New upstream version 18.11
[deb_dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright(c) 2013 6WIND S.A.
4  */
5
6 #define _FILE_OFFSET_BITS 64
7 #include <errno.h>
8 #include <fcntl.h>
9 #include <stdarg.h>
10 #include <stdbool.h>
11 #include <stdlib.h>
12 #include <stdio.h>
13 #include <stdint.h>
14 #include <inttypes.h>
15 #include <string.h>
16 #include <sys/mman.h>
17 #include <sys/types.h>
18 #include <sys/stat.h>
19 #include <sys/queue.h>
20 #include <sys/file.h>
21 #include <sys/resource.h>
22 #include <unistd.h>
23 #include <limits.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <signal.h>
27 #include <setjmp.h>
28 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
29 #include <numa.h>
30 #include <numaif.h>
31 #endif
32
33 #include <rte_errno.h>
34 #include <rte_log.h>
35 #include <rte_memory.h>
36 #include <rte_launch.h>
37 #include <rte_eal.h>
38 #include <rte_eal_memconfig.h>
39 #include <rte_per_lcore.h>
40 #include <rte_lcore.h>
41 #include <rte_common.h>
42 #include <rte_string_fns.h>
43
44 #include "eal_private.h"
45 #include "eal_memalloc.h"
46 #include "eal_internal_cfg.h"
47 #include "eal_filesystem.h"
48 #include "eal_hugepages.h"
49
50 #define PFN_MASK_SIZE   8
51
52 /**
53  * @file
54  * Huge page mapping under linux
55  *
56  * To reserve a big contiguous amount of memory, we use the hugepage
57  * feature of linux. For that, we need to have hugetlbfs mounted. This
58  * code will create many files in this directory (one per page) and
59  * map them in virtual memory. For each page, we will retrieve its
60  * physical address and remap it in order to have a virtual contiguous
61  * zone as well as a physical contiguous zone.
62  */
63
64 static bool phys_addrs_available = true;
65
66 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
67
68 static void
69 test_phys_addrs_available(void)
70 {
71         uint64_t tmp = 0;
72         phys_addr_t physaddr;
73
74         if (!rte_eal_has_hugepages()) {
75                 RTE_LOG(ERR, EAL,
76                         "Started without hugepages support, physical addresses not available\n");
77                 phys_addrs_available = false;
78                 return;
79         }
80
81         physaddr = rte_mem_virt2phy(&tmp);
82         if (physaddr == RTE_BAD_PHYS_ADDR) {
83                 if (rte_eal_iova_mode() == RTE_IOVA_PA)
84                         RTE_LOG(ERR, EAL,
85                                 "Cannot obtain physical addresses: %s. "
86                                 "Only vfio will function.\n",
87                                 strerror(errno));
88                 phys_addrs_available = false;
89         }
90 }
91
92 /*
93  * Get physical address of any mapped virtual address in the current process.
94  */
95 phys_addr_t
96 rte_mem_virt2phy(const void *virtaddr)
97 {
98         int fd, retval;
99         uint64_t page, physaddr;
100         unsigned long virt_pfn;
101         int page_size;
102         off_t offset;
103
104         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
105         if (!phys_addrs_available)
106                 return RTE_BAD_IOVA;
107
108         /* standard page size */
109         page_size = getpagesize();
110
111         fd = open("/proc/self/pagemap", O_RDONLY);
112         if (fd < 0) {
113                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
114                         __func__, strerror(errno));
115                 return RTE_BAD_IOVA;
116         }
117
118         virt_pfn = (unsigned long)virtaddr / page_size;
119         offset = sizeof(uint64_t) * virt_pfn;
120         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
121                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
122                                 __func__, strerror(errno));
123                 close(fd);
124                 return RTE_BAD_IOVA;
125         }
126
127         retval = read(fd, &page, PFN_MASK_SIZE);
128         close(fd);
129         if (retval < 0) {
130                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
131                                 __func__, strerror(errno));
132                 return RTE_BAD_IOVA;
133         } else if (retval != PFN_MASK_SIZE) {
134                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
135                                 "but expected %d:\n",
136                                 __func__, retval, PFN_MASK_SIZE);
137                 return RTE_BAD_IOVA;
138         }
139
140         /*
141          * the pfn (page frame number) are bits 0-54 (see
142          * pagemap.txt in linux Documentation)
143          */
144         if ((page & 0x7fffffffffffffULL) == 0)
145                 return RTE_BAD_IOVA;
146
147         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
148                 + ((unsigned long)virtaddr % page_size);
149
150         return physaddr;
151 }
152
153 rte_iova_t
154 rte_mem_virt2iova(const void *virtaddr)
155 {
156         if (rte_eal_iova_mode() == RTE_IOVA_VA)
157                 return (uintptr_t)virtaddr;
158         return rte_mem_virt2phy(virtaddr);
159 }
160
161 /*
162  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
163  * it by browsing the /proc/self/pagemap special file.
164  */
165 static int
166 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
167 {
168         unsigned int i;
169         phys_addr_t addr;
170
171         for (i = 0; i < hpi->num_pages[0]; i++) {
172                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
173                 if (addr == RTE_BAD_PHYS_ADDR)
174                         return -1;
175                 hugepg_tbl[i].physaddr = addr;
176         }
177         return 0;
178 }
179
180 /*
181  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
182  */
183 static int
184 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
185 {
186         unsigned int i;
187         static phys_addr_t addr;
188
189         for (i = 0; i < hpi->num_pages[0]; i++) {
190                 hugepg_tbl[i].physaddr = addr;
191                 addr += hugepg_tbl[i].size;
192         }
193         return 0;
194 }
195
196 /*
197  * Check whether address-space layout randomization is enabled in
198  * the kernel. This is important for multi-process as it can prevent
199  * two processes mapping data to the same virtual address
200  * Returns:
201  *    0 - address space randomization disabled
202  *    1/2 - address space randomization enabled
203  *    negative error code on error
204  */
205 static int
206 aslr_enabled(void)
207 {
208         char c;
209         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
210         if (fd < 0)
211                 return -errno;
212         retval = read(fd, &c, 1);
213         close(fd);
214         if (retval < 0)
215                 return -errno;
216         if (retval == 0)
217                 return -EIO;
218         switch (c) {
219                 case '0' : return 0;
220                 case '1' : return 1;
221                 case '2' : return 2;
222                 default: return -EINVAL;
223         }
224 }
225
226 static sigjmp_buf huge_jmpenv;
227
228 static void huge_sigbus_handler(int signo __rte_unused)
229 {
230         siglongjmp(huge_jmpenv, 1);
231 }
232
233 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
234  * non-static local variable in the stack frame calling sigsetjmp might be
235  * clobbered by a call to longjmp.
236  */
237 static int huge_wrap_sigsetjmp(void)
238 {
239         return sigsetjmp(huge_jmpenv, 1);
240 }
241
242 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
243 /* Callback for numa library. */
244 void numa_error(char *where)
245 {
246         RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
247 }
248 #endif
249
250 /*
251  * Mmap all hugepages of hugepage table: it first open a file in
252  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
253  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
254  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
255  * map contiguous physical blocks in contiguous virtual blocks.
256  */
257 static unsigned
258 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
259                   uint64_t *essential_memory __rte_unused)
260 {
261         int fd;
262         unsigned i;
263         void *virtaddr;
264 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
265         int node_id = -1;
266         int essential_prev = 0;
267         int oldpolicy;
268         struct bitmask *oldmask = NULL;
269         bool have_numa = true;
270         unsigned long maxnode = 0;
271
272         /* Check if kernel supports NUMA. */
273         if (numa_available() != 0) {
274                 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
275                 have_numa = false;
276         }
277
278         if (have_numa) {
279                 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
280                 oldmask = numa_allocate_nodemask();
281                 if (get_mempolicy(&oldpolicy, oldmask->maskp,
282                                   oldmask->size + 1, 0, 0) < 0) {
283                         RTE_LOG(ERR, EAL,
284                                 "Failed to get current mempolicy: %s. "
285                                 "Assuming MPOL_DEFAULT.\n", strerror(errno));
286                         oldpolicy = MPOL_DEFAULT;
287                 }
288                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
289                         if (internal_config.socket_mem[i])
290                                 maxnode = i + 1;
291         }
292 #endif
293
294         for (i = 0; i < hpi->num_pages[0]; i++) {
295                 struct hugepage_file *hf = &hugepg_tbl[i];
296                 uint64_t hugepage_sz = hpi->hugepage_sz;
297
298 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
299                 if (maxnode) {
300                         unsigned int j;
301
302                         for (j = 0; j < maxnode; j++)
303                                 if (essential_memory[j])
304                                         break;
305
306                         if (j == maxnode) {
307                                 node_id = (node_id + 1) % maxnode;
308                                 while (!internal_config.socket_mem[node_id]) {
309                                         node_id++;
310                                         node_id %= maxnode;
311                                 }
312                                 essential_prev = 0;
313                         } else {
314                                 node_id = j;
315                                 essential_prev = essential_memory[j];
316
317                                 if (essential_memory[j] < hugepage_sz)
318                                         essential_memory[j] = 0;
319                                 else
320                                         essential_memory[j] -= hugepage_sz;
321                         }
322
323                         RTE_LOG(DEBUG, EAL,
324                                 "Setting policy MPOL_PREFERRED for socket %d\n",
325                                 node_id);
326                         numa_set_preferred(node_id);
327                 }
328 #endif
329
330                 hf->file_id = i;
331                 hf->size = hugepage_sz;
332                 eal_get_hugefile_path(hf->filepath, sizeof(hf->filepath),
333                                 hpi->hugedir, hf->file_id);
334                 hf->filepath[sizeof(hf->filepath) - 1] = '\0';
335
336                 /* try to create hugepage file */
337                 fd = open(hf->filepath, O_CREAT | O_RDWR, 0600);
338                 if (fd < 0) {
339                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
340                                         strerror(errno));
341                         goto out;
342                 }
343
344                 /* map the segment, and populate page tables,
345                  * the kernel fills this segment with zeros. we don't care where
346                  * this gets mapped - we already have contiguous memory areas
347                  * ready for us to map into.
