New upstream version 18.11-rc1
[deb_dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright(c) 2013 6WIND S.A.
4  */
5
6 #define _FILE_OFFSET_BITS 64
7 #include <errno.h>
8 #include <fcntl.h>
9 #include <stdarg.h>
10 #include <stdbool.h>
11 #include <stdlib.h>
12 #include <stdio.h>
13 #include <stdint.h>
14 #include <inttypes.h>
15 #include <string.h>
16 #include <sys/mman.h>
17 #include <sys/types.h>
18 #include <sys/stat.h>
19 #include <sys/queue.h>
20 #include <sys/file.h>
21 #include <sys/resource.h>
22 #include <unistd.h>
23 #include <limits.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <signal.h>
27 #include <setjmp.h>
28 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
29 #include <numa.h>
30 #include <numaif.h>
31 #endif
32
33 #include <rte_errno.h>
34 #include <rte_log.h>
35 #include <rte_memory.h>
36 #include <rte_launch.h>
37 #include <rte_eal.h>
38 #include <rte_eal_memconfig.h>
39 #include <rte_per_lcore.h>
40 #include <rte_lcore.h>
41 #include <rte_common.h>
42 #include <rte_string_fns.h>
43
44 #include "eal_private.h"
45 #include "eal_memalloc.h"
46 #include "eal_internal_cfg.h"
47 #include "eal_filesystem.h"
48 #include "eal_hugepages.h"
49
50 #define PFN_MASK_SIZE   8
51
52 /**
53  * @file
54  * Huge page mapping under linux
55  *
56  * To reserve a big contiguous amount of memory, we use the hugepage
57  * feature of linux. For that, we need to have hugetlbfs mounted. This
58  * code will create many files in this directory (one per page) and
59  * map them in virtual memory. For each page, we will retrieve its
60  * physical address and remap it in order to have a virtual contiguous
61  * zone as well as a physical contiguous zone.
62  */
63
64 static bool phys_addrs_available = true;
65
66 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
67
68 static void
69 test_phys_addrs_available(void)
70 {
71         uint64_t tmp = 0;
72         phys_addr_t physaddr;
73
74         if (!rte_eal_has_hugepages()) {
75                 RTE_LOG(ERR, EAL,
76                         "Started without hugepages support, physical addresses not available\n");
77                 phys_addrs_available = false;
78                 return;
79         }
80
81         physaddr = rte_mem_virt2phy(&tmp);
82         if (physaddr == RTE_BAD_PHYS_ADDR) {
83                 if (rte_eal_iova_mode() == RTE_IOVA_PA)
84                         RTE_LOG(ERR, EAL,
85                                 "Cannot obtain physical addresses: %s. "
86                                 "Only vfio will function.\n",
87                                 strerror(errno));
88                 phys_addrs_available = false;
89         }
90 }
91
92 /*
93  * Get physical address of any mapped virtual address in the current process.
94  */
95 phys_addr_t
96 rte_mem_virt2phy(const void *virtaddr)
97 {
98         int fd, retval;
99         uint64_t page, physaddr;
100         unsigned long virt_pfn;
101         int page_size;
102         off_t offset;
103
104         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
105         if (!phys_addrs_available)
106                 return RTE_BAD_IOVA;
107
108         /* standard page size */
109         page_size = getpagesize();
110
111         fd = open("/proc/self/pagemap", O_RDONLY);
112         if (fd < 0) {
113                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
114                         __func__, strerror(errno));
115                 return RTE_BAD_IOVA;
116         }
117
118         virt_pfn = (unsigned long)virtaddr / page_size;
119         offset = sizeof(uint64_t) * virt_pfn;
120         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
121                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
122                                 __func__, strerror(errno));
123                 close(fd);
124                 return RTE_BAD_IOVA;
125         }
126
127         retval = read(fd, &page, PFN_MASK_SIZE);
128         close(fd);
129         if (retval < 0) {
130                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
131                                 __func__, strerror(errno));
132                 return RTE_BAD_IOVA;
133         } else if (retval != PFN_MASK_SIZE) {
134                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
135                                 "but expected %d:\n",
136                                 __func__, retval, PFN_MASK_SIZE);
137                 return RTE_BAD_IOVA;
138         }
139
140         /*
141          * the pfn (page frame number) are bits 0-54 (see
142          * pagemap.txt in linux Documentation)
143          */
144         if ((page & 0x7fffffffffffffULL) == 0)
145                 return RTE_BAD_IOVA;
146
147         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
148                 + ((unsigned long)virtaddr % page_size);
149
150         return physaddr;
151 }
152
153 rte_iova_t
154 rte_mem_virt2iova(const void *virtaddr)
155 {
156         if (rte_eal_iova_mode() == RTE_IOVA_VA)
157                 return (uintptr_t)virtaddr;
158         return rte_mem_virt2phy(virtaddr);
159 }
160
161 /*
162  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
163  * it by browsing the /proc/self/pagemap special file.
164  */
165 static int
166 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
167 {
168         unsigned int i;
169         phys_addr_t addr;
170
171         for (i = 0; i < hpi->num_pages[0]; i++) {
172                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
173                 if (addr == RTE_BAD_PHYS_ADDR)
174                         return -1;
175                 hugepg_tbl[i].physaddr = addr;
176         }
177         return 0;
178 }
179
180 /*
181  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
182  */
183 static int
184 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
185 {
186         unsigned int i;
187         static phys_addr_t addr;
188
189         for (i = 0; i < hpi->num_pages[0]; i++) {
190                 hugepg_tbl[i].physaddr = addr;
191                 addr += hugepg_tbl[i].size;
192         }
193         return 0;
194 }
195
196 /*
197  * Check whether address-space layout randomization is enabled in
198  * the kernel. This is important for multi-process as it can prevent
199  * two processes mapping data to the same virtual address
200  * Returns:
201  *    0 - address space randomization disabled
202  *    1/2 - address space randomization enabled
203  *    negative error code on error
204  */
205 static int
206 aslr_enabled(void)
207 {
208         char c;
209         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
210         if (fd < 0)
211                 return -errno;
212         retval = read(fd, &c, 1);
213         close(fd);
214         if (retval < 0)
215                 return -errno;
216         if (retval == 0)
217                 return -EIO;
218         switch (c) {
219                 case '0' : return 0;
220                 case '1' : return 1;
221                 case '2' : return 2;
222                 default: return -EINVAL;
223         }
224 }
225
226 static sigjmp_buf huge_jmpenv;
227
228 static void huge_sigbus_handler(int signo __rte_unused)
229 {
230         siglongjmp(huge_jmpenv, 1);
231 }
232
233 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
234  * non-static local variable in the stack frame calling sigsetjmp might be
235  * clobbered by a call to longjmp.
236  */
237 static int huge_wrap_sigsetjmp(void)
238 {
239         return sigsetjmp(huge_jmpenv, 1);
240 }
241
242 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
243 /* Callback for numa library. */
244 void numa_error(char *where)
245 {
246         RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
247 }
248 #endif
249
250 /*
251  * Mmap all hugepages of hugepage table: it first open a file in
252  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
253  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
254  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
255  * map contiguous physical blocks in contiguous virtual blocks.
256  */
257 static unsigned
258 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
259                   uint64_t *essential_memory __rte_unused)
260 {
261         int fd;
262         unsigned i;
263         void *virtaddr;
264 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
265         int node_id = -1;
266         int essential_prev = 0;
267         int oldpolicy;
268         struct bitmask *oldmask = NULL;
269         bool have_numa = true;
270         unsigned long maxnode = 0;
271
272         /* Check if kernel supports NUMA. */
273         if (numa_available() != 0) {
274                 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
275                 have_numa = false;
276         }
277
278         if (have_numa) {
279                 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
280                 oldmask = numa_allocate_nodemask();
281                 if (get_mempolicy(&oldpolicy, oldmask->maskp,
282                                   oldmask->size + 1, 0, 0) < 0) {
283                         RTE_LOG(ERR, EAL,
284                                 "Failed to get current mempolicy: %s. "
285                                 "Assuming MPOL_DEFAULT.\n", strerror(errno));
286                         oldpolicy = MPOL_DEFAULT;
287                 }
288                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
289                         if (internal_config.socket_mem[i])
290                                 maxnode = i + 1;
291         }
292 #endif
293
294         for (i = 0; i < hpi->num_pages[0]; i++) {
295                 struct hugepage_file *hf = &hugepg_tbl[i];
296                 uint64_t hugepage_sz = hpi->hugepage_sz;
297
298 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
299                 if (maxnode) {
300                         unsigned int j;
301
302                         for (j = 0; j < maxnode; j++)
303                                 if (essential_memory[j])
304                                         break;
305
306                         if (j == maxnode) {
307                                 node_id = (node_id + 1) % maxnode;
308                                 while (!internal_config.socket_mem[node_id]) {
309                                         node_id++;
310                                         node_id %= maxnode;
311                                 }
312                                 essential_prev = 0;
313                         } else {
314                                 node_id = j;
315                                 essential_prev = essential_memory[j];
316
317                                 if (essential_memory[j] < hugepage_sz)
318                                         essential_memory[j] = 0;
319                                 else
320                                         essential_memory[j] -= hugepage_sz;
321                         }
322
323                         RTE_LOG(DEBUG, EAL,
324                                 "Setting policy MPOL_PREFERRED for socket %d\n",
325                                 node_id);
326                         numa_set_preferred(node_id);
327                 }
328 #endif
329
330                 hf->file_id = i;
331                 hf->size = hugepage_sz;
332                 eal_get_hugefile_path(hf->filepath, sizeof(hf->filepath),
333                                 hpi->hugedir, hf->file_id);
334                 hf->filepath[sizeof(hf->filepath) - 1] = '\0';
335
336                 /* try to create hugepage file */
337                 fd = open(hf->filepath, O_CREAT | O_RDWR, 0600);
338                 if (fd < 0) {
339                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
340                                         strerror(errno));
341                         goto out;
342                 }
343
344                 /* map the segment, and populate page tables,
345                  * the kernel fills this segment with zeros. we don't care where
346                  * this gets mapped - we already have contiguous memory areas
347                  * ready for us to map into.
