New upstream version 17.11.4
[deb_dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   Copyright(c) 2013 6WIND.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #define _FILE_OFFSET_BITS 64
36 #include <errno.h>
37 #include <stdarg.h>
38 #include <stdbool.h>
39 #include <stdlib.h>
40 #include <stdio.h>
41 #include <stdint.h>
42 #include <inttypes.h>
43 #include <string.h>
44 #include <sys/mman.h>
45 #include <sys/types.h>
46 #include <sys/stat.h>
47 #include <sys/queue.h>
48 #include <sys/file.h>
49 #include <unistd.h>
50 #include <limits.h>
51 #include <sys/ioctl.h>
52 #include <sys/time.h>
53 #include <signal.h>
54 #include <setjmp.h>
55 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
56 #include <numa.h>
57 #include <numaif.h>
58 #endif
59
60 #include <rte_log.h>
61 #include <rte_memory.h>
62 #include <rte_launch.h>
63 #include <rte_eal.h>
64 #include <rte_eal_memconfig.h>
65 #include <rte_per_lcore.h>
66 #include <rte_lcore.h>
67 #include <rte_common.h>
68 #include <rte_string_fns.h>
69
70 #include "eal_private.h"
71 #include "eal_internal_cfg.h"
72 #include "eal_filesystem.h"
73 #include "eal_hugepages.h"
74
75 #define PFN_MASK_SIZE   8
76
77 /**
78  * @file
79  * Huge page mapping under linux
80  *
81  * To reserve a big contiguous amount of memory, we use the hugepage
82  * feature of linux. For that, we need to have hugetlbfs mounted. This
83  * code will create many files in this directory (one per page) and
84  * map them in virtual memory. For each page, we will retrieve its
85  * physical address and remap it in order to have a virtual contiguous
86  * zone as well as a physical contiguous zone.
87  */
88
89 static uint64_t baseaddr_offset;
90
91 #ifdef RTE_ARCH_64
92 /*
93  * Linux kernel uses a really high address as starting address for serving
94  * mmaps calls. If there exists addressing limitations and IOVA mode is VA,
95  * this starting address is likely too high for those devices. However, it
96  * is possible to use a lower address in the process virtual address space
97  * as with 64 bits there is a lot of available space.
98  *
99  * Current known limitations are 39 or 40 bits. Setting the starting address
100  * at 4GB implies there are 508GB or 1020GB for mapping the available
101  * hugepages. This is likely enough for most systems, although a device with
102  * addressing limitations should call rte_dev_check_dma_mask for ensuring all
103  * memory is within supported range.
104  */
105 static uint64_t baseaddr = 0x100000000;
106 #endif
107
108 static bool phys_addrs_available = true;
109
110 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
111
112 static void
113 test_phys_addrs_available(void)
114 {
115         uint64_t tmp = 0;
116         phys_addr_t physaddr;
117
118         if (!rte_eal_has_hugepages()) {
119                 RTE_LOG(ERR, EAL,
120                         "Started without hugepages support, physical addresses not available\n");
121                 phys_addrs_available = false;
122                 return;
123         }
124
125         physaddr = rte_mem_virt2phy(&tmp);
126         if (physaddr == RTE_BAD_PHYS_ADDR) {
127                 if (rte_eal_iova_mode() == RTE_IOVA_PA)
128                         RTE_LOG(ERR, EAL,
129                                 "Cannot obtain physical addresses: %s. "
130                                 "Only vfio will function.\n",
131                                 strerror(errno));
132                 phys_addrs_available = false;
133         }
134 }
135
136 /*
137  * Get physical address of any mapped virtual address in the current process.
138  */
139 phys_addr_t
140 rte_mem_virt2phy(const void *virtaddr)
141 {
142         int fd, retval;
143         uint64_t page, physaddr;
144         unsigned long virt_pfn;
145         int page_size;
146         off_t offset;
147
148         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
149         if (!phys_addrs_available)
150                 return RTE_BAD_IOVA;
151
152         /* standard page size */
153         page_size = getpagesize();
154
155         fd = open("/proc/self/pagemap", O_RDONLY);
156         if (fd < 0) {
157                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
158                         __func__, strerror(errno));
159                 return RTE_BAD_IOVA;
160         }
161
162         virt_pfn = (unsigned long)virtaddr / page_size;
163         offset = sizeof(uint64_t) * virt_pfn;
164         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
165                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
166                                 __func__, strerror(errno));
167                 close(fd);
168                 return RTE_BAD_IOVA;
169         }
170
171         retval = read(fd, &page, PFN_MASK_SIZE);
172         close(fd);
173         if (retval < 0) {
174                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
175                                 __func__, strerror(errno));
176                 return RTE_BAD_IOVA;
177         } else if (retval != PFN_MASK_SIZE) {
178                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
179                                 "but expected %d:\n",
180                                 __func__, retval, PFN_MASK_SIZE);
181                 return RTE_BAD_IOVA;
182         }
183
184         /*
185          * the pfn (page frame number) are bits 0-54 (see
186          * pagemap.txt in linux Documentation)
187          */
188         if ((page & 0x7fffffffffffffULL) == 0)
189                 return RTE_BAD_IOVA;
190
191         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
192                 + ((unsigned long)virtaddr % page_size);
193
194         return physaddr;
195 }
196
197 rte_iova_t
198 rte_mem_virt2iova(const void *virtaddr)
199 {
200         if (rte_eal_iova_mode() == RTE_IOVA_VA)
201                 return (uintptr_t)virtaddr;
202         return rte_mem_virt2phy(virtaddr);
203 }
204
205 /*
206  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
207  * it by browsing the /proc/self/pagemap special file.