348                  */
349                 virtaddr = mmap(NULL, hugepage_sz, PROT_READ | PROT_WRITE,
350                                 MAP_SHARED | MAP_POPULATE, fd, 0);
351                 if (virtaddr == MAP_FAILED) {
352                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
353                                         strerror(errno));
354                         close(fd);
355                         goto out;
356                 }
357
358                 hf->orig_va = virtaddr;
359
360                 /* In linux, hugetlb limitations, like cgroup, are
361                  * enforced at fault time instead of mmap(), even
362                  * with the option of MAP_POPULATE. Kernel will send
363                  * a SIGBUS signal. To avoid to be killed, save stack
364                  * environment here, if SIGBUS happens, we can jump
365                  * back here.
366                  */
367                 if (huge_wrap_sigsetjmp()) {
368                         RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
369                                 "hugepages of size %u MB\n",
370                                 (unsigned int)(hugepage_sz / 0x100000));
371                         munmap(virtaddr, hugepage_sz);
372                         close(fd);
373                         unlink(hugepg_tbl[i].filepath);
374 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
375                         if (maxnode)
376                                 essential_memory[node_id] =
377                                         essential_prev;
378 #endif
379                         goto out;
380                 }
381                 *(int *)virtaddr = 0;
382
383                 /* set shared lock on the file. */
384                 if (flock(fd, LOCK_SH) < 0) {
385                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
386                                 __func__, strerror(errno));
387                         close(fd);
388                         goto out;
389                 }
390
391                 close(fd);
392         }
393
394 out:
395 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
396         if (maxnode) {
397                 RTE_LOG(DEBUG, EAL,
398                         "Restoring previous memory policy: %d\n", oldpolicy);
399                 if (oldpolicy == MPOL_DEFAULT) {
400                         numa_set_localalloc();
401                 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
402                                          oldmask->size + 1) < 0) {
403                         RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
404                                 strerror(errno));
405                         numa_set_localalloc();
406                 }
407         }
408         if (oldmask != NULL)
409                 numa_free_cpumask(oldmask);
410 #endif
411         return i;
412 }
413
414 /*
415  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
416  * page.
417  */
418 static int
419 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
420 {
421         int socket_id;
422         char *end, *nodestr;
423         unsigned i, hp_count = 0;
424         uint64_t virt_addr;
425         char buf[BUFSIZ];
426         char hugedir_str[PATH_MAX];
427         FILE *f;
428
429         f = fopen("/proc/self/numa_maps", "r");
430         if (f == NULL) {
431                 RTE_LOG(NOTICE, EAL, "NUMA support not available"
432                         " consider that all memory is in socket_id 0\n");
433                 return 0;
434         }
435
436         snprintf(hugedir_str, sizeof(hugedir_str),
437                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
438
439         /* parse numa map */
440         while (fgets(buf, sizeof(buf), f) != NULL) {
441
442                 /* ignore non huge page */
443                 if (strstr(buf, " huge ") == NULL &&
444                                 strstr(buf, hugedir_str) == NULL)
445                         continue;
446
447                 /* get zone addr */
448                 virt_addr = strtoull(buf, &end, 16);
449                 if (virt_addr == 0 || end == buf) {
450                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
451                         goto error;
452                 }
453
454                 /* get node id (socket id) */
455                 nodestr = strstr(buf, " N");
456                 if (nodestr == NULL) {
457                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
458                         goto error;
459                 }
460                 nodestr += 2;
461                 end = strstr(nodestr, "=");
462                 if (end == NULL) {
463                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
464                         goto error;
465                 }
466                 end[0] = '\0';
467                 end = NULL;
468
469                 socket_id = strtoul(nodestr, &end, 0);
470                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
471                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
472                         goto error;
473                 }
474
475                 /* if we find this page in our mappings, set socket_id */
476                 for (i = 0; i < hpi->num_pages[0]; i++) {
477                         void *va = (void *)(unsigned long)virt_addr;
478                         if (hugepg_tbl[i].orig_va == va) {
479                                 hugepg_tbl[i].socket_id = socket_id;
480                                 hp_count++;
481 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
482                                 RTE_LOG(DEBUG, EAL,
483                                         "Hugepage %s is on socket %d\n",
484                                         hugepg_tbl[i].filepath, socket_id);
485 #endif
486                         }
487                 }
488         }
489
490         if (hp_count < hpi->num_pages[0])
491                 goto error;
492
493         fclose(f);
494         return 0;
495
496 error:
497         fclose(f);
498         return -1;
499 }
500
501 static int
502 cmp_physaddr(const void *a, const void *b)
503 {
504 #ifndef RTE_ARCH_PPC_64
505         const struct hugepage_file *p1 = a;
506         const struct hugepage_file *p2 = b;
507 #else
508         /* PowerPC needs memory sorted in reverse order from x86 */
509         const struct hugepage_file *p1 = b;
510         const struct hugepage_file *p2 = a;
511 #endif
512         if (p1->physaddr < p2->physaddr)
513                 return -1;
514         else if (p1->physaddr > p2->physaddr)
515                 return 1;
516         else
517                 return 0;
518 }
519
520 /*
521  * Uses mmap to create a shared memory area for storage of data
522  * Used in this file to store the hugepage file map on disk
523  */
524 static void *
525 create_shared_memory(const char *filename, const size_t mem_size)
526 {
527         void *retval;
528         int fd;
529
530         /* if no shared files mode is used, create anonymous memory instead */
531         if (internal_config.no_shconf) {
532                 retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE,
533                                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
534                 if (retval == MAP_FAILED)
535                         return NULL;
536                 return retval;
537         }
538
539         fd = open(filename, O_CREAT | O_RDWR, 0666);
540         if (fd < 0)
541                 return NULL;
542         if (ftruncate(fd, mem_size) < 0) {
543                 close(fd);
544                 return NULL;
545         }
546         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
547         close(fd);
548         if (retval == MAP_FAILED)
549                 return NULL;
550         return retval;
551 }
552
553 /*
554  * this copies *active* hugepages from one hugepage table to another.
555  * destination is typically the shared memory.
556  */
557 static int
558 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
559                 const struct hugepage_file * src, int src_size)
560 {
561         int src_pos, dst_pos = 0;
562
563         for (src_pos = 0; src_pos < src_size; src_pos++) {
564                 if (src[src_pos].orig_va != NULL) {
565                         /* error on overflow attempt */
566                         if (dst_pos == dest_size)
567                                 return -1;
568                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
569                         dst_pos++;
570                 }
571         }
572         return 0;
573 }
574
575 static int
576 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
577                 unsigned num_hp_info)
578 {
579         unsigned socket, size;
580         int page, nrpages = 0;
581
582         /* get total number of hugepages */
583         for (size = 0; size < num_hp_info; size++)
584                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
585                         nrpages +=
586                         internal_config.hugepage_info[size].num_pages[socket];
587
588         for (page = 0; page < nrpages; page++) {
589                 struct hugepage_file *hp = &hugepg_tbl[page];
590
591                 if (hp->orig_va != NULL && unlink(hp->filepath)) {
592                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
593                                 __func__, hp->filepath, strerror(errno));
594                 }
595         }
596         return 0;
597 }
598
599 /*
600  * unmaps hugepages that are not going to be used. since we originally allocate
601  * ALL hugepages (not just those we need), additional unmapping needs to be done.
602  */
603 static int
604 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
605                 struct hugepage_info *hpi,
606                 unsigned num_hp_info)
607 {
608         unsigned socket, size;
609         int page, nrpages = 0;
610
611         /* get total number of hugepages */
612         for (size = 0; size < num_hp_info; size++)
613                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
614                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
615
616         for (size = 0; size < num_hp_info; size++) {
617                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
618                         unsigned pages_found = 0;
619
620                         /* traverse until we have unmapped all the unused pages */
621                         for (page = 0; page < nrpages; page++) {
622                                 struct hugepage_file *hp = &hugepg_tbl[page];
623
624                                 /* find a page that matches the criteria */
625                                 if ((hp->size == hpi[size].hugepage_sz) &&
626                                                 (hp->socket_id == (int) socket)) {
627
628                                         /* if we skipped enough pages, unmap the rest */
629                                         if (pages_found == hpi[size].num_pages[socket]) {
630                                                 uint64_t unmap_len;
631
632                                                 unmap_len = hp->size;
633
634                                                 /* get start addr and len of the remaining segment */
635                                                 munmap(hp->orig_va,
636                                                         (size_t)unmap_len);
637
638                                                 hp->orig_va = NULL;
639                                                 if (unlink(hp->filepath) == -1) {
640                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
641                                                                         __func__, hp->filepath, strerror(errno));
642                                                         return -1;
643                                                 }
644                                         } else {
645                                                 /* lock the page and skip */
646                                                 pages_found++;
647                                         }
648
649                                 } /* match page */
650                         } /* foreach page */
651                 } /* foreach socket */
652         } /* foreach pagesize */
653
654         return 0;
655 }
656
657 static int
658 remap_segment(struct hugepage_file *hugepages, int seg_start, int seg_end)
659 {
660         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
661         struct rte_memseg_list *msl;
662         struct rte_fbarray *arr;
663         int cur_page, seg_len;
664         unsigned int msl_idx;
665         int ms_idx;
666         uint64_t page_sz;
667         size_t memseg_len;
668         int socket_id;
669
670         page_sz = hugepages[seg_start].size;
671         socket_id = hugepages[seg_start].socket_id;
672         seg_len = seg_end - seg_start;
673
674         RTE_LOG(DEBUG, EAL, "Attempting to map %" PRIu64 "M on socket %i\n",
675                         (seg_len * page_sz) >> 20ULL, socket_id);
676
677         /* find free space in memseg lists */
678         for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
679                 bool empty;
680                 msl = &mcfg->memsegs[msl_idx];
681                 arr = &msl->memseg_arr;
682
683                 if (msl->page_sz != page_sz)
684                         continue;
685                 if (msl->socket_id != socket_id)
686                         continue;
687
688                 /* leave space for a hole if array is not empty */
689                 empty = arr->count == 0;
690                 ms_idx = rte_fbarray_find_next_n_free(arr, 0,
691                                 seg_len + (empty ? 0 : 1));
692
693                 /* memseg list is full? */
694                 if (ms_idx < 0)
695                         continue;
696
697                 /* leave some space between memsegs, they are not IOVA
698                  * contiguous, so they shouldn't be VA contiguous either.
