Imported Upstream version 17.05.2
[deb_dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 /*   BSD LICENSE
34  *
35  *   Copyright(c) 2013 6WIND.
36  *
37  *   Redistribution and use in source and binary forms, with or without
38  *   modification, are permitted provided that the following conditions
39  *   are met:
40  *
41  *     * Redistributions of source code must retain the above copyright
42  *       notice, this list of conditions and the following disclaimer.
43  *     * Redistributions in binary form must reproduce the above copyright
44  *       notice, this list of conditions and the following disclaimer in
45  *       the documentation and/or other materials provided with the
46  *       distribution.
47  *     * Neither the name of 6WIND S.A. nor the names of its
48  *       contributors may be used to endorse or promote products derived
49  *       from this software without specific prior written permission.
50  *
51  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63
64 #define _FILE_OFFSET_BITS 64
65 #include <errno.h>
66 #include <stdarg.h>
67 #include <stdbool.h>
68 #include <stdlib.h>
69 #include <stdio.h>
70 #include <stdint.h>
71 #include <inttypes.h>
72 #include <string.h>
73 #include <stdarg.h>
74 #include <sys/mman.h>
75 #include <sys/types.h>
76 #include <sys/stat.h>
77 #include <sys/queue.h>
78 #include <sys/file.h>
79 #include <unistd.h>
80 #include <limits.h>
81 #include <errno.h>
82 #include <sys/ioctl.h>
83 #include <sys/time.h>
84 #include <signal.h>
85 #include <setjmp.h>
86
87 #include <rte_log.h>
88 #include <rte_memory.h>
89 #include <rte_memzone.h>
90 #include <rte_launch.h>
91 #include <rte_eal.h>
92 #include <rte_eal_memconfig.h>
93 #include <rte_per_lcore.h>
94 #include <rte_lcore.h>
95 #include <rte_common.h>
96 #include <rte_string_fns.h>
97
98 #include "eal_private.h"
99 #include "eal_internal_cfg.h"
100 #include "eal_filesystem.h"
101 #include "eal_hugepages.h"
102
103 #define PFN_MASK_SIZE   8
104
105 #ifdef RTE_LIBRTE_XEN_DOM0
106 int rte_xen_dom0_supported(void)
107 {
108         return internal_config.xen_dom0_support;
109 }
110 #endif
111
112 /**
113  * @file
114  * Huge page mapping under linux
115  *
116  * To reserve a big contiguous amount of memory, we use the hugepage
117  * feature of linux. For that, we need to have hugetlbfs mounted. This
118  * code will create many files in this directory (one per page) and
119  * map them in virtual memory. For each page, we will retrieve its
120  * physical address and remap it in order to have a virtual contiguous
121  * zone as well as a physical contiguous zone.
122  */
123
124 static uint64_t baseaddr_offset;
125
126 static bool phys_addrs_available = true;
127
128 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
129
130 static void
131 test_phys_addrs_available(void)
132 {
133         uint64_t tmp;
134         phys_addr_t physaddr;
135
136         /* For dom0, phys addresses can always be available */
137         if (rte_xen_dom0_supported())
138                 return;
139
140         if (!rte_eal_has_hugepages()) {
141                 RTE_LOG(ERR, EAL,
142                         "Started without hugepages support, physical addresses not available\n");
143                 phys_addrs_available = false;
144                 return;
145         }
146
147         physaddr = rte_mem_virt2phy(&tmp);
148         if (physaddr == RTE_BAD_PHYS_ADDR) {
149                 RTE_LOG(ERR, EAL,
150                         "Cannot obtain physical addresses: %s. "
151                         "Only vfio will function.\n",
152                         strerror(errno));
153                 phys_addrs_available = false;
154         }
155 }
156
157 /* Lock page in physical memory and prevent from swapping. */
158 int
159 rte_mem_lock_page(const void *virt)
160 {
161         unsigned long virtual = (unsigned long)virt;
162         int page_size = getpagesize();
163         unsigned long aligned = (virtual & ~ (page_size - 1));
164         return mlock((void*)aligned, page_size);
165 }
166
167 /*
168  * Get physical address of any mapped virtual address in the current process.
