ebe068334e87421e86e2e363e210e3cde2f43284
[deb_dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 /*   BSD LICENSE
34  *
35  *   Copyright(c) 2013 6WIND.
36  *
37  *   Redistribution and use in source and binary forms, with or without
38  *   modification, are permitted provided that the following conditions
39  *   are met:
40  *
41  *     * Redistributions of source code must retain the above copyright
42  *       notice, this list of conditions and the following disclaimer.
43  *     * Redistributions in binary form must reproduce the above copyright
44  *       notice, this list of conditions and the following disclaimer in
45  *       the documentation and/or other materials provided with the
46  *       distribution.
47  *     * Neither the name of 6WIND S.A. nor the names of its
48  *       contributors may be used to endorse or promote products derived
49  *       from this software without specific prior written permission.
50  *
51  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63
64 #define _FILE_OFFSET_BITS 64
65 #include <errno.h>
66 #include <stdarg.h>
67 #include <stdbool.h>
68 #include <stdlib.h>
69 #include <stdio.h>
70 #include <stdint.h>
71 #include <inttypes.h>
72 #include <string.h>
73 #include <stdarg.h>
74 #include <sys/mman.h>
75 #include <sys/types.h>
76 #include <sys/stat.h>
77 #include <sys/queue.h>
78 #include <sys/file.h>
79 #include <unistd.h>
80 #include <limits.h>
81 #include <errno.h>
82 #include <sys/ioctl.h>
83 #include <sys/time.h>
84 #include <signal.h>
85 #include <setjmp.h>
86
87 #include <rte_log.h>
88 #include <rte_memory.h>
89 #include <rte_memzone.h>
90 #include <rte_launch.h>
91 #include <rte_eal.h>
92 #include <rte_eal_memconfig.h>
93 #include <rte_per_lcore.h>
94 #include <rte_lcore.h>
95 #include <rte_common.h>
96 #include <rte_string_fns.h>
97
98 #include "eal_private.h"
99 #include "eal_internal_cfg.h"
100 #include "eal_filesystem.h"
101 #include "eal_hugepages.h"
102
103 #define PFN_MASK_SIZE   8
104
105 #ifdef RTE_LIBRTE_XEN_DOM0
106 int rte_xen_dom0_supported(void)
107 {
108         return internal_config.xen_dom0_support;
109 }
110 #endif
111
112 /**
113  * @file
114  * Huge page mapping under linux
115  *
116  * To reserve a big contiguous amount of memory, we use the hugepage
117  * feature of linux. For that, we need to have hugetlbfs mounted. This
118  * code will create many files in this directory (one per page) and
119  * map them in virtual memory. For each page, we will retrieve its
120  * physical address and remap it in order to have a virtual contiguous
121  * zone as well as a physical contiguous zone.
122  */
123
124 static uint64_t baseaddr_offset;
125
126 static bool phys_addrs_available = true;
127
128 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
129
130 static void
131 test_phys_addrs_available(void)
132 {
133         uint64_t tmp;
134         phys_addr_t physaddr;
135
136         /* For dom0, phys addresses can always be available */
137         if (rte_xen_dom0_supported())
138                 return;
139
140         physaddr = rte_mem_virt2phy(&tmp);
141         if (physaddr == RTE_BAD_PHYS_ADDR) {
142                 RTE_LOG(ERR, EAL,
143                         "Cannot obtain physical addresses: %s. "
144                         "Only vfio will function.\n",
145                         strerror(errno));
146                 phys_addrs_available = false;
147         }
148 }
149
150 /* Lock page in physical memory and prevent from swapping. */
151 int
152 rte_mem_lock_page(const void *virt)
153 {
154         unsigned long virtual = (unsigned long)virt;
155         int page_size = getpagesize();
156         unsigned long aligned = (virtual & ~ (page_size - 1));
157         return mlock((void*)aligned, page_size);
158 }
159
160 /*
161  * Get physical address of any mapped virtual address in the current process.
162  */
163 phys_addr_t
164 rte_mem_virt2phy(const void *virtaddr)
165 {
166         int fd, retval;
167         uint64_t page, physaddr;
168         unsigned long virt_pfn;
169         int page_size;
170         off_t offset;
171
172         /* when using dom0, /proc/self/pagemap always returns 0, check in
173          * dpdk memory by browsing the memsegs */
174         if (rte_xen_dom0_supported()) {
175                 struct rte_mem_config *mcfg;
176                 struct rte_memseg *memseg;
177                 unsigned i;
178
179                 mcfg = rte_eal_get_configuration()->mem_config;
180                 for (i = 0; i < RTE_MAX_MEMSEG; i++) {
181                         memseg = &mcfg->memseg[i];
182                         if (memseg->addr == NULL)
183                                 break;
184                         if (virtaddr > memseg->addr &&
185                                         virtaddr < RTE_PTR_ADD(memseg->addr,
186                                                 memseg->len)) {
187                                 return memseg->phys_addr +
188                                         RTE_PTR_DIFF(virtaddr, memseg->addr);
189                         }
190                 }
191
192                 return RTE_BAD_PHYS_ADDR;
193         }
194
195         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
196         if (!phys_addrs_available)
197                 return RTE_BAD_PHYS_ADDR;
198
199         /* standard page size */
200         page_size = getpagesize();
201
202         fd = open("/proc/self/pagemap", O_RDONLY);
203         if (fd < 0) {
204                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
205                         __func__, strerror(errno));
206                 return RTE_BAD_PHYS_ADDR;
207         }
208
209         virt_pfn = (unsigned long)virtaddr / page_size;
210         offset = sizeof(uint64_t) * virt_pfn;
211         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
212                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
213                                 __func__, strerror(errno));
214                 close(fd);
215                 return RTE_BAD_PHYS_ADDR;
216         }
217
218         retval = read(fd, &page, PFN_MASK_SIZE);
219         close(fd);
220         if (retval < 0) {
221                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
222                                 __func__, strerror(errno));
223                 return RTE_BAD_PHYS_ADDR;
224         } else if (retval != PFN_MASK_SIZE) {
225                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
226                                 "but expected %d:\n",
227                                 __func__, retval, PFN_MASK_SIZE);
228                 return RTE_BAD_PHYS_ADDR;
229         }
230
231         /*
232          * the pfn (page frame number) are bits 0-54 (see
233          * pagemap.txt in linux Documentation)
234          */
235         if ((page & 0x7fffffffffffffULL) == 0)
236                 return RTE_BAD_PHYS_ADDR;
237
238         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
239                 + ((unsigned long)virtaddr % page_size);
240
241         return physaddr;
242 }
243
244 /*
245  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
246  * it by browsing the /proc/self/pagemap special file.