699                  */
700                 if (!empty)
701                         ms_idx++;
702                 break;
703         }
704         if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
705                 RTE_LOG(ERR, EAL, "Could not find space for memseg. Please increase %s and/or %s in configuration.\n",
706                                 RTE_STR(CONFIG_RTE_MAX_MEMSEG_PER_TYPE),
707                                 RTE_STR(CONFIG_RTE_MAX_MEM_PER_TYPE));
708                 return -1;
709         }
710
711 #ifdef RTE_ARCH_PPC64
712         /* for PPC64 we go through the list backwards */
713         for (cur_page = seg_end - 1; cur_page >= seg_start;
714                         cur_page--, ms_idx++) {
715 #else
716         for (cur_page = seg_start; cur_page < seg_end; cur_page++, ms_idx++) {
717 #endif
718                 struct hugepage_file *hfile = &hugepages[cur_page];
719                 struct rte_memseg *ms = rte_fbarray_get(arr, ms_idx);
720                 void *addr;
721                 int fd;
722
723                 fd = open(hfile->filepath, O_RDWR);
724                 if (fd < 0) {
725                         RTE_LOG(ERR, EAL, "Could not open '%s': %s\n",
726                                         hfile->filepath, strerror(errno));
727                         return -1;
728                 }
729                 /* set shared lock on the file. */
730                 if (flock(fd, LOCK_SH) < 0) {
731                         RTE_LOG(DEBUG, EAL, "Could not lock '%s': %s\n",
732                                         hfile->filepath, strerror(errno));
733                         close(fd);
734                         return -1;
735                 }
736                 memseg_len = (size_t)page_sz;
737                 addr = RTE_PTR_ADD(msl->base_va, ms_idx * memseg_len);
738
739                 /* we know this address is already mmapped by memseg list, so
740                  * using MAP_FIXED here is safe
741                  */
742                 addr = mmap(addr, page_sz, PROT_READ | PROT_WRITE,
743                                 MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, 0);
744                 if (addr == MAP_FAILED) {
745                         RTE_LOG(ERR, EAL, "Couldn't remap '%s': %s\n",
746                                         hfile->filepath, strerror(errno));
747                         close(fd);
748                         return -1;
749                 }
750
751                 /* we have a new address, so unmap previous one */
752 #ifndef RTE_ARCH_64
753                 /* in 32-bit legacy mode, we have already unmapped the page */
754                 if (!internal_config.legacy_mem)
755                         munmap(hfile->orig_va, page_sz);
756 #else
757                 munmap(hfile->orig_va, page_sz);
758 #endif
759
760                 hfile->orig_va = NULL;
761                 hfile->final_va = addr;
762
763                 /* rewrite physical addresses in IOVA as VA mode */
764                 if (rte_eal_iova_mode() == RTE_IOVA_VA)
765                         hfile->physaddr = (uintptr_t)addr;
766
767                 /* set up memseg data */
768                 ms->addr = addr;
769                 ms->hugepage_sz = page_sz;
770                 ms->len = memseg_len;
771                 ms->iova = hfile->physaddr;
772                 ms->socket_id = hfile->socket_id;
773                 ms->nchannel = rte_memory_get_nchannel();
774                 ms->nrank = rte_memory_get_nrank();
775
776                 rte_fbarray_set_used(arr, ms_idx);
777
778                 /* store segment fd internally */
779                 if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
780                         RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n",
781                                 rte_strerror(rte_errno));
782         }
783         RTE_LOG(DEBUG, EAL, "Allocated %" PRIu64 "M on socket %i\n",
784                         (seg_len * page_sz) >> 20, socket_id);
785         return 0;
786 }
787
788 static uint64_t
789 get_mem_amount(uint64_t page_sz, uint64_t max_mem)
790 {
791         uint64_t area_sz, max_pages;
792
793         /* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
794         max_pages = RTE_MAX_MEMSEG_PER_LIST;
795         max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
796
797         area_sz = RTE_MIN(page_sz * max_pages, max_mem);
798
799         /* make sure the list isn't smaller than the page size */
800         area_sz = RTE_MAX(area_sz, page_sz);
801
802         return RTE_ALIGN(area_sz, page_sz);
803 }
804
805 static int
806 free_memseg_list(struct rte_memseg_list *msl)
807 {
808         if (rte_fbarray_destroy(&msl->memseg_arr)) {
809                 RTE_LOG(ERR, EAL, "Cannot destroy memseg list\n");
810                 return -1;
811         }
812         memset(msl, 0, sizeof(*msl));
813         return 0;
814 }
815
816 #define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
817 static int
818 alloc_memseg_list(struct rte_memseg_list *msl, uint64_t page_sz,
819                 int n_segs, int socket_id, int type_msl_idx)
820 {
821         char name[RTE_FBARRAY_NAME_LEN];
822
823         snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id,
824                  type_msl_idx);
825         if (rte_fbarray_init(&msl->memseg_arr, name, n_segs,
826                         sizeof(struct rte_memseg))) {
827                 RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n",
828                         rte_strerror(rte_errno));
829                 return -1;
830         }
831
832         msl->page_sz = page_sz;
833         msl->socket_id = socket_id;
834         msl->base_va = NULL;
835
836         RTE_LOG(DEBUG, EAL, "Memseg list allocated: 0x%zxkB at socket %i\n",
837                         (size_t)page_sz >> 10, socket_id);
838
839         return 0;
840 }
841
842 static int
843 alloc_va_space(struct rte_memseg_list *msl)
844 {
845         uint64_t page_sz;
846         size_t mem_sz;
847         void *addr;
848         int flags = 0;
849
850         page_sz = msl->page_sz;
851         mem_sz = page_sz * msl->memseg_arr.len;
852
853         addr = eal_get_virtual_area(msl->base_va, &mem_sz, page_sz, 0, flags);
854         if (addr == NULL) {
855                 if (rte_errno == EADDRNOTAVAIL)
856                         RTE_LOG(ERR, EAL, "Could not mmap %llu bytes at [%p] - please use '--base-virtaddr' option\n",
857                                 (unsigned long long)mem_sz, msl->base_va);
858                 else
859                         RTE_LOG(ERR, EAL, "Cannot reserve memory\n");
860                 return -1;
861         }
862         msl->base_va = addr;
863         msl->len = mem_sz;
864
865         return 0;
866 }
867
868 /*
869  * Our VA space is not preallocated yet, so preallocate it here. We need to know
870  * how many segments there are in order to map all pages into one address space,
871  * and leave appropriate holes between segments so that rte_malloc does not
872  * concatenate them into one big segment.
873  *
874  * we also need to unmap original pages to free up address space.
875  */
876 static int __rte_unused
877 prealloc_segments(struct hugepage_file *hugepages, int n_pages)
878 {
879         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
880         int cur_page, seg_start_page, end_seg, new_memseg;
881         unsigned int hpi_idx, socket, i;
882         int n_contig_segs, n_segs;
883         int msl_idx;
884
885         /* before we preallocate segments, we need to free up our VA space.
886          * we're not removing files, and we already have information about
887          * PA-contiguousness, so it is safe to unmap everything.
888          */
889         for (cur_page = 0; cur_page < n_pages; cur_page++) {
890                 struct hugepage_file *hpi = &hugepages[cur_page];
891                 munmap(hpi->orig_va, hpi->size);
892                 hpi->orig_va = NULL;
893         }
894
895         /* we cannot know how many page sizes and sockets we have discovered, so
896          * loop over all of them
897          */
898         for (hpi_idx = 0; hpi_idx < internal_config.num_hugepage_sizes;
899                         hpi_idx++) {
900                 uint64_t page_sz =
901                         internal_config.hugepage_info[hpi_idx].hugepage_sz;
902
903                 for (i = 0; i < rte_socket_count(); i++) {
904                         struct rte_memseg_list *msl;
905
906                         socket = rte_socket_id_by_idx(i);
907                         n_contig_segs = 0;
908                         n_segs = 0;
909                         seg_start_page = -1;
910
911                         for (cur_page = 0; cur_page < n_pages; cur_page++) {
912                                 struct hugepage_file *prev, *cur;
913                                 int prev_seg_start_page = -1;
914
915                                 cur = &hugepages[cur_page];
916                                 prev = cur_page == 0 ? NULL :
917                                                 &hugepages[cur_page - 1];
918
919                                 new_memseg = 0;
920                                 end_seg = 0;
921
922                                 if (cur->size == 0)
923                                         end_seg = 1;
924                                 else if (cur->socket_id != (int) socket)
925                                         end_seg = 1;
926                                 else if (cur->size != page_sz)
927                                         end_seg = 1;
928                                 else if (cur_page == 0)
929                                         new_memseg = 1;
930 #ifdef RTE_ARCH_PPC_64
931                                 /* On PPC64 architecture, the mmap always start
932                                  * from higher address to lower address. Here,
933                                  * physical addresses are in descending order.