208  */
209 static int
210 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
211 {
212         unsigned int i;
213         phys_addr_t addr;
214
215         for (i = 0; i < hpi->num_pages[0]; i++) {
216                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
217                 if (addr == RTE_BAD_PHYS_ADDR)
218                         return -1;
219                 hugepg_tbl[i].physaddr = addr;
220         }
221         return 0;
222 }
223
224 /*
225  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
226  */
227 static int
228 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
229 {
230         unsigned int i;
231         static phys_addr_t addr;
232
233         for (i = 0; i < hpi->num_pages[0]; i++) {
234                 hugepg_tbl[i].physaddr = addr;
235                 addr += hugepg_tbl[i].size;
236         }
237         return 0;
238 }
239
240 /*
241  * Check whether address-space layout randomization is enabled in
242  * the kernel. This is important for multi-process as it can prevent
243  * two processes mapping data to the same virtual address
244  * Returns:
245  *    0 - address space randomization disabled
246  *    1/2 - address space randomization enabled
247  *    negative error code on error
248  */
249 static int
250 aslr_enabled(void)
251 {
252         char c;
253         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
254         if (fd < 0)
255                 return -errno;
256         retval = read(fd, &c, 1);
257         close(fd);
258         if (retval < 0)
259                 return -errno;
260         if (retval == 0)
261                 return -EIO;
262         switch (c) {
263                 case '0' : return 0;
264                 case '1' : return 1;
265                 case '2' : return 2;
266                 default: return -EINVAL;
267         }
268 }
269
270 static void *
271 get_addr_hint(void)
272 {
273         if (internal_config.base_virtaddr != 0) {
274                 return (void *) (uintptr_t)
275                             (internal_config.base_virtaddr +
276                              baseaddr_offset);
277         } else {
278 #ifdef RTE_ARCH_64
279                 return (void *) (uintptr_t) (baseaddr +
280                                 baseaddr_offset);
281 #else
282                 return NULL;
283 #endif
284         }
285 }
286
287 /*
288  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
289  * pointer to the mmap'd area and keep *size unmodified. Else, retry
290  * with a smaller zone: decrease *size by hugepage_sz until it reaches
291  * 0. In this case, return NULL. Note: this function returns an address
292  * which is a multiple of hugepage size.
293  */
294 static void *
295 get_virtual_area(size_t *size, size_t hugepage_sz)
296 {
297         void *addr, *addr_hint;
298         int fd;
299         long aligned_addr;
300
301         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
302
303         fd = open("/dev/zero", O_RDONLY);
304         if (fd < 0){
305                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
306                 return NULL;
307         }
308         do {
309                 addr_hint = get_addr_hint();
310
311                 addr = mmap(addr_hint,
312                                 (*size) + hugepage_sz, PROT_READ,
313 #ifdef RTE_ARCH_PPC_64
314                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
315 #else
316                                 MAP_PRIVATE,
317 #endif
318                                 fd, 0);
319                 if (addr == MAP_FAILED) {
320                         /* map failed. Let's try with less memory */
321                         *size -= hugepage_sz;
322                 } else if (addr_hint && addr != addr_hint) {
323                         /* hint was not used. Try with another offset */
324                         munmap(addr, (*size) + hugepage_sz);
325                         addr = MAP_FAILED;
326                         baseaddr_offset += 0x100000000;
327                 }
328         } while (addr == MAP_FAILED && *size > 0);
329
330         if (addr == MAP_FAILED) {
331                 close(fd);
332                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
333                         strerror(errno));
334                 return NULL;
335         }
336
337         munmap(addr, (*size) + hugepage_sz);
338         close(fd);
339
340         /* align addr to a huge page size boundary */
341         aligned_addr = (long)addr;
342         aligned_addr += (hugepage_sz - 1);
343         aligned_addr &= (~(hugepage_sz - 1));
344         addr = (void *)(aligned_addr);
345
346         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
347                 addr, *size);
348
349         /* increment offset */
350         baseaddr_offset += *size;
351
352         return addr;
353 }
354
355 static sigjmp_buf huge_jmpenv;
356
357 static void huge_sigbus_handler(int signo __rte_unused)
358 {
359         siglongjmp(huge_jmpenv, 1);
360 }
361
362 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
363  * non-static local variable in the stack frame calling sigsetjmp might be
364  * clobbered by a call to longjmp.
365  */
366 static int huge_wrap_sigsetjmp(void)
367 {
368         return sigsetjmp(huge_jmpenv, 1);
369 }
370
371 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
372 /* Callback for numa library. */
373 void numa_error(char *where)
374 {
375         RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
376 }
377 #endif
378
379 /*
380  * Mmap all hugepages of hugepage table: it first open a file in
381  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
382  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
383  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
384  * map contiguous physical blocks in contiguous virtual blocks.