247  */
248 static int
249 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
250 {
251         unsigned int i;
252         phys_addr_t addr;
253
254         for (i = 0; i < hpi->num_pages[0]; i++) {
255                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
256                 if (addr == RTE_BAD_PHYS_ADDR)
257                         return -1;
258                 hugepg_tbl[i].physaddr = addr;
259         }
260         return 0;
261 }
262
263 /*
264  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
265  */
266 static int
267 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
268 {
269         unsigned int i;
270         static phys_addr_t addr;
271
272         for (i = 0; i < hpi->num_pages[0]; i++) {
273                 hugepg_tbl[i].physaddr = addr;
274                 addr += hugepg_tbl[i].size;
275         }
276         return 0;
277 }
278
279 /*
280  * Check whether address-space layout randomization is enabled in
281  * the kernel. This is important for multi-process as it can prevent
282  * two processes mapping data to the same virtual address
283  * Returns:
284  *    0 - address space randomization disabled
285  *    1/2 - address space randomization enabled
286  *    negative error code on error
287  */
288 static int
289 aslr_enabled(void)
290 {
291         char c;
292         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
293         if (fd < 0)
294                 return -errno;
295         retval = read(fd, &c, 1);
296         close(fd);
297         if (retval < 0)
298                 return -errno;
299         if (retval == 0)
300                 return -EIO;
301         switch (c) {
302                 case '0' : return 0;
303                 case '1' : return 1;
304                 case '2' : return 2;
305                 default: return -EINVAL;
306         }
307 }
308
309 /*
310  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
311  * pointer to the mmap'd area and keep *size unmodified. Else, retry
312  * with a smaller zone: decrease *size by hugepage_sz until it reaches
313  * 0. In this case, return NULL. Note: this function returns an address
314  * which is a multiple of hugepage size.
315  */
316 static void *
317 get_virtual_area(size_t *size, size_t hugepage_sz)
318 {
319         void *addr;
320         int fd;
321         long aligned_addr;
322
323         if (internal_config.base_virtaddr != 0) {
324                 addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
325                                 baseaddr_offset);
326         }
327         else addr = NULL;
328
329         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
330
331         fd = open("/dev/zero", O_RDONLY);
332         if (fd < 0){
333                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
334                 return NULL;
335         }
336         do {
337                 addr = mmap(addr,
338                                 (*size) + hugepage_sz, PROT_READ,
339 #ifdef RTE_ARCH_PPC_64
340                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
341 #else
342                                 MAP_PRIVATE,
343 #endif
344                                 fd, 0);
345                 if (addr == MAP_FAILED)
346                         *size -= hugepage_sz;
347         } while (addr == MAP_FAILED && *size > 0);
348
349         if (addr == MAP_FAILED) {
350                 close(fd);
351                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
352                         strerror(errno));
353                 return NULL;
354         }
355
356         munmap(addr, (*size) + hugepage_sz);
357         close(fd);
358
359         /* align addr to a huge page size boundary */
360         aligned_addr = (long)addr;
361         aligned_addr += (hugepage_sz - 1);
362         aligned_addr &= (~(hugepage_sz - 1));
363         addr = (void *)(aligned_addr);
364
365         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
366                 addr, *size);
367
368         /* increment offset */
369         baseaddr_offset += *size;
370
371         return addr;
372 }
373
374 static sigjmp_buf huge_jmpenv;
375
376 static void huge_sigbus_handler(int signo __rte_unused)
377 {
378         siglongjmp(huge_jmpenv, 1);
379 }
380
381 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
382  * non-static local variable in the stack frame calling sigsetjmp might be
383  * clobbered by a call to longjmp.
384  */
385 static int huge_wrap_sigsetjmp(void)
386 {
387         return sigsetjmp(huge_jmpenv, 1);
388 }
389
390 /*
391  * Mmap all hugepages of hugepage table: it first open a file in
392  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
393  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
394  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
395  * map continguous physical blocks in contiguous virtual blocks.
