OPT_NO_LTHREADS))) {
2986                                 printf("l-threads model is disabled\n");
2987                                 lthreads_on = 0;
2988                         }
2989
2990                         if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_PARSE_PTYPE,
2991                                         sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
2992                                 printf("software packet type parsing enabled\n");
2993                                 parse_ptype_on = 1;
2994                         }
2995
2996                         if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ENABLE_JUMBO,
2997                                 sizeof(CMD_LINE_OPT_ENABLE_JUMBO))) {
2998                                 struct option lenopts = {"max-pkt-len", required_argument, 0,
2999                                                 0};
3000
3001                                 printf("jumbo frame is enabled - disabling simple TX path\n");
3002                                 port_conf.rxmode.jumbo_frame = 1;
3003
3004                                 /* if no max-pkt-len set, use the default value ETHER_MAX_LEN */
3005                                 if (0 == getopt_long(argc, argvopt, "", &lenopts,
3006                                                 &option_index)) {
3007
3008                                         ret = parse_max_pkt_len(optarg);
3009                                         if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)) {
3010                                                 printf("invalid packet length\n");
3011                                                 print_usage(prgname);
3012                                                 return -1;
3013                                         }
3014                                         port_conf.rxmode.max_rx_pkt_len = ret;
3015                                 }
3016                                 printf("set jumbo frame max packet length to %u\n",
3017                                                 (unsigned int)port_conf.rxmode.max_rx_pkt_len);
3018                         }
3019 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
3020                         if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_HASH_ENTRY_NUM,
3021                                 sizeof(CMD_LINE_OPT_HASH_ENTRY_NUM))) {
3022                                 ret = parse_hash_entry_number(optarg);
3023                                 if ((ret > 0) && (ret <= L3FWD_HASH_ENTRIES)) {
3024                                         hash_entry_number = ret;
3025                                 } else {
3026                                         printf("invalid hash entry number\n");
3027                                         print_usage(prgname);
3028                                         return -1;
3029                                 }
3030                         }
3031 #endif
3032                         break;
3033
3034                 default:
3035                         print_usage(prgname);
3036                         return -1;
3037                 }
3038         }
3039
3040         if (optind >= 0)
3041                 argv[optind-1] = prgname;
3042
3043         ret = optind-1;
3044         optind = 1; /* reset getopt lib */
3045         return ret;
3046 }
3047
3048 static void
3049 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
3050 {
3051         char buf[ETHER_ADDR_FMT_SIZE];
3052
3053         ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
3054         printf("%s%s", name, buf);
3055 }
3056
3057 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
3058
3059 static void convert_ipv4_5tuple(struct ipv4_5tuple *key1,
3060                 union ipv4_5tuple_host *key2)
3061 {
3062         key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
3063         key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
3064         key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
3065         key2->port_src = rte_cpu_to_be_16(key1->port_src);
3066         key2->proto = key1->proto;
3067         key2->pad0 = 0;
3068         key2->pad1 = 0;
3069 }
3070
3071 static void convert_ipv6_5tuple(struct ipv6_5tuple *key1,
3072                 union ipv6_5tuple_host *key2)
3073 {
3074         uint32_t i;
3075
3076         for (i = 0; i < 16; i++) {
3077                 key2->ip_dst[i] = key1->ip_dst[i];
3078                 key2->ip_src[i] = key1->ip_src[i];
3079         }
3080         key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
3081         key2->port_src = rte_cpu_to_be_16(key1->port_src);
3082         key2->proto = key1->proto;
3083         key2->pad0 = 0;
3084         key2->pad1 = 0;
3085         key2->reserve = 0;
3086 }
3087
3088 #define BYTE_VALUE_MAX 256
3089 #define ALL_32_BITS 0xffffffff
3090 #define BIT_8_TO_15 0x0000ff00
3091 static inline void