385  */
386 static unsigned
387 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
388                   uint64_t *essential_memory __rte_unused, int orig)
389 {
390         int fd;
391         unsigned i;
392         void *virtaddr;
393         void *vma_addr = NULL;
394         size_t vma_len = 0;
395 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
396         int node_id = -1;
397         int essential_prev = 0;
398         int oldpolicy;
399         struct bitmask *oldmask = numa_allocate_nodemask();
400         bool have_numa = true;
401         unsigned long maxnode = 0;
402
403         /* Check if kernel supports NUMA. */
404         if (numa_available() != 0) {
405                 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
406                 have_numa = false;
407         }
408
409         if (orig && have_numa) {
410                 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
411                 if (get_mempolicy(&oldpolicy, oldmask->maskp,
412                                   oldmask->size + 1, 0, 0) < 0) {
413                         RTE_LOG(ERR, EAL,
414                                 "Failed to get current mempolicy: %s. "
415                                 "Assuming MPOL_DEFAULT.\n", strerror(errno));
416                         oldpolicy = MPOL_DEFAULT;
417                 }
418                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
419                         if (internal_config.socket_mem[i])
420                                 maxnode = i + 1;
421         }
422 #endif
423
424         for (i = 0; i < hpi->num_pages[0]; i++) {
425                 uint64_t hugepage_sz = hpi->hugepage_sz;
426
427 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
428                 if (maxnode) {
429                         unsigned int j;
430
431                         for (j = 0; j < maxnode; j++)
432                                 if (essential_memory[j])
433                                         break;
434
435                         if (j == maxnode) {
436                                 node_id = (node_id + 1) % maxnode;
437                                 while (!internal_config.socket_mem[node_id]) {
438                                         node_id++;
439                                         node_id %= maxnode;
440                                 }
441                                 essential_prev = 0;
442                         } else {
443                                 node_id = j;
444                                 essential_prev = essential_memory[j];
445
446                                 if (essential_memory[j] < hugepage_sz)
447                                         essential_memory[j] = 0;
448                                 else
449                                         essential_memory[j] -= hugepage_sz;
450                         }
451
452                         RTE_LOG(DEBUG, EAL,
453                                 "Setting policy MPOL_PREFERRED for socket %d\n",
454                                 node_id);
455                         numa_set_preferred(node_id);
456                 }
457 #endif
458
459                 if (orig) {
460                         hugepg_tbl[i].file_id = i;
461                         hugepg_tbl[i].size = hugepage_sz;
462                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
463                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
464                                         hugepg_tbl[i].file_id);
465                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
466                 }
467 #ifndef RTE_ARCH_64
468                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
469                  * original map address as final map address.
470                  */
471                 else if ((hugepage_sz == RTE_PGSIZE_1G)
472                         || (hugepage_sz == RTE_PGSIZE_16G)) {
473                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
474                         hugepg_tbl[i].orig_va = NULL;
475                         continue;
476                 }
477 #endif
478                 else if (vma_len == 0) {
479                         unsigned j, num_pages;
480
481                         /* reserve a virtual area for next contiguous
482                          * physical block: count the number of
483                          * contiguous physical pages. */
484                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
485 #ifdef RTE_ARCH_PPC_64
486                                 /* The physical addresses are sorted in
487                                  * descending order on PPC64 */
488                                 if (hugepg_tbl[j].physaddr !=
489                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
490                                         break;
491 #else
492                                 if (hugepg_tbl[j].physaddr !=
493                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
494                                         break;
495 #endif
496                         }
497                         num_pages = j - i;
498                         vma_len = num_pages * hugepage_sz;
499
500                         /* get the biggest virtual memory area up to
501                          * vma_len. If it fails, vma_addr is NULL, so
502                          * let the kernel provide the address. */
503                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
504                         if (vma_addr == NULL)
505                                 vma_len = hugepage_sz;
506                 }
507
508                 /* try to create hugepage file */
509                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
510                 if (fd < 0) {
511                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
512                                         strerror(errno));
513                         goto out;
514                 }
515
516                 /* map the segment, and populate page tables,
517                  * the kernel fills this segment with zeros */
518                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
519                                 MAP_SHARED | MAP_POPULATE, fd, 0);
520                 if (virtaddr == MAP_FAILED) {
521                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
522                                         strerror(errno));
523                         close(fd);
524                         goto out;
525                 }
526
527                 if (orig) {
528                         hugepg_tbl[i].orig_va = virtaddr;
529                 }
530                 else {
531                         /* rewrite physical addresses in IOVA as VA mode */
532                         if (rte_eal_iova_mode() == RTE_IOVA_VA)
533                                 hugepg_tbl[i].physaddr = (uintptr_t)virtaddr;
534                         hugepg_tbl[i].final_va = virtaddr;
535                 }
536
537                 if (orig) {
538                         /* In linux, hugetlb limitations, like cgroup, are
539                          * enforced at fault time instead of mmap(), even
540                          * with the option of MAP_POPULATE. Kernel will send
541                          * a SIGBUS signal. To avoid to be killed, save stack
542                          * environment here, if SIGBUS happens, we can jump
543                          * back here.
544                          */
545                         if (huge_wrap_sigsetjmp()) {
546                                 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
547                                         "hugepages of size %u MB\n",
548                                         (unsigned)(hugepage_sz / 0x100000));
549                                 munmap(virtaddr, hugepage_sz);
550                                 close(fd);
551                                 unlink(hugepg_tbl[i].filepath);
552 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
553                                 if (maxnode)
554                                         essential_memory[node_id] =
555                                                 essential_prev;
556 #endif
557                                 goto out;
558                         }
559                         *(int *)virtaddr = 0;
560                 }
561
562
563                 /* set shared flock on the file. */
564                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
565                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
566                                 __func__, strerror(errno));
567                         close(fd);
568                         goto out;
569                 }
570
571                 close(fd);
572
573                 vma_addr = (char *)vma_addr + hugepage_sz;
574                 vma_len -= hugepage_sz;
575         }
576
577 out:
578 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
579         if (maxnode) {
580                 RTE_LOG(DEBUG, EAL,
581                         "Restoring previous memory policy: %d\n", oldpolicy);
582                 if (oldpolicy == MPOL_DEFAULT) {
583                         numa_set_localalloc();
584                 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
585                                          oldmask->size + 1) < 0) {
586                         RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
587                                 strerror(errno));
588                         numa_set_localalloc();
589                 }
590         }
591         numa_free_cpumask(oldmask);
592 #endif
593         return i;
594 }
595
596 /* Unmap all hugepages from original mapping */
597 static int
598 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
599 {
600         unsigned i;
601         for (i = 0; i < hpi->num_pages[0]; i++) {
602                 if (hugepg_tbl[i].orig_va) {
603                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
604                         hugepg_tbl[i].orig_va = NULL;
605                 }
606         }
607         return 0;
608 }
609
610 /*
611  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
612  * page.