396  */
397 static unsigned
398 map_all_hugepages(struct hugepage_file *hugepg_tbl,
399                 struct hugepage_info *hpi, int orig)
400 {
401         int fd;
402         unsigned i;
403         void *virtaddr;
404         void *vma_addr = NULL;
405         size_t vma_len = 0;
406
407         for (i = 0; i < hpi->num_pages[0]; i++) {
408                 uint64_t hugepage_sz = hpi->hugepage_sz;
409
410                 if (orig) {
411                         hugepg_tbl[i].file_id = i;
412                         hugepg_tbl[i].size = hugepage_sz;
413                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
414                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
415                                         hugepg_tbl[i].file_id);
416                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
417                 }
418 #ifndef RTE_ARCH_64
419                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
420                  * original map address as final map address.
421                  */
422                 else if ((hugepage_sz == RTE_PGSIZE_1G)
423                         || (hugepage_sz == RTE_PGSIZE_16G)) {
424                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
425                         hugepg_tbl[i].orig_va = NULL;
426                         continue;
427                 }
428 #endif
429                 else if (vma_len == 0) {
430                         unsigned j, num_pages;
431
432                         /* reserve a virtual area for next contiguous
433                          * physical block: count the number of
434                          * contiguous physical pages. */
435                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
436 #ifdef RTE_ARCH_PPC_64
437                                 /* The physical addresses are sorted in
438                                  * descending order on PPC64 */
439                                 if (hugepg_tbl[j].physaddr !=
440                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
441                                         break;
442 #else
443                                 if (hugepg_tbl[j].physaddr !=
444                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
445                                         break;
446 #endif
447                         }
448                         num_pages = j - i;
449                         vma_len = num_pages * hugepage_sz;
450
451                         /* get the biggest virtual memory area up to
452                          * vma_len. If it fails, vma_addr is NULL, so
453                          * let the kernel provide the address. */
454                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
455                         if (vma_addr == NULL)
456                                 vma_len = hugepage_sz;
457                 }
458
459                 /* try to create hugepage file */
460                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
461                 if (fd < 0) {
462                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
463                                         strerror(errno));
464                         return i;
465                 }
466
467                 /* map the segment, and populate page tables,
468                  * the kernel fills this segment with zeros */
469                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
470                                 MAP_SHARED | MAP_POPULATE, fd, 0);
471                 if (virtaddr == MAP_FAILED) {
472                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
473                                         strerror(errno));
474                         close(fd);
475                         return i;
476                 }
477
478                 if (orig) {
479                         hugepg_tbl[i].orig_va = virtaddr;
480                 }
481                 else {
482                         hugepg_tbl[i].final_va = virtaddr;
483                 }
484
485                 if (orig) {
486                         /* In linux, hugetlb limitations, like cgroup, are
487                          * enforced at fault time instead of mmap(), even
488                          * with the option of MAP_POPULATE. Kernel will send
489                          * a SIGBUS signal. To avoid to be killed, save stack
490                          * environment here, if SIGBUS happens, we can jump
491                          * back here.
492                          */
493                         if (huge_wrap_sigsetjmp()) {
494                                 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
495                                         "hugepages of size %u MB\n",
496                                         (unsigned)(hugepage_sz / 0x100000));
497                                 munmap(virtaddr, hugepage_sz);
498                                 close(fd);
499                                 unlink(hugepg_tbl[i].filepath);
500                                 return i;
501                         }
502                         *(int *)virtaddr = 0;
503                 }
504
505
506                 /* set shared flock on the file. */
507                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
508                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
509                                 __func__, strerror(errno));
510                         close(fd);
511                         return i;
512                 }
513
514                 close(fd);
515
516                 vma_addr = (char *)vma_addr + hugepage_sz;
517                 vma_len -= hugepage_sz;
518         }
519
520         return i;
521 }
522
523 /* Unmap all hugepages from original mapping */
524 static int
525 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
526 {
527         unsigned i;
528         for (i = 0; i < hpi->num_pages[0]; i++) {
529                 if (hugepg_tbl[i].orig_va) {
530                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
531                         hugepg_tbl[i].orig_va = NULL;
532                 }
533         }
534         return 0;
535 }
536
537 /*
538  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
539  * page.