169  */
170 phys_addr_t
171 rte_mem_virt2phy(const void *virtaddr)
172 {
173         int fd, retval;
174         uint64_t page, physaddr;
175         unsigned long virt_pfn;
176         int page_size;
177         off_t offset;
178
179         /* when using dom0, /proc/self/pagemap always returns 0, check in
180          * dpdk memory by browsing the memsegs */
181         if (rte_xen_dom0_supported()) {
182                 struct rte_mem_config *mcfg;
183                 struct rte_memseg *memseg;
184                 unsigned i;
185
186                 mcfg = rte_eal_get_configuration()->mem_config;
187                 for (i = 0; i < RTE_MAX_MEMSEG; i++) {
188                         memseg = &mcfg->memseg[i];
189                         if (memseg->addr == NULL)
190                                 break;
191                         if (virtaddr > memseg->addr &&
192                                         virtaddr < RTE_PTR_ADD(memseg->addr,
193                                                 memseg->len)) {
194                                 return memseg->phys_addr +
195                                         RTE_PTR_DIFF(virtaddr, memseg->addr);
196                         }
197                 }
198
199                 return RTE_BAD_PHYS_ADDR;
200         }
201
202         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
203         if (!phys_addrs_available)
204                 return RTE_BAD_PHYS_ADDR;
205
206         /* standard page size */
207         page_size = getpagesize();
208
209         fd = open("/proc/self/pagemap", O_RDONLY);
210         if (fd < 0) {
211                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
212                         __func__, strerror(errno));
213                 return RTE_BAD_PHYS_ADDR;
214         }
215
216         virt_pfn = (unsigned long)virtaddr / page_size;
217         offset = sizeof(uint64_t) * virt_pfn;
218         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
219                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
220                                 __func__, strerror(errno));
221                 close(fd);
222                 return RTE_BAD_PHYS_ADDR;
223         }
224
225         retval = read(fd, &page, PFN_MASK_SIZE);
226         close(fd);
227         if (retval < 0) {
228                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
229                                 __func__, strerror(errno));
230                 return RTE_BAD_PHYS_ADDR;
231         } else if (retval != PFN_MASK_SIZE) {
232                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
233                                 "but expected %d:\n",
234                                 __func__, retval, PFN_MASK_SIZE);
235                 return RTE_BAD_PHYS_ADDR;
236         }
237
238         /*
239          * the pfn (page frame number) are bits 0-54 (see
240          * pagemap.txt in linux Documentation)
241          */
242         if ((page & 0x7fffffffffffffULL) == 0)
243                 return RTE_BAD_PHYS_ADDR;
244
245         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
246                 + ((unsigned long)virtaddr % page_size);
247
248         return physaddr;
249 }
250
251 /*
252  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
253  * it by browsing the /proc/self/pagemap special file.
254  */
255 static int
256 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
257 {
258         unsigned int i;
259         phys_addr_t addr;
260
261         for (i = 0; i < hpi->num_pages[0]; i++) {
262                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
263                 if (addr == RTE_BAD_PHYS_ADDR)
264                         return -1;
265                 hugepg_tbl[i].physaddr = addr;
266         }
267         return 0;
268 }
269
270 /*
271  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
272  */
273 static int
274 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
275 {
276         unsigned int i;
277         static phys_addr_t addr;
278
279         for (i = 0; i < hpi->num_pages[0]; i++) {
280                 hugepg_tbl[i].physaddr = addr;
281                 addr += hugepg_tbl[i].size;
282         }
283         return 0;
284 }
285
286 /*
287  * Check whether address-space layout randomization is enabled in
288  * the kernel. This is important for multi-process as it can prevent
289  * two processes mapping data to the same virtual address
290  * Returns:
291  *    0 - address space randomization disabled
292  *    1/2 - address space randomization enabled
293  *    negative error code on error
294  */
295 static int
296 aslr_enabled(void)
297 {
298         char c;
299         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
300         if (fd < 0)
301                 return -errno;
302         retval = read(fd, &c, 1);
303         close(fd);
304         if (retval < 0)
305                 return -errno;
306         if (retval == 0)
307                 return -EIO;
308         switch (c) {
309                 case '0' : return 0;
310                 case '1' : return 1;
311                 case '2' : return 2;
312                 default: return -EINVAL;
313         }
314 }
315
316 /*
317  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
318  * pointer to the mmap'd area and keep *size unmodified. Else, retry
319  * with a smaller zone: decrease *size by hugepage_sz until it reaches
320  * 0. In this case, return NULL. Note: this function returns an address
321  * which is a multiple of hugepage size.
322  */
323 static void *
324 get_virtual_area(size_t *size, size_t hugepage_sz)
325 {
326         void *addr;
327         int fd;
328         long aligned_addr;
329
330         if (internal_config.base_virtaddr != 0) {
331                 addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
332                                 baseaddr_offset);
333         }
334         else addr = NULL;
335
336         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
337
338         fd = open("/dev/zero", O_RDONLY);
339         if (fd < 0){
340                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
341                 return NULL;
342         }
343         do {
344                 addr = mmap(addr,
345                                 (*size) + hugepage_sz, PROT_READ,
346 #ifdef RTE_ARCH_PPC_64
347                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
348 #else
349                                 MAP_PRIVATE,
350 #endif
351                                 fd, 0);
352                 if (addr == MAP_FAILED)
353                         *size -= hugepage_sz;
354         } while (addr == MAP_FAILED && *size > 0);
355
356         if (addr == MAP_FAILED) {
357                 close(fd);
358                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
359                         strerror(errno));
360                 return NULL;
361         }
362
363         munmap(addr, (*size) + hugepage_sz);
364         close(fd);
365
366         /* align addr to a huge page size boundary */
367         aligned_addr = (long)addr;
368         aligned_addr += (hugepage_sz - 1);
369         aligned_addr &= (~(hugepage_sz - 1));
370         addr = (void *)(aligned_addr);
371
372         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
373                 addr, *size);
374
375         /* increment offset */
376         baseaddr_offset += *size;
377
378         return addr;
379 }
380
381 static sigjmp_buf huge_jmpenv;
382
383 static void huge_sigbus_handler(int signo __rte_unused)
384 {
385         siglongjmp(huge_jmpenv, 1);
386 }
387
388 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
389  * non-static local variable in the stack frame calling sigsetjmp might be
390  * clobbered by a call to longjmp.
391  */
392 static int huge_wrap_sigsetjmp(void)
393 {
394         return sigsetjmp(huge_jmpenv, 1);
395 }
396
397 /*
398  * Mmap all hugepages of hugepage table: it first open a file in
399  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
400  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
401  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
402  * map continguous physical blocks in contiguous virtual blocks.