613  */
614 static int
615 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
616 {
617         int socket_id;
618         char *end, *nodestr;
619         unsigned i, hp_count = 0;
620         uint64_t virt_addr;
621         char buf[BUFSIZ];
622         char hugedir_str[PATH_MAX];
623         FILE *f;
624
625         f = fopen("/proc/self/numa_maps", "r");
626         if (f == NULL) {
627                 RTE_LOG(NOTICE, EAL, "NUMA support not available"
628                         " consider that all memory is in socket_id 0\n");
629                 return 0;
630         }
631
632         snprintf(hugedir_str, sizeof(hugedir_str),
633                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
634
635         /* parse numa map */
636         while (fgets(buf, sizeof(buf), f) != NULL) {
637
638                 /* ignore non huge page */
639                 if (strstr(buf, " huge ") == NULL &&
640                                 strstr(buf, hugedir_str) == NULL)
641                         continue;
642
643                 /* get zone addr */
644                 virt_addr = strtoull(buf, &end, 16);
645                 if (virt_addr == 0 || end == buf) {
646                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
647                         goto error;
648                 }
649
650                 /* get node id (socket id) */
651                 nodestr = strstr(buf, " N");
652                 if (nodestr == NULL) {
653                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
654                         goto error;
655                 }
656                 nodestr += 2;
657                 end = strstr(nodestr, "=");
658                 if (end == NULL) {
659                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
660                         goto error;
661                 }
662                 end[0] = '\0';
663                 end = NULL;
664
665                 socket_id = strtoul(nodestr, &end, 0);
666                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
667                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
668                         goto error;
669                 }
670
671                 /* if we find this page in our mappings, set socket_id */
672                 for (i = 0; i < hpi->num_pages[0]; i++) {
673                         void *va = (void *)(unsigned long)virt_addr;
674                         if (hugepg_tbl[i].orig_va == va) {
675                                 hugepg_tbl[i].socket_id = socket_id;
676                                 hp_count++;
677 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
678                                 RTE_LOG(DEBUG, EAL,
679                                         "Hugepage %s is on socket %d\n",
680                                         hugepg_tbl[i].filepath, socket_id);
681 #endif
682                         }
683                 }
684         }
685
686         if (hp_count < hpi->num_pages[0])
687                 goto error;
688
689         fclose(f);
690         return 0;
691
692 error:
693         fclose(f);
694         return -1;
695 }
696
697 static int
698 cmp_physaddr(const void *a, const void *b)
699 {
700 #ifndef RTE_ARCH_PPC_64
701         const struct hugepage_file *p1 = a;
702         const struct hugepage_file *p2 = b;
703 #else
704         /* PowerPC needs memory sorted in reverse order from x86 */
705         const struct hugepage_file *p1 = b;
706         const struct hugepage_file *p2 = a;
707 #endif
708         if (p1->physaddr < p2->physaddr)
709                 return -1;
710         else if (p1->physaddr > p2->physaddr)
711                 return 1;
712         else
713                 return 0;
714 }
715
716 /*
717  * Uses mmap to create a shared memory area for storage of data
718  * Used in this file to store the hugepage file map on disk
719  */
720 static void *
721 create_shared_memory(const char *filename, const size_t mem_size)
722 {
723         void *retval;
724         int fd = open(filename, O_CREAT | O_RDWR, 0666);
725         if (fd < 0)
726                 return NULL;
727         if (ftruncate(fd, mem_size) < 0) {
728                 close(fd);
729                 return NULL;
730         }
731         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
732         close(fd);
733         if (retval == MAP_FAILED)
734                 return NULL;
735         return retval;
736 }
737
738 /*
739  * this copies *active* hugepages from one hugepage table to another.
740  * destination is typically the shared memory.
741  */
742 static int
743 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
744                 const struct hugepage_file * src, int src_size)
745 {
746         int src_pos, dst_pos = 0;
747
748         for (src_pos = 0; src_pos < src_size; src_pos++) {
749                 if (src[src_pos].final_va != NULL) {
750                         /* error on overflow attempt */
751                         if (dst_pos == dest_size)
752                                 return -1;
753                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
754                         dst_pos++;
755                 }
756         }
757         return 0;
758 }
759
760 static int
761 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
762                 unsigned num_hp_info)
763 {
764         unsigned socket, size;
765         int page, nrpages = 0;
766
767         /* get total number of hugepages */
768         for (size = 0; size < num_hp_info; size++)
769                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
770                         nrpages +=
771                         internal_config.hugepage_info[size].num_pages[socket];
772
773         for (page = 0; page < nrpages; page++) {
774                 struct hugepage_file *hp = &hugepg_tbl[page];
775
776                 if (hp->final_va != NULL && unlink(hp->filepath)) {
777                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
778                                 __func__, hp->filepath, strerror(errno));
779                 }
780         }
781         return 0;
782 }
783
784 /*
785  * unmaps hugepages that are not going to be used. since we originally allocate
786  * ALL hugepages (not just those we need), additional unmapping needs to be done.
