ad40a67451c910e7a418f776e9b406199a310047
[deb_dpdk.git] / lib / librte_acl / acl_run_sse.h
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include "acl_run.h"
35 #include "acl_vect.h"
36
37 enum {
38         SHUFFLE32_SLOT1 = 0xe5,
39         SHUFFLE32_SLOT2 = 0xe6,
40         SHUFFLE32_SLOT3 = 0xe7,
41         SHUFFLE32_SWAP64 = 0x4e,
42 };
43
44 static const rte_xmm_t xmm_shuffle_input = {
45         .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
46 };
47
48 static const rte_xmm_t xmm_ones_16 = {
49         .u16 = {1, 1, 1, 1, 1, 1, 1, 1},
50 };
51
52 static const rte_xmm_t xmm_match_mask = {
53         .u32 = {
54                 RTE_ACL_NODE_MATCH,
55                 RTE_ACL_NODE_MATCH,
56                 RTE_ACL_NODE_MATCH,
57                 RTE_ACL_NODE_MATCH,
58         },
59 };
60
61 static const rte_xmm_t xmm_index_mask = {
62         .u32 = {
63                 RTE_ACL_NODE_INDEX,
64                 RTE_ACL_NODE_INDEX,
65                 RTE_ACL_NODE_INDEX,
66                 RTE_ACL_NODE_INDEX,
67         },
68 };
69
70 static const rte_xmm_t xmm_range_base = {
71         .u32 = {
72                 0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
73         },
74 };
75
76 /*
77  * Resolve priority for multiple results (sse version).
78  * This consists comparing the priority of the current traversal with the
79  * running set of results for the packet.
80  * For each result, keep a running array of the result (rule number) and
81  * its priority for each category.
82  */
83 static inline void
84 resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
85         struct parms *parms, const struct rte_acl_match_results *p,
86         uint32_t categories)
87 {
88         uint32_t x;
89         xmm_t results, priority, results1, priority1, selector;
90         xmm_t *saved_results, *saved_priority;
91
92         for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
93
94                 saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
95                 saved_priority =
96                         (xmm_t *)(&parms[n].cmplt->priority[x]);
97
98                 /* get results and priorities for completed trie */
99                 results = _mm_loadu_si128(
100                         (const xmm_t *)&p[transition].results[x]);
101                 priority = _mm_loadu_si128(
102                         (const xmm_t *)&p[transition].priority[x]);
103
104                 /* if this is not the first completed trie */
105                 if (parms[n].cmplt->count != ctx->num_tries) {
106
107                         /* get running best results and their priorities */
108                         results1 = _mm_loadu_si128(saved_results);
109                         priority1 = _mm_loadu_si128(saved_priority);
110
111                         /* select results that are highest priority */
112                         selector = _mm_cmpgt_epi32(priority1, priority);
113                         results = _mm_blendv_epi8(results, results1, selector);
114                         priority = _mm_blendv_epi8(priority, priority1,
115                                 selector);
116                 }
117
118                 /* save running best results and their priorities */
119                 _mm_storeu_si128(saved_results, results);
120                 _mm_storeu_si128(saved_priority, priority);
121         }
122 }
123
124 /*
125  * Extract transitions from an XMM register and check for any matches
126  */
127 static void
128 acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
129         struct parms *parms, struct acl_flow_data *flows)
130 {
131         uint64_t transition1, transition2;
132
133         /* extract transition from low 64 bits. */
134         transition1 = _mm_cvtsi128_si64(*indices);
135
136         /* extract transition from high 64 bits. */
137         *indices = _mm_shuffle_epi32(*indices, SHUFFLE32_SWAP64);
138         transition2 = _mm_cvtsi128_si64(*indices);
139
140         transition1 = acl_match_check(transition1, slot, ctx,
141                 parms, flows, resolve_priority_sse);
142         transition2 = acl_match_check(transition2, slot + 1, ctx,
143                 parms, flows, resolve_priority_sse);
144
145         /* update indices with new transitions. */
146         *indices = _mm_set_epi64x(transition2, transition1);
147 }
148
149 /*
150  * Check for any match in 4 transitions (contained in 2 SSE registers)
151  */
152 static inline __attribute__((always_inline)) void
153 acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
154         struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2,
155         xmm_t match_mask)
156 {
157         xmm_t temp;
158
159         /* put low 32 bits of each transition into one register */
160         temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
161                 0x88);
162         /* test for match node */
163         temp = _mm_and_si128(match_mask, temp);
164
165         while (!_mm_testz_si128(temp, temp)) {
166                 acl_process_matches(indices1, slot, ctx, parms, flows);
167                 acl_process_matches(indices2, slot + 2, ctx, parms, flows);
168
169                 temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1,
170                                         (__m128)*indices2,
171                                         0x88);
172                 temp = _mm_and_si128(match_mask, temp);
173         }
174 }
175
176 /*
177  * Process 4 transitions (in 2 XMM registers) in parallel
178  */
179 static inline __attribute__((always_inline)) xmm_t
180 transition4(xmm_t next_input, const uint64_t *trans,
181         xmm_t *indices1, xmm_t *indices2)
182 {
183         xmm_t addr, tr_lo, tr_hi;
184         uint64_t trans0, trans2;
185
186         /* Shuffle low 32 into tr_lo and high 32 into tr_hi */
187         ACL_TR_HILO(mm, __m128, *indices1, *indices2, tr_lo, tr_hi);
188
189          /* Calculate the address (array index) for all 4 transitions. */
190         ACL_TR_CALC_ADDR(mm, 128, addr, xmm_index_mask.x, next_input,
191                 xmm_shuffle_input.x, xmm_ones_16.x, xmm_range_base.x,
192                 tr_lo, tr_hi);
193
194          /* Gather 64 bit transitions and pack back into 2 registers. */
195
196         trans0 = trans[_mm_cvtsi128_si32(addr)];
197
198         /* get slot 2 */
199
200         /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
201         addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT2);
202         trans2 = trans[_mm_cvtsi128_si32(addr)];
203
204         /* get slot 1 */
205
206         /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