403  */
404 static unsigned
405 map_all_hugepages(struct hugepage_file *hugepg_tbl,
406                 struct hugepage_info *hpi, int orig)
407 {
408         int fd;
409         unsigned i;
410         void *virtaddr;
411         void *vma_addr = NULL;
412         size_t vma_len = 0;
413
414         for (i = 0; i < hpi->num_pages[0]; i++) {
415                 uint64_t hugepage_sz = hpi->hugepage_sz;
416
417                 if (orig) {
418                         hugepg_tbl[i].file_id = i;
419                         hugepg_tbl[i].size = hugepage_sz;
420                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
421                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
422                                         hugepg_tbl[i].file_id);
423                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
424                 }
425 #ifndef RTE_ARCH_64
426                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
427                  * original map address as final map address.
428                  */
429                 else if ((hugepage_sz == RTE_PGSIZE_1G)
430                         || (hugepage_sz == RTE_PGSIZE_16G)) {
431                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
432                         hugepg_tbl[i].orig_va = NULL;
433                         continue;
434                 }
435 #endif
436                 else if (vma_len == 0) {
437                         unsigned j, num_pages;
438
439                         /* reserve a virtual area for next contiguous
440                          * physical block: count the number of
441                          * contiguous physical pages. */
442                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
443 #ifdef RTE_ARCH_PPC_64
444                                 /* The physical addresses are sorted in
445                                  * descending order on PPC64 */
446                                 if (hugepg_tbl[j].physaddr !=
447                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
448                                         break;
449 #else
450                                 if (hugepg_tbl[j].physaddr !=
451                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
452                                         break;
453 #endif
454                         }
455                         num_pages = j - i;
456                         vma_len = num_pages * hugepage_sz;
457
458                         /* get the biggest virtual memory area up to
459                          * vma_len. If it fails, vma_addr is NULL, so
460                          * let the kernel provide the address. */
461                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
462                         if (vma_addr == NULL)
463                                 vma_len = hugepage_sz;
464                 }
465
466                 /* try to create hugepage file */
467                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
468                 if (fd < 0) {
469                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
470                                         strerror(errno));
471                         return i;
472                 }
473
474                 /* map the segment, and populate page tables,
475                  * the kernel fills this segment with zeros */
476                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
477                                 MAP_SHARED | MAP_POPULATE, fd, 0);
478                 if (virtaddr == MAP_FAILED) {
479                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
480                                         strerror(errno));
481                         close(fd);
482                         return i;
483                 }
484
485                 if (orig) {
486                         hugepg_tbl[i].orig_va = virtaddr;
487                 }
488                 else {
489                         hugepg_tbl[i].final_va = virtaddr;
490                 }
491
492                 if (orig) {
493                         /* In linux, hugetlb limitations, like cgroup, are
494                          * enforced at fault time instead of mmap(), even
495                          * with the option of MAP_POPULATE. Kernel will send
496                          * a SIGBUS signal. To avoid to be killed, save stack
497                          * environment here, if SIGBUS happens, we can jump
498                          * back here.
499                          */
500                         if (huge_wrap_sigsetjmp()) {
501                                 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
502                                         "hugepages of size %u MB\n",
503                                         (unsigned)(hugepage_sz / 0x100000));
504                                 munmap(virtaddr, hugepage_sz);
505                                 close(fd);
506                                 unlink(hugepg_tbl[i].filepath);
507                                 return i;
508                         }
509                         *(int *)virtaddr = 0;
510                 }
511
512
513                 /* set shared flock on the file. */
514                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
515                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
516                                 __func__, strerror(errno));
517                         close(fd);
518                         return i;
519                 }
520
521                 close(fd);
522
523                 vma_addr = (char *)vma_addr + hugepage_sz;
524                 vma_len -= hugepage_sz;
525         }
526
527         return i;
528 }
529
530 /* Unmap all hugepages from original mapping */
531 static int
532 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
533 {
534         unsigned i;
535         for (i = 0; i < hpi->num_pages[0]; i++) {
536                 if (hugepg_tbl[i].orig_va) {
537                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
538                         hugepg_tbl[i].orig_va = NULL;
539                 }
540         }
541         return 0;
542 }
543
544 /*
545  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
546  * page.