540  */
541 static int
542 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
543 {
544         int socket_id;
545         char *end, *nodestr;
546         unsigned i, hp_count = 0;
547         uint64_t virt_addr;
548         char buf[BUFSIZ];
549         char hugedir_str[PATH_MAX];
550         FILE *f;
551
552         f = fopen("/proc/self/numa_maps", "r");
553         if (f == NULL) {
554                 RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
555                                 " consider that all memory is in socket_id 0\n");
556                 return 0;
557         }
558
559         snprintf(hugedir_str, sizeof(hugedir_str),
560                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
561
562         /* parse numa map */
563         while (fgets(buf, sizeof(buf), f) != NULL) {
564
565                 /* ignore non huge page */
566                 if (strstr(buf, " huge ") == NULL &&
567                                 strstr(buf, hugedir_str) == NULL)
568                         continue;
569
570                 /* get zone addr */
571                 virt_addr = strtoull(buf, &end, 16);
572                 if (virt_addr == 0 || end == buf) {
573                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
574                         goto error;
575                 }
576
577                 /* get node id (socket id) */
578                 nodestr = strstr(buf, " N");
579                 if (nodestr == NULL) {
580                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
581                         goto error;
582                 }
583                 nodestr += 2;
584                 end = strstr(nodestr, "=");
585                 if (end == NULL) {
586                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
587                         goto error;
588                 }
589                 end[0] = '\0';
590                 end = NULL;
591
592                 socket_id = strtoul(nodestr, &end, 0);
593                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
594                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
595                         goto error;
596                 }
597
598                 /* if we find this page in our mappings, set socket_id */
599                 for (i = 0; i < hpi->num_pages[0]; i++) {
600                         void *va = (void *)(unsigned long)virt_addr;
601                         if (hugepg_tbl[i].orig_va == va) {
602                                 hugepg_tbl[i].socket_id = socket_id;
603                                 hp_count++;
604                         }
605                 }
606         }
607
608         if (hp_count < hpi->num_pages[0])
609                 goto error;
610
611         fclose(f);
612         return 0;
613
614 error:
615         fclose(f);
616         return -1;
617 }
618
619 static int
620 cmp_physaddr(const void *a, const void *b)
621 {
622 #ifndef RTE_ARCH_PPC_64
623         const struct hugepage_file *p1 = a;
624         const struct hugepage_file *p2 = b;
625 #else
626         /* PowerPC needs memory sorted in reverse order from x86 */
627         const struct hugepage_file *p1 = b;
628         const struct hugepage_file *p2 = a;
629 #endif
630         if (p1->physaddr < p2->physaddr)
631                 return -1;
632         else if (p1->physaddr > p2->physaddr)
633                 return 1;
634         else
635                 return 0;
636 }
637
638 /*
639  * Uses mmap to create a shared memory area for storage of data
640  * Used in this file to store the hugepage file map on disk
641  */
642 static void *
643 create_shared_memory(const char *filename, const size_t mem_size)
644 {
645         void *retval;
646         int fd = open(filename, O_CREAT | O_RDWR, 0666);
647         if (fd < 0)
648                 return NULL;
649         if (ftruncate(fd, mem_size) < 0) {
650                 close(fd);
651                 return NULL;
652         }
653         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
654         close(fd);
655         return retval;
656 }
657
658 /*
659  * this copies *active* hugepages from one hugepage table to another.
660  * destination is typically the shared memory.
661  */
662 static int
663 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
664                 const struct hugepage_file * src, int src_size)
665 {
666         int src_pos, dst_pos = 0;
667
668         for (src_pos = 0; src_pos < src_size; src_pos++) {
669                 if (src[src_pos].final_va != NULL) {
670                         /* error on overflow attempt */
671                         if (dst_pos == dest_size)
672                                 return -1;
673                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
674                         dst_pos++;
675                 }
676         }
677         return 0;
678 }
679
680 static int
681 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
682                 unsigned num_hp_info)
683 {
684         unsigned socket, size;
685         int page, nrpages = 0;
686
687         /* get total number of hugepages */
688         for (size = 0; size < num_hp_info; size++)
689                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
690                         nrpages +=
691                         internal_config.hugepage_info[size].num_pages[socket];
692
693         for (page = 0; page < nrpages; page++) {
694                 struct hugepage_file *hp = &hugepg_tbl[page];
695
696                 if (hp->final_va != NULL && unlink(hp->filepath)) {
697                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
698                                 __func__, hp->filepath, strerror(errno));
699                 }
700         }
701         return 0;
702 }
703
704 /*
705  * unmaps hugepages that are not going to be used. since we originally allocate
706  * ALL hugepages (not just those we need), additional unmapping needs to be done.
707  */
708 static int
709 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
710                 struct hugepage_info *hpi,
711                 unsigned num_hp_info)
712 {
713         unsigned socket, size;
714         int page, nrpages = 0;
715
716         /* get total number of hugepages */
717         for (size = 0; size < num_hp_info; size++)
718                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
719                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
720
721         for (size = 0; size < num_hp_info; size++) {
722                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
723                         unsigned pages_found = 0;
724
725                         /* traverse until we have unmapped all the unused pages */
726                         for (page = 0; page < nrpages; page++) {
727                                 struct hugepage_file *hp = &hugepg_tbl[page];
728
729                                 /* find a page that matches the criteria */
730                                 if ((hp->size == hpi[size].hugepage_sz) &&
731                                                 (hp->socket_id == (int) socket)) {
732
733                                         /* if we skipped enough pages, unmap the rest */
734                                         if (pages_found == hpi[size].num_pages[socket]) {
735                                                 uint64_t unmap_len;
736
737                                                 unmap_len = hp->size;
738
739                                                 /* get start addr and len of the remaining segment */
740                                                 munmap(hp->final_va, (size_t) unmap_len);
741
742                                                 hp->final_va = NULL;
743                                                 if (unlink(hp->filepath) == -1) {
744                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
745                                                                         __func__, hp->filepath, strerror(errno));
746                                                         return -1;
747                                                 }
748                                         } else {
749                                                 /* lock the page and skip */
750                                                 pages_found++;
751                                         }
752
753                                 } /* match page */
754                         } /* foreach page */
755                 } /* foreach socket */
756         } /* foreach pagesize */
757
758         return 0;
759 }
760
761 static inline uint64_t
762 get_socket_mem_size(int socket)
763 {
764         uint64_t size = 0;
765         unsigned i;
766
767         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
768                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
769                 if (hpi->hugedir != NULL)
770                         size += hpi->hugepage_sz * hpi->num_pages[socket];
771         }
772
773         return size;
774 }
775
776 /*
777  * This function is a NUMA-aware equivalent of calc_num_pages.