934                                  */
935                                 else if ((prev->physaddr - cur->physaddr) !=
936                                                 cur->size)
937                                         new_memseg = 1;
938 #else
939                                 else if ((cur->physaddr - prev->physaddr) !=
940                                                 cur->size)
941                                         new_memseg = 1;
942 #endif
943                                 if (new_memseg) {
944                                         /* if we're already inside a segment,
945                                          * new segment means end of current one
946                                          */
947                                         if (seg_start_page != -1) {
948                                                 end_seg = 1;
949                                                 prev_seg_start_page =
950                                                                 seg_start_page;
951                                         }
952                                         seg_start_page = cur_page;
953                                 }
954
955                                 if (end_seg) {
956                                         if (prev_seg_start_page != -1) {
957                                                 /* we've found a new segment */
958                                                 n_contig_segs++;
959                                                 n_segs += cur_page -
960                                                         prev_seg_start_page;
961                                         } else if (seg_start_page != -1) {
962                                                 /* we didn't find new segment,
963                                                  * but did end current one
964                                                  */
965                                                 n_contig_segs++;
966                                                 n_segs += cur_page -
967                                                                 seg_start_page;
968                                                 seg_start_page = -1;
969                                                 continue;
970                                         } else {
971                                                 /* we're skipping this page */
972                                                 continue;
973                                         }
974                                 }
975                                 /* segment continues */
976                         }
977                         /* check if we missed last segment */
978                         if (seg_start_page != -1) {
979                                 n_contig_segs++;
980                                 n_segs += cur_page - seg_start_page;
981                         }
982
983                         /* if no segments were found, do not preallocate */
984                         if (n_segs == 0)
985                                 continue;
986
987                         /* we now have total number of pages that we will
988                          * allocate for this segment list. add separator pages
989                          * to the total count, and preallocate VA space.
990                          */
991                         n_segs += n_contig_segs - 1;
992
993                         /* now, preallocate VA space for these segments */
994
995                         /* first, find suitable memseg list for this */
996                         for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS;
997                                         msl_idx++) {
998                                 msl = &mcfg->memsegs[msl_idx];
999
1000                                 if (msl->base_va != NULL)
1001                                         continue;
1002                                 break;
1003                         }
1004                         if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
1005                                 RTE_LOG(ERR, EAL, "Not enough space in memseg lists, please increase %s\n",
1006                                         RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
1007                                 return -1;
1008                         }
1009
1010                         /* now, allocate fbarray itself */
1011                         if (alloc_memseg_list(msl, page_sz, n_segs, socket,
1012                                                 msl_idx) < 0)
1013                                 return -1;
1014
1015                         /* finally, allocate VA space */
1016                         if (alloc_va_space(msl) < 0)
1017                                 return -1;
1018                 }
1019         }
1020         return 0;
1021 }
1022
1023 /*
1024  * We cannot reallocate memseg lists on the fly because PPC64 stores pages
1025  * backwards, therefore we have to process the entire memseg first before
1026  * remapping it into memseg list VA space.
1027  */
1028 static int
1029 remap_needed_hugepages(struct hugepage_file *hugepages, int n_pages)
1030 {
1031         int cur_page, seg_start_page, new_memseg, ret;
1032
1033         seg_start_page = 0;
1034         for (cur_page = 0; cur_page < n_pages; cur_page++) {
1035                 struct hugepage_file *prev, *cur;
1036
1037                 new_memseg = 0;
1038
1039                 cur = &hugepages[cur_page];
1040                 prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1];
1041
1042                 /* if size is zero, no more pages left */
1043                 if (cur->size == 0)
1044                         break;
1045
1046                 if (cur_page == 0)
1047                         new_memseg = 1;
1048                 else if (cur->socket_id != prev->socket_id)
1049                         new_memseg = 1;
1050                 else if (cur->size != prev->size)
1051                         new_memseg = 1;
1052 #ifdef RTE_ARCH_PPC_64
1053                 /* On PPC64 architecture, the mmap always start from higher
1054                  * address to lower address. Here, physical addresses are in
1055                  * descending order.
1056                  */
1057                 else if ((prev->physaddr - cur->physaddr) != cur->size)
1058                         new_memseg = 1;
1059 #else
1060                 else if ((cur->physaddr - prev->physaddr) != cur->size)
1061                         new_memseg = 1;
1062 #endif
1063
1064                 if (new_memseg) {
1065                         /* if this isn't the first time, remap segment */
1066                         if (cur_page != 0) {
1067                                 ret = remap_segment(hugepages, seg_start_page,
1068                                                 cur_page);
1069                                 if (ret != 0)
1070                                         return -1;
1071                         }
1072                         /* remember where we started */
1073                         seg_start_page = cur_page;
1074                 }
1075                 /* continuation of previous memseg */
1076         }
1077         /* we were stopped, but we didn't remap the last segment, do it now */
1078         if (cur_page != 0) {
1079                 ret = remap_segment(hugepages, seg_start_page,
1080                                 cur_page);
1081                 if (ret != 0)
1082                         return -1;
1083         }
1084         return 0;
1085 }
1086
1087 static inline uint64_t
1088 get_socket_mem_size(int socket)
1089 {
1090         uint64_t size = 0;
1091         unsigned i;
1092
1093         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
1094                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
1095                 size += hpi->hugepage_sz * hpi->num_pages[socket];
1096         }
1097
1098         return size;
1099 }
1100
1101 /*
1102  * This function is a NUMA-aware equivalent of calc_num_pages.
1103  * It takes in the list of hugepage sizes and the
1104  * number of pages thereof, and calculates the best number of
1105  * pages of each size to fulfill the request for <memory> ram
1106  */
1107 static int
1108 calc_num_pages_per_socket(uint64_t * memory,
1109                 struct hugepage_info *hp_info,
1110                 struct hugepage_info *hp_used,
1111                 unsigned num_hp_info)
1112 {
1113         unsigned socket, j, i = 0;
1114         unsigned requested, available;
1115         int total_num_pages = 0;
1116         uint64_t remaining_mem, cur_mem;
1117         uint64_t total_mem = internal_config.memory;
1118
1119         if (num_hp_info == 0)
1120                 return -1;
1121
1122         /* if specific memory amounts per socket weren't requested */
1123         if (internal_config.force_sockets == 0) {
1124                 size_t total_size;
1125 #ifdef RTE_ARCH_64
1126                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
1127                 size_t default_size;
1128                 unsigned lcore_id;
1129
1130                 /* Compute number of cores per socket */
1131                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
1132                 RTE_LCORE_FOREACH(lcore_id) {
1133                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
1134                 }
1135
1136                 /*
1137                  * Automatically spread requested memory amongst detected sockets according
1138                  * to number of cores from cpu mask present on each socket
1139                  */
1140                 total_size = internal_config.memory;
1141                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
1142
1143                         /* Set memory amount per socket */
1144                         default_size = (internal_config.memory * cpu_per_socket[socket])
1145                                         / rte_lcore_count();
1146
1147                         /* Limit to maximum available memory on socket */
1148                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
1149
1150                         /* Update sizes */
1151                         memory[socket] = default_size;
1152                         total_size -= default_size;
1153                 }
1154
1155                 /*
1156                  * If some memory is remaining, try to allocate it by getting all
1157                  * available memory from sockets, one after the other
1158                  */
1159                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
1160                         /* take whatever is available */
1161                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
1162                                                total_size);
1163
1164                         /* Update sizes */
1165                         memory[socket] += default_size;
1166                         total_size -= default_size;
1167                 }
1168 #else
1169                 /* in 32-bit mode, allocate all of the memory only on master
1170                  * lcore socket
1171                  */
1172                 total_size = internal_config.memory;
1173                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0;
1174                                 socket++) {
1175                         struct rte_config *cfg = rte_eal_get_configuration();
1176                         unsigned int master_lcore_socket;
1177
1178                         master_lcore_socket =
1179                                 rte_lcore_to_socket_id(cfg->master_lcore);
1180
1181                         if (master_lcore_socket != socket)
1182                                 continue;
1183
1184                         /* Update sizes */
1185                         memory[socket] = total_size;
1186                         break;
1187                 }
1188 #endif
1189         }
1190
1191         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
1192                 /* skips if the memory on specific socket wasn't requested */
1193                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
1194                         strlcpy(hp_used[i].hugedir, hp_info[i].hugedir,
1195                                 sizeof(hp_used[i].hugedir));
1196                         hp_used[i].num_pages[socket] = RTE_MIN(
1197                                         memory[socket] / hp_info[i].hugepage_sz,
1198                                         hp_info[i].num_pages[socket]);
1199
1200                         cur_mem = hp_used[i].num_pages[socket] *
1201                                         hp_used[i].hugepage_sz;
1202
1203                         memory[socket] -= cur_mem;
1204                         total_mem -= cur_mem;
1205
1206                         total_num_pages += hp_used[i].num_pages[socket];
1207
1208                         /* check if we have met all memory requests */
1209                         if (memory[socket] == 0)
1210                                 break;
1211
1212                         /* check if we have any more pages left at this size, if so
1213                          * move on to next size */
1214                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
1215                                 continue;
1216                         /* At this point we know that there are more pages available that are
1217                          * bigger than the memory we want, so lets see if we can get enough
1218                          * from other page sizes.
1219                          */
1220                         remaining_mem = 0;
1221                         for (j = i+1; j < num_hp_info; j++)
1222                                 remaining_mem += hp_info[j].hugepage_sz *
1223                                 hp_info[j].num_pages[socket];
1224
1225                         /* is there enough other memory, if not allocate another page and quit */
1226                         if (remaining_mem < memory[socket]){
1227                                 cur_mem = RTE_MIN(memory[socket],
1228                                                 hp_info[i].hugepage_sz);
1229                                 memory[socket] -= cur_mem;
1230                                 total_mem -= cur_mem;
1231                                 hp_used[i].num_pages[socket]++;
1232                                 total_num_pages++;
1233                                 break; /* we are done with this socket*/
1234                         }
1235                 }
1236                 /* if we didn't satisfy all memory requirements per socket */
1237                 if (memory[socket] > 0 &&
1238                                 internal_config.socket_mem[socket] != 0) {
1239                         /* to prevent icc errors */
1240                         requested = (unsigned) (internal_config.socket_mem[socket] /
1241                                         0x100000);
1242                         available = requested -
1243                                         ((unsigned) (memory[socket] / 0x100000));
1244                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
1245                                         "Requested: %uMB, available: %uMB\n", socket,
1246                                         requested, available);
1247                         return -1;
1248                 }
1249         }
1250
1251         /* if we didn't satisfy total memory requirements */
1252         if (total_mem > 0) {
1253                 requested = (unsigned) (internal_config.memory / 0x100000);
1254                 available = requested - (unsigned) (total_mem / 0x100000);
1255                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
1256                                 " available: %uMB\n", requested, available);
1257                 return -1;
1258         }
1259         return total_num_pages;
1260 }
1261
1262 static inline size_t
1263 eal_get_hugepage_mem_size(void)
1264 {
1265         uint64_t size = 0;
1266         unsigned i, j;
1267
1268         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
1269                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
1270                 if (strnlen(hpi->hugedir, sizeof(hpi->hugedir)) != 0) {
1271                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1272                                 size += hpi->hugepage_sz * hpi->num_pages[j];
1273                         }
1274                 }
1275         }
1276
1277         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
1278 }
1279
1280 static struct sigaction huge_action_old;
1281 static int huge_need_recover;
1282
1283 static void
1284 huge_register_sigbus(void)
1285 {
1286         sigset_t mask;
1287         struct sigaction action;
1288
1289         sigemptyset(&mask);
1290         sigaddset(&mask, SIGBUS);
1291         action.sa_flags = 0;
1292         action.sa_mask = mask;
1293         action.sa_handler = huge_sigbus_handler;
1294
1295         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
1296 }
1297
1298 static void
1299 huge_recover_sigbus(void)
1300 {
1301         if (huge_need_recover) {
1302                 sigaction(SIGBUS, &huge_action_old, NULL);
1303                 huge_need_recover = 0;
1304         }
1305 }
1306
1307 /*
1308  * Prepare physical memory mapping: fill configuration structure with
1309  * these infos, return 0 on success.