547  */
548 static int
549 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
550 {
551         int socket_id;
552         char *end, *nodestr;
553         unsigned i, hp_count = 0;
554         uint64_t virt_addr;
555         char buf[BUFSIZ];
556         char hugedir_str[PATH_MAX];
557         FILE *f;
558
559         f = fopen("/proc/self/numa_maps", "r");
560         if (f == NULL) {
561                 RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
562                                 " consider that all memory is in socket_id 0\n");
563                 return 0;
564         }
565
566         snprintf(hugedir_str, sizeof(hugedir_str),
567                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
568
569         /* parse numa map */
570         while (fgets(buf, sizeof(buf), f) != NULL) {
571
572                 /* ignore non huge page */
573                 if (strstr(buf, " huge ") == NULL &&
574                                 strstr(buf, hugedir_str) == NULL)
575                         continue;
576
577                 /* get zone addr */
578                 virt_addr = strtoull(buf, &end, 16);
579                 if (virt_addr == 0 || end == buf) {
580                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
581                         goto error;
582                 }
583
584                 /* get node id (socket id) */
585                 nodestr = strstr(buf, " N");
586                 if (nodestr == NULL) {
587                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
588                         goto error;
589                 }
590                 nodestr += 2;
591                 end = strstr(nodestr, "=");
592                 if (end == NULL) {
593                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
594                         goto error;
595                 }
596                 end[0] = '\0';
597                 end = NULL;
598
599                 socket_id = strtoul(nodestr, &end, 0);
600                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
601                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
602                         goto error;
603                 }
604
605                 /* if we find this page in our mappings, set socket_id */
606                 for (i = 0; i < hpi->num_pages[0]; i++) {
607                         void *va = (void *)(unsigned long)virt_addr;
608                         if (hugepg_tbl[i].orig_va == va) {
609                                 hugepg_tbl[i].socket_id = socket_id;
610                                 hp_count++;
611                         }
612                 }
613         }
614
615         if (hp_count < hpi->num_pages[0])
616                 goto error;
617
618         fclose(f);
619         return 0;
620
621 error:
622         fclose(f);
623         return -1;
624 }
625
626 static int
627 cmp_physaddr(const void *a, const void *b)
628 {
629 #ifndef RTE_ARCH_PPC_64
630         const struct hugepage_file *p1 = a;
631         const struct hugepage_file *p2 = b;
632 #else
633         /* PowerPC needs memory sorted in reverse order from x86 */
634         const struct hugepage_file *p1 = b;
635         const struct hugepage_file *p2 = a;
636 #endif
637         if (p1->physaddr < p2->physaddr)
638                 return -1;
639         else if (p1->physaddr > p2->physaddr)
640                 return 1;
641         else
642                 return 0;
643 }
644
645 /*
646  * Uses mmap to create a shared memory area for storage of data
647  * Used in this file to store the hugepage file map on disk
648  */
649 static void *
650 create_shared_memory(const char *filename, const size_t mem_size)
651 {
652         void *retval;
653         int fd = open(filename, O_CREAT | O_RDWR, 0666);
654         if (fd < 0)
655                 return NULL;
656         if (ftruncate(fd, mem_size) < 0) {
657                 close(fd);
658                 return NULL;
659         }
660         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
661         close(fd);
662         return retval;
663 }
664
665 /*
666  * this copies *active* hugepages from one hugepage table to another.
667  * destination is typically the shared memory.
668  */
669 static int
670 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
671                 const struct hugepage_file * src, int src_size)
672 {
673         int src_pos, dst_pos = 0;
674
675         for (src_pos = 0; src_pos < src_size; src_pos++) {
676                 if (src[src_pos].final_va != NULL) {
677                         /* error on overflow attempt */
678                         if (dst_pos == dest_size)
679                                 return -1;
680                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
681                         dst_pos++;
682                 }
683         }
684         return 0;
685 }
686
687 static int
688 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
689                 unsigned num_hp_info)
690 {
691         unsigned socket, size;
692         int page, nrpages = 0;
693
694         /* get total number of hugepages */
695         for (size = 0; size < num_hp_info; size++)
696                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
697                         nrpages +=
698                         internal_config.hugepage_info[size].num_pages[socket];
699
700         for (page = 0; page < nrpages; page++) {
701                 struct hugepage_file *hp = &hugepg_tbl[page];
702
703                 if (hp->final_va != NULL && unlink(hp->filepath)) {
704                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
705                                 __func__, hp->filepath, strerror(errno));
706                 }
707         }
708         return 0;
709 }
710
711 /*
712  * unmaps hugepages that are not going to be used. since we originally allocate
713  * ALL hugepages (not just those we need), additional unmapping needs to be done.
714  */
715 static int
716 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
717                 struct hugepage_info *hpi,
718                 unsigned num_hp_info)
719 {
720         unsigned socket, size;
721         int page, nrpages = 0;
722
723         /* get total number of hugepages */
724         for (size = 0; size < num_hp_info; size++)
725                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
726                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
727
728         for (size = 0; size < num_hp_info; size++) {
729                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
730                         unsigned pages_found = 0;
731
732                         /* traverse until we have unmapped all the unused pages */
733                         for (page = 0; page < nrpages; page++) {
734                                 struct hugepage_file *hp = &hugepg_tbl[page];
735
736                                 /* find a page that matches the criteria */
737                                 if ((hp->size == hpi[size].hugepage_sz) &&
738                                                 (hp->socket_id == (int) socket)) {
739
740                                         /* if we skipped enough pages, unmap the rest */
741                                         if (pages_found == hpi[size].num_pages[socket]) {
742                                                 uint64_t unmap_len;
743
744                                                 unmap_len = hp->size;
745
746                                                 /* get start addr and len of the remaining segment */
747                                                 munmap(hp->final_va, (size_t) unmap_len);
748
749                                                 hp->final_va = NULL;
750                                                 if (unlink(hp->filepath) == -1) {
751                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
752                                                                         __func__, hp->filepath, strerror(errno));
753                                                         return -1;
754                                                 }
755                                         } else {
756                                                 /* lock the page and skip */
757                                                 pages_found++;
758                                         }
759
760                                 } /* match page */
761                         } /* foreach page */
762                 } /* foreach socket */
763         } /* foreach pagesize */
764
765         return 0;
766 }
767
768 static inline uint64_t
769 get_socket_mem_size(int socket)
770 {
771         uint64_t size = 0;
772         unsigned i;
773
774         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
775                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
776                 if (hpi->hugedir != NULL)
777                         size += hpi->hugepage_sz * hpi->num_pages[socket];
778         }
779
780         return size;
781 }
782
783 /*
784  * This function is a NUMA-aware equivalent of calc_num_pages.