787  */
788 static int
789 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
790                 struct hugepage_info *hpi,
791                 unsigned num_hp_info)
792 {
793         unsigned socket, size;
794         int page, nrpages = 0;
795
796         /* get total number of hugepages */
797         for (size = 0; size < num_hp_info; size++)
798                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
799                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
800
801         for (size = 0; size < num_hp_info; size++) {
802                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
803                         unsigned pages_found = 0;
804
805                         /* traverse until we have unmapped all the unused pages */
806                         for (page = 0; page < nrpages; page++) {
807                                 struct hugepage_file *hp = &hugepg_tbl[page];
808
809                                 /* find a page that matches the criteria */
810                                 if ((hp->size == hpi[size].hugepage_sz) &&
811                                                 (hp->socket_id == (int) socket)) {
812
813                                         /* if we skipped enough pages, unmap the rest */
814                                         if (pages_found == hpi[size].num_pages[socket]) {
815                                                 uint64_t unmap_len;
816
817                                                 unmap_len = hp->size;
818
819                                                 /* get start addr and len of the remaining segment */
820                                                 munmap(hp->final_va, (size_t) unmap_len);
821
822                                                 hp->final_va = NULL;
823                                                 if (unlink(hp->filepath) == -1) {
824                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
825                                                                         __func__, hp->filepath, strerror(errno));
826                                                         return -1;
827                                                 }
828                                         } else {
829                                                 /* lock the page and skip */
830                                                 pages_found++;
831                                         }
832
833                                 } /* match page */
834                         } /* foreach page */
835                 } /* foreach socket */
836         } /* foreach pagesize */
837
838         return 0;
839 }
840
841 static inline uint64_t
842 get_socket_mem_size(int socket)
843 {
844         uint64_t size = 0;
845         unsigned i;
846
847         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
848                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
849                 if (hpi->hugedir != NULL)
850                         size += hpi->hugepage_sz * hpi->num_pages[socket];
851         }
852
853         return size;
854 }
855
856 /*
857  * This function is a NUMA-aware equivalent of calc_num_pages.
858  * It takes in the list of hugepage sizes and the
859  * number of pages thereof, and calculates the best number of
860  * pages of each size to fulfill the request for <memory> ram
861  */
862 static int
863 calc_num_pages_per_socket(uint64_t * memory,
864                 struct hugepage_info *hp_info,
865                 struct hugepage_info *hp_used,
866                 unsigned num_hp_info)
867 {
868         unsigned socket, j, i = 0;
869         unsigned requested, available;
870         int total_num_pages = 0;
871         uint64_t remaining_mem, cur_mem;
872         uint64_t total_mem = internal_config.memory;
873
874         if (num_hp_info == 0)
875                 return -1;
876
877         /* if specific memory amounts per socket weren't requested */
878         if (internal_config.force_sockets == 0) {
879                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
880                 size_t default_size, total_size;
881                 unsigned lcore_id;
882
883                 /* Compute number of cores per socket */
884                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
885                 RTE_LCORE_FOREACH(lcore_id) {
886                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
887                 }
888
889                 /*
890                  * Automatically spread requested memory amongst detected sockets according
891                  * to number of cores from cpu mask present on each socket
892                  */
893                 total_size = internal_config.memory;
894                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
895
896                         /* Set memory amount per socket */
897                         default_size = (internal_config.memory * cpu_per_socket[socket])
898                                         / rte_lcore_count();
899
900                         /* Limit to maximum available memory on socket */
901                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
902
903                         /* Update sizes */
904                         memory[socket] = default_size;
905                         total_size -= default_size;
906                 }
907
908                 /*
909                  * If some memory is remaining, try to allocate it by getting all
910                  * available memory from sockets, one after the other
911                  */
912                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
913                         /* take whatever is available */
914                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
915                                                total_size);
916
917                         /* Update sizes */
918                         memory[socket] += default_size;
919                         total_size -= default_size;
920                 }
921         }
922
923         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
924                 /* skips if the memory on specific socket wasn't requested */
925                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
926                         hp_used[i].hugedir = hp_info[i].hugedir;
927                         hp_used[i].num_pages[socket] = RTE_MIN(
928                                         memory[socket] / hp_info[i].hugepage_sz,
929                                         hp_info[i].num_pages[socket]);
930
931                         cur_mem = hp_used[i].num_pages[socket] *
932                                         hp_used[i].hugepage_sz;
933
934                         memory[socket] -= cur_mem;
935                         total_mem -= cur_mem;
936
937                         total_num_pages += hp_used[i].num_pages[socket];
938
939                         /* check if we have met all memory requests */
940                         if (memory[socket] == 0)
941                                 break;
942
943                         /* check if we have any more pages left at this size, if so
944                          * move on to next size */
945                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
946                                 continue;
947                         /* At this point we know that there are more pages available that are
948                          * bigger than the memory we want, so lets see if we can get enough
949                          * from other page sizes.
950                          */
951                         remaining_mem = 0;
952                         for (j = i+1; j < num_hp_info; j++)
953                                 remaining_mem += hp_info[j].hugepage_sz *
954                                 hp_info[j].num_pages[socket];
955
956                         /* is there enough other memory, if not allocate another page and quit */
957                         if (remaining_mem < memory[socket]){
958                                 cur_mem = RTE_MIN(memory[socket],
959                                                 hp_info[i].hugepage_sz);
960                                 memory[socket] -= cur_mem;
961                                 total_mem -= cur_mem;
962                                 hp_used[i].num_pages[socket]++;
963                                 total_num_pages++;
964                                 break; /* we are done with this socket*/
965                         }
966                 }
967                 /* if we didn't satisfy all memory requirements per socket */
968                 if (memory[socket] > 0) {
969                         /* to prevent icc errors */
970                         requested = (unsigned) (internal_config.socket_mem[socket] /
971                                         0x100000);
972                         available = requested -
973                                         ((unsigned) (memory[socket] / 0x100000));
974                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
975                                         "Requested: %uMB, available: %uMB\n", socket,
976                                         requested, available);
977                         return -1;
978                 }
979         }
980
981         /* if we didn't satisfy total memory requirements */
982         if (total_mem > 0) {
983                 requested = (unsigned) (internal_config.memory / 0x100000);
984                 available = requested - (unsigned) (total_mem / 0x100000);
985                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
986                                 " available: %uMB\n", requested, available);
987                 return -1;
988         }
989         return total_num_pages;
990 }
991
992 static inline size_t
993 eal_get_hugepage_mem_size(void)
994 {
995         uint64_t size = 0;
996         unsigned i, j;
997
998         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
999                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
1000                 if (hpi->hugedir != NULL) {
1001                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1002                                 size += hpi->hugepage_sz * hpi->num_pages[j];
1003                         }
1004                 }
1005         }
1006
1007         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
1008 }
1009
1010 static struct sigaction huge_action_old;
1011 static int huge_need_recover;
1012
1013 static void
1014 huge_register_sigbus(void)
1015 {
1016         sigset_t mask;
1017         struct sigaction action;
1018
1019         sigemptyset(&mask);
1020         sigaddset(&mask, SIGBUS);
1021         action.sa_flags = 0;
1022         action.sa_mask = mask;
1023         action.sa_handler = huge_sigbus_handler;
1024
1025         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
1026 }
1027
1028 static void
1029 huge_recover_sigbus(void)
1030 {
1031         if (huge_need_recover) {
1032                 sigaction(SIGBUS, &huge_action_old, NULL);
1033                 huge_need_recover = 0;
1034         }
1035 }
1036
1037 /*
1038  * Prepare physical memory mapping: fill configuration structure with
1039  * these infos, return 0 on success.