3092 populate_ipv4_few_flow_into_table(const struct rte_hash *h)
3093 {
3094         uint32_t i;
3095         int32_t ret;
3096         uint32_t array_len = RTE_DIM(ipv4_l3fwd_route_array);
3097
3098         mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
3099         for (i = 0; i < array_len; i++) {
3100                 struct ipv4_l3fwd_route  entry;
3101                 union ipv4_5tuple_host newkey;
3102
3103                 entry = ipv4_l3fwd_route_array[i];
3104                 convert_ipv4_5tuple(&entry.key, &newkey);
3105                 ret = rte_hash_add_key(h, (void *)&newkey);
3106                 if (ret < 0) {
3107                         rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
3108                                 " to the l3fwd hash.\n", i);
3109                 }
3110                 ipv4_l3fwd_out_if[ret] = entry.if_out;
3111         }
3112         printf("Hash: Adding 0x%" PRIx32 " keys\n", array_len);
3113 }
3114
3115 #define BIT_16_TO_23 0x00ff0000
3116 static inline void
3117 populate_ipv6_few_flow_into_table(const struct rte_hash *h)
3118 {
3119         uint32_t i;
3120         int32_t ret;
3121         uint32_t array_len = RTE_DIM(ipv6_l3fwd_route_array);
3122
3123         mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
3124         mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
3125         for (i = 0; i < array_len; i++) {
3126                 struct ipv6_l3fwd_route entry;
3127                 union ipv6_5tuple_host newkey;
3128
3129                 entry = ipv6_l3fwd_route_array[i];
3130                 convert_ipv6_5tuple(&entry.key, &newkey);
3131                 ret = rte_hash_add_key(h, (void *)&newkey);
3132                 if (ret < 0) {
3133                         rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
3134                                 " to the l3fwd hash.\n", i);
3135                 }
3136                 ipv6_l3fwd_out_if[ret] = entry.if_out;
3137         }
3138         printf("Hash: Adding 0x%" PRIx32 "keys\n", array_len);
3139 }
3140
3141 #define NUMBER_PORT_USED 4
3142 static inline void
3143 populate_ipv4_many_flow_into_table(const struct rte_hash *h,
3144                 unsigned int nr_flow)
3145 {
3146         unsigned i;
3147
3148         mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
3149
3150         for (i = 0; i < nr_flow; i++) {
3151                 struct ipv4_l3fwd_route entry;
3152                 union ipv4_5tuple_host newkey;
3153                 uint8_t a = (uint8_t)((i / NUMBER_PORT_USED) % BYTE_VALUE_MAX);
3154                 uint8_t b = (uint8_t)(((i / NUMBER_PORT_USED) / BYTE_VALUE_MAX) %
3155                                 BYTE_VALUE_MAX);
3156                 uint8_t c = (uint8_t)((i / NUMBER_PORT_USED) / (BYTE_VALUE_MAX *
3157                                 BYTE_VALUE_MAX));
3158                 /* Create the ipv4 exact match flow */
3159                 memset(&entry, 0, sizeof(entry));
3160                 switch (i & (NUMBER_PORT_USED - 1)) {
3161                 case 0:
3162                         entry = ipv4_l3fwd_route_array[0];
3163                         entry.key.ip_dst = IPv4(101, c, b, a);
3164                         break;
3165                 case 1:
3166                         entry = ipv4_l3fwd_route_array[1];
3167                         entry.key.ip_dst = IPv4(201, c, b, a);
3168                         break;
3169                 case 2:
3170                         entry = ipv4_l3fwd_route_array[2];
3171                         entry.key.ip_dst = IPv4(111, c, b, a);
3172                         break;
3173                 case 3:
3174                         entry = ipv4_l3fwd_route_array[3];
3175                         entry.key.ip_dst = IPv4(211, c, b, a);
3176                         break;
3177                 };
3178                 convert_ipv4_5tuple(&entry.key, &newkey);
3179                 int32_t ret = rte_hash_add_key(h, (void *)&newkey);
3180
3181                 if (ret < 0)
3182                         rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
3183
3184                 ipv4_l3fwd_out_if[ret] = (uint8_t)entry.if_out;
3185
3186         }
3187         printf("Hash: Adding 0x%x keys\n", nr_flow);
3188 }
3189
3190 static inline void
3191 populate_ipv6_many_flow_into_table(const struct rte_hash *h,
3192                 unsigned int nr_flow)
3193 {
3194         unsigned i;
3195
3196         mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
3197         mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
3198         for (i = 0; i < nr_flow; i++) {
3199                 struct ipv6_l3fwd_route entry;
3200                 union ipv6_5tuple_host newkey;
3201
3202                 uint8_t a = (uint8_t) ((i / NUMBER_PORT_USED) % BYTE_VALUE_MAX);
3203                 uint8_t b = (uint8_t) (((i / NUMBER_PORT_USED) / BYTE_VALUE_MAX) %