785  * It takes in the list of hugepage sizes and the
786  * number of pages thereof, and calculates the best number of
787  * pages of each size to fulfill the request for <memory> ram
788  */
789 static int
790 calc_num_pages_per_socket(uint64_t * memory,
791                 struct hugepage_info *hp_info,
792                 struct hugepage_info *hp_used,
793                 unsigned num_hp_info)
794 {
795         unsigned socket, j, i = 0;
796         unsigned requested, available;
797         int total_num_pages = 0;
798         uint64_t remaining_mem, cur_mem;
799         uint64_t total_mem = internal_config.memory;
800
801         if (num_hp_info == 0)
802                 return -1;
803
804         /* if specific memory amounts per socket weren't requested */
805         if (internal_config.force_sockets == 0) {
806                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
807                 size_t default_size, total_size;
808                 unsigned lcore_id;
809
810                 /* Compute number of cores per socket */
811                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
812                 RTE_LCORE_FOREACH(lcore_id) {
813                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
814                 }
815
816                 /*
817                  * Automatically spread requested memory amongst detected sockets according
818                  * to number of cores from cpu mask present on each socket
819                  */
820                 total_size = internal_config.memory;
821                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
822
823                         /* Set memory amount per socket */
824                         default_size = (internal_config.memory * cpu_per_socket[socket])
825                                         / rte_lcore_count();
826
827                         /* Limit to maximum available memory on socket */
828                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
829
830                         /* Update sizes */
831                         memory[socket] = default_size;
832                         total_size -= default_size;
833                 }
834
835                 /*
836                  * If some memory is remaining, try to allocate it by getting all
837                  * available memory from sockets, one after the other
838                  */
839                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
840                         /* take whatever is available */
841                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
842                                                total_size);
843
844                         /* Update sizes */
845                         memory[socket] += default_size;
846                         total_size -= default_size;
847                 }
848         }
849
850         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
851                 /* skips if the memory on specific socket wasn't requested */
852                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
853                         hp_used[i].hugedir = hp_info[i].hugedir;
854                         hp_used[i].num_pages[socket] = RTE_MIN(
855                                         memory[socket] / hp_info[i].hugepage_sz,
856                                         hp_info[i].num_pages[socket]);
857
858                         cur_mem = hp_used[i].num_pages[socket] *
859                                         hp_used[i].hugepage_sz;
860
861                         memory[socket] -= cur_mem;
862                         total_mem -= cur_mem;
863
864                         total_num_pages += hp_used[i].num_pages[socket];
865
866                         /* check if we have met all memory requests */
867                         if (memory[socket] == 0)
868                                 break;
869
870                         /* check if we have any more pages left at this size, if so
871                          * move on to next size */
872                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
873                                 continue;
874                         /* At this point we know that there are more pages available that are
875                          * bigger than the memory we want, so lets see if we can get enough
876                          * from other page sizes.
877                          */
878                         remaining_mem = 0;
879                         for (j = i+1; j < num_hp_info; j++)
880                                 remaining_mem += hp_info[j].hugepage_sz *
881                                 hp_info[j].num_pages[socket];
882
883                         /* is there enough other memory, if not allocate another page and quit */
884                         if (remaining_mem < memory[socket]){
885                                 cur_mem = RTE_MIN(memory[socket],
886                                                 hp_info[i].hugepage_sz);
887                                 memory[socket] -= cur_mem;
888                                 total_mem -= cur_mem;
889                                 hp_used[i].num_pages[socket]++;
890                                 total_num_pages++;
891                                 break; /* we are done with this socket*/
892                         }
893                 }
894                 /* if we didn't satisfy all memory requirements per socket */
895                 if (memory[socket] > 0) {
896                         /* to prevent icc errors */
897                         requested = (unsigned) (internal_config.socket_mem[socket] /
898                                         0x100000);
899                         available = requested -
900                                         ((unsigned) (memory[socket] / 0x100000));
901                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
902                                         "Requested: %uMB, available: %uMB\n", socket,
903                                         requested, available);
904                         return -1;
905                 }
906         }
907
908         /* if we didn't satisfy total memory requirements */
909         if (total_mem > 0) {
910                 requested = (unsigned) (internal_config.memory / 0x100000);
911                 available = requested - (unsigned) (total_mem / 0x100000);
912                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
913                                 " available: %uMB\n", requested, available);
914                 return -1;
915         }
916         return total_num_pages;
917 }
918
919 static inline size_t
920 eal_get_hugepage_mem_size(void)
921 {
922         uint64_t size = 0;
923         unsigned i, j;
924
925         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
926                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
927                 if (hpi->hugedir != NULL) {
928                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
929                                 size += hpi->hugepage_sz * hpi->num_pages[j];
930                         }
931                 }
932         }
933
934         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
935 }
936
937 static struct sigaction huge_action_old;
938 static int huge_need_recover;
939
940 static void
941 huge_register_sigbus(void)
942 {
943         sigset_t mask;
944         struct sigaction action;
945
946         sigemptyset(&mask);
947         sigaddset(&mask, SIGBUS);
948         action.sa_flags = 0;
949         action.sa_mask = mask;
950         action.sa_handler = huge_sigbus_handler;
951
952         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
953 }
954
955 static void
956 huge_recover_sigbus(void)
957 {
958         if (huge_need_recover) {
959                 sigaction(SIGBUS, &huge_action_old, NULL);
960                 huge_need_recover = 0;
961         }
962 }
963
964 /*
965  * Prepare physical memory mapping: fill configuration structure with
966  * these infos, return 0 on success.