1040  *  1. map N huge pages in separate files in hugetlbfs
1041  *  2. find associated physical addr
1042  *  3. find associated NUMA socket ID
1043  *  4. sort all huge pages by physical address
1044  *  5. remap these N huge pages in the correct order
1045  *  6. unmap the first mapping
1046  *  7. fill memsegs in configuration with contiguous zones
1047  */
1048 int
1049 rte_eal_hugepage_init(void)
1050 {
1051         struct rte_mem_config *mcfg;
1052         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
1053         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1054
1055         uint64_t memory[RTE_MAX_NUMA_NODES];
1056
1057         unsigned hp_offset;
1058         int i, j, new_memseg;
1059         int nr_hugefiles, nr_hugepages = 0;
1060         void *addr;
1061
1062         test_phys_addrs_available();
1063
1064         memset(used_hp, 0, sizeof(used_hp));
1065
1066         /* get pointer to global configuration */
1067         mcfg = rte_eal_get_configuration()->mem_config;
1068
1069         /* hugetlbfs can be disabled */
1070         if (internal_config.no_hugetlbfs) {
1071                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
1072                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
1073                 if (addr == MAP_FAILED) {
1074                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1075                                         strerror(errno));
1076                         return -1;
1077                 }
1078                 if (rte_eal_iova_mode() == RTE_IOVA_VA)
1079                         mcfg->memseg[0].iova = (uintptr_t)addr;
1080                 else
1081                         mcfg->memseg[0].iova = RTE_BAD_IOVA;
1082                 mcfg->memseg[0].addr = addr;
1083                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
1084                 mcfg->memseg[0].len = internal_config.memory;
1085                 mcfg->memseg[0].socket_id = 0;
1086                 return 0;
1087         }
1088
1089         /* calculate total number of hugepages available. at this point we haven't
1090          * yet started sorting them so they all are on socket 0 */
1091         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1092                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1093                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1094
1095                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1096         }
1097
1098         /*
1099          * allocate a memory area for hugepage table.
1100          * this isn't shared memory yet. due to the fact that we need some
1101          * processing done on these pages, shared memory will be created
1102          * at a later stage.
1103          */
1104         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1105         if (tmp_hp == NULL)
1106                 goto fail;
1107
1108         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1109
1110         hp_offset = 0; /* where we start the current page size entries */
1111
1112         huge_register_sigbus();
1113
1114         /* make a copy of socket_mem, needed for balanced allocation. */
1115         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1116                 memory[i] = internal_config.socket_mem[i];
1117
1118
1119         /* map all hugepages and sort them */
1120         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1121                 unsigned pages_old, pages_new;
1122                 struct hugepage_info *hpi;
1123
1124                 /*
1125                  * we don't yet mark hugepages as used at this stage, so
1126                  * we just map all hugepages available to the system
1127                  * all hugepages are still located on socket 0
1128                  */
1129                 hpi = &internal_config.hugepage_info[i];
1130
1131                 if (hpi->num_pages[0] == 0)
1132                         continue;
1133
1134                 /* map all hugepages available */
1135                 pages_old = hpi->num_pages[0];
1136                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi,
1137                                               memory, 1);
1138                 if (pages_new < pages_old) {
1139                         RTE_LOG(DEBUG, EAL,
1140                                 "%d not %d hugepages of size %u MB allocated\n",
1141                                 pages_new, pages_old,
1142                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1143
1144                         int pages = pages_old - pages_new;
1145
1146                         nr_hugepages -= pages;
1147                         hpi->num_pages[0] = pages_new;
1148                         if (pages_new == 0)
1149                                 continue;
1150                 }
1151
1152                 if (phys_addrs_available &&
1153                                 rte_eal_iova_mode() != RTE_IOVA_VA) {
1154                         /* find physical addresses for each hugepage */
1155                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1156                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1157                                         "for %u MB pages\n",
1158                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1159                                 goto fail;
1160                         }
1161                 } else {
1162                         /* set physical addresses for each hugepage */
1163                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1164                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1165                                         "for %u MB pages\n",
1166                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1167                                 goto fail;
1168                         }
1169                 }
1170
1171                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1172                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1173                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1174                         goto fail;
1175                 }
1176
1177                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1178                       sizeof(struct hugepage_file), cmp_physaddr);
1179
1180                 /* remap all hugepages */
1181                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, NULL, 0) !=
1182                     hpi->num_pages[0]) {
1183                         RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1184                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1185                         goto fail;
1186                 }
1187
1188                 /* unmap original mappings */
1189                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1190                         goto fail;
1191
1192                 /* we have processed a num of hugepages of this size, so inc offset */
1193                 hp_offset += hpi->num_pages[0];
1194         }
1195
1196         huge_recover_sigbus();
1197
1198         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1199                 internal_config.memory = eal_get_hugepage_mem_size();
1200
1201         nr_hugefiles = nr_hugepages;
1202
1203
1204         /* clean out the numbers of pages */
1205         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1206                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1207                         internal_config.hugepage_info[i].num_pages[j] = 0;
1208
1209         /* get hugepages for each socket */
1210         for (i = 0; i < nr_hugefiles; i++) {