348                  */
349                 virtaddr = mmap(NULL, hugepage_sz, PROT_READ | PROT_WRITE,
350                                 MAP_SHARED | MAP_POPULATE, fd, 0);
351                 if (virtaddr == MAP_FAILED) {
352                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
353                                         strerror(errno));
354                         close(fd);
355                         goto out;
356                 }
357
358                 hf->orig_va = virtaddr;
359
360                 /* In linux, hugetlb limitations, like cgroup, are
361                  * enforced at fault time instead of mmap(), even
362                  * with the option of MAP_POPULATE. Kernel will send
363                  * a SIGBUS signal. To avoid to be killed, save stack
364                  * environment here, if SIGBUS happens, we can jump
365                  * back here.
366                  */
367                 if (huge_wrap_sigsetjmp()) {
368                         RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
369                                 "hugepages of size %u MB\n",
370                                 (unsigned int)(hugepage_sz / 0x100000));
371                         munmap(virtaddr, hugepage_sz);
372                         close(fd);
373                         unlink(hugepg_tbl[i].filepath);
374 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
375                         if (maxnode)
376                                 essential_memory[node_id] =
377                                         essential_prev;
378 #endif
379                         goto out;
380                 }
381                 *(int *)virtaddr = 0;
382
383                 /* set shared lock on the file. */
384                 if (flock(fd, LOCK_SH) < 0) {
385                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
386                                 __func__, strerror(errno));
387                         close(fd);
388                         goto out;
389                 }
390
391                 close(fd);
392         }
393
394 out:
395 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
396         if (maxnode) {
397                 RTE_LOG(DEBUG, EAL,
398                         "Restoring previous memory policy: %d\n", oldpolicy);
399                 if (oldpolicy == MPOL_DEFAULT) {
400                         numa_set_localalloc();
401                 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
402                                          oldmask->size + 1) < 0) {
403                         RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
404                                 strerror(errno));
405                         numa_set_localalloc();
406                 }
407         }
408         if (oldmask != NULL)
409                 numa_free_cpumask(oldmask);
410 #endif
411         return i;
412 }
413
414 /*
415  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
416  * page.
417  */
418 static int
419 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
420 {
421         int socket_id;
422         char *end, *nodestr;
423         unsigned i, hp_count = 0;
424         uint64_t virt_addr;
425         char buf[BUFSIZ];
426         char hugedir_str[PATH_MAX];
427         FILE *f;
428
429         f = fopen("/proc/self/numa_maps", "r");
430         if (f == NULL) {
431                 RTE_LOG(NOTICE, EAL, "NUMA support not available"
432                         " consider that all memory is in socket_id 0\n");
433                 return 0;
434         }
435
436         snprintf(hugedir_str, sizeof(hugedir_str),
437                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
438
439         /* parse numa map */
440         while (fgets(buf, sizeof(buf), f) != NULL) {
441
442                 /* ignore non huge page */
443                 if (strstr(buf, " huge ") == NULL &&
444                                 strstr(buf, hugedir_str) == NULL)
445                         continue;
446
447                 /* get zone addr */
448                 virt_addr = strtoull(buf, &end, 16);
449                 if (virt_addr == 0 || end == buf) {
450                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
451                         goto error;
452                 }
453
454                 /* get node id (socket id) */
455                 nodestr = strstr(buf, " N");
456                 if (nodestr == NULL) {
457                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
458                         goto error;
459                 }
460                 nodestr += 2;
461                 end = strstr(nodestr, "=");
462                 if (end == NULL) {
463                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
464                         goto error;
465                 }
466                 end[0] = '\0';
467                 end = NULL;
468
469                 socket_id = strtoul(nodestr, &end, 0);
470                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
471                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
472                         goto error;
473                 }
474
475                 /* if we find this page in our mappings, set socket_id */
476                 for (i = 0; i < hpi->num_pages[0]; i++) {
477                         void *va = (void *)(unsigned long)virt_addr;
478                         if (hugepg_tbl[i].orig_va == va) {
479                                 hugepg_tbl[i].socket_id = socket_id;
480                                 hp_count++;
481 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
482                                 RTE_LOG(DEBUG, EAL,
483                                         "Hugepage %s is on socket %d\n",
484                                         hugepg_tbl[i].filepath, socket_id);
485 #endif
486                         }
487                 }
488         }
489
490         if (hp_count < hpi->num_pages[0])
491                 goto error;
492
493         fclose(f);
494         return 0;
495
496 error:
497         fclose(f);
498         return -1;
499 }
500
501 static int
502 cmp_physaddr(const void *a, const void *b)
503 {
504 #ifndef RTE_ARCH_PPC_64
505         const struct hugepage_file *p1 = a;
506         const struct hugepage_file *p2 = b;
507 #else
508         /* PowerPC needs memory sorted in reverse order from x86 */
509         const struct hugepage_file *p1 = b;
510         const struct hugepage_file *p2 = a;
511 #endif
512         if (p1->physaddr < p2->physaddr)
513                 return -1;
514         else if (p1->physaddr > p2->physaddr)
515                 return 1;
516         else
517                 return 0;
518 }
519
520 /*
521  * Uses mmap to create a shared memory area for storage of data
522  * Used in this file to store the hugepage file map on disk
523  */
524 static void *
525 create_shared_memory(const char *filename, const size_t mem_size)
526 {
527         void *retval;
528         int fd;
529
530         /* if no shared files mode is used, create anonymous memory instead */
531         if (internal_config.no_shconf) {
532                 retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE,
533                                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
534                 if (retval == MAP_FAILED)
535                         return NULL;
536                 return retval;
537         }
538
539         fd = open(filename, O_CREAT | O_RDWR, 0666);
540         if (fd < 0)
541                 return NULL;
542         if (ftruncate(fd, mem_size) < 0) {
543                 close(fd);
544                 return NULL;
545         }
546         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
547         close(fd);
548         if (retval == MAP_FAILED)
549                 return NULL;
550         return retval;
551 }
552
553 /*
554  * this copies *active* hugepages from one hugepage table to another.
555  * destination is typically the shared memory.
556  */
557 static int
558 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
559                 const struct hugepage_file * src, int src_size)
560 {
561         int src_pos, dst_pos = 0;
562
563         for (src_pos = 0; src_pos < src_size; src_pos++) {
564                 if (src[src_pos].orig_va != NULL) {
565                         /* error on overflow attempt */
566                         if (dst_pos == dest_size)
567                                 return -1;
568                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
569                         dst_pos++;
570                 }
571         }
572         return 0;
573 }
574
575 static int
576 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
577                 unsigned num_hp_info)
578 {
579         unsigned socket, size;
580         int page, nrpages = 0;
581
582         /* get total number of hugepages */
583         for (size = 0; size < num_hp_info; size++)
584                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
585                         nrpages +=
586                         internal_config.hugepage_info[size].num_pages[socket];
587
588         for (page = 0; page < nrpages; page++) {
589                 struct hugepage_file *hp = &hugepg_tbl[page];
590
591                 if (hp->orig_va != NULL && unlink(hp->filepath)) {
592                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
593                                 __func__, hp->filepath, strerror(errno));
594                 }
595         }
596         return 0;
597 }
598
599 /*
600  * unmaps hugepages that are not going to be used. since we originally allocate
601  * ALL hugepages (not just those we need), additional unmapping needs to be done.
602  */
603 static int
604 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
605                 struct hugepage_info *hpi,
606                 unsigned num_hp_info)
607 {
608         unsigned socket, size;
609         int page, nrpages = 0;
610
611         /* get total number of hugepages */
612         for (size = 0; size < num_hp_info; size++)
613                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
614                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
615
616         for (size = 0; size < num_hp_info; size++) {
617                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
618                         unsigned pages_found = 0;
619
620                         /* traverse until we have unmapped all the unused pages */
621                         for (page = 0; page < nrpages; page++) {
622                                 struct hugepage_file *hp = &hugepg_tbl[page];
623
624                                 /* find a page that matches the criteria */
625                                 if ((hp->size == hpi[size].hugepage_sz) &&
626                                                 (hp->socket_id == (int) socket)) {
627
628                                         /* if we skipped enough pages, unmap the rest */
629                                         if (pages_found == hpi[size].num_pages[socket]) {
630                                                 uint64_t unmap_len;
631
632                                                 unmap_len = hp->size;
633
634                                                 /* get start addr and len of the remaining segment */
635                                                 munmap(hp->orig_va,
636                                                         (size_t)unmap_len);
637
638                                                 hp->orig_va = NULL;
639                                                 if (unlink(hp->filepath) == -1) {
640                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
641                                                                         __func__, hp->filepath, strerror(errno));
642                                                         return -1;
643                                                 }
644                                         } else {
645                                                 /* lock the page and skip */
646                                                 pages_found++;
647                                         }
648
649                                 } /* match page */
650                         } /* foreach page */
651                 } /* foreach socket */
652         } /* foreach pagesize */
653
654         return 0;
655 }
656
657 static int
658 remap_segment(struct hugepage_file *hugepages, int seg_start, int seg_end)
659 {
660         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
661         struct rte_memseg_list *msl;
662         struct rte_fbarray *arr;
663         int cur_page, seg_len;
664         unsigned int msl_idx;
665         int ms_idx;
666         uint64_t page_sz;
667         size_t memseg_len;
668         int socket_id;
669
670         page_sz = hugepages[seg_start].size;
671         socket_id = hugepages[seg_start].socket_id;
672         seg_len = seg_end - seg_start;
673
674         RTE_LOG(DEBUG, EAL, "Attempting to map %" PRIu64 "M on socket %i\n",
675                         (seg_len * page_sz) >> 20ULL, socket_id);
676
677         /* find free space in memseg lists */
678         for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
679                 bool empty;
680                 msl = &mcfg->memsegs[msl_idx];
681                 arr = &msl->memseg_arr;
682
683                 if (msl->page_sz != page_sz)
684                         continue;
685                 if (msl->socket_id != socket_id)
686                         continue;
687
688                 /* leave space for a hole if array is not empty */
689                 empty = arr->count == 0;
690                 ms_idx = rte_fbarray_find_next_n_free(arr, 0,
691                                 seg_len + (empty ? 0 : 1));
692
693                 /* memseg list is full? */
694                 if (ms_idx < 0)
695                         continue;
696
697                 /* leave some space between memsegs, they are not IOVA
698                  * contiguous, so they shouldn't be VA contiguous either.
