New upstream version 18.11-rc2
[deb_dpdk.git] / examples / vm_power_manager / power_manager.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/un.h>
10 #include <fcntl.h>
11 #include <unistd.h>
12 #include <dirent.h>
13 #include <errno.h>
14
15 #include <sys/sysinfo.h>
16 #include <sys/types.h>
17
18 #include <rte_log.h>
19 #include <rte_power.h>
20 #include <rte_spinlock.h>
21
22 #include "channel_manager.h"
23 #include "power_manager.h"
24 #include "oob_monitor.h"
25
26 #define POWER_SCALE_CORE(DIRECTION, core_num , ret) do { \
27         if (core_num >= ci.core_count) \
28                 return -1; \
29         if (!(ci.cd[core_num].global_enabled_cpus)) \
30                 return -1; \
31         rte_spinlock_lock(&global_core_freq_info[core_num].power_sl); \
32         ret = rte_power_freq_##DIRECTION(core_num); \
33         rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl); \
34 } while (0)
35
36 #define POWER_SCALE_MASK(DIRECTION, core_mask, ret) do { \
37         int i; \
38         for (i = 0; core_mask; core_mask &= ~(1 << i++)) { \
39                 if ((core_mask >> i) & 1) { \
40                         if (!(ci.cd[i].global_enabled_cpus)) \
41                                 continue; \
42                         rte_spinlock_lock(&global_core_freq_info[i].power_sl); \
43                         if (rte_power_freq_##DIRECTION(i) != 1) \
44                                 ret = -1; \
45                         rte_spinlock_unlock(&global_core_freq_info[i].power_sl); \
46                 } \
47         } \
48 } while (0)
49
50 struct freq_info {
51         rte_spinlock_t power_sl;
52         uint32_t freqs[RTE_MAX_LCORE_FREQS];
53         unsigned num_freqs;
54 } __rte_cache_aligned;
55
56 static struct freq_info global_core_freq_info[POWER_MGR_MAX_CPUS];
57
58 struct core_info ci;
59
60 #define SYSFS_CPU_PATH "/sys/devices/system/cpu/cpu%u/topology/core_id"
61
62 struct core_info *
63 get_core_info(void)
64 {
65         return &ci;
66 }
67
68 int
69 core_info_init(void)
70 {
71         struct core_info *ci;
72         int i;
73
74         ci = get_core_info();
75
76         ci->core_count = get_nprocs_conf();
77         ci->branch_ratio_threshold = BRANCH_RATIO_THRESHOLD;
78         ci->cd = malloc(ci->core_count * sizeof(struct core_details));
79         if (!ci->cd) {
80                 RTE_LOG(ERR, POWER_MANAGER, "Failed to allocate memory for core info.");
81                 return -1;
82         }
83         for (i = 0; i < ci->core_count; i++) {
84                 ci->cd[i].global_enabled_cpus = 1;
85                 ci->cd[i].oob_enabled = 0;
86                 ci->cd[i].msr_fd = 0;
87         }
88         printf("%d cores in system\n", ci->core_count);
89         return 0;
90 }
91
92 int
93 power_manager_init(void)
94 {
95         unsigned int i, num_cpus = 0, num_freqs = 0;
96         int ret = 0;
97         struct core_info *ci;
98         unsigned int max_core_num;
99
100         rte_power_set_env(PM_ENV_ACPI_CPUFREQ);
101
102         ci = get_core_info();
103         if (!ci) {
104                 RTE_LOG(ERR, POWER_MANAGER,
105                                 "Failed to get core info!\n");
106                 return -1;
107         }
108
109         if (ci->core_count > POWER_MGR_MAX_CPUS)
110                 max_core_num = POWER_MGR_MAX_CPUS;
111         else
112                 max_core_num = ci->core_count;
113
114         for (i = 0; i < max_core_num; i++) {
115                 if (ci->cd[i].global_enabled_cpus) {
116                         if (rte_power_init(i) < 0)
117                                 RTE_LOG(ERR, POWER_MANAGER,
118                                                 "Unable to initialize power manager "
119                                                 "for core %u\n", i);
120                         num_cpus++;
121                         num_freqs = rte_power_freqs(i,
122                                         global_core_freq_info[i].freqs,
123                                         RTE_MAX_LCORE_FREQS);
124                         if (num_freqs == 0) {
125                                 RTE_LOG(ERR, POWER_MANAGER,
126                                         "Unable to get frequency list for core %u\n",
127                                         i);
128                                 ci->cd[i].oob_enabled = 0;
129                                 ret = -1;
130                         }
131                         global_core_freq_info[i].num_freqs = num_freqs;
132
133                         rte_spinlock_init(&global_core_freq_info[i].power_sl);
134                 }
135                 if (ci->cd[i].oob_enabled)
136                         add_core_to_monitor(i);
137         }
138         RTE_LOG(INFO, POWER_MANAGER, "Managing %u cores out of %u available host cores\n",
139                         num_cpus, ci->core_count);