3204                                 BYTE_VALUE_MAX);
3205                 uint8_t c = (uint8_t) ((i / NUMBER_PORT_USED) / (BYTE_VALUE_MAX *
3206                                 BYTE_VALUE_MAX));
3207
3208                 /* Create the ipv6 exact match flow */
3209                 memset(&entry, 0, sizeof(entry));
3210                 switch (i & (NUMBER_PORT_USED - 1)) {
3211                 case 0:
3212                         entry = ipv6_l3fwd_route_array[0];
3213                         break;
3214                 case 1:
3215                         entry = ipv6_l3fwd_route_array[1];
3216                         break;
3217                 case 2:
3218                         entry = ipv6_l3fwd_route_array[2];
3219                         break;
3220                 case 3:
3221                         entry = ipv6_l3fwd_route_array[3];
3222                         break;
3223                 };
3224                 entry.key.ip_dst[13] = c;
3225                 entry.key.ip_dst[14] = b;
3226                 entry.key.ip_dst[15] = a;
3227                 convert_ipv6_5tuple(&entry.key, &newkey);
3228                 int32_t ret = rte_hash_add_key(h, (void *)&newkey);
3229
3230                 if (ret < 0)
3231                         rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
3232
3233                 ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
3234
3235         }
3236         printf("Hash: Adding 0x%x keys\n", nr_flow);
3237 }
3238
3239 static void
3240 setup_hash(int socketid)
3241 {
3242         struct rte_hash_parameters ipv4_l3fwd_hash_params = {
3243                 .name = NULL,
3244                 .entries = L3FWD_HASH_ENTRIES,
3245                 .key_len = sizeof(union ipv4_5tuple_host),
3246                 .hash_func = ipv4_hash_crc,
3247                 .hash_func_init_val = 0,
3248         };
3249
3250         struct rte_hash_parameters ipv6_l3fwd_hash_params = {
3251                 .name = NULL,
3252                 .entries = L3FWD_HASH_ENTRIES,
3253                 .key_len = sizeof(union ipv6_5tuple_host),
3254                 .hash_func = ipv6_hash_crc,
3255                 .hash_func_init_val = 0,
3256         };
3257
3258         char s[64];
3259
3260         /* create ipv4 hash */
3261         snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
3262         ipv4_l3fwd_hash_params.name = s;
3263         ipv4_l3fwd_hash_params.socket_id = socketid;
3264         ipv4_l3fwd_lookup_struct[socketid] =
3265                         rte_hash_create(&ipv4_l3fwd_hash_params);
3266         if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
3267                 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
3268                                 "socket %d\n", socketid);
3269
3270         /* create ipv6 hash */
3271         snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
3272         ipv6_l3fwd_hash_params.name = s;
3273         ipv6_l3fwd_hash_params.socket_id = socketid;
3274         ipv6_l3fwd_lookup_struct[socketid] =
3275                         rte_hash_create(&ipv6_l3fwd_hash_params);
3276         if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
3277                 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
3278                                 "socket %d\n", socketid);
3279
3280         if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
3281                 /* For testing hash matching with a large number of flows we
3282                  * generate millions of IP 5-tuples with an incremented dst
3283                  * address to initialize the hash table. */
3284                 if (ipv6 == 0) {
3285                         /* populate the ipv4 hash */
3286                         populate_ipv4_many_flow_into_table(
3287                                 ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);
3288                 } else {
3289                         /* populate the ipv6 hash */
3290                         populate_ipv6_many_flow_into_table(
3291                                 ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);
3292                 }
3293         } else {
3294                 /* Use data in ipv4/ipv6 l3fwd lookup table directly to initialize
3295                  * the hash table */
3296                 if (ipv6 == 0) {
3297                         /* populate the ipv4 hash */
3298                         populate_ipv4_few_flow_into_table(
3299                                         ipv4_l3fwd_lookup_struct[socketid]);
3300                 } else {
3301                         /* populate the ipv6 hash */
3302                         populate_ipv6_few_flow_into_table(
3303                                         ipv6_l3fwd_lookup_struct[socketid]);
3304                 }
3305         }
3306 }
3307 #endif
3308
3309 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
3310 static void
3311 setup_lpm(int socketid)