699                  */
700                 if (!empty)
701                         ms_idx++;
702                 break;
703         }
704         if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
705                 RTE_LOG(ERR, EAL, "Could not find space for memseg. Please increase %s and/or %s in configuration.\n",
706                                 RTE_STR(CONFIG_RTE_MAX_MEMSEG_PER_TYPE),
707                                 RTE_STR(CONFIG_RTE_MAX_MEM_PER_TYPE));
708                 return -1;
709         }
710
711 #ifdef RTE_ARCH_PPC64
712         /* for PPC64 we go through the list backwards */
713         for (cur_page = seg_end - 1; cur_page >= seg_start;
714                         cur_page--, ms_idx++) {
715 #else
716         for (cur_page = seg_start; cur_page < seg_end; cur_page++, ms_idx++) {
717 #endif
718                 struct hugepage_file *hfile = &hugepages[cur_page];
719                 struct rte_memseg *ms = rte_fbarray_get(arr, ms_idx);
720                 void *addr;
721                 int fd;
722
723                 fd = open(hfile->filepath, O_RDWR);
724                 if (fd < 0) {
725                         RTE_LOG(ERR, EAL, "Could not open '%s': %s\n",
726                                         hfile->filepath, strerror(errno));
727                         return -1;
728                 }
729                 /* set shared lock on the file. */
730                 if (flock(fd, LOCK_SH) < 0) {
731                         RTE_LOG(DEBUG, EAL, "Could not lock '%s': %s\n",
732                                         hfile->filepath, strerror(errno));
733                         close(fd);
734                         return -1;
735                 }
736                 memseg_len = (size_t)page_sz;
737                 addr = RTE_PTR_ADD(msl->base_va, ms_idx * memseg_len);
738
739                 /* we know this address is already mmapped by memseg list, so
740                  * using MAP_FIXED here is safe
741                  */
742                 addr = mmap(addr, page_sz, PROT_READ | PROT_WRITE,
743                                 MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, 0);
744                 if (addr == MAP_FAILED) {
745                         RTE_LOG(ERR, EAL, "Couldn't remap '%s': %s\n",
746                                         hfile->filepath, strerror(errno));
747                         close(fd);
748                         return -1;
749                 }
750
751                 /* we have a new address, so unmap previous one */
752 #ifndef RTE_ARCH_64
753                 /* in 32-bit legacy mode, we have already unmapped the page */
754                 if (!internal_config.legacy_mem)
755                         munmap(hfile->orig_va, page_sz);
756 #else
757                 munmap(hfile->orig_va, page_sz);
758 #endif
759
760                 hfile->orig_va = NULL;
761                 hfile->final_va = addr;
762
763                 /* rewrite physical addresses in IOVA as VA mode */
764                 if (rte_eal_iova_mode() == RTE_IOVA_VA)
765                         hfile->physaddr = (uintptr_t)addr;
766
767                 /* set up memseg data */
768                 ms->addr = addr;
769                 ms->hugepage_sz = page_sz;
770                 ms->len = memseg_len;
771                 ms->iova = hfile->physaddr;
772                 ms->socket_id = hfile->socket_id;
773                 ms->nchannel = rte_memory_get_nchannel();
774                 ms->nrank = rte_memory_get_nrank();
775
776                 rte_fbarray_set_used(arr, ms_idx);
777
778                 /* store segment fd internally */
779                 if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
780                         RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n",
781                                 rte_strerror(rte_errno));
782         }
783         RTE_LOG(DEBUG, EAL, "Allocated %" PRIu64 "M on socket %i\n",
784                         (seg_len * page_sz) >> 20, socket_id);
785         return 0;
786 }
787
788 static uint64_t
789 get_mem_amount(uint64_t page_sz, uint64_t max_mem)
790 {
791         uint64_t area_sz, max_pages;
792
793         /* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
794         max_pages = RTE_MAX_MEMSEG_PER_LIST;
795         max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
796
797         area_sz = RTE_MIN(page_sz * max_pages, max_mem);
798
799         /* make sure the list isn't smaller than the page size */
800         area_sz = RTE_MAX(area_sz, page_sz);
801
802         return RTE_ALIGN(area_sz, page_sz);
803 }
804
805 static int
806 free_memseg_list(struct rte_memseg_list *msl)
807 {
808         if (rte_fbarray_destroy(&msl->memseg_arr)) {
809                 RTE_LOG(ERR, EAL, "Cannot destroy memseg list\n");
810                 return -1;
811         }
812         memset(msl, 0, sizeof(*msl));
813         return 0;
814 }
815
816 #define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
817 static int
818 alloc_memseg_list(struct rte_memseg_list *msl, uint64_t page_sz,
819                 int n_segs, int socket_id, int type_msl_idx)
820 {
821         char name[RTE_FBARRAY_NAME_LEN];
822
823         snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id,
824                  type_msl_idx);
825         if (rte_fbarray_init(&msl->memseg_arr, name, n_segs,
826                         sizeof(struct rte_memseg))) {
827                 RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n",
828                         rte_strerror(rte_errno));
829                 return -1;
830         }
831
832         msl->page_sz = page_sz;
833         msl->socket_id = socket_id;
834         msl->base_va = NULL;
835
836         RTE_LOG(DEBUG, EAL, "Memseg list allocated: 0x%zxkB at socket %i\n",
837                         (size_t)page_sz >> 10, socket_id);
838
839         return 0;
840 }
841
842 static int
843 alloc_va_space(struct rte_memseg_list *msl)
844 {
845         uint64_t page_sz;
846         size_t mem_sz;
847         void *addr;
848         int flags = 0;
849
850 #ifdef RTE_ARCH_PPC_64
851         flags |= MAP_HUGETLB;
852 #endif
853
854         page_sz = msl->page_sz;
855         mem_sz = page_sz * msl->memseg_arr.len;
856
857         addr = eal_get_virtual_area(msl->base_va, &mem_sz, page_sz, 0, flags);
858         if (addr == NULL) {
859                 if (rte_errno == EADDRNOTAVAIL)
860                         RTE_LOG(ERR, EAL, "Could not mmap %llu bytes at [%p] - please use '--base-virtaddr' option\n",
861                                 (unsigned long long)mem_sz, msl->base_va);
862                 else
863                         RTE_LOG(ERR, EAL, "Cannot reserve memory\n");
864                 return -1;
865         }
866         msl->base_va = addr;
867         msl->len = mem_sz;
868
869         return 0;
870 }
871
872 /*
873  * Our VA space is not preallocated yet, so preallocate it here. We need to know
874  * how many segments there are in order to map all pages into one address space,
875  * and leave appropriate holes between segments so that rte_malloc does not
876  * concatenate them into one big segment.
877  *
878  * we also need to unmap original pages to free up address space.
879  */
880 static int __rte_unused
881 prealloc_segments(struct hugepage_file *hugepages, int n_pages)
882 {
883         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
884         int cur_page, seg_start_page, end_seg, new_memseg;
885         unsigned int hpi_idx, socket, i;
886         int n_contig_segs, n_segs;
887         int msl_idx;
888
889         /* before we preallocate segments, we need to free up our VA space.
890          * we're not removing files, and we already have information about
891          * PA-contiguousness, so it is safe to unmap everything.
892          */
893         for (cur_page = 0; cur_page < n_pages; cur_page++) {
894                 struct hugepage_file *hpi = &hugepages[cur_page];
895                 munmap(hpi->orig_va, hpi->size);
896                 hpi->orig_va = NULL;
897         }
898
899         /* we cannot know how many page sizes and sockets we have discovered, so
900          * loop over all of them
901          */
902         for (hpi_idx = 0; hpi_idx < internal_config.num_hugepage_sizes;
903                         hpi_idx++) {
904                 uint64_t page_sz =
905                         internal_config.hugepage_info[hpi_idx].hugepage_sz;
906
907                 for (i = 0; i < rte_socket_count(); i++) {
908                         struct rte_memseg_list *msl;
909
910                         socket = rte_socket_id_by_idx(i);
911                         n_contig_segs = 0;
912                         n_segs = 0;
913                         seg_start_page = -1;
914
915                         for (cur_page = 0; cur_page < n_pages; cur_page++) {
916                                 struct hugepage_file *prev, *cur;
917                                 int prev_seg_start_page = -1;
918
919                                 cur = &hugepages[cur_page];
920                                 prev = cur_page == 0 ? NULL :
921                                                 &hugepages[cur_page - 1];
922
923                                 new_memseg = 0;
924                                 end_seg = 0;
925
926                                 if (cur->size == 0)
927                                         end_seg = 1;
928                                 else if (cur->socket_id != (int) socket)
929                                         end_seg = 1;
930                                 else if (cur->size != page_sz)
931                                         end_seg = 1;
932                                 else if (cur_page == 0)
933                                         new_memseg = 1;
934 #ifdef RTE_ARCH_PPC_64
935                                 /* On PPC64 architecture, the mmap always start
936                                  * from higher address to lower address. Here,
937                                  * physical addresses are in descending order.