967  *  1. map N huge pages in separate files in hugetlbfs
968  *  2. find associated physical addr
969  *  3. find associated NUMA socket ID
970  *  4. sort all huge pages by physical address
971  *  5. remap these N huge pages in the correct order
972  *  6. unmap the first mapping
973  *  7. fill memsegs in configuration with contiguous zones
974  */
975 int
976 rte_eal_hugepage_init(void)
977 {
978         struct rte_mem_config *mcfg;
979         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
980         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
981
982         uint64_t memory[RTE_MAX_NUMA_NODES];
983
984         unsigned hp_offset;
985         int i, j, new_memseg;
986         int nr_hugefiles, nr_hugepages = 0;
987         void *addr;
988
989         test_phys_addrs_available();
990
991         memset(used_hp, 0, sizeof(used_hp));
992
993         /* get pointer to global configuration */
994         mcfg = rte_eal_get_configuration()->mem_config;
995
996         /* hugetlbfs can be disabled */
997         if (internal_config.no_hugetlbfs) {
998                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
999                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
1000                 if (addr == MAP_FAILED) {
1001                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1002                                         strerror(errno));
1003                         return -1;
1004                 }
1005                 mcfg->memseg[0].phys_addr = RTE_BAD_PHYS_ADDR;
1006                 mcfg->memseg[0].addr = addr;
1007                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
1008                 mcfg->memseg[0].len = internal_config.memory;
1009                 mcfg->memseg[0].socket_id = 0;
1010                 return 0;
1011         }
1012
1013 /* check if app runs on Xen Dom0 */
1014         if (internal_config.xen_dom0_support) {
1015 #ifdef RTE_LIBRTE_XEN_DOM0
1016                 /* use dom0_mm kernel driver to init memory */
1017                 if (rte_xen_dom0_memory_init() < 0)
1018                         return -1;
1019                 else
1020                         return 0;
1021 #endif
1022         }
1023
1024         /* calculate total number of hugepages available. at this point we haven't
1025          * yet started sorting them so they all are on socket 0 */
1026         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1027                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1028                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1029
1030                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1031         }
1032
1033         /*
1034          * allocate a memory area for hugepage table.
1035          * this isn't shared memory yet. due to the fact that we need some
1036          * processing done on these pages, shared memory will be created
1037          * at a later stage.
1038          */
1039         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1040         if (tmp_hp == NULL)
1041                 goto fail;
1042
1043         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1044
1045         hp_offset = 0; /* where we start the current page size entries */
1046
1047         huge_register_sigbus();
1048
1049         /* map all hugepages and sort them */
1050         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1051                 unsigned pages_old, pages_new;
1052                 struct hugepage_info *hpi;
1053
1054                 /*
1055                  * we don't yet mark hugepages as used at this stage, so
1056                  * we just map all hugepages available to the system
1057                  * all hugepages are still located on socket 0
1058                  */
1059                 hpi = &internal_config.hugepage_info[i];
1060
1061                 if (hpi->num_pages[0] == 0)
1062                         continue;
1063
1064                 /* map all hugepages available */
1065                 pages_old = hpi->num_pages[0];
1066                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, 1);
1067                 if (pages_new < pages_old) {
1068                         RTE_LOG(DEBUG, EAL,
1069                                 "%d not %d hugepages of size %u MB allocated\n",
1070                                 pages_new, pages_old,
1071                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1072
1073                         int pages = pages_old - pages_new;
1074
1075                         nr_hugepages -= pages;
1076                         hpi->num_pages[0] = pages_new;
1077                         if (pages_new == 0)
1078                                 continue;
1079                 }
1080
1081                 if (phys_addrs_available) {
1082                         /* find physical addresses for each hugepage */
1083                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1084                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1085                                         "for %u MB pages\n",
1086                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1087                                 goto fail;
1088                         }
1089                 } else {
1090                         /* set physical addresses for each hugepage */
1091                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1092                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1093                                         "for %u MB pages\n",
1094                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1095                                 goto fail;
1096                         }
1097                 }
1098
1099                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1100                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1101                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1102                         goto fail;
1103                 }
1104
1105                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1106                       sizeof(struct hugepage_file), cmp_physaddr);
1107
1108                 /* remap all hugepages */
1109                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) !=
1110                     hpi->num_pages[0]) {
1111                         RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1112                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1113                         goto fail;
1114                 }
1115
1116                 /* unmap original mappings */
1117                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1118                         goto fail;
1119
1120                 /* we have processed a num of hugepages of this size, so inc offset */
1121                 hp_offset += hpi->num_pages[0];
1122         }
1123
1124         huge_recover_sigbus();
1125
1126         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1127                 internal_config.memory = eal_get_hugepage_mem_size();
1128
1129         nr_hugefiles = nr_hugepages;
1130
1131
1132         /* clean out the numbers of pages */
1133         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1134                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1135                         internal_config.hugepage_info[i].num_pages[j] = 0;
1136
1137         /* get hugepages for each socket */
1138         for (i = 0; i < nr_hugefiles; i++) {
1139                 int socket = tmp_hp[i].socket_id;
1140
1141                 /* find a hugepage info with right size and increment num_pages */
1142                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1143                                 (int)internal_config.num_hugepage_sizes);
1144                 for (j = 0; j < nb_hpsizes; j++) {
1145                         if (tmp_hp[i].size ==
1146                                         internal_config.hugepage_info[j].hugepage_sz) {
1147                                 internal_config.hugepage_info[j].num_pages[socket]++;
1148                         }
1149                 }
1150         }
1151
1152         /* make a copy of socket_mem, needed for number of pages calculation */
1153         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1154                 memory[i] = internal_config.socket_mem[i];
1155
1156         /* calculate final number of pages */
1157         nr_hugepages = calc_num_pages_per_socket(memory,
1158                         internal_config.hugepage_info, used_hp,
1159                         internal_config.num_hugepage_sizes);
1160
1161         /* error if not enough memory available */
1162         if (nr_hugepages < 0)
1163                 goto fail;
1164
1165         /* reporting in! */
1166         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1167                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1168                         if (used_hp[i].num_pages[j] > 0) {
1169                                 RTE_LOG(DEBUG, EAL,
1170                                         "Requesting %u pages of size %uMB"
1171                                         " from socket %i\n",
1172                                         used_hp[i].num_pages[j],
1173                                         (unsigned)
1174                                         (used_hp[i].hugepage_sz / 0x100000),
1175                                         j);
1176                         }
1177                 }
1178         }
1179
1180         /* create shared memory */
1181         hugepage = create_shared_memory(eal_hugepage_info_path(),
1182                         nr_hugefiles * sizeof(struct hugepage_file));
1183
1184         if (hugepage == NULL) {
1185                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1186                 goto fail;
1187         }
1188         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1189
1190         /*
1191          * unmap pages that we won't need (looks at used_hp).