3312 {
3313         struct rte_lpm6_config config;
3314         struct rte_lpm_config lpm_ipv4_config;
3315         unsigned i;
3316         int ret;
3317         char s[64];
3318
3319         /* create the LPM table */
3320         snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
3321         lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
3322         lpm_ipv4_config.number_tbl8s = 256;
3323         lpm_ipv4_config.flags = 0;
3324         ipv4_l3fwd_lookup_struct[socketid] =
3325                         rte_lpm_create(s, socketid, &lpm_ipv4_config);
3326         if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
3327                 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
3328                                 " on socket %d\n", socketid);
3329
3330         /* populate the LPM table */
3331         for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
3332
3333                 /* skip unused ports */
3334                 if ((1 << ipv4_l3fwd_route_array[i].if_out &
3335                                 enabled_port_mask) == 0)
3336                         continue;
3337
3338                 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
3339                         ipv4_l3fwd_route_array[i].ip,
3340                         ipv4_l3fwd_route_array[i].depth,
3341                         ipv4_l3fwd_route_array[i].if_out);
3342
3343                 if (ret < 0) {
3344                         rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
3345                                 "l3fwd LPM table on socket %d\n",
3346                                 i, socketid);
3347                 }
3348
3349                 printf("LPM: Adding route 0x%08x / %d (%d)\n",
3350                         (unsigned)ipv4_l3fwd_route_array[i].ip,
3351                         ipv4_l3fwd_route_array[i].depth,
3352                         ipv4_l3fwd_route_array[i].if_out);
3353         }
3354
3355         /* create the LPM6 table */
3356         snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid);
3357
3358         config.max_rules = IPV6_L3FWD_LPM_MAX_RULES;
3359         config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S;
3360         config.flags = 0;
3361         ipv6_l3fwd_lookup_struct[socketid] = rte_lpm6_create(s, socketid,
3362                                 &config);
3363         if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
3364                 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
3365                                 " on socket %d\n", socketid);
3366
3367         /* populate the LPM table */
3368         for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
3369
3370                 /* skip unused ports */
3371                 if ((1 << ipv6_l3fwd_route_array[i].if_out &
3372                                 enabled_port_mask) == 0)
3373                         continue;
3374
3375                 ret = rte_lpm6_add(ipv6_l3fwd_lookup_struct[socketid],
3376                         ipv6_l3fwd_route_array[i].ip,
3377                         ipv6_l3fwd_route_array[i].depth,
3378                         ipv6_l3fwd_route_array[i].if_out);
3379
3380                 if (ret < 0) {
3381                         rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
3382                                 "l3fwd LPM table on socket %d\n",
3383                                 i, socketid);
3384                 }
3385
3386                 printf("LPM: Adding route %s / %d (%d)\n",
3387                         "IPV6",
3388                         ipv6_l3fwd_route_array[i].depth,
3389                         ipv6_l3fwd_route_array[i].if_out);
3390         }
3391 }
3392 #endif
3393
3394 static int
3395 init_mem(unsigned nb_mbuf)
3396 {
3397         struct lcore_conf *qconf;
3398         int socketid;
3399         unsigned lcore_id;
3400         char s[64];
3401
3402         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
3403                 if (rte_lcore_is_enabled(lcore_id) == 0)
3404                         continue;
3405
3406                 if (numa_on)
3407                         socketid = rte_lcore_to_socket_id(lcore_id);
3408                 else
3409                         socketid = 0;
3410
3411                 if (socketid >= NB_SOCKETS) {
3412                         rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is out of range %d\n",
3413                                 socketid, lcore_id, NB_SOCKETS);
3414                 }
3415                 if (pktmbuf_pool[socketid] == NULL) {
3416                         snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
3417                         pktmbuf_pool[socketid] =
3418                                 rte_pktmbuf_pool_create(s, nb_mbuf,
3419                                         MEMPOOL_CACHE_SIZE, 0,
3420                                         RTE_MBUF_DEFAULT_BUF_SIZE, socketid);