1211                 int socket = tmp_hp[i].socket_id;
1212
1213                 /* find a hugepage info with right size and increment num_pages */
1214                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1215                                 (int)internal_config.num_hugepage_sizes);
1216                 for (j = 0; j < nb_hpsizes; j++) {
1217                         if (tmp_hp[i].size ==
1218                                         internal_config.hugepage_info[j].hugepage_sz) {
1219                                 internal_config.hugepage_info[j].num_pages[socket]++;
1220                         }
1221                 }
1222         }
1223
1224         /* make a copy of socket_mem, needed for number of pages calculation */
1225         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1226                 memory[i] = internal_config.socket_mem[i];
1227
1228         /* calculate final number of pages */
1229         nr_hugepages = calc_num_pages_per_socket(memory,
1230                         internal_config.hugepage_info, used_hp,
1231                         internal_config.num_hugepage_sizes);
1232
1233         /* error if not enough memory available */
1234         if (nr_hugepages < 0)
1235                 goto fail;
1236
1237         /* reporting in! */
1238         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1239                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1240                         if (used_hp[i].num_pages[j] > 0) {
1241                                 RTE_LOG(DEBUG, EAL,
1242                                         "Requesting %u pages of size %uMB"
1243                                         " from socket %i\n",
1244                                         used_hp[i].num_pages[j],
1245                                         (unsigned)
1246                                         (used_hp[i].hugepage_sz / 0x100000),
1247                                         j);
1248                         }
1249                 }
1250         }
1251
1252         /* create shared memory */
1253         hugepage = create_shared_memory(eal_hugepage_info_path(),
1254                         nr_hugefiles * sizeof(struct hugepage_file));
1255
1256         if (hugepage == NULL) {
1257                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1258                 goto fail;
1259         }
1260         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1261
1262         /*
1263          * unmap pages that we won't need (looks at used_hp).
1264          * also, sets final_va to NULL on pages that were unmapped.
1265          */
1266         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1267                         internal_config.num_hugepage_sizes) < 0) {
1268                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1269                 goto fail;
1270         }
1271
1272         /*
1273          * copy stuff from malloc'd hugepage* to the actual shared memory.
1274          * this procedure only copies those hugepages that have final_va
1275          * not NULL. has overflow protection.
1276          */
1277         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1278                         tmp_hp, nr_hugefiles) < 0) {
1279                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1280                 goto fail;
1281         }
1282
1283         /* free the hugepage backing files */
1284         if (internal_config.hugepage_unlink &&
1285                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1286                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1287                 goto fail;
1288         }
1289
1290         /* free the temporary hugepage table */
1291         free(tmp_hp);
1292         tmp_hp = NULL;
1293
1294         /* first memseg index shall be 0 after incrementing it below */
1295         j = -1;
1296         for (i = 0; i < nr_hugefiles; i++) {
1297                 new_memseg = 0;
1298
1299                 /* if this is a new section, create a new memseg */
1300                 if (i == 0)
1301                         new_memseg = 1;
1302                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1303                         new_memseg = 1;
1304                 else if (hugepage[i].size != hugepage[i-1].size)
1305                         new_memseg = 1;
1306
1307 #ifdef RTE_ARCH_PPC_64
1308                 /* On PPC64 architecture, the mmap always start from higher
1309                  * virtual address to lower address. Here, both the physical
1310                  * address and virtual address are in descending order */
1311                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1312                     hugepage[i].size)
1313                         new_memseg = 1;
1314                 else if (((unsigned long)hugepage[i-1].final_va -
1315                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1316                         new_memseg = 1;
1317 #else
1318                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1319                     hugepage[i].size)
1320                         new_memseg = 1;
1321                 else if (((unsigned long)hugepage[i].final_va -
1322                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1323                         new_memseg = 1;
1324 #endif
1325
1326                 if (new_memseg) {
1327                         j += 1;
1328                         if (j == RTE_MAX_MEMSEG)
1329                                 break;
1330
1331                         mcfg->memseg[j].iova = hugepage[i].physaddr;
1332                         mcfg->memseg[j].addr = hugepage[i].final_va;
1333                         mcfg->memseg[j].len = hugepage[i].size;
1334                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1335                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1336                 }
1337                 /* continuation of previous memseg */
1338                 else {
1339 #ifdef RTE_ARCH_PPC_64
1340                 /* Use the phy and virt address of the last page as segment
1341                  * address for IBM Power architecture */
1342                         mcfg->memseg[j].iova = hugepage[i].physaddr;
1343                         mcfg->memseg[j].addr = hugepage[i].final_va;
1344 #endif
1345                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1346                 }
1347                 hugepage[i].memseg_id = j;
1348         }
1349
1350         if (i < nr_hugefiles) {
1351                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1352                         "from %d requested\n"
1353                         "Current %s=%d is not enough\n"
1354                         "Please either increase it or request less amount "
1355                         "of memory.\n",
1356                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1357                         RTE_MAX_MEMSEG);
1358                 goto fail;
1359         }
1360
1361         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1362
1363         return 0;
1364
1365 fail:
1366         huge_recover_sigbus();
1367         free(tmp_hp);
1368         if (hugepage != NULL)
1369                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1370
1371         return -1;
1372 }
1373
1374 /*
1375  * uses fstat to report the size of a file on disk
1376  */
1377 static off_t
1378 getFileSize(int fd)
1379 {
1380         struct stat st;
1381         if (fstat(fd, &st) < 0)
1382                 return 0;
1383         return st.st_size;
1384 }
1385
1386 /*
1387  * This creates the memory mappings in the secondary process to match that of