1192          * also, sets final_va to NULL on pages that were unmapped.
1193          */
1194         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1195                         internal_config.num_hugepage_sizes) < 0) {
1196                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1197                 goto fail;
1198         }
1199
1200         /*
1201          * copy stuff from malloc'd hugepage* to the actual shared memory.
1202          * this procedure only copies those hugepages that have final_va
1203          * not NULL. has overflow protection.
1204          */
1205         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1206                         tmp_hp, nr_hugefiles) < 0) {
1207                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1208                 goto fail;
1209         }
1210
1211         /* free the hugepage backing files */
1212         if (internal_config.hugepage_unlink &&
1213                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1214                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1215                 goto fail;
1216         }
1217
1218         /* free the temporary hugepage table */
1219         free(tmp_hp);
1220         tmp_hp = NULL;
1221
1222         /* first memseg index shall be 0 after incrementing it below */
1223         j = -1;
1224         for (i = 0; i < nr_hugefiles; i++) {
1225                 new_memseg = 0;
1226
1227                 /* if this is a new section, create a new memseg */
1228                 if (i == 0)
1229                         new_memseg = 1;
1230                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1231                         new_memseg = 1;
1232                 else if (hugepage[i].size != hugepage[i-1].size)
1233                         new_memseg = 1;
1234
1235 #ifdef RTE_ARCH_PPC_64
1236                 /* On PPC64 architecture, the mmap always start from higher
1237                  * virtual address to lower address. Here, both the physical
1238                  * address and virtual address are in descending order */
1239                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1240                     hugepage[i].size)
1241                         new_memseg = 1;
1242                 else if (((unsigned long)hugepage[i-1].final_va -
1243                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1244                         new_memseg = 1;
1245 #else
1246                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1247                     hugepage[i].size)
1248                         new_memseg = 1;
1249                 else if (((unsigned long)hugepage[i].final_va -
1250                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1251                         new_memseg = 1;
1252 #endif
1253
1254                 if (new_memseg) {
1255                         j += 1;
1256                         if (j == RTE_MAX_MEMSEG)
1257                                 break;
1258
1259                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1260                         mcfg->memseg[j].addr = hugepage[i].final_va;
1261                         mcfg->memseg[j].len = hugepage[i].size;
1262                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1263                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1264                 }
1265                 /* continuation of previous memseg */
1266                 else {
1267 #ifdef RTE_ARCH_PPC_64
1268                 /* Use the phy and virt address of the last page as segment
1269                  * address for IBM Power architecture */
1270                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1271                         mcfg->memseg[j].addr = hugepage[i].final_va;
1272 #endif
1273                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1274                 }
1275                 hugepage[i].memseg_id = j;
1276         }
1277
1278         if (i < nr_hugefiles) {
1279                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1280                         "from %d requested\n"
1281                         "Current %s=%d is not enough\n"
1282                         "Please either increase it or request less amount "
1283                         "of memory.\n",
1284                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1285                         RTE_MAX_MEMSEG);
1286                 goto fail;
1287         }
1288
1289         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1290
1291         return 0;
1292
1293 fail:
1294         huge_recover_sigbus();
1295         free(tmp_hp);
1296         if (hugepage != NULL)
1297                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1298
1299         return -1;
1300 }
1301
1302 /*
1303  * uses fstat to report the size of a file on disk
1304  */
1305 static off_t
1306 getFileSize(int fd)
1307 {
1308         struct stat st;
1309         if (fstat(fd, &st) < 0)
1310                 return 0;
1311         return st.st_size;
1312 }
1313
1314 /*
1315  * This creates the memory mappings in the secondary process to match that of
1316  * the server process. It goes through each memory segment in the DPDK runtime
1317  * configuration and finds the hugepages which form that segment, mapping them
1318  * in order to form a contiguous block in the virtual memory space
1319  */
1320 int
1321 rte_eal_hugepage_attach(void)
1322 {
1323         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1324         struct hugepage_file *hp = NULL;
1325         unsigned num_hp = 0;
1326         unsigned i, s = 0; /* s used to track the segment number */
1327         unsigned max_seg = RTE_MAX_MEMSEG;
1328         off_t size = 0;
1329         int fd, fd_zero = -1, fd_hugepage = -1;
1330
1331         if (aslr_enabled() > 0) {
1332                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1333                                 "(ASLR) is enabled in the kernel.\n");
1334                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1335                                 "into secondary processes\n");
1336         }
1337
1338         test_phys_addrs_available();
1339
1340         if (internal_config.xen_dom0_support) {
1341 #ifdef RTE_LIBRTE_XEN_DOM0
1342                 if (rte_xen_dom0_memory_attach() < 0) {
1343                         RTE_LOG(ERR, EAL, "Failed to attach memory segments of primary "
1344                                         "process\n");
1345                         return -1;
1346                 }
1347                 return 0;
1348 #endif
1349         }
1350
1351         fd_zero = open("/dev/zero", O_RDONLY);
1352         if (fd_zero < 0) {
1353                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1354                 goto error;
1355         }
1356         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1357         if (fd_hugepage < 0) {
1358                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1359                 goto error;
1360         }
1361
1362         /* map all segments into memory to make sure we get the addrs */
1363         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1364                 void *base_addr;
1365
1366                 /*
1367                  * the first memory segment with len==0 is the one that
1368                  * follows the last valid segment.