778  * It takes in the list of hugepage sizes and the
779  * number of pages thereof, and calculates the best number of
780  * pages of each size to fulfill the request for <memory> ram
781  */
782 static int
783 calc_num_pages_per_socket(uint64_t * memory,
784                 struct hugepage_info *hp_info,
785                 struct hugepage_info *hp_used,
786                 unsigned num_hp_info)
787 {
788         unsigned socket, j, i = 0;
789         unsigned requested, available;
790         int total_num_pages = 0;
791         uint64_t remaining_mem, cur_mem;
792         uint64_t total_mem = internal_config.memory;
793
794         if (num_hp_info == 0)
795                 return -1;
796
797         /* if specific memory amounts per socket weren't requested */
798         if (internal_config.force_sockets == 0) {
799                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
800                 size_t default_size, total_size;
801                 unsigned lcore_id;
802
803                 /* Compute number of cores per socket */
804                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
805                 RTE_LCORE_FOREACH(lcore_id) {
806                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
807                 }
808
809                 /*
810                  * Automatically spread requested memory amongst detected sockets according
811                  * to number of cores from cpu mask present on each socket
812                  */
813                 total_size = internal_config.memory;
814                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
815
816                         /* Set memory amount per socket */
817                         default_size = (internal_config.memory * cpu_per_socket[socket])
818                                         / rte_lcore_count();
819
820                         /* Limit to maximum available memory on socket */
821                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
822
823                         /* Update sizes */
824                         memory[socket] = default_size;
825                         total_size -= default_size;
826                 }
827
828                 /*
829                  * If some memory is remaining, try to allocate it by getting all
830                  * available memory from sockets, one after the other
831                  */
832                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
833                         /* take whatever is available */
834                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
835                                                total_size);
836
837                         /* Update sizes */
838                         memory[socket] += default_size;
839                         total_size -= default_size;
840                 }
841         }
842
843         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
844                 /* skips if the memory on specific socket wasn't requested */
845                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
846                         hp_used[i].hugedir = hp_info[i].hugedir;
847                         hp_used[i].num_pages[socket] = RTE_MIN(
848                                         memory[socket] / hp_info[i].hugepage_sz,
849                                         hp_info[i].num_pages[socket]);
850
851                         cur_mem = hp_used[i].num_pages[socket] *
852                                         hp_used[i].hugepage_sz;
853
854                         memory[socket] -= cur_mem;
855                         total_mem -= cur_mem;
856
857                         total_num_pages += hp_used[i].num_pages[socket];
858
859                         /* check if we have met all memory requests */
860                         if (memory[socket] == 0)
861                                 break;
862
863                         /* check if we have any more pages left at this size, if so
864                          * move on to next size */
865                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
866                                 continue;
867                         /* At this point we know that there are more pages available that are
868                          * bigger than the memory we want, so lets see if we can get enough
869                          * from other page sizes.
870                          */
871                         remaining_mem = 0;
872                         for (j = i+1; j < num_hp_info; j++)
873                                 remaining_mem += hp_info[j].hugepage_sz *
874                                 hp_info[j].num_pages[socket];
875
876                         /* is there enough other memory, if not allocate another page and quit */
877                         if (remaining_mem < memory[socket]){
878                                 cur_mem = RTE_MIN(memory[socket],
879                                                 hp_info[i].hugepage_sz);
880                                 memory[socket] -= cur_mem;
881                                 total_mem -= cur_mem;
882                                 hp_used[i].num_pages[socket]++;
883                                 total_num_pages++;
884                                 break; /* we are done with this socket*/
885                         }
886                 }
887                 /* if we didn't satisfy all memory requirements per socket */
888                 if (memory[socket] > 0) {
889                         /* to prevent icc errors */
890                         requested = (unsigned) (internal_config.socket_mem[socket] /
891                                         0x100000);
892                         available = requested -
893                                         ((unsigned) (memory[socket] / 0x100000));
894                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
895                                         "Requested: %uMB, available: %uMB\n", socket,
896                                         requested, available);
897                         return -1;
898                 }
899         }
900
901         /* if we didn't satisfy total memory requirements */
902         if (total_mem > 0) {
903                 requested = (unsigned) (internal_config.memory / 0x100000);
904                 available = requested - (unsigned) (total_mem / 0x100000);
905                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
906                                 " available: %uMB\n", requested, available);
907                 return -1;
908         }
909         return total_num_pages;
910 }
911
912 static inline size_t
913 eal_get_hugepage_mem_size(void)
914 {
915         uint64_t size = 0;
916         unsigned i, j;
917
918         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
919                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
920                 if (hpi->hugedir != NULL) {
921                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
922                                 size += hpi->hugepage_sz * hpi->num_pages[j];
923                         }
924                 }
925         }
926
927         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
928 }
929
930 static struct sigaction huge_action_old;
931 static int huge_need_recover;
932
933 static void
934 huge_register_sigbus(void)
935 {
936         sigset_t mask;
937         struct sigaction action;
938
939         sigemptyset(&mask);
940         sigaddset(&mask, SIGBUS);
941         action.sa_flags = 0;
942         action.sa_mask = mask;
943         action.sa_handler = huge_sigbus_handler;
944
945         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
946 }
947
948 static void
949 huge_recover_sigbus(void)
950 {
951         if (huge_need_recover) {
952                 sigaction(SIGBUS, &huge_action_old, NULL);
953                 huge_need_recover = 0;
954         }
955 }
956
957 /*
958  * Prepare physical memory mapping: fill configuration structure with
959  * these infos, return 0 on success.