1388  * the server process. It goes through each memory segment in the DPDK runtime
1389  * configuration and finds the hugepages which form that segment, mapping them
1390  * in order to form a contiguous block in the virtual memory space
1391  */
1392 int
1393 rte_eal_hugepage_attach(void)
1394 {
1395         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1396         struct hugepage_file *hp = NULL;
1397         unsigned num_hp = 0;
1398         unsigned i, s = 0; /* s used to track the segment number */
1399         unsigned max_seg = RTE_MAX_MEMSEG;
1400         off_t size = 0;
1401         int fd, fd_zero = -1, fd_hugepage = -1;
1402
1403         if (aslr_enabled() > 0) {
1404                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1405                                 "(ASLR) is enabled in the kernel.\n");
1406                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1407                                 "into secondary processes\n");
1408         }
1409
1410         test_phys_addrs_available();
1411
1412         fd_zero = open("/dev/zero", O_RDONLY);
1413         if (fd_zero < 0) {
1414                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1415                 goto error;
1416         }
1417         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1418         if (fd_hugepage < 0) {
1419                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1420                 goto error;
1421         }
1422
1423         /* map all segments into memory to make sure we get the addrs */
1424         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1425                 void *base_addr;
1426
1427                 /*
1428                  * the first memory segment with len==0 is the one that
1429                  * follows the last valid segment.
1430                  */
1431                 if (mcfg->memseg[s].len == 0)
1432                         break;
1433
1434                 /*
1435                  * fdzero is mmapped to get a contiguous block of virtual
1436                  * addresses of the appropriate memseg size.
1437                  * use mmap to get identical addresses as the primary process.
1438                  */
1439                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1440                                  PROT_READ,
1441 #ifdef RTE_ARCH_PPC_64
1442                                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1443 #else
1444                                  MAP_PRIVATE,
1445 #endif
1446                                  fd_zero, 0);
1447                 if (base_addr == MAP_FAILED ||
1448                     base_addr != mcfg->memseg[s].addr) {
1449                         max_seg = s;
1450                         if (base_addr != MAP_FAILED) {
1451                                 /* errno is stale, don't use */
1452                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1453                                         "in /dev/zero at [%p], got [%p] - "
1454                                         "please use '--base-virtaddr' option\n",
1455                                         (unsigned long long)mcfg->memseg[s].len,
1456                                         mcfg->memseg[s].addr, base_addr);
1457                                 munmap(base_addr, mcfg->memseg[s].len);
1458                         } else {
1459                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1460                                         "in /dev/zero at [%p]: '%s'\n",
1461                                         (unsigned long long)mcfg->memseg[s].len,
1462                                         mcfg->memseg[s].addr, strerror(errno));
1463                         }
1464                         if (aslr_enabled() > 0) {
1465                                 RTE_LOG(ERR, EAL, "It is recommended to "
1466                                         "disable ASLR in the kernel "
1467                                         "and retry running both primary "
1468                                         "and secondary processes\n");
1469                         }
1470                         goto error;
1471                 }
1472         }
1473
1474         size = getFileSize(fd_hugepage);
1475         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1476         if (hp == MAP_FAILED) {
1477                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1478                 goto error;
1479         }
1480
1481         num_hp = size / sizeof(struct hugepage_file);
1482         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1483
1484         s = 0;
1485         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1486                 void *addr, *base_addr;
1487                 uintptr_t offset = 0;
1488                 size_t mapping_size;
1489                 /*
1490                  * free previously mapped memory so we can map the
1491                  * hugepages into the space
1492                  */
1493                 base_addr = mcfg->memseg[s].addr;
1494                 munmap(base_addr, mcfg->memseg[s].len);
1495
1496                 /* find the hugepages for this segment and map them
1497                  * we don't need to worry about order, as the server sorted the
1498                  * entries before it did the second mmap of them */
1499                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1500                         if (hp[i].memseg_id == (int)s){
1501                                 fd = open(hp[i].filepath, O_RDWR);
1502                                 if (fd < 0) {
1503                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1504                                                 hp[i].filepath);
1505                                         goto error;
1506                                 }
1507                                 mapping_size = hp[i].size;
1508                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1509                                                 mapping_size, PROT_READ | PROT_WRITE,
1510                                                 MAP_SHARED, fd, 0);
1511                                 close(fd); /* close file both on success and on failure */
1512                                 if (addr == MAP_FAILED ||
1513                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1514                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1515                                                 hp[i].filepath);
1516                                         goto error;
1517                                 }
1518                                 offset+=mapping_size;
1519                         }
1520                 }
1521                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1522                                 (unsigned long long)mcfg->memseg[s].len);
1523                 s++;
1524         }
1525         /* unmap the hugepage config file, since we are done using it */
1526         munmap(hp, size);
1527         close(fd_zero);
1528         close(fd_hugepage);
1529         return 0;
1530
1531 error:
1532         for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1533                 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1534         if (hp != NULL && hp != MAP_FAILED)
1535                 munmap(hp, size);
1536         if (fd_zero >= 0)
1537                 close(fd_zero);
1538         if (fd_hugepage >= 0)
1539                 close(fd_hugepage);
1540         return -1;
1541 }
1542
1543 int
1544 rte_eal_using_phys_addrs(void)
1545 {
1546         return phys_addrs_available;
1547 }