938                                  */
939                                 else if ((prev->physaddr - cur->physaddr) !=
940                                                 cur->size)
941                                         new_memseg = 1;
942 #else
943                                 else if ((cur->physaddr - prev->physaddr) !=
944                                                 cur->size)
945                                         new_memseg = 1;
946 #endif
947                                 if (new_memseg) {
948                                         /* if we're already inside a segment,
949                                          * new segment means end of current one
950                                          */
951                                         if (seg_start_page != -1) {
952                                                 end_seg = 1;
953                                                 prev_seg_start_page =
954                                                                 seg_start_page;
955                                         }
956                                         seg_start_page = cur_page;
957                                 }
958
959                                 if (end_seg) {
960                                         if (prev_seg_start_page != -1) {
961                                                 /* we've found a new segment */
962                                                 n_contig_segs++;
963                                                 n_segs += cur_page -
964                                                         prev_seg_start_page;
965                                         } else if (seg_start_page != -1) {
966                                                 /* we didn't find new segment,
967                                                  * but did end current one
968                                                  */
969                                                 n_contig_segs++;
970                                                 n_segs += cur_page -
971                                                                 seg_start_page;
972                                                 seg_start_page = -1;
973                                                 continue;
974                                         } else {
975                                                 /* we're skipping this page */
976                                                 continue;
977                                         }
978                                 }
979                                 /* segment continues */
980                         }
981                         /* check if we missed last segment */
982                         if (seg_start_page != -1) {
983                                 n_contig_segs++;
984                                 n_segs += cur_page - seg_start_page;
985                         }
986
987                         /* if no segments were found, do not preallocate */
988                         if (n_segs == 0)
989                                 continue;
990
991                         /* we now have total number of pages that we will
992                          * allocate for this segment list. add separator pages
993                          * to the total count, and preallocate VA space.
994                          */
995                         n_segs += n_contig_segs - 1;
996
997                         /* now, preallocate VA space for these segments */
998
999                         /* first, find suitable memseg list for this */
1000                         for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS;
1001                                         msl_idx++) {
1002                                 msl = &mcfg->memsegs[msl_idx];
1003
1004                                 if (msl->base_va != NULL)
1005                                         continue;
1006                                 break;
1007                         }
1008                         if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
1009                                 RTE_LOG(ERR, EAL, "Not enough space in memseg lists, please increase %s\n",
1010                                         RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
1011                                 return -1;
1012                         }
1013
1014                         /* now, allocate fbarray itself */
1015                         if (alloc_memseg_list(msl, page_sz, n_segs, socket,
1016                                                 msl_idx) < 0)
1017                                 return -1;
1018
1019                         /* finally, allocate VA space */
1020                         if (alloc_va_space(msl) < 0)
1021                                 return -1;
1022                 }
1023         }
1024         return 0;
1025 }
1026
1027 /*
1028  * We cannot reallocate memseg lists on the fly because PPC64 stores pages
1029  * backwards, therefore we have to process the entire memseg first before
1030  * remapping it into memseg list VA space.
1031  */
1032 static int
1033 remap_needed_hugepages(struct hugepage_file *hugepages, int n_pages)
1034 {
1035         int cur_page, seg_start_page, new_memseg, ret;
1036
1037         seg_start_page = 0;
1038         for (cur_page = 0; cur_page < n_pages; cur_page++) {
1039                 struct hugepage_file *prev, *cur;
1040
1041                 new_memseg = 0;
1042
1043                 cur = &hugepages[cur_page];
1044                 prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1];
1045
1046                 /* if size is zero, no more pages left */
1047                 if (cur->size == 0)
1048                         break;
1049
1050                 if (cur_page == 0)
1051                         new_memseg = 1;
1052                 else if (cur->socket_id != prev->socket_id)
1053                         new_memseg = 1;
1054                 else if (cur->size != prev->size)
1055                         new_memseg = 1;
1056 #ifdef RTE_ARCH_PPC_64
1057                 /* On PPC64 architecture, the mmap always start from higher
1058                  * address to lower address. Here, physical addresses are in
1059                  * descending order.
1060                  */
1061                 else if ((prev->physaddr - cur->physaddr) != cur->size)
1062                         new_memseg = 1;
1063 #else
1064                 else if ((cur->physaddr - prev->physaddr) != cur->size)
1065                         new_memseg = 1;
1066 #endif
1067
1068                 if (new_memseg) {
1069                         /* if this isn't the first time, remap segment */
1070                         if (cur_page != 0) {
1071                                 ret = remap_segment(hugepages, seg_start_page,
1072                                                 cur_page);
1073                                 if (ret != 0)
1074                                         return -1;
1075                         }
1076                         /* remember where we started */
1077                         seg_start_page = cur_page;
1078                 }
1079                 /* continuation of previous memseg */
1080         }
1081         /* we were stopped, but we didn't remap the last segment, do it now */
1082         if (cur_page != 0) {
1083                 ret = remap_segment(hugepages, seg_start_page,
1084                                 cur_page);
1085                 if (ret != 0)
1086                         return -1;
1087         }
1088         return 0;
1089 }
1090
1091 static inline uint64_t
1092 get_socket_mem_size(int socket)
1093 {
1094         uint64_t size = 0;
1095         unsigned i;
1096
1097         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
1098                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
1099                 size += hpi->hugepage_sz * hpi->num_pages[socket];
1100         }
1101
1102         return size;
1103 }
1104
1105 /*
1106  * This function is a NUMA-aware equivalent of calc_num_pages.
1107  * It takes in the list of hugepage sizes and the
1108  * number of pages thereof, and calculates the best number of
1109  * pages of each size to fulfill the request for <memory> ram
1110  */
1111 static int
1112 calc_num_pages_per_socket(uint64_t * memory,
1113                 struct hugepage_info *hp_info,
1114                 struct hugepage_info *hp_used,
1115                 unsigned num_hp_info)
1116 {
1117         unsigned socket, j, i = 0;
1118         unsigned requested, available;
1119         int total_num_pages = 0;
1120         uint64_t remaining_mem, cur_mem;
1121         uint64_t total_mem = internal_config.memory;
1122
1123         if (num_hp_info == 0)
1124                 return -1;
1125
1126         /* if specific memory amounts per socket weren't requested */
1127         if (internal_config.force_sockets == 0) {
1128                 size_t total_size;
1129 #ifdef RTE_ARCH_64
1130                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
1131                 size_t default_size;
1132                 unsigned lcore_id;
1133
1134                 /* Compute number of cores per socket */
1135                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
1136                 RTE_LCORE_FOREACH(lcore_id) {
1137                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
1138                 }
1139
1140                 /*
1141                  * Automatically spread requested memory amongst detected sockets according
1142                  * to number of cores from cpu mask present on each socket
1143                  */
1144                 total_size = internal_config.memory;
1145                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
1146
1147                         /* Set memory amount per socket */
1148                         default_size = (internal_config.memory * cpu_per_socket[socket])
1149                                         / rte_lcore_count();
1150
1151                         /* Limit to maximum available memory on socket */
1152                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
1153
1154                         /* Update sizes */
1155                         memory[socket] = default_size;
1156                         total_size -= default_size;
1157                 }
1158
1159                 /*
1160                  * If some memory is remaining, try to allocate it by getting all
1161                  * available memory from sockets, one after the other
1162                  */
1163                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
1164                         /* take whatever is available */
1165                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
1166                                                total_size);
1167
1168                         /* Update sizes */
1169                         memory[socket] += default_size;
1170                         total_size -= default_size;
1171                 }
1172 #else
1173                 /* in 32-bit mode, allocate all of the memory only on master
1174                  * lcore socket
1175                  */
1176                 total_size = internal_config.memory;
1177                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0;
1178                                 socket++) {
1179                         struct rte_config *cfg = rte_eal_get_configuration();
1180                         unsigned int master_lcore_socket;
1181
1182                         master_lcore_socket =
1183                                 rte_lcore_to_socket_id(cfg->master_lcore);
1184
1185                         if (master_lcore_socket != socket)
1186                                 continue;
1187
1188                         /* Update sizes */
1189                         memory[socket] = total_size;
1190                         break;
1191                 }
1192 #endif
1193         }
1194
1195         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
1196                 /* skips if the memory on specific socket wasn't requested */
1197                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
1198                         strlcpy(hp_used[i].hugedir, hp_info[i].hugedir,
1199                                 sizeof(hp_used[i].hugedir));
1200                         hp_used[i].num_pages[socket] = RTE_MIN(
1201                                         memory[socket] / hp_info[i].hugepage_sz,
1202                                         hp_info[i].num_pages[socket]);
1203
1204                         cur_mem = hp_used[i].num_pages[socket] *
1205                                         hp_used[i].hugepage_sz;
1206
1207                         memory[socket] -= cur_mem;
1208                         total_mem -= cur_mem;
1209
1210                         total_num_pages += hp_used[i].num_pages[socket];
1211
1212                         /* check if we have met all memory requests */
1213                         if (memory[socket] == 0)
1214                                 break;
1215
1216                         /* check if we have any more pages left at this size, if so
1217                          * move on to next size */
1218                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
1219                                 continue;
1220                         /* At this point we know that there are more pages available that are
1221                          * bigger than the memory we want, so lets see if we can get enough
1222                          * from other page sizes.