960  *  1. map N huge pages in separate files in hugetlbfs
961  *  2. find associated physical addr
962  *  3. find associated NUMA socket ID
963  *  4. sort all huge pages by physical address
964  *  5. remap these N huge pages in the correct order
965  *  6. unmap the first mapping
966  *  7. fill memsegs in configuration with contiguous zones
967  */
968 int
969 rte_eal_hugepage_init(void)
970 {
971         struct rte_mem_config *mcfg;
972         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
973         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
974
975         uint64_t memory[RTE_MAX_NUMA_NODES];
976
977         unsigned hp_offset;
978         int i, j, new_memseg;
979         int nr_hugefiles, nr_hugepages = 0;
980         void *addr;
981
982         test_phys_addrs_available();
983
984         memset(used_hp, 0, sizeof(used_hp));
985
986         /* get pointer to global configuration */
987         mcfg = rte_eal_get_configuration()->mem_config;
988
989         /* hugetlbfs can be disabled */
990         if (internal_config.no_hugetlbfs) {
991                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
992                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
993                 if (addr == MAP_FAILED) {
994                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
995                                         strerror(errno));
996                         return -1;
997                 }
998                 mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
999                 mcfg->memseg[0].addr = addr;
1000                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
1001                 mcfg->memseg[0].len = internal_config.memory;
1002                 mcfg->memseg[0].socket_id = 0;
1003                 return 0;
1004         }
1005
1006 /* check if app runs on Xen Dom0 */
1007         if (internal_config.xen_dom0_support) {
1008 #ifdef RTE_LIBRTE_XEN_DOM0
1009                 /* use dom0_mm kernel driver to init memory */
1010                 if (rte_xen_dom0_memory_init() < 0)
1011                         return -1;
1012                 else
1013                         return 0;
1014 #endif
1015         }
1016
1017         /* calculate total number of hugepages available. at this point we haven't
1018          * yet started sorting them so they all are on socket 0 */
1019         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1020                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1021                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1022
1023                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1024         }
1025
1026         /*
1027          * allocate a memory area for hugepage table.
1028          * this isn't shared memory yet. due to the fact that we need some
1029          * processing done on these pages, shared memory will be created
1030          * at a later stage.
1031          */
1032         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1033         if (tmp_hp == NULL)
1034                 goto fail;
1035
1036         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1037
1038         hp_offset = 0; /* where we start the current page size entries */
1039
1040         huge_register_sigbus();
1041
1042         /* map all hugepages and sort them */
1043         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1044                 unsigned pages_old, pages_new;
1045                 struct hugepage_info *hpi;
1046
1047                 /*
1048                  * we don't yet mark hugepages as used at this stage, so
1049                  * we just map all hugepages available to the system
1050                  * all hugepages are still located on socket 0
1051                  */
1052                 hpi = &internal_config.hugepage_info[i];
1053
1054                 if (hpi->num_pages[0] == 0)
1055                         continue;
1056
1057                 /* map all hugepages available */
1058                 pages_old = hpi->num_pages[0];
1059                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, 1);
1060                 if (pages_new < pages_old) {
1061                         RTE_LOG(DEBUG, EAL,
1062                                 "%d not %d hugepages of size %u MB allocated\n",
1063                                 pages_new, pages_old,
1064                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1065
1066                         int pages = pages_old - pages_new;
1067
1068                         nr_hugepages -= pages;
1069                         hpi->num_pages[0] = pages_new;
1070                         if (pages_new == 0)
1071                                 continue;
1072                 }
1073
1074                 if (phys_addrs_available) {
1075                         /* find physical addresses for each hugepage */
1076                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1077                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1078                                         "for %u MB pages\n",
1079                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1080                                 goto fail;
1081                         }
1082                 } else {
1083                         /* set physical addresses for each hugepage */
1084                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1085                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1086                                         "for %u MB pages\n",
1087                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1088                                 goto fail;
1089                         }
1090                 }
1091
1092                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1093                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1094                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1095                         goto fail;
1096                 }
1097
1098                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1099                       sizeof(struct hugepage_file), cmp_physaddr);
1100
1101                 /* remap all hugepages */
1102                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) !=
1103                     hpi->num_pages[0]) {
1104                         RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1105                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1106                         goto fail;
1107                 }
1108
1109                 /* unmap original mappings */
1110                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1111                         goto fail;
1112
1113                 /* we have processed a num of hugepages of this size, so inc offset */
1114                 hp_offset += hpi->num_pages[0];
1115         }
1116
1117         huge_recover_sigbus();
1118
1119         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1120                 internal_config.memory = eal_get_hugepage_mem_size();
1121
1122         nr_hugefiles = nr_hugepages;
1123
1124
1125         /* clean out the numbers of pages */
1126         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1127                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1128                         internal_config.hugepage_info[i].num_pages[j] = 0;
1129
1130         /* get hugepages for each socket */
1131         for (i = 0; i < nr_hugefiles; i++) {
1132                 int socket = tmp_hp[i].socket_id;
1133
1134                 /* find a hugepage info with right size and increment num_pages */
1135                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1136                                 (int)internal_config.num_hugepage_sizes);
1137                 for (j = 0; j < nb_hpsizes; j++) {
1138                         if (tmp_hp[i].size ==
1139                                         internal_config.hugepage_info[j].hugepage_sz) {
1140                                 internal_config.hugepage_info[j].num_pages[socket]++;
1141                         }
1142                 }
1143         }
1144
1145         /* make a copy of socket_mem, needed for number of pages calculation */
1146         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1147                 memory[i] = internal_config.socket_mem[i];
1148
1149         /* calculate final number of pages */
1150         nr_hugepages = calc_num_pages_per_socket(memory,
1151                         internal_config.hugepage_info, used_hp,
1152                         internal_config.num_hugepage_sizes);
1153
1154         /* error if not enough memory available */
1155         if (nr_hugepages < 0)
1156                 goto fail;
1157
1158         /* reporting in! */
1159         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1160                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1161                         if (used_hp[i].num_pages[j] > 0) {
1162                                 RTE_LOG(DEBUG, EAL,
1163                                         "Requesting %u pages of size %uMB"
1164                                         " from socket %i\n",
1165                                         used_hp[i].num_pages[j],
1166                                         (unsigned)
1167                                         (used_hp[i].hugepage_sz / 0x100000),
1168                                         j);
1169                         }
1170                 }
1171         }
1172
1173         /* create shared memory */
1174         hugepage = create_shared_memory(eal_hugepage_info_path(),
1175                         nr_hugefiles * sizeof(struct hugepage_file));
1176
1177         if (hugepage == NULL) {
1178                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1179                 goto fail;
1180         }
1181         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1182
1183         /*
1184          * unmap pages that we won't need (looks at used_hp).