3421                         if (pktmbuf_pool[socketid] == NULL)
3422                                 rte_exit(EXIT_FAILURE,
3423                                                 "Cannot init mbuf pool on socket %d\n", socketid);
3424                         else
3425                                 printf("Allocated mbuf pool on socket %d\n", socketid);
3426
3427 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
3428                         setup_lpm(socketid);
3429 #else
3430                         setup_hash(socketid);
3431 #endif
3432                 }
3433                 qconf = &lcore_conf[lcore_id];
3434                 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
3435                 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
3436         }
3437         return 0;
3438 }
3439
3440 /* Check the link status of all ports in up to 9s, and print them finally */
3441 static void
3442 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask)
3443 {
3444 #define CHECK_INTERVAL 100 /* 100ms */
3445 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
3446         uint16_t portid;
3447         uint8_t count, all_ports_up, print_flag = 0;
3448         struct rte_eth_link link;
3449
3450         printf("\nChecking link status");
3451         fflush(stdout);
3452         for (count = 0; count <= MAX_CHECK_TIME; count++) {
3453                 all_ports_up = 1;
3454                 for (portid = 0; portid < port_num; portid++) {
3455                         if ((port_mask & (1 << portid)) == 0)
3456                                 continue;
3457                         memset(&link, 0, sizeof(link));
3458                         rte_eth_link_get_nowait(portid, &link);
3459                         /* print link status if flag set */
3460                         if (print_flag == 1) {
3461                                 if (link.link_status)
3462                                         printf(
3463                                         "Port%d Link Up. Speed %u Mbps - %s\n",
3464                                                 portid, link.link_speed,
3465                                 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
3466                                         ("full-duplex") : ("half-duplex\n"));
3467                                 else
3468                                         printf("Port %d Link Down\n", portid);
3469                                 continue;
3470                         }
3471                         /* clear all_ports_up flag if any link down */
3472                         if (link.link_status == ETH_LINK_DOWN) {
3473                                 all_ports_up = 0;
3474                                 break;
3475                         }
3476                 }
3477                 /* after finally printing all link status, get out */
3478                 if (print_flag == 1)
3479                         break;
3480
3481                 if (all_ports_up == 0) {
3482                         printf(".");
3483                         fflush(stdout);
3484                         rte_delay_ms(CHECK_INTERVAL);
3485                 }
3486
3487                 /* set the print_flag if all ports up or timeout */
3488                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
3489                         print_flag = 1;
3490                         printf("done\n");
3491                 }
3492         }
3493 }
3494
3495 int
3496 main(int argc, char **argv)
3497 {
3498         struct rte_eth_dev_info dev_info;
3499         struct rte_eth_txconf *txconf;
3500         int ret;
3501         int i;
3502         unsigned nb_ports;
3503         uint16_t queueid, portid;
3504         unsigned lcore_id;
3505         uint32_t n_tx_queue, nb_lcores;
3506         uint8_t nb_rx_queue, queue, socketid;
3507
3508         /* init EAL */
3509         ret = rte_eal_init(argc, argv);
3510         if (ret < 0)
3511                 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
3512         argc -= ret;
3513         argv += ret;
3514
3515         /* pre-init dst MACs for all ports to 02:00:00:00:00:xx */
3516         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
3517                 dest_eth_addr[portid] = ETHER_LOCAL_ADMIN_ADDR +
3518                                 ((uint64_t)portid << 40);
3519                 *(uint64_t *)(val_eth + portid) = dest_eth_addr[portid];
3520         }
3521
3522         /* parse application arguments (after the EAL ones) */
3523         ret = parse_args(argc, argv);
3524         if (ret < 0)
3525                 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
3526
3527         if (check_lcore_params() < 0)
3528                 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
3529
3530         printf("Initializing rx-queues...\n");
3531         ret = init_rx_queues();
3532         if (ret < 0)