1310  *  1. map N huge pages in separate files in hugetlbfs
1311  *  2. find associated physical addr
1312  *  3. find associated NUMA socket ID
1313  *  4. sort all huge pages by physical address
1314  *  5. remap these N huge pages in the correct order
1315  *  6. unmap the first mapping
1316  *  7. fill memsegs in configuration with contiguous zones
1317  */
1318 static int
1319 eal_legacy_hugepage_init(void)
1320 {
1321         struct rte_mem_config *mcfg;
1322         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
1323         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1324         struct rte_fbarray *arr;
1325         struct rte_memseg *ms;
1326
1327         uint64_t memory[RTE_MAX_NUMA_NODES];
1328
1329         unsigned hp_offset;
1330         int i, j;
1331         int nr_hugefiles, nr_hugepages = 0;
1332         void *addr;
1333
1334         test_phys_addrs_available();
1335
1336         memset(used_hp, 0, sizeof(used_hp));
1337
1338         /* get pointer to global configuration */
1339         mcfg = rte_eal_get_configuration()->mem_config;
1340
1341         /* hugetlbfs can be disabled */
1342         if (internal_config.no_hugetlbfs) {
1343                 struct rte_memseg_list *msl;
1344                 uint64_t page_sz;
1345                 int n_segs, cur_seg;
1346
1347                 /* nohuge mode is legacy mode */
1348                 internal_config.legacy_mem = 1;
1349
1350                 /* create a memseg list */
1351                 msl = &mcfg->memsegs[0];
1352
1353                 page_sz = RTE_PGSIZE_4K;
1354                 n_segs = internal_config.memory / page_sz;
1355
1356                 if (rte_fbarray_init(&msl->memseg_arr, "nohugemem", n_segs,
1357                                         sizeof(struct rte_memseg))) {
1358                         RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
1359                         return -1;
1360                 }
1361
1362                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
1363                                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1364                 if (addr == MAP_FAILED) {
1365                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1366                                         strerror(errno));
1367                         return -1;
1368                 }
1369                 msl->base_va = addr;
1370                 msl->page_sz = page_sz;
1371                 msl->socket_id = 0;
1372                 msl->len = internal_config.memory;
1373
1374                 /* populate memsegs. each memseg is one page long */
1375                 for (cur_seg = 0; cur_seg < n_segs; cur_seg++) {
1376                         arr = &msl->memseg_arr;
1377
1378                         ms = rte_fbarray_get(arr, cur_seg);
1379                         if (rte_eal_iova_mode() == RTE_IOVA_VA)
1380                                 ms->iova = (uintptr_t)addr;
1381                         else
1382                                 ms->iova = RTE_BAD_IOVA;
1383                         ms->addr = addr;
1384                         ms->hugepage_sz = page_sz;
1385                         ms->socket_id = 0;
1386                         ms->len = page_sz;
1387
1388                         rte_fbarray_set_used(arr, cur_seg);
1389
1390                         addr = RTE_PTR_ADD(addr, (size_t)page_sz);
1391                 }
1392                 if (mcfg->dma_maskbits &&
1393                     rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
1394                         RTE_LOG(ERR, EAL,
1395                                 "%s(): couldnt allocate memory due to IOVA exceeding limits of current DMA mask.\n",
1396                                 __func__);
1397                         if (rte_eal_iova_mode() == RTE_IOVA_VA &&
1398                             rte_eal_using_phys_addrs())
1399                                 RTE_LOG(ERR, EAL,
1400                                         "%s(): Please try initializing EAL with --iova-mode=pa parameter.\n",
1401                                         __func__);
1402                         goto fail;
1403                 }
1404                 return 0;
1405         }
1406
1407         /* calculate total number of hugepages available. at this point we haven't
1408          * yet started sorting them so they all are on socket 0 */
1409         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1410                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1411                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1412
1413                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1414         }
1415
1416         /*
1417          * allocate a memory area for hugepage table.
1418          * this isn't shared memory yet. due to the fact that we need some
1419          * processing done on these pages, shared memory will be created
1420          * at a later stage.
1421          */
1422         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1423         if (tmp_hp == NULL)
1424                 goto fail;
1425
1426         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1427
1428         hp_offset = 0; /* where we start the current page size entries */
1429
1430         huge_register_sigbus();
1431
1432         /* make a copy of socket_mem, needed for balanced allocation. */
1433         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1434                 memory[i] = internal_config.socket_mem[i];
1435
1436         /* map all hugepages and sort them */
1437         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1438                 unsigned pages_old, pages_new;
1439                 struct hugepage_info *hpi;
1440
1441                 /*
1442                  * we don't yet mark hugepages as used at this stage, so
1443                  * we just map all hugepages available to the system
1444                  * all hugepages are still located on socket 0
1445                  */
1446                 hpi = &internal_config.hugepage_info[i];
1447
1448                 if (hpi->num_pages[0] == 0)
1449                         continue;
1450
1451                 /* map all hugepages available */
1452                 pages_old = hpi->num_pages[0];
1453                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, memory);
1454                 if (pages_new < pages_old) {
1455                         RTE_LOG(DEBUG, EAL,
1456                                 "%d not %d hugepages of size %u MB allocated\n",
1457                                 pages_new, pages_old,
1458                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1459
1460                         int pages = pages_old - pages_new;
1461
1462                         nr_hugepages -= pages;
1463                         hpi->num_pages[0] = pages_new;
1464                         if (pages_new == 0)
1465                                 continue;
1466                 }
1467
1468                 if (phys_addrs_available &&
1469                                 rte_eal_iova_mode() != RTE_IOVA_VA) {
1470                         /* find physical addresses for each hugepage */
1471                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1472                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1473                                         "for %u MB pages\n",
1474                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1475                                 goto fail;
1476                         }
1477                 } else {
1478                         /* set physical addresses for each hugepage */
1479                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1480                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1481                                         "for %u MB pages\n",
1482                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1483                                 goto fail;
1484                         }
1485                 }
1486
1487                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1488                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1489                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1490                         goto fail;
1491                 }
1492
1493                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1494                       sizeof(struct hugepage_file), cmp_physaddr);
1495
1496                 /* we have processed a num of hugepages of this size, so inc offset */
1497                 hp_offset += hpi->num_pages[0];
1498         }
1499
1500         huge_recover_sigbus();
1501
1502         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1503                 internal_config.memory = eal_get_hugepage_mem_size();
1504
1505         nr_hugefiles = nr_hugepages;
1506
1507
1508         /* clean out the numbers of pages */
1509         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1510                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1511                         internal_config.hugepage_info[i].num_pages[j] = 0;
1512
1513         /* get hugepages for each socket */
1514         for (i = 0; i < nr_hugefiles; i++) {
1515                 int socket = tmp_hp[i].socket_id;
1516
1517                 /* find a hugepage info with right size and increment num_pages */
1518                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1519                                 (int)internal_config.num_hugepage_sizes);
1520                 for (j = 0; j < nb_hpsizes; j++) {
1521                         if (tmp_hp[i].size ==
1522                                         internal_config.hugepage_info[j].hugepage_sz) {
1523                                 internal_config.hugepage_info[j].num_pages[socket]++;
1524                         }
1525                 }
1526         }
1527
1528         /* make a copy of socket_mem, needed for number of pages calculation */
1529         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1530                 memory[i] = internal_config.socket_mem[i];
1531
1532         /* calculate final number of pages */
1533         nr_hugepages = calc_num_pages_per_socket(memory,
1534                         internal_config.hugepage_info, used_hp,
1535                         internal_config.num_hugepage_sizes);
1536
1537         /* error if not enough memory available */
1538         if (nr_hugepages < 0)
1539                 goto fail;
1540
1541         /* reporting in! */
1542         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1543                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1544                         if (used_hp[i].num_pages[j] > 0) {
1545                                 RTE_LOG(DEBUG, EAL,
1546                                         "Requesting %u pages of size %uMB"
1547                                         " from socket %i\n",
1548                                         used_hp[i].num_pages[j],
1549                                         (unsigned)
1550                                         (used_hp[i].hugepage_sz / 0x100000),
1551                                         j);
1552                         }
1553                 }
1554         }
1555
1556         /* create shared memory */
1557         hugepage = create_shared_memory(eal_hugepage_data_path(),
1558                         nr_hugefiles * sizeof(struct hugepage_file));
1559
1560         if (hugepage == NULL) {
1561                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1562                 goto fail;
1563         }
1564         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1565
1566         /*
1567          * unmap pages that we won't need (looks at used_hp).
1568          * also, sets final_va to NULL on pages that were unmapped.
1569          */
1570         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1571                         internal_config.num_hugepage_sizes) < 0) {
1572                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1573                 goto fail;
1574         }
1575
1576         /*
1577          * copy stuff from malloc'd hugepage* to the actual shared memory.
1578          * this procedure only copies those hugepages that have orig_va
1579          * not NULL. has overflow protection.