1369                  */
1370                 if (mcfg->memseg[s].len == 0)
1371                         break;
1372
1373                 /*
1374                  * fdzero is mmapped to get a contiguous block of virtual
1375                  * addresses of the appropriate memseg size.
1376                  * use mmap to get identical addresses as the primary process.
1377                  */
1378                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1379                                  PROT_READ,
1380 #ifdef RTE_ARCH_PPC_64
1381                                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1382 #else
1383                                  MAP_PRIVATE,
1384 #endif
1385                                  fd_zero, 0);
1386                 if (base_addr == MAP_FAILED ||
1387                     base_addr != mcfg->memseg[s].addr) {
1388                         max_seg = s;
1389                         if (base_addr != MAP_FAILED) {
1390                                 /* errno is stale, don't use */
1391                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1392                                         "in /dev/zero at [%p], got [%p] - "
1393                                         "please use '--base-virtaddr' option\n",
1394                                         (unsigned long long)mcfg->memseg[s].len,
1395                                         mcfg->memseg[s].addr, base_addr);
1396                                 munmap(base_addr, mcfg->memseg[s].len);
1397                         } else {
1398                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1399                                         "in /dev/zero at [%p]: '%s'\n",
1400                                         (unsigned long long)mcfg->memseg[s].len,
1401                                         mcfg->memseg[s].addr, strerror(errno));
1402                         }
1403                         if (aslr_enabled() > 0) {
1404                                 RTE_LOG(ERR, EAL, "It is recommended to "
1405                                         "disable ASLR in the kernel "
1406                                         "and retry running both primary "
1407                                         "and secondary processes\n");
1408                         }
1409                         goto error;
1410                 }
1411         }
1412
1413         size = getFileSize(fd_hugepage);
1414         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1415         if (hp == MAP_FAILED) {
1416                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1417                 goto error;
1418         }
1419
1420         num_hp = size / sizeof(struct hugepage_file);
1421         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1422
1423         s = 0;
1424         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1425                 void *addr, *base_addr;
1426                 uintptr_t offset = 0;
1427                 size_t mapping_size;
1428                 /*
1429                  * free previously mapped memory so we can map the
1430                  * hugepages into the space
1431                  */
1432                 base_addr = mcfg->memseg[s].addr;
1433                 munmap(base_addr, mcfg->memseg[s].len);
1434
1435                 /* find the hugepages for this segment and map them
1436                  * we don't need to worry about order, as the server sorted the
1437                  * entries before it did the second mmap of them */
1438                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1439                         if (hp[i].memseg_id == (int)s){
1440                                 fd = open(hp[i].filepath, O_RDWR);
1441                                 if (fd < 0) {
1442                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1443                                                 hp[i].filepath);
1444                                         goto error;
1445                                 }
1446                                 mapping_size = hp[i].size;
1447                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1448                                                 mapping_size, PROT_READ | PROT_WRITE,
1449                                                 MAP_SHARED, fd, 0);
1450                                 close(fd); /* close file both on success and on failure */
1451                                 if (addr == MAP_FAILED ||
1452                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1453                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1454                                                 hp[i].filepath);
1455                                         goto error;
1456                                 }
1457                                 offset+=mapping_size;
1458                         }
1459                 }
1460                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1461                                 (unsigned long long)mcfg->memseg[s].len);
1462                 s++;
1463         }
1464         /* unmap the hugepage config file, since we are done using it */
1465         munmap(hp, size);
1466         close(fd_zero);
1467         close(fd_hugepage);
1468         return 0;
1469
1470 error:
1471         for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1472                 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1473         if (hp != NULL && hp != MAP_FAILED)
1474                 munmap(hp, size);
1475         if (fd_zero >= 0)
1476                 close(fd_zero);
1477         if (fd_hugepage >= 0)
1478                 close(fd_hugepage);
1479         return -1;
1480 }
1481
1482 bool
1483 rte_eal_using_phys_addrs(void)
1484 {
1485         return phys_addrs_available;
1486 }