3533                 rte_exit(EXIT_FAILURE, "init_rx_queues failed\n");
3534
3535         printf("Initializing tx-threads...\n");
3536         ret = init_tx_threads();
3537         if (ret < 0)
3538                 rte_exit(EXIT_FAILURE, "init_tx_threads failed\n");
3539
3540         printf("Initializing rings...\n");
3541         ret = init_rx_rings();
3542         if (ret < 0)
3543                 rte_exit(EXIT_FAILURE, "init_rx_rings failed\n");
3544
3545         nb_ports = rte_eth_dev_count();
3546
3547         if (check_port_config(nb_ports) < 0)
3548                 rte_exit(EXIT_FAILURE, "check_port_config failed\n");
3549
3550         nb_lcores = rte_lcore_count();
3551
3552         /* initialize all ports */
3553         for (portid = 0; portid < nb_ports; portid++) {
3554                 /* skip ports that are not enabled */
3555                 if ((enabled_port_mask & (1 << portid)) == 0) {
3556                         printf("\nSkipping disabled port %d\n", portid);
3557                         continue;
3558                 }
3559
3560                 /* init port */
3561                 printf("Initializing port %d ... ", portid);
3562                 fflush(stdout);
3563
3564                 nb_rx_queue = get_port_n_rx_queues(portid);
3565                 n_tx_queue = nb_lcores;
3566                 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
3567                         n_tx_queue = MAX_TX_QUEUE_PER_PORT;
3568                 printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
3569                         nb_rx_queue, (unsigned)n_tx_queue);
3570                 ret = rte_eth_dev_configure(portid, nb_rx_queue,
3571                                         (uint16_t)n_tx_queue, &port_conf);
3572                 if (ret < 0)
3573                         rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
3574                                 ret, portid);
3575
3576                 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
3577                                                        &nb_txd);
3578                 if (ret < 0)
3579                         rte_exit(EXIT_FAILURE,
3580                                  "rte_eth_dev_adjust_nb_rx_tx_desc: err=%d, port=%d\n",
3581                                  ret, portid);
3582
3583                 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
3584                 print_ethaddr(" Address:", &ports_eth_addr[portid]);
3585                 printf(", ");
3586                 print_ethaddr("Destination:",
3587                         (const struct ether_addr *)&dest_eth_addr[portid]);
3588                 printf(", ");
3589
3590                 /*
3591                  * prepare src MACs for each port.
3592                  */
3593                 ether_addr_copy(&ports_eth_addr[portid],
3594                         (struct ether_addr *)(val_eth + portid) + 1);
3595
3596                 /* init memory */
3597                 ret = init_mem(NB_MBUF);
3598                 if (ret < 0)
3599                         rte_exit(EXIT_FAILURE, "init_mem failed\n");
3600
3601                 /* init one TX queue per couple (lcore,port) */
3602                 queueid = 0;
3603                 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
3604                         if (rte_lcore_is_enabled(lcore_id) == 0)
3605                                 continue;
3606
3607                         if (numa_on)
3608                                 socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
3609                         else
3610                                 socketid = 0;
3611
3612                         printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
3613                         fflush(stdout);
3614
3615                         rte_eth_dev_info_get(portid, &dev_info);
3616                         txconf = &dev_info.default_txconf;
3617                         if (port_conf.rxmode.jumbo_frame)
3618                                 txconf->txq_flags = 0;
3619                         ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
3620                                                      socketid, txconf);
3621                         if (ret < 0)
3622                                 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
3623                                         "port=%d\n", ret, portid);
3624
3625                         tx_thread[lcore_id].tx_queue_id[portid] = queueid;
3626                         queueid++;
3627                 }
3628                 printf("\n");
3629         }
3630
3631         for (i = 0; i < n_rx_thread; i++) {
3632                 lcore_id = rx_thread[i].conf.lcore_id;
3633
3634                 if (rte_lcore_is_enabled(lcore_id) == 0) {
3635                         rte_exit(EXIT_FAILURE,
3636                                         "Cannot start Rx thread on lcore %u: lcore disabled\n",