1580          */
1581         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1582                         tmp_hp, nr_hugefiles) < 0) {
1583                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1584                 goto fail;
1585         }
1586
1587 #ifndef RTE_ARCH_64
1588         /* for legacy 32-bit mode, we did not preallocate VA space, so do it */
1589         if (internal_config.legacy_mem &&
1590                         prealloc_segments(hugepage, nr_hugefiles)) {
1591                 RTE_LOG(ERR, EAL, "Could not preallocate VA space for hugepages\n");
1592                 goto fail;
1593         }
1594 #endif
1595
1596         /* remap all pages we do need into memseg list VA space, so that those
1597          * pages become first-class citizens in DPDK memory subsystem
1598          */
1599         if (remap_needed_hugepages(hugepage, nr_hugefiles)) {
1600                 RTE_LOG(ERR, EAL, "Couldn't remap hugepage files into memseg lists\n");
1601                 goto fail;
1602         }
1603
1604         /* free the hugepage backing files */
1605         if (internal_config.hugepage_unlink &&
1606                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1607                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1608                 goto fail;
1609         }
1610
1611         /* free the temporary hugepage table */
1612         free(tmp_hp);
1613         tmp_hp = NULL;
1614
1615         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1616         hugepage = NULL;
1617
1618         /* we're not going to allocate more pages, so release VA space for
1619          * unused memseg lists
1620          */
1621         for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
1622                 struct rte_memseg_list *msl = &mcfg->memsegs[i];
1623                 size_t mem_sz;
1624
1625                 /* skip inactive lists */
1626                 if (msl->base_va == NULL)
1627                         continue;
1628                 /* skip lists where there is at least one page allocated */
1629                 if (msl->memseg_arr.count > 0)
1630                         continue;
1631                 /* this is an unused list, deallocate it */
1632                 mem_sz = msl->len;
1633                 munmap(msl->base_va, mem_sz);
1634                 msl->base_va = NULL;
1635
1636                 /* destroy backing fbarray */
1637                 rte_fbarray_destroy(&msl->memseg_arr);
1638         }
1639
1640         if (mcfg->dma_maskbits &&
1641             rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
1642                 RTE_LOG(ERR, EAL,
1643                         "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n",
1644                         __func__);
1645                 goto fail;
1646         }
1647
1648         return 0;
1649
1650 fail:
1651         huge_recover_sigbus();
1652         free(tmp_hp);
1653         if (hugepage != NULL)
1654                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1655
1656         return -1;
1657 }
1658
1659 static int __rte_unused
1660 hugepage_count_walk(const struct rte_memseg_list *msl, void *arg)
1661 {
1662         struct hugepage_info *hpi = arg;
1663
1664         if (msl->page_sz != hpi->hugepage_sz)
1665                 return 0;
1666
1667         hpi->num_pages[msl->socket_id] += msl->memseg_arr.len;
1668         return 0;
1669 }
1670
1671 static int
1672 limits_callback(int socket_id, size_t cur_limit, size_t new_len)
1673 {
1674         RTE_SET_USED(socket_id);
1675         RTE_SET_USED(cur_limit);
1676         RTE_SET_USED(new_len);
1677         return -1;
1678 }
1679
1680 static int
1681 eal_hugepage_init(void)
1682 {
1683         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1684         uint64_t memory[RTE_MAX_NUMA_NODES];
1685         int hp_sz_idx, socket_id;
1686
1687         test_phys_addrs_available();
1688
1689         memset(used_hp, 0, sizeof(used_hp));
1690
1691         for (hp_sz_idx = 0;
1692                         hp_sz_idx < (int) internal_config.num_hugepage_sizes;
1693                         hp_sz_idx++) {
1694 #ifndef RTE_ARCH_64
1695                 struct hugepage_info dummy;
1696                 unsigned int i;
1697 #endif
1698                 /* also initialize used_hp hugepage sizes in used_hp */
1699                 struct hugepage_info *hpi;
1700                 hpi = &internal_config.hugepage_info[hp_sz_idx];
1701                 used_hp[hp_sz_idx].hugepage_sz = hpi->hugepage_sz;
1702
1703 #ifndef RTE_ARCH_64
1704                 /* for 32-bit, limit number of pages on socket to whatever we've
1705                  * preallocated, as we cannot allocate more.
1706                  */
1707                 memset(&dummy, 0, sizeof(dummy));
1708                 dummy.hugepage_sz = hpi->hugepage_sz;
1709                 if (rte_memseg_list_walk(hugepage_count_walk, &dummy) < 0)
1710                         return -1;
1711
1712                 for (i = 0; i < RTE_DIM(dummy.num_pages); i++) {
1713                         hpi->num_pages[i] = RTE_MIN(hpi->num_pages[i],
1714                                         dummy.num_pages[i]);
1715                 }
1716 #endif
1717         }
1718
1719         /* make a copy of socket_mem, needed for balanced allocation. */
1720         for (hp_sz_idx = 0; hp_sz_idx < RTE_MAX_NUMA_NODES; hp_sz_idx++)
1721                 memory[hp_sz_idx] = internal_config.socket_mem[hp_sz_idx];
1722
1723         /* calculate final number of pages */
1724         if (calc_num_pages_per_socket(memory,
1725                         internal_config.hugepage_info, used_hp,
1726                         internal_config.num_hugepage_sizes) < 0)
1727                 return -1;
1728
1729         for (hp_sz_idx = 0;
1730                         hp_sz_idx < (int)internal_config.num_hugepage_sizes;
1731                         hp_sz_idx++) {
1732                 for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES;
1733                                 socket_id++) {
1734                         struct rte_memseg **pages;
1735                         struct hugepage_info *hpi = &used_hp[hp_sz_idx];
1736                         unsigned int num_pages = hpi->num_pages[socket_id];
1737                         int num_pages_alloc, i;
1738
1739                         if (num_pages == 0)
1740                                 continue;
1741
1742                         pages = malloc(sizeof(*pages) * num_pages);
1743
1744                         RTE_LOG(DEBUG, EAL, "Allocating %u pages of size %" PRIu64 "M on socket %i\n",
1745                                 num_pages, hpi->hugepage_sz >> 20, socket_id);
1746
1747                         num_pages_alloc = eal_memalloc_alloc_seg_bulk(pages,
1748                                         num_pages, hpi->hugepage_sz,
1749                                         socket_id, true);
1750                         if (num_pages_alloc < 0) {
1751                                 free(pages);
1752                                 return -1;
1753                         }
1754
1755                         /* mark preallocated pages as unfreeable */
1756                         for (i = 0; i < num_pages_alloc; i++) {
1757                                 struct rte_memseg *ms = pages[i];
1758                                 ms->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
1759                         }
1760                         free(pages);
1761                 }
1762         }
1763         /* if socket limits were specified, set them */
1764         if (internal_config.force_socket_limits) {
1765                 unsigned int i;
1766                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
1767                         uint64_t limit = internal_config.socket_limit[i];
1768                         if (limit == 0)
1769                                 continue;
1770                         if (rte_mem_alloc_validator_register("socket-limit",
1771                                         limits_callback, i, limit))
1772                                 RTE_LOG(ERR, EAL, "Failed to register socket limits validator callback\n");
1773                 }
1774         }
1775         return 0;
1776 }
1777
1778 /*
1779  * uses fstat to report the size of a file on disk
1780  */
1781 static off_t
1782 getFileSize(int fd)
1783 {
1784         struct stat st;
1785         if (fstat(fd, &st) < 0)
1786                 return 0;
1787         return st.st_size;
1788 }
1789
1790 /*
1791  * This creates the memory mappings in the secondary process to match that of
1792  * the server process. It goes through each memory segment in the DPDK runtime
1793  * configuration and finds the hugepages which form that segment, mapping them
1794  * in order to form a contiguous block in the virtual memory space
1795  */
1796 static int
1797 eal_legacy_hugepage_attach(void)
1798 {
1799         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1800         struct hugepage_file *hp = NULL;
1801         unsigned int num_hp = 0;
1802         unsigned int i = 0;
1803         unsigned int cur_seg;
1804         off_t size = 0;
1805         int fd, fd_hugepage = -1;
1806
1807         if (aslr_enabled() > 0) {
1808                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1809                                 "(ASLR) is enabled in the kernel.\n");
1810                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1811                                 "into secondary processes\n");
1812         }
1813
1814         test_phys_addrs_available();
1815
1816         fd_hugepage = open(eal_hugepage_data_path(), O_RDONLY);
1817         if (fd_hugepage < 0) {
1818                 RTE_LOG(ERR, EAL, "Could not open %s\n",
1819                                 eal_hugepage_data_path());
1820                 goto error;
1821         }
1822
1823         size = getFileSize(fd_hugepage);
1824         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1825         if (hp == MAP_FAILED) {
1826                 RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1827                                 eal_hugepage_data_path());
1828                 goto error;
1829         }
1830
1831         num_hp = size / sizeof(struct hugepage_file);
1832         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1833
1834         /* map all segments into memory to make sure we get the addrs. the
1835          * segments themselves are already in memseg list (which is shared and
1836          * has its VA space already preallocated), so we just need to map
1837          * everything into correct addresses.