207         addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT1);
208         *indices1 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans0);
209
210         /* get slot 3 */
211
212         /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
213         addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT3);
214         *indices2 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans2);
215
216         return _mm_srli_epi32(next_input, CHAR_BIT);
217 }
218
219 /*
220  * Execute trie traversal with 8 traversals in parallel
221  */
222 static inline int
223 search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
224         uint32_t *results, uint32_t total_packets, uint32_t categories)
225 {
226         int n;
227         struct acl_flow_data flows;
228         uint64_t index_array[MAX_SEARCHES_SSE8];
229         struct completion cmplt[MAX_SEARCHES_SSE8];
230         struct parms parms[MAX_SEARCHES_SSE8];
231         xmm_t input0, input1;
232         xmm_t indices1, indices2, indices3, indices4;
233
234         acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
235                 total_packets, categories, ctx->trans_table);
236
237         for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
238                 cmplt[n].count = 0;
239                 index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
240         }
241
242         /*
243          * indices1 contains index_array[0,1]
244          * indices2 contains index_array[2,3]
245          * indices3 contains index_array[4,5]
246          * indices4 contains index_array[6,7]
247          */
248
249         indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
250         indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
251
252         indices3 = _mm_loadu_si128((xmm_t *) &index_array[4]);
253         indices4 = _mm_loadu_si128((xmm_t *) &index_array[6]);
254
255          /* Check for any matches. */
256         acl_match_check_x4(0, ctx, parms, &flows,
257                 &indices1, &indices2, xmm_match_mask.x);
258         acl_match_check_x4(4, ctx, parms, &flows,
259                 &indices3, &indices4, xmm_match_mask.x);
260
261         while (flows.started > 0) {
262
263                 /* Gather 4 bytes of input data for each stream. */
264                 input0 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
265                 input1 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 4));
266
267                 input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 1), 1);
268                 input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 5), 1);
269
270                 input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 2), 2);
271                 input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 6), 2);
272
273                 input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 3), 3);
274                 input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 7), 3);
275
276                  /* Process the 4 bytes of input on each stream. */
277
278                 input0 = transition4(input0, flows.trans,
279                         &indices1, &indices2);
280                 input1 = transition4(input1, flows.trans,
281                         &indices3, &indices4);
282
283                 input0 = transition4(input0, flows.trans,
284                         &indices1, &indices2);
285                 input1 = transition4(input1, flows.trans,
286                         &indices3, &indices4);
287
288                 input0 = transition4(input0, flows.trans,
289                         &indices1, &indices2);
290                 input1 = transition4(input1, flows.trans,
291                         &indices3, &indices4);
292
293                 input0 = transition4(input0, flows.trans,
294                         &indices1, &indices2);
295                 input1 = transition4(input1, flows.trans,
296                         &indices3, &indices4);
297
298                  /* Check for any matches. */
299                 acl_match_check_x4(0, ctx, parms, &flows,
300                         &indices1, &indices2, xmm_match_mask.x);
301                 acl_match_check_x4(4, ctx, parms, &flows,
302                         &indices3, &indices4, xmm_match_mask.x);
303         }
304
305         return 0;
306 }
307
308 /*
309  * Execute trie traversal with 4 traversals in parallel
310  */
311 static inline int
312 search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
313          uint32_t *results, int total_packets, uint32_t categories)
314 {
315         int n;
316         struct acl_flow_data flows;
317         uint64_t index_array[MAX_SEARCHES_SSE4];
318         struct completion cmplt[MAX_SEARCHES_SSE4];
319         struct parms parms[MAX_SEARCHES_SSE4];
320         xmm_t input, indices1, indices2;
321
322         acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
323                 total_packets, categories, ctx->trans_table);
324
325         for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
326                 cmplt[n].count = 0;
327                 index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
328         }
329
330         indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
331         indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
332
333         /* Check for any matches. */
334         acl_match_check_x4(0, ctx, parms, &flows,
335                 &indices1, &indices2, xmm_match_mask.x);
336
337         while (flows.started > 0) {
338
339                 /* Gather 4 bytes of input data for each stream. */
340                 input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
341                 input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 1), 1);
342                 input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 2), 2);
343                 input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 3), 3);
344
345                 /* Process the 4 bytes of input on each stream. */
346                 input = transition4(input, flows.trans, &indices1, &indices2);
347                 input = transition4(input, flows.trans, &indices1, &indices2);
348                 input = transition4(input, flows.trans, &indices1, &indices2);
349                 input = transition4(input, flows.trans, &indices1, &indices2);
350
351                 /* Check for any matches. */
352                 acl_match_check_x4(0, ctx, parms, &flows,
353                         &indices1, &indices2, xmm_match_mask.x);
354         }
355
356         return 0;
357 }