1223                          */
1224                         remaining_mem = 0;
1225                         for (j = i+1; j < num_hp_info; j++)
1226                                 remaining_mem += hp_info[j].hugepage_sz *
1227                                 hp_info[j].num_pages[socket];
1228
1229                         /* is there enough other memory, if not allocate another page and quit */
1230                         if (remaining_mem < memory[socket]){
1231                                 cur_mem = RTE_MIN(memory[socket],
1232                                                 hp_info[i].hugepage_sz);
1233                                 memory[socket] -= cur_mem;
1234                                 total_mem -= cur_mem;
1235                                 hp_used[i].num_pages[socket]++;
1236                                 total_num_pages++;
1237                                 break; /* we are done with this socket*/
1238                         }
1239                 }
1240                 /* if we didn't satisfy all memory requirements per socket */
1241                 if (memory[socket] > 0 &&
1242                                 internal_config.socket_mem[socket] != 0) {
1243                         /* to prevent icc errors */
1244                         requested = (unsigned) (internal_config.socket_mem[socket] /
1245                                         0x100000);
1246                         available = requested -
1247                                         ((unsigned) (memory[socket] / 0x100000));
1248                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
1249                                         "Requested: %uMB, available: %uMB\n", socket,
1250                                         requested, available);
1251                         return -1;
1252                 }
1253         }
1254
1255         /* if we didn't satisfy total memory requirements */
1256         if (total_mem > 0) {
1257                 requested = (unsigned) (internal_config.memory / 0x100000);
1258                 available = requested - (unsigned) (total_mem / 0x100000);
1259                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
1260                                 " available: %uMB\n", requested, available);
1261                 return -1;
1262         }
1263         return total_num_pages;
1264 }
1265
1266 static inline size_t
1267 eal_get_hugepage_mem_size(void)
1268 {
1269         uint64_t size = 0;
1270         unsigned i, j;
1271
1272         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
1273                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
1274                 if (strnlen(hpi->hugedir, sizeof(hpi->hugedir)) != 0) {
1275                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1276                                 size += hpi->hugepage_sz * hpi->num_pages[j];
1277                         }
1278                 }
1279         }
1280
1281         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
1282 }
1283
1284 static struct sigaction huge_action_old;
1285 static int huge_need_recover;
1286
1287 static void
1288 huge_register_sigbus(void)
1289 {
1290         sigset_t mask;
1291         struct sigaction action;
1292
1293         sigemptyset(&mask);
1294         sigaddset(&mask, SIGBUS);
1295         action.sa_flags = 0;
1296         action.sa_mask = mask;
1297         action.sa_handler = huge_sigbus_handler;
1298
1299         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
1300 }
1301
1302 static void
1303 huge_recover_sigbus(void)
1304 {
1305         if (huge_need_recover) {
1306                 sigaction(SIGBUS, &huge_action_old, NULL);
1307                 huge_need_recover = 0;
1308         }
1309 }
1310
1311 /*
1312  * Prepare physical memory mapping: fill configuration structure with
1313  * these infos, return 0 on success.
1314  *  1. map N huge pages in separate files in hugetlbfs
1315  *  2. find associated physical addr
1316  *  3. find associated NUMA socket ID
1317  *  4. sort all huge pages by physical address
1318  *  5. remap these N huge pages in the correct order
1319  *  6. unmap the first mapping
1320  *  7. fill memsegs in configuration with contiguous zones
1321  */
1322 static int
1323 eal_legacy_hugepage_init(void)
1324 {
1325         struct rte_mem_config *mcfg;
1326         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
1327         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1328         struct rte_fbarray *arr;
1329         struct rte_memseg *ms;
1330
1331         uint64_t memory[RTE_MAX_NUMA_NODES];
1332
1333         unsigned hp_offset;
1334         int i, j;
1335         int nr_hugefiles, nr_hugepages = 0;
1336         void *addr;
1337
1338         test_phys_addrs_available();
1339
1340         memset(used_hp, 0, sizeof(used_hp));
1341
1342         /* get pointer to global configuration */
1343         mcfg = rte_eal_get_configuration()->mem_config;
1344
1345         /* hugetlbfs can be disabled */
1346         if (internal_config.no_hugetlbfs) {
1347                 struct rte_memseg_list *msl;
1348                 uint64_t page_sz;
1349                 int n_segs, cur_seg;
1350
1351                 /* nohuge mode is legacy mode */
1352                 internal_config.legacy_mem = 1;
1353
1354                 /* create a memseg list */
1355                 msl = &mcfg->memsegs[0];
1356
1357                 page_sz = RTE_PGSIZE_4K;
1358                 n_segs = internal_config.memory / page_sz;
1359
1360                 if (rte_fbarray_init(&msl->memseg_arr, "nohugemem", n_segs,
1361                                         sizeof(struct rte_memseg))) {
1362                         RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
1363                         return -1;
1364                 }
1365
1366                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
1367                                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1368                 if (addr == MAP_FAILED) {
1369                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1370                                         strerror(errno));
1371                         return -1;
1372                 }
1373                 msl->base_va = addr;
1374                 msl->page_sz = page_sz;
1375                 msl->socket_id = 0;
1376                 msl->len = internal_config.memory;
1377
1378                 /* populate memsegs. each memseg is one page long */
1379                 for (cur_seg = 0; cur_seg < n_segs; cur_seg++) {
1380                         arr = &msl->memseg_arr;
1381
1382                         ms = rte_fbarray_get(arr, cur_seg);
1383                         if (rte_eal_iova_mode() == RTE_IOVA_VA)
1384                                 ms->iova = (uintptr_t)addr;
1385                         else
1386                                 ms->iova = RTE_BAD_IOVA;
1387                         ms->addr = addr;
1388                         ms->hugepage_sz = page_sz;
1389                         ms->socket_id = 0;
1390                         ms->len = page_sz;
1391
1392                         rte_fbarray_set_used(arr, cur_seg);
1393
1394                         addr = RTE_PTR_ADD(addr, (size_t)page_sz);
1395                 }
1396                 return 0;
1397         }
1398
1399         /* calculate total number of hugepages available. at this point we haven't
1400          * yet started sorting them so they all are on socket 0 */
1401         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1402                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1403                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1404
1405                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1406         }
1407
1408         /*
1409          * allocate a memory area for hugepage table.
1410          * this isn't shared memory yet. due to the fact that we need some
1411          * processing done on these pages, shared memory will be created
1412          * at a later stage.
1413          */
1414         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1415         if (tmp_hp == NULL)
1416                 goto fail;
1417
1418         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1419
1420         hp_offset = 0; /* where we start the current page size entries */
1421
1422         huge_register_sigbus();
1423
1424         /* make a copy of socket_mem, needed for balanced allocation. */
1425         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1426                 memory[i] = internal_config.socket_mem[i];
1427
1428         /* map all hugepages and sort them */
1429         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1430                 unsigned pages_old, pages_new;
1431                 struct hugepage_info *hpi;
1432
1433                 /*
1434                  * we don't yet mark hugepages as used at this stage, so
1435                  * we just map all hugepages available to the system
1436                  * all hugepages are still located on socket 0
1437                  */
1438                 hpi = &internal_config.hugepage_info[i];
1439
1440                 if (hpi->num_pages[0] == 0)
1441                         continue;
1442
1443                 /* map all hugepages available */
1444                 pages_old = hpi->num_pages[0];
1445                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, memory);
1446                 if (pages_new < pages_old) {
1447                         RTE_LOG(DEBUG, EAL,
1448                                 "%d not %d hugepages of size %u MB allocated\n",
1449                                 pages_new, pages_old,
1450                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1451
1452                         int pages = pages_old - pages_new;
1453
1454                         nr_hugepages -= pages;
1455                         hpi->num_pages[0] = pages_new;
1456                         if (pages_new == 0)
1457                                 continue;
1458                 }
1459
1460                 if (phys_addrs_available &&
1461                                 rte_eal_iova_mode() != RTE_IOVA_VA) {
1462                         /* find physical addresses for each hugepage */
1463                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1464                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1465                                         "for %u MB pages\n",
1466                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1467                                 goto fail;
1468                         }
1469                 } else {
1470                         /* set physical addresses for each hugepage */
1471                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1472                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1473                                         "for %u MB pages\n",
1474                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1475                                 goto fail;
1476                         }
1477                 }
1478
1479                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1480                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1481                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1482                         goto fail;
1483                 }
1484
1485                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1486                       sizeof(struct hugepage_file), cmp_physaddr);
1487
1488                 /* we have processed a num of hugepages of this size, so inc offset */
1489                 hp_offset += hpi->num_pages[0];
1490         }
1491
1492         huge_recover_sigbus();
1493
1494         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1495                 internal_config.memory = eal_get_hugepage_mem_size();
1496
1497         nr_hugefiles = nr_hugepages;
1498
1499
1500         /* clean out the numbers of pages */
1501         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1502                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1503                         internal_config.hugepage_info[i].num_pages[j] = 0;
1504
1505         /* get hugepages for each socket */
1506         for (i = 0; i < nr_hugefiles; i++) {
1507                 int socket = tmp_hp[i].socket_id;
1508
1509                 /* find a hugepage info with right size and increment num_pages */
1510                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1511                                 (int)internal_config.num_hugepage_sizes);
1512                 for (j = 0; j < nb_hpsizes; j++) {
1513                         if (tmp_hp[i].size ==
1514                                         internal_config.hugepage_info[j].hugepage_sz) {
1515                                 internal_config.hugepage_info[j].num_pages[socket]++;
1516                         }
1517                 }
1518         }
1519
1520         /* make a copy of socket_mem, needed for number of pages calculation */
1521         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1522                 memory[i] = internal_config.socket_mem[i];
1523
1524         /* calculate final number of pages */
1525         nr_hugepages = calc_num_pages_per_socket(memory,
1526                         internal_config.hugepage_info, used_hp,
1527                         internal_config.num_hugepage_sizes);
1528
1529         /* error if not enough memory available */
1530         if (nr_hugepages < 0)
1531                 goto fail;
1532
1533         /* reporting in! */
1534         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1535                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1536                         if (used_hp[i].num_pages[j] > 0) {
1537                                 RTE_LOG(DEBUG, EAL,
1538                                         "Requesting %u pages of size %uMB"
1539                                         " from socket %i\n",
1540                                         used_hp[i].num_pages[j],
1541                                         (unsigned)
1542                                         (used_hp[i].hugepage_sz / 0x100000),
1543                                         j);
1544                         }
1545                 }
1546         }
1547
1548         /* create shared memory */
1549         hugepage = create_shared_memory(eal_hugepage_data_path(),
1550                         nr_hugefiles * sizeof(struct hugepage_file));
1551
1552         if (hugepage == NULL) {
1553                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1554                 goto fail;
1555         }
1556         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1557
1558         /*
1559          * unmap pages that we won't need (looks at used_hp).
1560          * also, sets final_va to NULL on pages that were unmapped.
1561          */
1562         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1563                         internal_config.num_hugepage_sizes) < 0) {
1564                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1565                 goto fail;
1566         }
1567
1568         /*
1569          * copy stuff from malloc'd hugepage* to the actual shared memory.