1185          * also, sets final_va to NULL on pages that were unmapped.
1186          */
1187         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1188                         internal_config.num_hugepage_sizes) < 0) {
1189                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1190                 goto fail;
1191         }
1192
1193         /*
1194          * copy stuff from malloc'd hugepage* to the actual shared memory.
1195          * this procedure only copies those hugepages that have final_va
1196          * not NULL. has overflow protection.
1197          */
1198         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1199                         tmp_hp, nr_hugefiles) < 0) {
1200                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1201                 goto fail;
1202         }
1203
1204         /* free the hugepage backing files */
1205         if (internal_config.hugepage_unlink &&
1206                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1207                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1208                 goto fail;
1209         }
1210
1211         /* free the temporary hugepage table */
1212         free(tmp_hp);
1213         tmp_hp = NULL;
1214
1215         /* first memseg index shall be 0 after incrementing it below */
1216         j = -1;
1217         for (i = 0; i < nr_hugefiles; i++) {
1218                 new_memseg = 0;
1219
1220                 /* if this is a new section, create a new memseg */
1221                 if (i == 0)
1222                         new_memseg = 1;
1223                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1224                         new_memseg = 1;
1225                 else if (hugepage[i].size != hugepage[i-1].size)
1226                         new_memseg = 1;
1227
1228 #ifdef RTE_ARCH_PPC_64
1229                 /* On PPC64 architecture, the mmap always start from higher
1230                  * virtual address to lower address. Here, both the physical
1231                  * address and virtual address are in descending order */
1232                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1233                     hugepage[i].size)
1234                         new_memseg = 1;
1235                 else if (((unsigned long)hugepage[i-1].final_va -
1236                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1237                         new_memseg = 1;
1238 #else
1239                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1240                     hugepage[i].size)
1241                         new_memseg = 1;
1242                 else if (((unsigned long)hugepage[i].final_va -
1243                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1244                         new_memseg = 1;
1245 #endif
1246
1247                 if (new_memseg) {
1248                         j += 1;
1249                         if (j == RTE_MAX_MEMSEG)
1250                                 break;
1251
1252                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1253                         mcfg->memseg[j].addr = hugepage[i].final_va;
1254                         mcfg->memseg[j].len = hugepage[i].size;
1255                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1256                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1257                 }
1258                 /* continuation of previous memseg */
1259                 else {
1260 #ifdef RTE_ARCH_PPC_64
1261                 /* Use the phy and virt address of the last page as segment
1262                  * address for IBM Power architecture */
1263                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1264                         mcfg->memseg[j].addr = hugepage[i].final_va;
1265 #endif
1266                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1267                 }
1268                 hugepage[i].memseg_id = j;
1269         }
1270
1271         if (i < nr_hugefiles) {
1272                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1273                         "from %d requested\n"
1274                         "Current %s=%d is not enough\n"
1275                         "Please either increase it or request less amount "
1276                         "of memory.\n",
1277                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1278                         RTE_MAX_MEMSEG);
1279                 goto fail;
1280         }
1281
1282         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1283
1284         return 0;
1285
1286 fail:
1287         huge_recover_sigbus();
1288         free(tmp_hp);
1289         if (hugepage != NULL)
1290                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1291
1292         return -1;
1293 }
1294
1295 /*
1296  * uses fstat to report the size of a file on disk
1297  */
1298 static off_t
1299 getFileSize(int fd)
1300 {
1301         struct stat st;
1302         if (fstat(fd, &st) < 0)
1303                 return 0;
1304         return st.st_size;
1305 }
1306
1307 /*
1308  * This creates the memory mappings in the secondary process to match that of
1309  * the server process. It goes through each memory segment in the DPDK runtime
1310  * configuration and finds the hugepages which form that segment, mapping them
1311  * in order to form a contiguous block in the virtual memory space
1312  */
1313 int
1314 rte_eal_hugepage_attach(void)
1315 {
1316         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1317         struct hugepage_file *hp = NULL;
1318         unsigned num_hp = 0;
1319         unsigned i, s = 0; /* s used to track the segment number */
1320         unsigned max_seg = RTE_MAX_MEMSEG;
1321         off_t size = 0;
1322         int fd, fd_zero = -1, fd_hugepage = -1;
1323
1324         if (aslr_enabled() > 0) {
1325                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1326                                 "(ASLR) is enabled in the kernel.\n");
1327                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1328                                 "into secondary processes\n");
1329         }
1330
1331         test_phys_addrs_available();
1332
1333         if (internal_config.xen_dom0_support) {
1334 #ifdef RTE_LIBRTE_XEN_DOM0
1335                 if (rte_xen_dom0_memory_attach() < 0) {
1336                         RTE_LOG(ERR, EAL, "Failed to attach memory segments of primary "
1337                                         "process\n");
1338                         return -1;
1339                 }
1340                 return 0;
1341 #endif
1342         }
1343
1344         fd_zero = open("/dev/zero", O_RDONLY);
1345         if (fd_zero < 0) {
1346                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1347                 goto error;
1348         }
1349         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1350         if (fd_hugepage < 0) {
1351                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1352                 goto error;
1353         }
1354
1355         /* map all segments into memory to make sure we get the addrs */
1356         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1357                 void *base_addr;
1358
1359                 /*
1360                  * the first memory segment with len==0 is the one that
1361                  * follows the last valid segment.