1838          */
1839         for (i = 0; i < num_hp; i++) {
1840                 struct hugepage_file *hf = &hp[i];
1841                 size_t map_sz = hf->size;
1842                 void *map_addr = hf->final_va;
1843                 int msl_idx, ms_idx;
1844                 struct rte_memseg_list *msl;
1845                 struct rte_memseg *ms;
1846
1847                 /* if size is zero, no more pages left */
1848                 if (map_sz == 0)
1849                         break;
1850
1851                 fd = open(hf->filepath, O_RDWR);
1852                 if (fd < 0) {
1853                         RTE_LOG(ERR, EAL, "Could not open %s: %s\n",
1854                                 hf->filepath, strerror(errno));
1855                         goto error;
1856                 }
1857
1858                 map_addr = mmap(map_addr, map_sz, PROT_READ | PROT_WRITE,
1859                                 MAP_SHARED | MAP_FIXED, fd, 0);
1860                 if (map_addr == MAP_FAILED) {
1861                         RTE_LOG(ERR, EAL, "Could not map %s: %s\n",
1862                                 hf->filepath, strerror(errno));
1863                         goto fd_error;
1864                 }
1865
1866                 /* set shared lock on the file. */
1867                 if (flock(fd, LOCK_SH) < 0) {
1868                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed: %s\n",
1869                                 __func__, strerror(errno));
1870                         goto fd_error;
1871                 }
1872
1873                 /* find segment data */
1874                 msl = rte_mem_virt2memseg_list(map_addr);
1875                 if (msl == NULL) {
1876                         RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg list\n",
1877                                 __func__);
1878                         goto fd_error;
1879                 }
1880                 ms = rte_mem_virt2memseg(map_addr, msl);
1881                 if (ms == NULL) {
1882                         RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg\n",
1883                                 __func__);
1884                         goto fd_error;
1885                 }
1886
1887                 msl_idx = msl - mcfg->memsegs;
1888                 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
1889                 if (ms_idx < 0) {
1890                         RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg idx\n",
1891                                 __func__);
1892                         goto fd_error;
1893                 }
1894
1895                 /* store segment fd internally */
1896                 if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
1897                         RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n",
1898                                 rte_strerror(rte_errno));
1899         }
1900         /* unmap the hugepage config file, since we are done using it */
1901         munmap(hp, size);
1902         close(fd_hugepage);
1903         return 0;
1904
1905 fd_error:
1906         close(fd);
1907 error:
1908         /* map all segments into memory to make sure we get the addrs */
1909         cur_seg = 0;
1910         for (cur_seg = 0; cur_seg < i; cur_seg++) {
1911                 struct hugepage_file *hf = &hp[i];
1912                 size_t map_sz = hf->size;
1913                 void *map_addr = hf->final_va;
1914
1915                 munmap(map_addr, map_sz);
1916         }
1917         if (hp != NULL && hp != MAP_FAILED)
1918                 munmap(hp, size);
1919         if (fd_hugepage >= 0)
1920                 close(fd_hugepage);
1921         return -1;
1922 }
1923
1924 static int
1925 eal_hugepage_attach(void)
1926 {
1927         if (eal_memalloc_sync_with_primary()) {
1928                 RTE_LOG(ERR, EAL, "Could not map memory from primary process\n");
1929                 if (aslr_enabled() > 0)
1930                         RTE_LOG(ERR, EAL, "It is recommended to disable ASLR in the kernel and retry running both primary and secondary processes\n");
1931                 return -1;
1932         }
1933         return 0;
1934 }
1935
1936 int
1937 rte_eal_hugepage_init(void)
1938 {
1939         return internal_config.legacy_mem ?
1940                         eal_legacy_hugepage_init() :
1941                         eal_hugepage_init();
1942 }
1943
1944 int
1945 rte_eal_hugepage_attach(void)
1946 {
1947         return internal_config.legacy_mem ?
1948                         eal_legacy_hugepage_attach() :
1949                         eal_hugepage_attach();
1950 }
1951
1952 int
1953 rte_eal_using_phys_addrs(void)
1954 {
1955         return phys_addrs_available;
1956 }
1957
1958 static int __rte_unused
1959 memseg_primary_init_32(void)
1960 {
1961         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1962         int active_sockets, hpi_idx, msl_idx = 0;
1963         unsigned int socket_id, i;
1964         struct rte_memseg_list *msl;
1965         uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem;
1966         uint64_t max_mem;
1967
1968         /* no-huge does not need this at all */
1969         if (internal_config.no_hugetlbfs)
1970                 return 0;
1971
1972         /* this is a giant hack, but desperate times call for desperate
1973          * measures. in legacy 32-bit mode, we cannot preallocate VA space,
1974          * because having upwards of 2 gigabytes of VA space already mapped will
1975          * interfere with our ability to map and sort hugepages.
1976          *
1977          * therefore, in legacy 32-bit mode, we will be initializing memseg
1978          * lists much later - in eal_memory.c, right after we unmap all the
1979          * unneeded pages. this will not affect secondary processes, as those
1980          * should be able to mmap the space without (too many) problems.
1981          */
1982         if (internal_config.legacy_mem)
1983                 return 0;
1984
1985         /* 32-bit mode is a very special case. we cannot know in advance where
1986          * the user will want to allocate their memory, so we have to do some
1987          * heuristics.
1988          */
1989         active_sockets = 0;
1990         total_requested_mem = 0;
1991         if (internal_config.force_sockets)
1992                 for (i = 0; i < rte_socket_count(); i++) {
1993                         uint64_t mem;
1994
1995                         socket_id = rte_socket_id_by_idx(i);
1996                         mem = internal_config.socket_mem[socket_id];
1997
1998                         if (mem == 0)
1999                                 continue;
2000
2001                         active_sockets++;
2002                         total_requested_mem += mem;
2003                 }
2004         else
2005                 total_requested_mem = internal_config.memory;
2006
2007         max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
2008         if (total_requested_mem > max_mem) {
2009                 RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n",
2010                                 (unsigned int)(max_mem >> 20));
2011                 return -1;
2012         }
2013         total_extra_mem = max_mem - total_requested_mem;
2014         extra_mem_per_socket = active_sockets == 0 ? total_extra_mem :
2015                         total_extra_mem / active_sockets;
2016
2017         /* the allocation logic is a little bit convoluted, but here's how it
2018          * works, in a nutshell:
2019          *  - if user hasn't specified on which sockets to allocate memory via
2020          *    --socket-mem, we allocate all of our memory on master core socket.
2021          *  - if user has specified sockets to allocate memory on, there may be
2022          *    some "unused" memory left (e.g. if user has specified --socket-mem
2023          *    such that not all memory adds up to 2 gigabytes), so add it to all
2024          *    sockets that are in use equally.
2025          *
2026          * page sizes are sorted by size in descending order, so we can safely
2027          * assume that we dispense with bigger page sizes first.
2028          */
2029
2030         /* create memseg lists */
2031         for (i = 0; i < rte_socket_count(); i++) {
2032                 int hp_sizes = (int) internal_config.num_hugepage_sizes;
2033                 uint64_t max_socket_mem, cur_socket_mem;
2034                 unsigned int master_lcore_socket;
2035                 struct rte_config *cfg = rte_eal_get_configuration();
2036                 bool skip;
2037
2038                 socket_id = rte_socket_id_by_idx(i);
2039
2040 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
2041                 if (socket_id > 0)
2042                         break;
2043 #endif
2044
2045                 /* if we didn't specifically request memory on this socket */
2046                 skip = active_sockets != 0 &&
2047                                 internal_config.socket_mem[socket_id] == 0;
2048                 /* ...or if we didn't specifically request memory on *any*
2049                  * socket, and this is not master lcore
2050                  */
2051                 master_lcore_socket = rte_lcore_to_socket_id(cfg->master_lcore);
2052                 skip |= active_sockets == 0 && socket_id != master_lcore_socket;
2053
2054                 if (skip) {
2055                         RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n",
2056                                         socket_id);
2057                         continue;
2058                 }
2059
2060                 /* max amount of memory on this socket */
2061                 max_socket_mem = (active_sockets != 0 ?
2062                                         internal_config.socket_mem[socket_id] :
2063                                         internal_config.memory) +
2064                                         extra_mem_per_socket;
2065                 cur_socket_mem = 0;
2066
2067                 for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) {
2068                         uint64_t max_pagesz_mem, cur_pagesz_mem = 0;
2069                         uint64_t hugepage_sz;
2070                         struct hugepage_info *hpi;
2071                         int type_msl_idx, max_segs, total_segs = 0;
2072
2073                         hpi = &internal_config.hugepage_info[hpi_idx];
2074                         hugepage_sz = hpi->hugepage_sz;
2075
2076                         /* check if pages are actually available */
2077                         if (hpi->num_pages[socket_id] == 0)
2078                                 continue;
2079
2080                         max_segs = RTE_MAX_MEMSEG_PER_TYPE;
2081                         max_pagesz_mem = max_socket_mem - cur_socket_mem;
2082
2083                         /* make it multiple of page size */
2084                         max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem,
2085                                         hugepage_sz);
2086
2087                         RTE_LOG(DEBUG, EAL, "Attempting to preallocate "
2088                                         "%" PRIu64 "M on socket %i\n",
2089                                         max_pagesz_mem >> 20, socket_id);
2090
2091                         type_msl_idx = 0;
2092                         while (cur_pagesz_mem < max_pagesz_mem &&
2093                                         total_segs < max_segs) {
2094                                 uint64_t cur_mem;
2095                                 unsigned int n_segs;
2096
2097                                 if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
2098                                         RTE_LOG(ERR, EAL,
2099                                                 "No more space in memseg lists, please increase %s\n",
2100                                                 RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
2101                                         return -1;
2102                                 }
2103
2104                                 msl = &mcfg->memsegs[msl_idx];
2105
2106                                 cur_mem = get_mem_amount(hugepage_sz,
2107                                                 max_pagesz_mem);
2108                                 n_segs = cur_mem / hugepage_sz;
2109
2110                                 if (alloc_memseg_list(msl, hugepage_sz, n_segs,
2111                                                 socket_id, type_msl_idx)) {
2112                                         /* failing to allocate a memseg list is
2113                                          * a serious error.
2114                                          */
2115                                         RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
2116                                         return -1;
2117                                 }
2118
2119                                 if (alloc_va_space(msl)) {
2120                                         /* if we couldn't allocate VA space, we
2121                                          * can try with smaller page sizes.