1570          * this procedure only copies those hugepages that have orig_va
1571          * not NULL. has overflow protection.
1572          */
1573         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1574                         tmp_hp, nr_hugefiles) < 0) {
1575                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1576                 goto fail;
1577         }
1578
1579 #ifndef RTE_ARCH_64
1580         /* for legacy 32-bit mode, we did not preallocate VA space, so do it */
1581         if (internal_config.legacy_mem &&
1582                         prealloc_segments(hugepage, nr_hugefiles)) {
1583                 RTE_LOG(ERR, EAL, "Could not preallocate VA space for hugepages\n");
1584                 goto fail;
1585         }
1586 #endif
1587
1588         /* remap all pages we do need into memseg list VA space, so that those
1589          * pages become first-class citizens in DPDK memory subsystem
1590          */
1591         if (remap_needed_hugepages(hugepage, nr_hugefiles)) {
1592                 RTE_LOG(ERR, EAL, "Couldn't remap hugepage files into memseg lists\n");
1593                 goto fail;
1594         }
1595
1596         /* free the hugepage backing files */
1597         if (internal_config.hugepage_unlink &&
1598                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1599                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1600                 goto fail;
1601         }
1602
1603         /* free the temporary hugepage table */
1604         free(tmp_hp);
1605         tmp_hp = NULL;
1606
1607         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1608
1609         /* we're not going to allocate more pages, so release VA space for
1610          * unused memseg lists
1611          */
1612         for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
1613                 struct rte_memseg_list *msl = &mcfg->memsegs[i];
1614                 size_t mem_sz;
1615
1616                 /* skip inactive lists */
1617                 if (msl->base_va == NULL)
1618                         continue;
1619                 /* skip lists where there is at least one page allocated */
1620                 if (msl->memseg_arr.count > 0)
1621                         continue;
1622                 /* this is an unused list, deallocate it */
1623                 mem_sz = msl->len;
1624                 munmap(msl->base_va, mem_sz);
1625                 msl->base_va = NULL;
1626
1627                 /* destroy backing fbarray */
1628                 rte_fbarray_destroy(&msl->memseg_arr);
1629         }
1630
1631         return 0;
1632
1633 fail:
1634         huge_recover_sigbus();
1635         free(tmp_hp);
1636         if (hugepage != NULL)
1637                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1638
1639         return -1;
1640 }
1641
1642 static int __rte_unused
1643 hugepage_count_walk(const struct rte_memseg_list *msl, void *arg)
1644 {
1645         struct hugepage_info *hpi = arg;
1646
1647         if (msl->page_sz != hpi->hugepage_sz)
1648                 return 0;
1649
1650         hpi->num_pages[msl->socket_id] += msl->memseg_arr.len;
1651         return 0;
1652 }
1653
1654 static int
1655 limits_callback(int socket_id, size_t cur_limit, size_t new_len)
1656 {
1657         RTE_SET_USED(socket_id);
1658         RTE_SET_USED(cur_limit);
1659         RTE_SET_USED(new_len);
1660         return -1;
1661 }
1662
1663 static int
1664 eal_hugepage_init(void)
1665 {
1666         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1667         uint64_t memory[RTE_MAX_NUMA_NODES];
1668         int hp_sz_idx, socket_id;
1669
1670         test_phys_addrs_available();
1671
1672         memset(used_hp, 0, sizeof(used_hp));
1673
1674         for (hp_sz_idx = 0;
1675                         hp_sz_idx < (int) internal_config.num_hugepage_sizes;
1676                         hp_sz_idx++) {
1677 #ifndef RTE_ARCH_64
1678                 struct hugepage_info dummy;
1679                 unsigned int i;
1680 #endif
1681                 /* also initialize used_hp hugepage sizes in used_hp */
1682                 struct hugepage_info *hpi;
1683                 hpi = &internal_config.hugepage_info[hp_sz_idx];
1684                 used_hp[hp_sz_idx].hugepage_sz = hpi->hugepage_sz;
1685
1686 #ifndef RTE_ARCH_64
1687                 /* for 32-bit, limit number of pages on socket to whatever we've
1688                  * preallocated, as we cannot allocate more.
1689                  */
1690                 memset(&dummy, 0, sizeof(dummy));
1691                 dummy.hugepage_sz = hpi->hugepage_sz;
1692                 if (rte_memseg_list_walk(hugepage_count_walk, &dummy) < 0)
1693                         return -1;
1694
1695                 for (i = 0; i < RTE_DIM(dummy.num_pages); i++) {
1696                         hpi->num_pages[i] = RTE_MIN(hpi->num_pages[i],
1697                                         dummy.num_pages[i]);
1698                 }
1699 #endif
1700         }
1701
1702         /* make a copy of socket_mem, needed for balanced allocation. */
1703         for (hp_sz_idx = 0; hp_sz_idx < RTE_MAX_NUMA_NODES; hp_sz_idx++)
1704                 memory[hp_sz_idx] = internal_config.socket_mem[hp_sz_idx];
1705
1706         /* calculate final number of pages */
1707         if (calc_num_pages_per_socket(memory,
1708                         internal_config.hugepage_info, used_hp,
1709                         internal_config.num_hugepage_sizes) < 0)
1710                 return -1;
1711
1712         for (hp_sz_idx = 0;
1713                         hp_sz_idx < (int)internal_config.num_hugepage_sizes;
1714                         hp_sz_idx++) {
1715                 for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES;
1716                                 socket_id++) {
1717                         struct rte_memseg **pages;
1718                         struct hugepage_info *hpi = &used_hp[hp_sz_idx];
1719                         unsigned int num_pages = hpi->num_pages[socket_id];
1720                         int num_pages_alloc, i;
1721
1722                         if (num_pages == 0)
1723                                 continue;
1724
1725                         pages = malloc(sizeof(*pages) * num_pages);
1726
1727                         RTE_LOG(DEBUG, EAL, "Allocating %u pages of size %" PRIu64 "M on socket %i\n",
1728                                 num_pages, hpi->hugepage_sz >> 20, socket_id);
1729
1730                         num_pages_alloc = eal_memalloc_alloc_seg_bulk(pages,
1731                                         num_pages, hpi->hugepage_sz,
1732                                         socket_id, true);
1733                         if (num_pages_alloc < 0) {
1734                                 free(pages);
1735                                 return -1;
1736                         }
1737
1738                         /* mark preallocated pages as unfreeable */
1739                         for (i = 0; i < num_pages_alloc; i++) {
1740                                 struct rte_memseg *ms = pages[i];
1741                                 ms->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
1742                         }
1743                         free(pages);
1744                 }
1745         }
1746         /* if socket limits were specified, set them */
1747         if (internal_config.force_socket_limits) {
1748                 unsigned int i;
1749                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
1750                         uint64_t limit = internal_config.socket_limit[i];
1751                         if (limit == 0)
1752                                 continue;
1753                         if (rte_mem_alloc_validator_register("socket-limit",
1754                                         limits_callback, i, limit))
1755                                 RTE_LOG(ERR, EAL, "Failed to register socket limits validator callback\n");
1756                 }
1757         }
1758         return 0;
1759 }
1760
1761 /*
1762  * uses fstat to report the size of a file on disk
1763  */
1764 static off_t
1765 getFileSize(int fd)
1766 {
1767         struct stat st;
1768         if (fstat(fd, &st) < 0)
1769                 return 0;
1770         return st.st_size;
1771 }
1772
1773 /*
1774  * This creates the memory mappings in the secondary process to match that of
1775  * the server process. It goes through each memory segment in the DPDK runtime
1776  * configuration and finds the hugepages which form that segment, mapping them
1777  * in order to form a contiguous block in the virtual memory space
1778  */
1779 static int
1780 eal_legacy_hugepage_attach(void)
1781 {
1782         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1783         struct hugepage_file *hp = NULL;
1784         unsigned int num_hp = 0;
1785         unsigned int i = 0;
1786         unsigned int cur_seg;
1787         off_t size = 0;
1788         int fd, fd_hugepage = -1;
1789
1790         if (aslr_enabled() > 0) {
1791                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1792                                 "(ASLR) is enabled in the kernel.\n");
1793                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1794                                 "into secondary processes\n");
1795         }
1796
1797         test_phys_addrs_available();
1798
1799         fd_hugepage = open(eal_hugepage_data_path(), O_RDONLY);
1800         if (fd_hugepage < 0) {
1801                 RTE_LOG(ERR, EAL, "Could not open %s\n",
1802                                 eal_hugepage_data_path());
1803                 goto error;
1804         }
1805
1806         size = getFileSize(fd_hugepage);
1807         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1808         if (hp == MAP_FAILED) {
1809                 RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1810                                 eal_hugepage_data_path());
1811                 goto error;
1812         }
1813
1814         num_hp = size / sizeof(struct hugepage_file);
1815         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1816
1817         /* map all segments into memory to make sure we get the addrs. the
1818          * segments themselves are already in memseg list (which is shared and
1819          * has its VA space already preallocated), so we just need to map
1820          * everything into correct addresses.