1362                  */
1363                 if (mcfg->memseg[s].len == 0)
1364                         break;
1365
1366                 /*
1367                  * fdzero is mmapped to get a contiguous block of virtual
1368                  * addresses of the appropriate memseg size.
1369                  * use mmap to get identical addresses as the primary process.
1370                  */
1371                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1372                                  PROT_READ,
1373 #ifdef RTE_ARCH_PPC_64
1374                                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1375 #else
1376                                  MAP_PRIVATE,
1377 #endif
1378                                  fd_zero, 0);
1379                 if (base_addr == MAP_FAILED ||
1380                     base_addr != mcfg->memseg[s].addr) {
1381                         max_seg = s;
1382                         if (base_addr != MAP_FAILED) {
1383                                 /* errno is stale, don't use */
1384                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1385                                         "in /dev/zero at [%p], got [%p] - "
1386                                         "please use '--base-virtaddr' option\n",
1387                                         (unsigned long long)mcfg->memseg[s].len,
1388                                         mcfg->memseg[s].addr, base_addr);
1389                                 munmap(base_addr, mcfg->memseg[s].len);
1390                         } else {
1391                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1392                                         "in /dev/zero at [%p]: '%s'\n",
1393                                         (unsigned long long)mcfg->memseg[s].len,
1394                                         mcfg->memseg[s].addr, strerror(errno));
1395                         }
1396                         if (aslr_enabled() > 0) {
1397                                 RTE_LOG(ERR, EAL, "It is recommended to "
1398                                         "disable ASLR in the kernel "
1399                                         "and retry running both primary "
1400                                         "and secondary processes\n");
1401                         }
1402                         goto error;
1403                 }
1404         }
1405
1406         size = getFileSize(fd_hugepage);
1407         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1408         if (hp == MAP_FAILED) {
1409                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1410                 goto error;
1411         }
1412
1413         num_hp = size / sizeof(struct hugepage_file);
1414         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1415
1416         s = 0;
1417         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1418                 void *addr, *base_addr;
1419                 uintptr_t offset = 0;
1420                 size_t mapping_size;
1421                 /*
1422                  * free previously mapped memory so we can map the
1423                  * hugepages into the space
1424                  */
1425                 base_addr = mcfg->memseg[s].addr;
1426                 munmap(base_addr, mcfg->memseg[s].len);
1427
1428                 /* find the hugepages for this segment and map them
1429                  * we don't need to worry about order, as the server sorted the
1430                  * entries before it did the second mmap of them */
1431                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1432                         if (hp[i].memseg_id == (int)s){
1433                                 fd = open(hp[i].filepath, O_RDWR);
1434                                 if (fd < 0) {
1435                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1436                                                 hp[i].filepath);
1437                                         goto error;
1438                                 }
1439                                 mapping_size = hp[i].size;
1440                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1441                                                 mapping_size, PROT_READ | PROT_WRITE,
1442                                                 MAP_SHARED, fd, 0);
1443                                 close(fd); /* close file both on success and on failure */
1444                                 if (addr == MAP_FAILED ||
1445                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1446                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1447                                                 hp[i].filepath);
1448                                         goto error;
1449                                 }
1450                                 offset+=mapping_size;
1451                         }
1452                 }
1453                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1454                                 (unsigned long long)mcfg->memseg[s].len);
1455                 s++;
1456         }
1457         /* unmap the hugepage config file, since we are done using it */
1458         munmap(hp, size);
1459         close(fd_zero);
1460         close(fd_hugepage);
1461         return 0;
1462
1463 error:
1464         for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1465                 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1466         if (hp != NULL && hp != MAP_FAILED)
1467                 munmap(hp, size);
1468         if (fd_zero >= 0)
1469                 close(fd_zero);
1470         if (fd_hugepage >= 0)
1471                 close(fd_hugepage);
1472         return -1;
1473 }
1474
1475 bool
1476 rte_eal_using_phys_addrs(void)
1477 {
1478         return phys_addrs_available;
1479 }