2122                                          */
2123                                         RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list, retrying with different page size\n");
2124                                         /* deallocate memseg list */
2125                                         if (free_memseg_list(msl))
2126                                                 return -1;
2127                                         break;
2128                                 }
2129
2130                                 total_segs += msl->memseg_arr.len;
2131                                 cur_pagesz_mem = total_segs * hugepage_sz;
2132                                 type_msl_idx++;
2133                                 msl_idx++;
2134                         }
2135                         cur_socket_mem += cur_pagesz_mem;
2136                 }
2137                 if (cur_socket_mem == 0) {
2138                         RTE_LOG(ERR, EAL, "Cannot allocate VA space on socket %u\n",
2139                                 socket_id);
2140                         return -1;
2141                 }
2142         }
2143
2144         return 0;
2145 }
2146
2147 static int __rte_unused
2148 memseg_primary_init(void)
2149 {
2150         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
2151         struct memtype {
2152                 uint64_t page_sz;
2153                 int socket_id;
2154         } *memtypes = NULL;
2155         int i, hpi_idx, msl_idx, ret = -1; /* fail unless told to succeed */
2156         struct rte_memseg_list *msl;
2157         uint64_t max_mem, max_mem_per_type;
2158         unsigned int max_seglists_per_type;
2159         unsigned int n_memtypes, cur_type;
2160
2161         /* no-huge does not need this at all */
2162         if (internal_config.no_hugetlbfs)
2163                 return 0;
2164
2165         /*
2166          * figuring out amount of memory we're going to have is a long and very
2167          * involved process. the basic element we're operating with is a memory
2168          * type, defined as a combination of NUMA node ID and page size (so that
2169          * e.g. 2 sockets with 2 page sizes yield 4 memory types in total).
2170          *
2171          * deciding amount of memory going towards each memory type is a
2172          * balancing act between maximum segments per type, maximum memory per
2173          * type, and number of detected NUMA nodes. the goal is to make sure
2174          * each memory type gets at least one memseg list.
2175          *
2176          * the total amount of memory is limited by RTE_MAX_MEM_MB value.
2177          *
2178          * the total amount of memory per type is limited by either
2179          * RTE_MAX_MEM_MB_PER_TYPE, or by RTE_MAX_MEM_MB divided by the number
2180          * of detected NUMA nodes. additionally, maximum number of segments per
2181          * type is also limited by RTE_MAX_MEMSEG_PER_TYPE. this is because for
2182          * smaller page sizes, it can take hundreds of thousands of segments to
2183          * reach the above specified per-type memory limits.
2184          *
2185          * additionally, each type may have multiple memseg lists associated
2186          * with it, each limited by either RTE_MAX_MEM_MB_PER_LIST for bigger
2187          * page sizes, or RTE_MAX_MEMSEG_PER_LIST segments for smaller ones.
2188          *
2189          * the number of memseg lists per type is decided based on the above
2190          * limits, and also taking number of detected NUMA nodes, to make sure
2191          * that we don't run out of memseg lists before we populate all NUMA
2192          * nodes with memory.
2193          *
2194          * we do this in three stages. first, we collect the number of types.
2195          * then, we figure out memory constraints and populate the list of
2196          * would-be memseg lists. then, we go ahead and allocate the memseg
2197          * lists.
2198          */
2199
2200         /* create space for mem types */
2201         n_memtypes = internal_config.num_hugepage_sizes * rte_socket_count();
2202         memtypes = calloc(n_memtypes, sizeof(*memtypes));
2203         if (memtypes == NULL) {
2204                 RTE_LOG(ERR, EAL, "Cannot allocate space for memory types\n");
2205                 return -1;
2206         }
2207
2208         /* populate mem types */
2209         cur_type = 0;
2210         for (hpi_idx = 0; hpi_idx < (int) internal_config.num_hugepage_sizes;
2211                         hpi_idx++) {
2212                 struct hugepage_info *hpi;
2213                 uint64_t hugepage_sz;
2214
2215                 hpi = &internal_config.hugepage_info[hpi_idx];
2216                 hugepage_sz = hpi->hugepage_sz;
2217
2218                 for (i = 0; i < (int) rte_socket_count(); i++, cur_type++) {
2219                         int socket_id = rte_socket_id_by_idx(i);
2220
2221 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
2222                         if (socket_id > 0)
2223                                 break;
2224 #endif
2225                         memtypes[cur_type].page_sz = hugepage_sz;
2226                         memtypes[cur_type].socket_id = socket_id;
2227
2228                         RTE_LOG(DEBUG, EAL, "Detected memory type: "
2229                                 "socket_id:%u hugepage_sz:%" PRIu64 "\n",
2230                                 socket_id, hugepage_sz);
2231                 }
2232         }
2233         /* number of memtypes could have been lower due to no NUMA support */
2234         n_memtypes = cur_type;
2235
2236         /* set up limits for types */
2237         max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
2238         max_mem_per_type = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20,
2239                         max_mem / n_memtypes);
2240         /*
2241          * limit maximum number of segment lists per type to ensure there's
2242          * space for memseg lists for all NUMA nodes with all page sizes
2243          */
2244         max_seglists_per_type = RTE_MAX_MEMSEG_LISTS / n_memtypes;
2245
2246         if (max_seglists_per_type == 0) {
2247                 RTE_LOG(ERR, EAL, "Cannot accommodate all memory types, please increase %s\n",
2248                         RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
2249                 goto out;
2250         }
2251
2252         /* go through all mem types and create segment lists */
2253         msl_idx = 0;
2254         for (cur_type = 0; cur_type < n_memtypes; cur_type++) {
2255                 unsigned int cur_seglist, n_seglists, n_segs;
2256                 unsigned int max_segs_per_type, max_segs_per_list;
2257                 struct memtype *type = &memtypes[cur_type];
2258                 uint64_t max_mem_per_list, pagesz;
2259                 int socket_id;
2260
2261                 pagesz = type->page_sz;
2262                 socket_id = type->socket_id;
2263
2264                 /*
2265                  * we need to create segment lists for this type. we must take
2266                  * into account the following things:
2267                  *
2268                  * 1. total amount of memory we can use for this memory type
2269                  * 2. total amount of memory per memseg list allowed
2270                  * 3. number of segments needed to fit the amount of memory
2271                  * 4. number of segments allowed per type
2272                  * 5. number of segments allowed per memseg list
2273                  * 6. number of memseg lists we are allowed to take up
2274                  */
2275
2276                 /* calculate how much segments we will need in total */
2277                 max_segs_per_type = max_mem_per_type / pagesz;
2278                 /* limit number of segments to maximum allowed per type */
2279                 max_segs_per_type = RTE_MIN(max_segs_per_type,
2280                                 (unsigned int)RTE_MAX_MEMSEG_PER_TYPE);
2281                 /* limit number of segments to maximum allowed per list */
2282                 max_segs_per_list = RTE_MIN(max_segs_per_type,
2283                                 (unsigned int)RTE_MAX_MEMSEG_PER_LIST);
2284
2285                 /* calculate how much memory we can have per segment list */
2286                 max_mem_per_list = RTE_MIN(max_segs_per_list * pagesz,
2287                                 (uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20);
2288
2289                 /* calculate how many segments each segment list will have */
2290                 n_segs = RTE_MIN(max_segs_per_list, max_mem_per_list / pagesz);
2291
2292                 /* calculate how many segment lists we can have */
2293                 n_seglists = RTE_MIN(max_segs_per_type / n_segs,
2294                                 max_mem_per_type / max_mem_per_list);
2295
2296                 /* limit number of segment lists according to our maximum */
2297                 n_seglists = RTE_MIN(n_seglists, max_seglists_per_type);
2298
2299                 RTE_LOG(DEBUG, EAL, "Creating %i segment lists: "
2300                                 "n_segs:%i socket_id:%i hugepage_sz:%" PRIu64 "\n",
2301                         n_seglists, n_segs, socket_id, pagesz);
2302
2303                 /* create all segment lists */
2304                 for (cur_seglist = 0; cur_seglist < n_seglists; cur_seglist++) {
2305                         if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
2306                                 RTE_LOG(ERR, EAL,
2307                                         "No more space in memseg lists, please increase %s\n",
2308                                         RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
2309                                 goto out;
2310                         }
2311                         msl = &mcfg->memsegs[msl_idx++];
2312
2313                         if (alloc_memseg_list(msl, pagesz, n_segs,
2314                                         socket_id, cur_seglist))
2315                                 goto out;
2316
2317                         if (alloc_va_space(msl)) {
2318                                 RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n");
2319                                 goto out;
2320                         }
2321                 }
2322         }
2323         /* we're successful */
2324         ret = 0;
2325 out:
2326         free(memtypes);
2327         return ret;
2328 }
2329
2330 static int
2331 memseg_secondary_init(void)
2332 {
2333         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
2334         int msl_idx = 0;
2335         struct rte_memseg_list *msl;
2336
2337         for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
2338
2339                 msl = &mcfg->memsegs[msl_idx];
2340
2341                 /* skip empty memseg lists */
2342                 if (msl->memseg_arr.len == 0)
2343                         continue;
2344
2345                 if (rte_fbarray_attach(&msl->memseg_arr)) {
2346                         RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
2347                         return -1;
2348                 }
2349
2350                 /* preallocate VA space */
2351                 if (alloc_va_space(msl)) {
2352                         RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
2353                         return -1;
2354                 }
2355         }
2356
2357         return 0;
2358 }
2359
2360 int
2361 rte_eal_memseg_init(void)
2362 {
2363         /* increase rlimit to maximum */
2364         struct rlimit lim;
2365
2366         if (getrlimit(RLIMIT_NOFILE, &lim) == 0) {
2367                 /* set limit to maximum */
2368                 lim.rlim_cur = lim.rlim_max;
2369
2370                 if (setrlimit(RLIMIT_NOFILE, &lim) < 0) {
2371                         RTE_LOG(DEBUG, EAL, "Setting maximum number of open files failed: %s\n",
2372                                         strerror(errno));
2373                 } else {
2374                         RTE_LOG(DEBUG, EAL, "Setting maximum number of open files to %"
2375                                         PRIu64 "\n",
2376                                         (uint64_t)lim.rlim_cur);
2377                 }
2378         } else {
2379                 RTE_LOG(ERR, EAL, "Cannot get current resource limits\n");
2380         }
2381
2382         return rte_eal_process_type() == RTE_PROC_PRIMARY ?
2383 #ifndef RTE_ARCH_64
2384                         memseg_primary_init_32() :
2385 #else
2386                         memseg_primary_init() :
2387 #endif
2388                         memseg_secondary_init();
2389 }