3637                                         lcore_id
3638                                 );
3639                 }
3640
3641                 printf("\nInitializing rx queues for Rx thread %d on lcore %u ... ",
3642                                 i, lcore_id);
3643                 fflush(stdout);
3644
3645                 /* init RX queues */
3646                 for (queue = 0; queue < rx_thread[i].n_rx_queue; ++queue) {
3647                         portid = rx_thread[i].rx_queue_list[queue].port_id;
3648                         queueid = rx_thread[i].rx_queue_list[queue].queue_id;
3649
3650                         if (numa_on)
3651                                 socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
3652                         else
3653                                 socketid = 0;
3654
3655                         printf("rxq=%d,%d,%d ", portid, queueid, socketid);
3656                         fflush(stdout);
3657
3658                         ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
3659                                         socketid,
3660                                         NULL,
3661                                         pktmbuf_pool[socketid]);
3662                         if (ret < 0)
3663                                 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, "
3664                                                 "port=%d\n", ret, portid);
3665                 }
3666         }
3667
3668         printf("\n");
3669
3670         /* start ports */
3671         for (portid = 0; portid < nb_ports; portid++) {
3672                 if ((enabled_port_mask & (1 << portid)) == 0)
3673                         continue;
3674
3675                 /* Start device */
3676                 ret = rte_eth_dev_start(portid);
3677                 if (ret < 0)
3678                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
3679                                 ret, portid);
3680
3681                 /*
3682                  * If enabled, put device in promiscuous mode.
3683                  * This allows IO forwarding mode to forward packets
3684                  * to itself through 2 cross-connected  ports of the
3685                  * target machine.
3686                  */
3687                 if (promiscuous_on)
3688                         rte_eth_promiscuous_enable(portid);
3689         }
3690
3691         for (i = 0; i < n_rx_thread; i++) {
3692                 lcore_id = rx_thread[i].conf.lcore_id;
3693                 if (rte_lcore_is_enabled(lcore_id) == 0)
3694                         continue;
3695
3696                 /* check if hw packet type is supported */
3697                 for (queue = 0; queue < rx_thread[i].n_rx_queue; ++queue) {
3698                         portid = rx_thread[i].rx_queue_list[queue].port_id;
3699                         queueid = rx_thread[i].rx_queue_list[queue].queue_id;
3700
3701                         if (parse_ptype_on) {
3702                                 if (!rte_eth_add_rx_callback(portid, queueid,
3703                                                 cb_parse_ptype, NULL))
3704                                         rte_exit(EXIT_FAILURE,
3705                                                 "Failed to add rx callback: "
3706                                                 "port=%d\n", portid);
3707                         } else if (!check_ptype(portid))
3708                                 rte_exit(EXIT_FAILURE,
3709                                         "Port %d cannot parse packet type.\n\n"
3710                                         "Please add --parse-ptype to use sw "
3711                                         "packet type analyzer.\n\n",
3712                                         portid);
3713                 }
3714         }
3715
3716         check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
3717
3718         if (lthreads_on) {
3719                 printf("Starting L-Threading Model\n");
3720
3721 #if (APP_CPU_LOAD > 0)
3722                 if (cpu_load_lcore_id > 0)
3723                         /* Use one lcore for cpu load collector */
3724                         nb_lcores--;
3725 #endif
3726
3727                 lthread_num_schedulers_set(nb_lcores);
3728                 rte_eal_mp_remote_launch(sched_spawner, NULL, SKIP_MASTER);
3729                 lthread_master_spawner(NULL);
3730
3731         } else {
3732                 printf("Starting P-Threading Model\n");
3733                 /* launch per-lcore init on every lcore */
3734                 rte_eal_mp_remote_launch(pthread_run, NULL, CALL_MASTER);
3735                 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
3736                         if (rte_eal_wait_lcore(lcore_id) < 0)
3737                                 return -1;
3738                 }
3739         }
3740
3741         return 0;
3742 }