1821          */
1822         for (i = 0; i < num_hp; i++) {
1823                 struct hugepage_file *hf = &hp[i];
1824                 size_t map_sz = hf->size;
1825                 void *map_addr = hf->final_va;
1826                 int msl_idx, ms_idx;
1827                 struct rte_memseg_list *msl;
1828                 struct rte_memseg *ms;
1829
1830                 /* if size is zero, no more pages left */
1831                 if (map_sz == 0)
1832                         break;
1833
1834                 fd = open(hf->filepath, O_RDWR);
1835                 if (fd < 0) {
1836                         RTE_LOG(ERR, EAL, "Could not open %s: %s\n",
1837                                 hf->filepath, strerror(errno));
1838                         goto error;
1839                 }
1840
1841                 map_addr = mmap(map_addr, map_sz, PROT_READ | PROT_WRITE,
1842                                 MAP_SHARED | MAP_FIXED, fd, 0);
1843                 if (map_addr == MAP_FAILED) {
1844                         RTE_LOG(ERR, EAL, "Could not map %s: %s\n",
1845                                 hf->filepath, strerror(errno));
1846                         goto fd_error;
1847                 }
1848
1849                 /* set shared lock on the file. */
1850                 if (flock(fd, LOCK_SH) < 0) {
1851                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed: %s\n",
1852                                 __func__, strerror(errno));
1853                         goto fd_error;
1854                 }
1855
1856                 /* find segment data */
1857                 msl = rte_mem_virt2memseg_list(map_addr);
1858                 if (msl == NULL) {
1859                         RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg list\n",
1860                                 __func__);
1861                         goto fd_error;
1862                 }
1863                 ms = rte_mem_virt2memseg(map_addr, msl);
1864                 if (ms == NULL) {
1865                         RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg\n",
1866                                 __func__);
1867                         goto fd_error;
1868                 }
1869
1870                 msl_idx = msl - mcfg->memsegs;
1871                 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
1872                 if (ms_idx < 0) {
1873                         RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg idx\n",
1874                                 __func__);
1875                         goto fd_error;
1876                 }
1877
1878                 /* store segment fd internally */
1879                 if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
1880                         RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n",
1881                                 rte_strerror(rte_errno));
1882         }
1883         /* unmap the hugepage config file, since we are done using it */
1884         munmap(hp, size);
1885         close(fd_hugepage);
1886         return 0;
1887
1888 fd_error:
1889         close(fd);
1890 error:
1891         /* map all segments into memory to make sure we get the addrs */
1892         cur_seg = 0;
1893         for (cur_seg = 0; cur_seg < i; cur_seg++) {
1894                 struct hugepage_file *hf = &hp[i];
1895                 size_t map_sz = hf->size;
1896                 void *map_addr = hf->final_va;
1897
1898                 munmap(map_addr, map_sz);
1899         }
1900         if (hp != NULL && hp != MAP_FAILED)
1901                 munmap(hp, size);
1902         if (fd_hugepage >= 0)
1903                 close(fd_hugepage);
1904         return -1;
1905 }
1906
1907 static int
1908 eal_hugepage_attach(void)
1909 {
1910         if (eal_memalloc_sync_with_primary()) {
1911                 RTE_LOG(ERR, EAL, "Could not map memory from primary process\n");
1912                 if (aslr_enabled() > 0)
1913                         RTE_LOG(ERR, EAL, "It is recommended to disable ASLR in the kernel and retry running both primary and secondary processes\n");
1914                 return -1;
1915         }
1916         return 0;
1917 }
1918
1919 int
1920 rte_eal_hugepage_init(void)
1921 {
1922         return internal_config.legacy_mem ?
1923                         eal_legacy_hugepage_init() :
1924                         eal_hugepage_init();
1925 }
1926
1927 int
1928 rte_eal_hugepage_attach(void)
1929 {
1930         return internal_config.legacy_mem ?
1931                         eal_legacy_hugepage_attach() :
1932                         eal_hugepage_attach();
1933 }
1934
1935 int
1936 rte_eal_using_phys_addrs(void)
1937 {
1938         return phys_addrs_available;
1939 }
1940
1941 static int __rte_unused
1942 memseg_primary_init_32(void)
1943 {
1944         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1945         int active_sockets, hpi_idx, msl_idx = 0;
1946         unsigned int socket_id, i;
1947         struct rte_memseg_list *msl;
1948         uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem;
1949         uint64_t max_mem;
1950
1951         /* no-huge does not need this at all */
1952         if (internal_config.no_hugetlbfs)
1953                 return 0;
1954
1955         /* this is a giant hack, but desperate times call for desperate
1956          * measures. in legacy 32-bit mode, we cannot preallocate VA space,
1957          * because having upwards of 2 gigabytes of VA space already mapped will
1958          * interfere with our ability to map and sort hugepages.
1959          *
1960          * therefore, in legacy 32-bit mode, we will be initializing memseg
1961          * lists much later - in eal_memory.c, right after we unmap all the
1962          * unneeded pages. this will not affect secondary processes, as those
1963          * should be able to mmap the space without (too many) problems.
1964          */
1965         if (internal_config.legacy_mem)
1966                 return 0;
1967
1968         /* 32-bit mode is a very special case. we cannot know in advance where
1969          * the user will want to allocate their memory, so we have to do some
1970          * heuristics.
1971          */
1972         active_sockets = 0;
1973         total_requested_mem = 0;
1974         if (internal_config.force_sockets)
1975                 for (i = 0; i < rte_socket_count(); i++) {
1976                         uint64_t mem;
1977
1978                         socket_id = rte_socket_id_by_idx(i);
1979                         mem = internal_config.socket_mem[socket_id];
1980
1981                         if (mem == 0)
1982                                 continue;
1983
1984                         active_sockets++;
1985                         total_requested_mem += mem;
1986                 }
1987         else
1988                 total_requested_mem = internal_config.memory;
1989
1990         max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
1991         if (total_requested_mem > max_mem) {
1992                 RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n",
1993                                 (unsigned int)(max_mem >> 20));
1994                 return -1;
1995         }
1996         total_extra_mem = max_mem - total_requested_mem;
1997         extra_mem_per_socket = active_sockets == 0 ? total_extra_mem :
1998                         total_extra_mem / active_sockets;
1999
2000         /* the allocation logic is a little bit convoluted, but here's how it
2001          * works, in a nutshell:
2002          *  - if user hasn't specified on which sockets to allocate memory via
2003          *    --socket-mem, we allocate all of our memory on master core socket.
2004          *  - if user has specified sockets to allocate memory on, there may be
2005          *    some "unused" memory left (e.g. if user has specified --socket-mem
2006          *    such that not all memory adds up to 2 gigabytes), so add it to all
2007          *    sockets that are in use equally.
2008          *
2009          * page sizes are sorted by size in descending order, so we can safely
2010          * assume that we dispense with bigger page sizes first.
2011          */
2012
2013         /* create memseg lists */
2014         for (i = 0; i < rte_socket_count(); i++) {
2015                 int hp_sizes = (int) internal_config.num_hugepage_sizes;
2016                 uint64_t max_socket_mem, cur_socket_mem;
2017                 unsigned int master_lcore_socket;
2018                 struct rte_config *cfg = rte_eal_get_configuration();
2019                 bool skip;
2020
2021                 socket_id = rte_socket_id_by_idx(i);
2022
2023 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
2024                 if (socket_id > 0)
2025                         break;
2026 #endif
2027
2028                 /* if we didn't specifically request memory on this socket */
2029                 skip = active_sockets != 0 &&
2030                                 internal_config.socket_mem[socket_id] == 0;
2031                 /* ...or if we didn't specifically request memory on *any*
2032                  * socket, and this is not master lcore
2033                  */
2034                 master_lcore_socket = rte_lcore_to_socket_id(cfg->master_lcore);
2035                 skip |= active_sockets == 0 && socket_id != master_lcore_socket;
2036
2037                 if (skip) {
2038                         RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n",
2039                                         socket_id);
2040                         continue;
2041                 }
2042
2043                 /* max amount of memory on this socket */
2044                 max_socket_mem = (active_sockets != 0 ?
2045                                         internal_config.socket_mem[socket_id] :
2046                                         internal_config.memory) +
2047                                         extra_mem_per_socket;
2048                 cur_socket_mem = 0;
2049
2050                 for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) {
2051                         uint64_t max_pagesz_mem, cur_pagesz_mem = 0;
2052                         uint64_t hugepage_sz;
2053                         struct hugepage_info *hpi;
2054                         int type_msl_idx, max_segs, total_segs = 0;
2055
2056                         hpi = &internal_config.hugepage_info[hpi_idx];
2057                         hugepage_sz = hpi->hugepage_sz;
2058
2059                         /* check if pages are actually available */
2060                         if (hpi->num_pages[socket_id] == 0)
2061                                 continue;
2062
2063                         max_segs = RTE_MAX_MEMSEG_PER_TYPE;
2064                         max_pagesz_mem = max_socket_mem - cur_socket_mem;
2065
2066                         /* make it multiple of page size */
2067                         max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem,
2068                                         hugepage_sz);
2069
2070                         RTE_LOG(DEBUG, EAL, "Attempting to preallocate "
2071                                         "%" PRIu64 "M on socket %i\n",
2072                                         max_pagesz_mem >> 20, socket_id);
2073
2074                         type_msl_idx = 0;
2075                         while (cur_pagesz_mem < max_pagesz_mem &&
2076                                         total_segs < max_segs) {
2077                                 uint64_t cur_mem;
2078                                 unsigned int n_segs;
2079
2080                                 if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
2081                                         RTE_LOG(ERR, EAL,
2082                                                 "No more space in memseg lists, please increase %s\n",
2083                                                 RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
2084                                         return -1;
2085                                 }
2086
2087                                 msl = &mcfg->memsegs[msl_idx];
2088
2089                                 cur_mem = get_mem_amount(hugepage_sz,
2090                                                 max_pagesz_mem);
2091                                 n_segs = cur_mem / hugepage_sz;
2092
2093                                 if (alloc_memseg_list(msl, hugepage_sz, n_segs,
2094                                                 socket_id, type_msl_idx)) {
2095                                         /* failing to allocate a memseg list is
2096                                          * a serious error.
2097                                          */
2098                                         RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
2099                                         return -1;
2100                                 }
2101
2102                                 if (alloc_va_space(msl)) {
2103                                         /* if we couldn't allocate VA space, we
2104                                          * can try with smaller page sizes.