140         return ret;
141
142 }
143
144 uint32_t
145 power_manager_get_current_frequency(unsigned core_num)
146 {
147         uint32_t freq, index;
148
149         if (core_num >= POWER_MGR_MAX_CPUS) {
150                 RTE_LOG(ERR, POWER_MANAGER, "Core(%u) is out of range 0...%d\n",
151                                 core_num, POWER_MGR_MAX_CPUS-1);
152                 return -1;
153         }
154         if (!(ci.cd[core_num].global_enabled_cpus))
155                 return 0;
156
157         rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
158         index = rte_power_get_freq(core_num);
159         rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
160         if (index >= POWER_MGR_MAX_CPUS)
161                 freq = 0;
162         else
163                 freq = global_core_freq_info[core_num].freqs[index];
164
165         return freq;
166 }
167
168 int
169 power_manager_exit(void)
170 {
171         unsigned int i;
172         int ret = 0;
173         struct core_info *ci;
174         unsigned int max_core_num;
175
176         ci = get_core_info();
177         if (!ci) {
178                 RTE_LOG(ERR, POWER_MANAGER,
179                                 "Failed to get core info!\n");
180                 return -1;
181         }
182
183         if (ci->core_count > POWER_MGR_MAX_CPUS)
184                 max_core_num = POWER_MGR_MAX_CPUS;
185         else
186                 max_core_num = ci->core_count;
187
188         for (i = 0; i < max_core_num; i++) {
189                 if (ci->cd[i].global_enabled_cpus) {
190                         if (rte_power_exit(i) < 0) {
191                                 RTE_LOG(ERR, POWER_MANAGER, "Unable to shutdown power manager "
192                                                 "for core %u\n", i);
193                                 ret = -1;
194                         }
195                         ci->cd[i].global_enabled_cpus = 0;
196                 }
197                 remove_core_from_monitor(i);
198         }
199         return ret;
200 }
201
202 int
203 power_manager_scale_mask_up(uint64_t core_mask)
204 {
205         int ret = 0;
206
207         POWER_SCALE_MASK(up, core_mask, ret);
208         return ret;
209 }
210
211 int
212 power_manager_scale_mask_down(uint64_t core_mask)
213 {
214         int ret = 0;
215
216         POWER_SCALE_MASK(down, core_mask, ret);
217         return ret;
218 }
219
220 int
221 power_manager_scale_mask_min(uint64_t core_mask)
222 {
223         int ret = 0;
224
225         POWER_SCALE_MASK(min, core_mask, ret);
226         return ret;
227 }
228
229 int
230 power_manager_scale_mask_max(uint64_t core_mask)
231 {
232         int ret = 0;
233
234         POWER_SCALE_MASK(max, core_mask, ret);
235         return ret;
236 }
237
238 int
239 power_manager_enable_turbo_mask(uint64_t core_mask)
240 {
241         int ret = 0;
242
243         POWER_SCALE_MASK(enable_turbo, core_mask, ret);
244         return ret;
245 }
246
247 int
248 power_manager_disable_turbo_mask(uint64_t core_mask)
249 {
250         int ret = 0;
251
252         POWER_SCALE_MASK(disable_turbo, core_mask, ret);
253         return ret;
254 }
255
256 int
257 power_manager_scale_core_up(unsigned core_num)
258 {
259         int ret = 0;
260
261         POWER_SCALE_CORE(up, core_num, ret);
262         return ret;
263 }
264
265 int
266 power_manager_scale_core_down(unsigned core_num)
267 {
268         int ret = 0;
269
270         POWER_SCALE_CORE(down, core_num, ret);
271         return ret;
272 }
273
274 int
275 power_manager_scale_core_min(unsigned core_num)
276 {
277         int ret = 0;
278
279         POWER_SCALE_CORE(min, core_num, ret);
280         return ret;
281 }
282
283 int
284 power_manager_scale_core_max(unsigned core_num)
285 {
286         int ret = 0;
287
288         POWER_SCALE_CORE(max, core_num, ret);
289         return ret;
290 }
291
292 int
293 power_manager_enable_turbo_core(unsigned int core_num)
294 {
295         int ret = 0;
296
297         POWER_SCALE_CORE(enable_turbo, core_num, ret);
298         return ret;
299 }
300
301 int
302 power_manager_disable_turbo_core(unsigned int core_num)
303 {
304         int ret = 0;
305
306         POWER_SCALE_CORE(disable_turbo, core_num, ret);
307         return ret;
308 }
309
310 int
311 power_manager_scale_core_med(unsigned int core_num)
312 {
313         int ret = 0;
314         struct core_info *ci;
315
316         ci = get_core_info();
317         if (core_num >= POWER_MGR_MAX_CPUS)
318                 return -1;
319         if (!(ci->cd[core_num].global_enabled_cpus))
320                 return -1;
321         rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
322         ret = rte_power_set_freq(core_num,
323                                 global_core_freq_info[core_num].num_freqs / 2);
324         rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
325         return ret;
326 }