2105                                          */
2106                                         RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list, retrying with different page size\n");
2107                                         /* deallocate memseg list */
2108                                         if (free_memseg_list(msl))
2109                                                 return -1;
2110                                         break;
2111                                 }
2112
2113                                 total_segs += msl->memseg_arr.len;
2114                                 cur_pagesz_mem = total_segs * hugepage_sz;
2115                                 type_msl_idx++;
2116                                 msl_idx++;
2117                         }
2118                         cur_socket_mem += cur_pagesz_mem;
2119                 }
2120                 if (cur_socket_mem == 0) {
2121                         RTE_LOG(ERR, EAL, "Cannot allocate VA space on socket %u\n",
2122                                 socket_id);
2123                         return -1;
2124                 }
2125         }
2126
2127         return 0;
2128 }
2129
2130 static int __rte_unused
2131 memseg_primary_init(void)
2132 {
2133         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
2134         struct memtype {
2135                 uint64_t page_sz;
2136                 int socket_id;
2137         } *memtypes = NULL;
2138         int i, hpi_idx, msl_idx, ret = -1; /* fail unless told to succeed */
2139         struct rte_memseg_list *msl;
2140         uint64_t max_mem, max_mem_per_type;
2141         unsigned int max_seglists_per_type;
2142         unsigned int n_memtypes, cur_type;
2143
2144         /* no-huge does not need this at all */
2145         if (internal_config.no_hugetlbfs)
2146                 return 0;
2147
2148         /*
2149          * figuring out amount of memory we're going to have is a long and very
2150          * involved process. the basic element we're operating with is a memory
2151          * type, defined as a combination of NUMA node ID and page size (so that
2152          * e.g. 2 sockets with 2 page sizes yield 4 memory types in total).
2153          *
2154          * deciding amount of memory going towards each memory type is a
2155          * balancing act between maximum segments per type, maximum memory per
2156          * type, and number of detected NUMA nodes. the goal is to make sure
2157          * each memory type gets at least one memseg list.
2158          *
2159          * the total amount of memory is limited by RTE_MAX_MEM_MB value.
2160          *
2161          * the total amount of memory per type is limited by either
2162          * RTE_MAX_MEM_MB_PER_TYPE, or by RTE_MAX_MEM_MB divided by the number
2163          * of detected NUMA nodes. additionally, maximum number of segments per
2164          * type is also limited by RTE_MAX_MEMSEG_PER_TYPE. this is because for
2165          * smaller page sizes, it can take hundreds of thousands of segments to
2166          * reach the above specified per-type memory limits.
2167          *
2168          * additionally, each type may have multiple memseg lists associated
2169          * with it, each limited by either RTE_MAX_MEM_MB_PER_LIST for bigger
2170          * page sizes, or RTE_MAX_MEMSEG_PER_LIST segments for smaller ones.
2171          *
2172          * the number of memseg lists per type is decided based on the above
2173          * limits, and also taking number of detected NUMA nodes, to make sure
2174          * that we don't run out of memseg lists before we populate all NUMA
2175          * nodes with memory.
2176          *
2177          * we do this in three stages. first, we collect the number of types.
2178          * then, we figure out memory constraints and populate the list of
2179          * would-be memseg lists. then, we go ahead and allocate the memseg
2180          * lists.
2181          */
2182
2183         /* create space for mem types */
2184         n_memtypes = internal_config.num_hugepage_sizes * rte_socket_count();
2185         memtypes = calloc(n_memtypes, sizeof(*memtypes));
2186         if (memtypes == NULL) {
2187                 RTE_LOG(ERR, EAL, "Cannot allocate space for memory types\n");
2188                 return -1;
2189         }
2190
2191         /* populate mem types */
2192         cur_type = 0;
2193         for (hpi_idx = 0; hpi_idx < (int) internal_config.num_hugepage_sizes;
2194                         hpi_idx++) {
2195                 struct hugepage_info *hpi;
2196                 uint64_t hugepage_sz;
2197
2198                 hpi = &internal_config.hugepage_info[hpi_idx];
2199                 hugepage_sz = hpi->hugepage_sz;
2200
2201                 for (i = 0; i < (int) rte_socket_count(); i++, cur_type++) {
2202                         int socket_id = rte_socket_id_by_idx(i);
2203
2204 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
2205                         if (socket_id > 0)
2206                                 break;
2207 #endif
2208                         memtypes[cur_type].page_sz = hugepage_sz;
2209                         memtypes[cur_type].socket_id = socket_id;
2210
2211                         RTE_LOG(DEBUG, EAL, "Detected memory type: "
2212                                 "socket_id:%u hugepage_sz:%" PRIu64 "\n",
2213                                 socket_id, hugepage_sz);
2214                 }
2215         }
2216
2217         /* set up limits for types */
2218         max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
2219         max_mem_per_type = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20,
2220                         max_mem / n_memtypes);
2221         /*
2222          * limit maximum number of segment lists per type to ensure there's
2223          * space for memseg lists for all NUMA nodes with all page sizes
2224          */
2225         max_seglists_per_type = RTE_MAX_MEMSEG_LISTS / n_memtypes;
2226
2227         if (max_seglists_per_type == 0) {
2228                 RTE_LOG(ERR, EAL, "Cannot accommodate all memory types, please increase %s\n",
2229                         RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
2230                 goto out;
2231         }
2232
2233         /* go through all mem types and create segment lists */
2234         msl_idx = 0;
2235         for (cur_type = 0; cur_type < n_memtypes; cur_type++) {
2236                 unsigned int cur_seglist, n_seglists, n_segs;
2237                 unsigned int max_segs_per_type, max_segs_per_list;
2238                 struct memtype *type = &memtypes[cur_type];
2239                 uint64_t max_mem_per_list, pagesz;
2240                 int socket_id;
2241
2242                 pagesz = type->page_sz;
2243                 socket_id = type->socket_id;
2244
2245                 /*
2246                  * we need to create segment lists for this type. we must take
2247                  * into account the following things:
2248                  *
2249                  * 1. total amount of memory we can use for this memory type
2250                  * 2. total amount of memory per memseg list allowed
2251                  * 3. number of segments needed to fit the amount of memory
2252                  * 4. number of segments allowed per type
2253                  * 5. number of segments allowed per memseg list
2254                  * 6. number of memseg lists we are allowed to take up
2255                  */
2256
2257                 /* calculate how much segments we will need in total */
2258                 max_segs_per_type = max_mem_per_type / pagesz;
2259                 /* limit number of segments to maximum allowed per type */
2260                 max_segs_per_type = RTE_MIN(max_segs_per_type,
2261                                 (unsigned int)RTE_MAX_MEMSEG_PER_TYPE);
2262                 /* limit number of segments to maximum allowed per list */
2263                 max_segs_per_list = RTE_MIN(max_segs_per_type,
2264                                 (unsigned int)RTE_MAX_MEMSEG_PER_LIST);
2265
2266                 /* calculate how much memory we can have per segment list */
2267                 max_mem_per_list = RTE_MIN(max_segs_per_list * pagesz,
2268                                 (uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20);
2269
2270                 /* calculate how many segments each segment list will have */
2271                 n_segs = RTE_MIN(max_segs_per_list, max_mem_per_list / pagesz);
2272
2273                 /* calculate how many segment lists we can have */
2274                 n_seglists = RTE_MIN(max_segs_per_type / n_segs,
2275                                 max_mem_per_type / max_mem_per_list);
2276
2277                 /* limit number of segment lists according to our maximum */
2278                 n_seglists = RTE_MIN(n_seglists, max_seglists_per_type);
2279
2280                 RTE_LOG(DEBUG, EAL, "Creating %i segment lists: "
2281                                 "n_segs:%i socket_id:%i hugepage_sz:%" PRIu64 "\n",
2282                         n_seglists, n_segs, socket_id, pagesz);
2283
2284                 /* create all segment lists */
2285                 for (cur_seglist = 0; cur_seglist < n_seglists; cur_seglist++) {
2286                         if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
2287                                 RTE_LOG(ERR, EAL,
2288                                         "No more space in memseg lists, please increase %s\n",
2289                                         RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
2290                                 goto out;
2291                         }
2292                         msl = &mcfg->memsegs[msl_idx++];
2293
2294                         if (alloc_memseg_list(msl, pagesz, n_segs,
2295                                         socket_id, cur_seglist))
2296                                 goto out;
2297
2298                         if (alloc_va_space(msl)) {
2299                                 RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n");
2300                                 goto out;
2301                         }
2302                 }
2303         }
2304         /* we're successful */
2305         ret = 0;
2306 out:
2307         free(memtypes);
2308         return ret;
2309 }
2310
2311 static int
2312 memseg_secondary_init(void)
2313 {
2314         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
2315         int msl_idx = 0;
2316         struct rte_memseg_list *msl;
2317
2318         for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
2319
2320                 msl = &mcfg->memsegs[msl_idx];
2321
2322                 /* skip empty memseg lists */
2323                 if (msl->memseg_arr.len == 0)
2324                         continue;
2325
2326                 if (rte_fbarray_attach(&msl->memseg_arr)) {
2327                         RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
2328                         return -1;
2329                 }
2330
2331                 /* preallocate VA space */
2332                 if (alloc_va_space(msl)) {
2333                         RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
2334                         return -1;
2335                 }
2336         }
2337
2338         return 0;
2339 }
2340
2341 int
2342 rte_eal_memseg_init(void)
2343 {
2344         /* increase rlimit to maximum */
2345         struct rlimit lim;
2346
2347         if (getrlimit(RLIMIT_NOFILE, &lim) == 0) {
2348                 /* set limit to maximum */
2349                 lim.rlim_cur = lim.rlim_max;
2350
2351                 if (setrlimit(RLIMIT_NOFILE, &lim) < 0) {
2352                         RTE_LOG(DEBUG, EAL, "Setting maximum number of open files failed: %s\n",
2353                                         strerror(errno));
2354                 } else {
2355                         RTE_LOG(DEBUG, EAL, "Setting maximum number of open files to %"
2356                                         PRIu64 "\n",
2357                                         (uint64_t)lim.rlim_cur);
2358                 }
2359         } else {
2360                 RTE_LOG(ERR, EAL, "Cannot get current resource limits\n");
2361         }
2362
2363         return rte_eal_process_type() == RTE_PROC_PRIMARY ?
2364 #ifndef RTE_ARCH_64
2365                         memseg_primary_init_32() :
2366 #else
2367                         memseg_primary_init() :
2368 #endif
2369                         memseg_secondary_init();
2370 }